
Systems Integrations

Joshua Allen James Honaker

May 13, 2020





Library desiderata⇒ System Principles

• Extensibility
• Flexibility
• Verifiability
• Programmability
• Modularity
• Usability
• Efficiency
• Utility



Key Questions

• What types of stores need Commons components integrate with?
• What types of identity, authentification and authorization systems

will Commons integrate with?
• What are the use cases utilitizing distributed data/distributed

computation?
• Are there limitations that language choices for library impose on

systems?
• What is the best API for library adoption? (language neutral?

unopinionated?)



Example System Joint with Microsoft

• This system is an end-to-end platform to allow DP queries and
statistical releases to senstive data.
• We provide several basic building blocks that can be used by people

involved with sensitive data, with implementations based on vetted and
mature differential privacy research.
• We provide a pluggable open source framework that researchers can

use to try newer mechanisms and algorithms.



Example System Joint with Microsoft



Components

Current Component List:
1. Library of DP algorithms, components, utilities
2. Analysis Graph API
3. SDK support to execute against CSV, SQL Server, PostgreSQL,

Dataverse, in Azure
4. SQL an ODBC-style API to produce differentially private reports from

SQL queries (SQL-92) , focused on common aggregates used in
analytics.

5. Static Validator certify a proposed analysis is DP and compose
privacy loss

6. Stocastic Validator test workflows numerically against synthetic data
for privacy violations



Library Language Choice

Library implemented in Rust:
• Rust is a fast-growing, imperative functional language.
• high performance, reliable, good memory safety and type safety.
• structures, generics, higher-order functions, and values are immutable

by default.
• It has a strong ownership model that gives memory safety.

Collectively, this makes Rust code easier to reason about concretely.

Proposal: Rust should be the language for the robust, polished, production
code that enters the maximally trusted OpenDP library. However, to
encourage contributions from researchers and other developers, the library
should be able to work with Python and R code components.



Library Language Choice

Library implemented in Rust:
• Rust is a fast-growing, imperative functional language.
• high performance, reliable, good memory safety and type safety.
• structures, generics, higher-order functions, and values are immutable

by default.
• It has a strong ownership model that gives memory safety.

Collectively, this makes Rust code easier to reason about concretely.

Proposal: Rust should be the language for the robust, polished, production
code that enters the maximally trusted OpenDP library. However, to
encourage contributions from researchers and other developers, the library
should be able to work with Python and R code components.



Exploratory Analysis

• API to the library defines an analysis as a computational graph.

• Proposed analysis is validated for privacy preservation.
• If certified, sent to the runtime.
• Python and R bindings allow easy access to specify an analysis

through the API.



Exploratory Analysis

• API to the library defines an analysis as a computational graph.
• Proposed analysis is validated for privacy preservation.
• If certified, sent to the runtime.

• Python and R bindings allow easy access to specify an analysis
through the API.



Exploratory Analysis

• API to the library defines an analysis as a computational graph.
• Proposed analysis is validated for privacy preservation.
• If certified, sent to the runtime.
• Python and R bindings allow easy access to specify an analysis

through the API.







API

• We built a library API using Protocol Buffers,
I serialized data language, like JSON or XML, but heavily typed, very

compact.
• Rust uses same Foreign Function Interfaces as C++ so bindings direct

to Rust are identical (cleaner to write),
• API provides bindings to Python and R,
• For Python, up on PyPI and pip installable.



API Exemplars

The following contain examples of the computational graph representation
of an analysis (or plan) for a proposed release.





















Key Questions

• What types of stores need Commons components integrate with?
• What types of identity, authentification and authorization systems

will Commons integrate with?
• What are the use cases utilitizing distributed data/distributed

computation?
• Are there limitations that language choices for library impose on

systems?
• What is the best API for library adoption? (language neutral?

unopinionated?)


