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1 Goals

In this paper, we propose a programming framework for the library of differentially private algorithms that
will be at the core of the OpenDP open-source software project, and recommend programming languages in
which to implement the framework.

There are a number of goals we seek to achieve with this programming framework and language choice:

Extensibility We would like the OpenDP library to be able to expand and advance together with the
rapidly growing differential privacy literature, through external contributions to the codebase. This
leads to a number of the other desiderata listed below.

Flexibility The programming framework should be flexible enough to incorporate the vast majority of
existing and future algorithmic developments in the differential privacy literature. It should also be
able to support many variants of differential privacy. These variants can differ in the type of the
underlying sensitive datasets and granularity of privacy (e.g. not only tabular datasets with record
level-privacy, but also graph datasets with node-level privacy and datastreams with user-level privacy),
as well as in the distance measure between probability distributions on adjacent datasets (e.g. not only
pure and approximate differential privacy, but also Rényi and concentrated differential privacy).

Verifiability External code contributions need to be verified to actually provide the differential privacy
properties they promise. We seek a programming framework that makes it easier for the OpenDP
Editorial Board and OpenDP Committers to verify correctness of contributions. Ideally, most con-
tributions will be written by combining existing components of the library with built-in composition
primitives, so that the privacy properties are automatically derived. Human verification should mostly
be limited to verifying mathematical proofs for new building blocks, which should usually be small
components with clear specifications. At the same time, if an error is later found in a proof for a build-
ing block, it should be possible to correct that component locally and have the correction propagate
throughout all the code that makes use of that building block.

Programmability The programming framework should make it relatively easy for programmers and re-
searchers to implement their new differentially private algorithms, without having to learn entirely new
programming paradigms or having to face excessive code annotation burdens.

Modularity The library should be composed of modular and general-purpose components that can be
reused in many differentially private algorithms without having to rewrite essentially the same code.
This supports extensibility, verifiability, and programmability.

Usability It should be easy to use the OpenDP Library to build a wide variety of DP Systems that are useful
for OpenDP’s target use cases. These may have varying front-end user interfaces (e.g. programming
in Python notebooks versus a graphical user interface) and varying back-end storage, compute, and
security capabilities.

Efficiency It should be possible to compile algorithms implemented in the programming framework to
execute efficiently in the compute and storage environments that will occur in the aforementioned
systems.

Utility It is important that the algorithms in the library expose their utility or accuracy properties to users,
both prior to being executed (so that “privacy loss budget” is not wasted on useless computations) and
after being executed (so that analysts do not draw incorrect statistical conclusions). When possible,
algorithms should expose uncertainty measures that take into account both the noise due to privacy
and the statistical sampling error.

In Sections 2–6, we build up the ideas in our proposed framework by starting with the ideas underlying
existing differential privacy systems like PINQ [8], Ektelo [13], and Fuzz [11], and explaining how we generalize
them to achieve the above goals. We present the framework with both mathematical specifications and with
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Python-like code snippets. The code snippets are meant solely for illustrative purposes, and not meant to
be a proposal for actual implementation (which is discussed more in Sections 7 and 8).

2 Stable Transformations on Datasets and Pure DP

In the most standard model of differential privacy and in systems like PINQ, a sensitive dataset x is
represented as a multiset of records, each of which is from some data domain X , which we’ll write as
x ∈ MultiSets(X ). For example, for a dataset where each record has a student’s last name, age, and GPA,
we might have X = {A,B, . . . , Z}∗ ×N×R. The distance between two datasets x, x′ ∈ MultiSets(X ) is the
size of their symmetric difference dSym(x, x′) = |x∆x′|.1 We say that x and x′ are adjacent, written x ∼ x′,
if dSym(x, x′) ≤ 1, i.e. x and x′ differ by adding or removing at most one record. The two main kinds of
operators in PINQ and Ektelo are measurements and transformations.

2.1 Measurements

A measurement M is a randomized mapping from datasets to outputs of an arbitrary type. That is,
M : MultiSets(X )  Y, where we are using the squiggly arrow  to denote a randomized function. A
measurement M is ε-DP if for every pair of adjacent datasets x ∼ x′ ∈ MultiSets(X ), the random variables
Y = M(x) and Y ′ = M(x′) have the property that for every set T ⊆ Y,

Pr[Y ∈ T ] ≤ eε · Pr[Y ′ ∈ T ].

Equivalently, we have D∞(Y ||Y ′) ≤ ε, where

D∞(Y ||Y ′) = sup
T⊆Y:Pr[Y ′∈T ]>0

ln

(
Pr[Y ∈ T ]

Pr[Y ′ ∈ T ]

)
.

Yet another equivalent formulation (known as the “group privacy” property of pure differential privacy) is
that for every pair of (not necessarily adjacent datasets x, x′ ∈ MultiSets(X ),

D∞(Y ||Y ′) ≤ ε · dSym(x, x′) (1)

An example of a measurement operator is a noisy sum. Suppose X = [L,U ] is an interval of real numbers.
Then the following is an ε-DP measurement NoisySumL,U,ε : MultiSets(X ) R:

NoisySumL,U,ε(x) =
∑
z∈x

z + Lap(S/ε), where S = max{|L|, |U |}

where Lap(S/ε) represents a draw from the Laplace distribution with scale S/ε and the summation
∑
z∈x

is a summation with multiplicity.2

Here we see that a measurement operator M and its privacy properties are specified by three attributes:

1. The data domain X , whereby the measurement operator expects inputs from MultiSets(X ).

2. The privacy loss parameter ε.

3. The randomized function from MultiSets(X ) Y.

The specification of the input data domain X is important because the privacy properties of M rely on
the assumption that the inputs x come from MultiSets(X ). As above it is often useful to make use of rich
data types, like the interval [L,U ]. (When using the library, one should of course minimize the assumptions

1A multiset x ∈ MultiSets(X ) can be specified by its histogram hx : X → N, where hx(z) is the number of occurrences of z
in X . Then dSym(x, x′) equals the `1 distance between hx and hx′ , i.e.

∑
z |hx(z)− hx′ (z)|.

2That is,
∑

z∈x z =
∑

z∈[L,U ]:hz>0 hx(z) · z, where hx is the histogram of x.
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about the data that are used for privacy. See Section 7 for discussion on how this can be done.) We don’t
include the output data domain Y as an attribute, because without loss of generality we can think of Y as
the countably infinite set of all possible objects representable in our programming language, so it need not
be an explicitly specified attribute of M .

In code, our noisy sum measurement operator could be implemented as follows:

1 class Measurement:

2 input_domain

3 privacy_loss

4 function

5

6 def MakeNoisySum(L: float, U: float, epsilon: float):

7 if L > U or epsilon < 0: raise Exception('Invalid parameters')

8 input_domain = bounded_float(L,U)

9 privacy_loss = epsilon

10 def function(data):

11 data_sum = sum(data)

12 s = max(abs(L), abs(U))

13 z = Laplace(s/epsilon,0)

14 return data_sum + z

15 return Measurement(input_domain,privacy_loss,function)

16

17 # Example

18 l, u, eps = # ... assign to some values

19 NoisySum = MakeNoisySum(l, u, eps)

Figure 1: Measurement Example: NoisySum. We define Measurement as a class with three attributes
and an implicit constructor, but we could have defined it just as some kind of struct with three attributes.
We use class as one such example, but this should not be read as advocating object-oriented languages
(discussed further in Section 8). NoisySum is a Measurement with all parameters fixed (the values are
assigned on 18). The MakeNoisySum function acts like a constructor that allows a programmer to specify
values for the parameters, discussed further in Section 3. Our code examples make some assumptions:
we assume the availability of complex data types such as bounded_float(L,U), and of operations over
multisets (implicitly defined), like the sum operator shown. We also pretend that floating-point arithmetic
is a faithful implementation of real-number arithmetic, which it is certainly not and indeed this is known
to lead to failures of differential privacy [9]. This is only for pedagogical purposes, to convey the ideas of
the programming framework with familiar examples, but in Section 7 we advocate that the OpenDP library
entirely avoid floating-point arithmetic.

2.2 Transformations

In PINQ, a transformation is a (deterministic) mapping from datasets to datasets. That is, T : MultiSets(X )→
MultiSets(Y). For c ∈ R, we say that T is c-stable if for all x, x′ ∈ MultiSets(X ),

dSym(T (x), T (x′)) ≤ c · dSym(x, x′). (2)

An example of a stable transformation is clamping. Suppose X = R and Y = [L,U ] and define clampL,U :
X → Y by

clampL,U (z) =


U if z > U

z if z ∈ [L,U ]

L if z < L.
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Then we can define a 1-stable transformation T : MultiSets(X )→ MultiSets(Y) by:

T (x) = {clampL,U (z) : z ∈ x} (with multiplicity).

Here we see that a transformation T and its stability properties are specified by four attributes:

1. The data domain X for the input datasets.

2. The data domain Y for the output datasets.

3. The stability parameter c.

4. The function from MultiSets(X )→ MultiSets(Y).

Here we need to specify the output domain Y because a transformation should promise that if the input
dataset x is in MultiSets(X ), then the output dataset T (x) is in MultiSets(Y). This is crucial for chaining
as described later.

In code, the clamping transformation could be implemented as follows:

1 class Transformation:

2 input_domain

3 output_domain

4 stability

5 function

6

7 def MakeClamp(L: float, U: float):

8 if L > U: raise Exception('Invalid parameters')

9 input_domain = float

10 output_domain = bounded_float(L,U)

11 stability = 1

12 def function(data):

13 def clamp(x): return max(min(x, U), L)

14 return map(clamp, data)

15 return Transformation(input_domain,output_domain,stability,function)

16

17 # Example

18 Clamping = MakeClamp(l, u) # where l, u are constants defined previously

Figure 2: Transformation Example: Clamping. We use the same style as in Figure 1 for measurements.
We define Transformation as a class with four attributes. Clamping is a concrete transformation with fixed
parameters, constructed via MakeClamp. We use here a function map to apply the clamp function to every
element of the multiset.

2.3 Chaining

From transformations and measurements defined as above, we can build up more complex transformations
and measurements through various operators that combine them. One way of combining measurements and
transformations is through chaining, which is simply function composition (but in the differential privacy
literature the term “composition” has a different meaning, described below). There are two forms of chaining:

TT Chaining: If S : MultiSets(X )→ MultiSets(Y) is a c-stable transformation, and T : MultiSets(Y)→
MultiSets(Z) is a d-stable transformation, then T ◦ S : MultiSets(X ) → MultiSets(Z) is a cd-stable trans-
formation. Notice that the S and T need to be compatible in the sense that the data domain of the output
dataset of S must match the data domain of the input datasets of T .
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MT Chaining: Similarly, if T : MultiSets(X ) → MultiSets(Y) is a c-stable transformation, and M :
MultiSets(Y)  Z is an ε-DP measurement, then M ◦ T : MultiSets(X )  Z is a cε-DP measurement.
Again, this requires compatibility of the intermediate data domain between T and M .

To illustrate the latter (chaining of a transformation and measurement), consider T = clampL,U and
M = NoisySumL,U,ε. Since clampL,U : MultiSets(R) → MultiSets([L,U ]) is a 1-stable transformation and
NoisySumL,U,ε : MultiSets([L,U ]) R is ε-DP, their composition

NoisyClampedSumL,U,ε = NoisySumL,U,ε ◦ clampL,U : MultiSets(R)→ R

is ε-DP.
In code, we can implement chaining as an operator that takes two transformation objects that are compat-

ible and produces a new transformation object, or similarly for a transformation object and a measurement
object. The example above of chaining clampL,U and NoisySumL,U,ε can be illustrated in code as follows:

1 def ChainingTT(trans_2: Transformation, trans_1: Transformation):

2 # makes new transformation: trans_2(trans_1( . ))

3 if (trans_1.output_domain!=trans_1.input_domain): raise Exception('Domain mismatch')

4 input_domain = trans_1.input_domain

5 output_domain = trans_2.output_domain

6 stability = trans_1.stability*trans_2.stability

7 def function(data): return trans_2.function(trans_1.function(data))

8 return Transformation(input_domain,output_domain,stability,function)

9

10 def ChainingMT(meas: Measurement, trans: Transformation):

11 # makes new measurement: meas(trans( . ))

12 if (trans.output_domain!=meas.input_domain): raise Exception ('Domain mismatch')

13 input_domain = trans.input_domain

14 privacy_loss = trans.stability*meas.privacy_loss

15 def function(data): return meas.function(trans.function(data))

16 return Measurement(input_domain,privacy_loss,function)

17

18 # Example

19 NoisyClampedSum=ChainingMT(NoisySum, Clamping)

Figure 3: Chaining. We define two chaining operations, chaining of two transformations, and chaining of
a transformation and a measurement. These functions check that the input transformations/measurements
are certified to be correct (see Section 3) and that the input and output domains are compatible and they
raise an exception otherwise.

2.4 Composition

Informally, the Basic Composition Theorem of differential privacy says that if we execute an ε1-DP mechanism
on a dataset followed by an ε2-DP mechanism on the same dataset, the result is (ε1 + ε2)-DP. This sort of
a composition principle has two main applications:

1. It allows for tracking cumulative privacy loss when analysts make many differentially private queries on
a dataset. This is what gives rise to the notion of a “privacy loss budget” in differential privacy, where
we can prevent exceeding a desired total privacy loss bound ε by tracking the accumulated privacy loss
and refusing to answer any queries that would result in exceeding the overall budget of ε.

2. It allows for building more complex DP mechanisms from multiple executions of simpler mechanisms,
deriving an upper bound on the privacy loss of the “outer mechanism” as the sum of the privacy losses
of the the “inner mechanisms”.
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In the simplest, “nonadaptive” form of basic composition, we have an ε1-DP mechanismM1 : MultiSets(X ) 
Y and an ε2-DP mechanism M2 : MultiSets(X )  Z, and obtain an (ε1 + ε2)-DP mechanism M :
MultiSets(X ) Y×Z by M(x) = (M1(x),M2(x)), where M1 and M2 use independent randomness. For ex-
ample, if we wanted to compute a differentially private clamped mean, we could takeM1 = NoisyClampedSumL,U,ε

and M2 = NoisyClampedSum1,1,ε to obtain an (2ε)-DP NoisyPair that provides us with both a noisy clamped
sum (from M1) and a noisy estimate of the size of the dataset (from M2).

In code, we can implement such basic composition as an operator on measurement objects as follows:

1 def Compose(meas_1: Measurement,meas_2: Measurement)

2 if (meas_1.input_domain!=meas_2.input_domain): raise Exception('Domain mismatch')

3 input_domain = meas_1.input_domain

4 privacy_loss = meas_1.privacy_loss+meas_2.privacy_loss

5 def function(data): return (meas_1.function(data),meas_2.function(data))

6 return Measurement(input_domain,privacy_loss,function)

7

8 # Example

9

10 # We first define a new measurement: a noisy count that is built from the

11 # clamping, noisy sum, and chaining operations previously introduced

12 ClampToOne = MakeClamp(1, 1)

13 NoisySumOfOnes = MakeNoisySum(1, 1, eps)

14 NoisyCount=ChainingMT(NoisySumOfOnes, ClampToOne)

15

16

17 # With this we can now define NoisyPair

18 NoisyPair=Compose(NoisyClampedSum, NoisyCount)

Figure 4: Compose. We check that the input domains of the two measurements we want to compose are
compatible, otherwise we throw an exception. In the example, we define a NoisyCount measurement by
reusing previously defined operations and then compose NoisyClampedSum and NoisyCount.

However, it is often useful to use more sophisticated, “adaptive” forms of composition, where the choice of
the mechanism M2 depends on the result of M1(x), and we also allow even more mechanisms M3,M4, . . . to
be chosen adaptively. This kind of flexibility is clearly important when allowing an analyst to interactively
query a dataset protected by differential privacy. To support this, PINQ and other DP systems often
manage the privacy budget and composition at a higher layer that sits above the basic transformations and
measurements. (Indeed, PINQ also handles chaining at that higher level, rather than as an operator that
produces new transformations and measurements.)

2.5 Post-processing

An important property of differential privacy is that it is closed under post-processing. That is, if M :
MultiSets(X ) Y is ε-DP and f : Y → Z is any function, then f ◦M : MultiSets(X ) Z is ε-DP.

Now we can actually produce a differentially private mean by composing the NoisyPair mechanism above
with a division operation f(a, b) = a/b. In code:
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1 def Postprocess(meas: Measurement,funct):

2 input_domain = meas.input_domain

3 privacy_loss = meas.privacy_loss

4 def function(data): return funct(meas.function(data)))

5 return Measurement(input_domain,privacy_loss,function)

6

7 # Example

8 # We can define an auxiliary divide function

9 def divide(x,y): return x/y

10 # We can now redefine NoisyMean using Postprocess.

11 NoisyMean=Postprocess(NoisyPair,divide)

Figure 5: Postprocessing. Notice that we don’t require the input_domain of the function to match the
output_domain of the measurement. In fact, measurements don’t have an output_domain attribute. From
the privacy perspective this is not required. This can create a mismatch which can generate an exception,
but this exception would not create any privacy issue. Using a statically typed language can help to avoid
such situations.

3 Verifying Privacy Properties

Our goal is to ensure that the only measurements and transformations that can be constructed by the
OpenDP Library have mathematically proven privacy properties, based on either:

• A custom proof, which is provided by the contributor and is verified by a human (on the OpenDP
editorial board) or by a computer (for components that are amenable to formal verification techniques),
or

• An automatically derived proof, if the new component is obtained by combining components that
already exist in the library (using combination primitives that exist in the library).

Looking at the examples in Section 2, we see that it is rare that a measurement or transformation would
be provided as a single, stand-alone object in the library. Rather they are given as parameterized families
of objects, like clampL,U is parameterized by L and U and NoisySumL,U,ε is parameterized by L, U , and ε.
So we really need verification procedures for measurement families and transformation families. In our code
examples, we implemented measurement (respectively, transformation) families as constructors that take the
parameters and output a measurement (respectively a transformation), or an exception if the parameters
are invalid. Thus we propose:

Code should only be accepted to the library if there is a proof that (1) it can only ever construct
valid measurements or transformations, where valid means that the measurement (resp. trans-
formation) respects the privacy-loss bound (resp., stability bound) promised in its attributes, (2)
it does not modify any measurements or transformations that have been constructed, and (3) it
does not modify code in the library.

The proof can assume (by induction) that all measurements and transformations given as inputs
or constructed by existing code in the library are valid. In particular, if the new code does not
directly construct any measurements or transformations on its own (but only using existing code
to do so), does not modify any measurements or transformations that have been constructed, and
does not modify code in the library, then it should be possible to verify its validity automatically.

Evaluating the code examples from Section 2 with respect to this principle, note that the various checks
they do on their input parameters (e.g. checking that L ≤ U and ε ≥ 0) are crucial for ensuring that is
impossible for them to generate invalid measurements or transformations.
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Although the principle above ensures that all measurements and transformations constructed by the
library are valid and no further verification is necessary, it might be of interest to decorate measurements
and transformations with the “provenance” of their proof of correctness (showing how the proofs of all the
library methods used to construct them are stitched together).

4 Varying Types and Distance Measures

4.1 Private Data Types

In the basic PINQ-like framework described above, all sensitive data is represented as a multiset, and the
granularity of privacy is captured by the symmetric difference metric dSym. As realized in Fuzz [11], it is very
useful to allow for other sensitive data types and metrics. There are two benefits to such a generalization:

1. Not all sensitive data comes in the form a multiset of records, where the desired granularity of privacy
is adding or removing one record. For example, for network data, the sensitive dataset is often a graph
(sometimes augmented with labels) and the granularity of privacy may refer to modifications at the
level of a node or an edge.

2. Even if the original dataset comes in the form of multiset of records, a differentially private algorithm
may produce intermediate data representations (e.g. a histogram). Being able to reason about distances
in such intermediate representations allows decomposing differentially private algorithms into smaller
modular and reusable components.

Now a transformation T : X → Y can have arbitrary input and output types X and Y, which need not be
multisets. For a given metrics dX and dY on X and Y, we say that T is a c-stable transformation from dX to
dY if all x, x′ ∈ X , we have dY(T (x), T (x′)) ≤ c ·dX (x, x′), generalizing Inequality (2). Similarly, we say that
a measurement M : X  Y is ε-DP with respect to dX if for all x, x′ ∈ X , D∞(M(x)||M(x′)) ≤ ε · dX (x, x′),
generalizing Inequality (1).

Now, a transformation should also have the metrics dX and dY associated with it, and a measurement
the metric dX . Then chaining works as before, except we must also check compatibility of the intermediate
metrics.

As an illustration, we can decompose our NoisySumL,U,ε as a chaining of two components BoundedSumL,U :
MultiSets([L,U ])→ R and BaseLapmax{|L|,|U |}/ε : R R, where

BoundedSumL,U (x) =
∑
z∈x

z (with multiplicity),

and
BaseLapσ(y) = y + Lap(σ).

The ε-DP property of NoisySum follows from the facts that BoundedSum is max{|L|, |U |}-stable from dSym
to dR, where dR(a, b) = |a− b|, and BaseLapσ is (1/σ)-DP with respect to dR.

In code:
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1 class Measurement:

2 input_metric # --- new ---

3 input_domain

4 privacy_loss

5 function

6

7 class Transformation:

8 input_metric # --- new ---

9 input_domain

10 output_metric # --- new ---

11 output_domain

12 stability

13 function

14

15 def ChainingMT(meas: Measurement, trans: Transformation):

16 if (trans.output_domain!=meas.input_domain

17 or trans.output_metric!=meas.input_metric)): raise Exception('Domain/metric mismatch')

18 input_metric = trans.input_metric

19 input_domain = trans.input_domain

20 privacy_loss = trans.stability*meas.privacy_loss

21 def function(data): return meas.function(trans.function(data))

22 return Measurement(input_metric,input_domain,privacy_loss,function)

23

24 def MakeBaseLap(sigma: float):

25 if sigma < 0: raise Exception('Invalid parameter')

26 input_metric = dist_real

27 input_domain = float

28 privacy_loss = 1/sigma

29 def function (data): return data + Laplace(sigma,0)

30 return Measurement(input_metric,input_domain,privacy_loss,function)

31

32 def MakeBoundedSum(L: float, U: float):

33 if U > L: raise Exception('Invalid parameters')

34 input_metric = dist_sym

35 input_domain = multiset(bounded_float(L,U))

36 output_metric = dist_real

37 output_domain = float

38 stability = max(abs(L), abs(U))

39 def function (data): return sum(data)

40 return Transformation(input_metric,input_domain,output_metric,output_domain,

41 stability,function)

42

43 # Example

44 BaseLaplace = MakeBaseLap(sig) # sig is some constant

45 BoundedSum = MakeBoundedSum(l, u) # l,u defined previously

46 NoisySum=ChainingMT(BaseLaplace, BoundedSum)

47 print(NoisySum.privacy_loss) # prints max(abs(l),abs(u))/sig

Figure 6: Private Data Types. We re-define Measurement and Transformation to include metrics. We
also re-define the chaining operations to also check metric compatibility (ChainingTT omitted but similar).
Notice how the input_domain of the BoundedSum transformation is now more explicit about the type,
which declares that we expect a multiset of bounded floats.
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4.2 Privacy Relations

In the definitions of “pure” differential privacy above, we measure the distance between the output distri-
butions M(x) and M(x′) using “max-divergence” D∞(M(x)||M(x′)). In the differential privacy literature,
a number of other measures have been proposed, motivated by the greater utility they afford and/or their
superior composition properties.

For example, with approximate differential privacy, we say that M is (ε, δ)-DP if for all x ∼ x′, we have
Dδ
∞(M(x)||M(x′)) ≤ ε, where Dδ

∞ is the smoothed max-divergence. This means that for all sets T , we have:

Pr[M(x) ∈ T ] ≤ eε · Pr[M(x′) ∈ T ] + δ.

Note that here privacy is not measured by a single number but a pair of numbers (ε, δ). Moreover, there need
not be a single optimal choice of (ε, δ) for a given mechanism, but rather a Pareto curve, where for every
ε > 0, we can try to identify the minimum δ for which the mechanism is (ε, δ)-DP. A similar phenomenon
occurs with other notions such as concentrated differential privacy and Rényi differential privacy.

Thus, it is no longer sufficient to express privacy as a linear relationship between input distances and
output distances, like we did before when we required D∞(M(x)||M(x′)) ≤ ε · dX (x, x′). Instead, for a
measurement M : X  Y a metric dX on X and a similarity measure D on probability distributions, we
assert the privacy properties of M by a relation R(din, dout) that takes an input distance din and an output
distance dout and certifies that “for all x, x′ ∈ X , if x is din-close to x′ under dX , then M(x) is dout-close to
M(x′) with respect to D.”

Let us illustrate with the example of the Gaussian mechanism BaseGaussσ : R R, defined as

BaseGaussσ(y) = y + N (0, σ).

It is known that if |y − y′| ≤ d, then for every δ > 0,

Dδ
∞(BaseGaussσ(y)||BaseGaussσ(y′)) ≤ d

σ
·

√
2 ln

(
1.25

δ

)
,

provided that the right-hand side is at most 1.

R(din, (ε, δ)) =

{
true if min{ε, 1} ≥ (din/σ)

√
2 ln(1.25/δ)

false otherwise

To capture this in code, we modify our Measurement class from before in the following ways:

1. In addition to an input metric dX , we also have an attribute that corresponds to the privacy measure
D.

2. The pure DP constant is replaced with a privacy relation.
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1 class Measurement:

2 input_metric

3 input_domain

4 output_measure

5 privacy_relation # --- new (replaces privacy_loss)

6 function

7

8 def MakeBaseGauss(sigma: float):

9 if sigma < 0: raise Exception

10 input_metric = dist_real

11 input_domain = float

12 output_measure = approxDP

13 def privacy_relation (d_in: float,d_out: float*float):

14 return ((d_in/sigma)*sqrt(2*ln(1.25/d_out[2]))) <= min(d_out[1],1)

15 def function (data):

16 z = Laplace(sigma,0)

17 return data + z

18 return Measurement(input_metric,input_domain,output_measure,privacy_relation,function)

19

20 # Example

21 BaseGauss = MakeBaseGauss(sig)

Figure 7: Privacy relations. We re-define Measurement by changing the privacy_loss attribute to a
privacy_relation attribute. In BaseGauss, the privacy_relation function returns true if the distance in
input and the distance in output satisfy the constraints imposed by the correctness of the Gaussian mecha-
nism for approximate differential privacy – we use a data type approxDP as the associated output_measure.
The relation is intentionally given as callable code; as other mechanisms that use the measurement may need
to evaluate the relation during execution. The notation float*float means the expected type is pair of
floats.

4.3 Stability Relations

Having generalized to arbitrary, multi-parameter privacy measures, it is natural to allow the same flexibility
for our distance measures on the sensitive data types. An example that has arisen in the differential privacy
literature is that of joins [10, 5, 7, 8]. Let x ∈ MultiSets(K × A) and y ∈ MultiSets(K × B) be two
datasets over records that share a common key from domain K. The join of x and y over K is a multiset
x ./K y ∈ MultiSets(K ×A× B) defined as

x ./K y = {(k, a, b) : (k, a) ∈ x, (k, b) ∈ y} (with multiplicity)

A join has unbounded stability with respect to both x and y, so a solution is to first apply a truncation
operation to each dataset. Define TruncK,`(x) to be a dataset obtained by discarding records from x so that
for every k ∈ K, the number of records of the form (k, ·) in TruncK,`(x) (counting multiplicity) is at most
`. (Specifically, TruncK,`(x) sorts the elements (k, a1), (k, a2), . . . according to a fixed ordering on A and
discards all but the first ` records.) Similarly define TruncK,m(y). Then we define

BoundedJoin`,m(x, y) = TruncK,`(x) ./K TruncK,m(y).

Inputs of BoundedJoin are pairs of multisets, so it is useful to measure distances by a pair of numbers.
Specifically, we say that (x, y) is (c, d)-close to (x′, y′) under dSym× dSym if |x∆x′| ≤ c and |y∆y′| ≤ d. This
notion arises naturally in DP applications when x and y may each be derived from some underlying sensitive
dataset z using transformations of stability c and d, respectively. Then we can express the stability property
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of BoundedJoin as follows: if (x, y) is (c, d)-close to (x′, y′) under dSym × dSym, then BoundedJoin`,m(x, y)
is 2(c ·m+ ` · d+ 2c · d)-close to BoundedJoin`,m(x′, y′) under dSym [7]. This can be expressed in terms of a
stability relation as follows:

R((c, d), e) =

{
true if e ≥ 2(c ·m+ ` · d+ 2c · d)

false otherwise

4.4 Multiple Distance Measures at Once

Additionally, we need not have a fixed pair of input and output distance measures associated with a given
transformation or measurement operator, as the same operator can have its stability measured accord-
ing to multiple metrics and we can exploit relationships between those metrics to automatically translate
between them. For example, it is known that any mechanism that is ρ-zCDP (where zCDP stands for
“zero-concentrated differential privacy” [2]) is also (ρ + 2

√
ρ ln(1/δ), δ)-DP for every δ > 0. Similarly, any

two vectors u, v ∈ Rd that are α-close in `1 norm are also
√
d · α-close in `2 norm. To support this, we no

longer have our input and output metrics as fixed attributes of our transformations and measurements, but
we take them as input to the privacy or stability relations. That is, for a measurement operator M : X → Y
we now have a privacy relation R((dX , din), (D, dout)) such that whenever R((dX , din), (D, dout)) is true, the
following holds:

1. dX is a (possibly multidimensional) distance measure on X , and din is a valid distance bound under
dX .

2. D is a (possibly multidimensional) distance measure on probability distributions on arbitrary sets, and
dout is a valid distance bound under D.

3. for all datasets x, x′ ∈ X , if x and x′ are din-close under dX , then the probability distributions M(x)
and M(x′) are dout-close under D.

For example, when X = MultiSets(Z), then R((dSym, 1), (D∞, ε)) being true is asserts that M is ε-DP.
For the BaseGaussσ : R → R mechanism defined above, we can assert its privacy properties under zCDP
and approximate DP with a relation defined as follows:

R(dX , din), (D, dout)) =


true if dX = dR, D = zCDP, din, dout ∈ R, and dout ≥ d2in/2σ2

true if dX = dR, D = approxDP, din ∈ R, dout = (ε, δ) ∈ R× R,

and min{ε, 1} ≥ (din/σ)
√

2 ln(1.25/δ)

false otherwise

In code:
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1 def MakeBaseGauss(sigma: float):

2 # ... same as before except relation now takes distance measures as input ...

3 def privacy_relation ((m_in,d_in),(m_out,d_out)):

4 if m_in==dist_real and type(d_in)==float:

5 if m_out==approxDP and type(d_out)==float*float:

6 return ((d_in/sigma)*sqrt(2*ln(1.25/d_out[1]))) <= min(d_out[0],1)

7 elif m_out==zCDP and type(d_out)==float:

8 return (d_in^2/(2*sigma^2)) <= d_out

9 else return false

10 return Measurement(input_metric,input_domain,output_measure,relation,function)

11

12 # Example

13 BaseGauss = MakeBaseGauss(sig)

Figure 8: Privacy relations for multiple distance measures at once. We redefine MakeBaseGauss so that it
produces a privacy_relation that takes distance measures as input in addition to the distances

The BaseGauss example illustrates that the privacy relations are only meant to be sound but are not
necessary complete. That is, if the privacy relation says true, it should be considered a certificate that
the measurement or transformation has the claimed privacy or stability properties. However, if the privacy
relation says false, it only means that no claim is made about the property. For example, using the aforemen-
tioned relationship between zCDP and approximate DP, it follows that the Gaussian mechanism is (ε, δ)-DP
whenever

ε ≥ (d2in/2σ
2) + (din/σ)

√
2 ln(1/δ),

which is satisfied by some values of dout = (ε, δ) that do not satisfy the relation above. This example also
illustrates the eventual possibility of having some automated translation between different distance measures.
That is, we can encode the relationships between different distance measures in the OpenDP library, and
have it automatically check whether a privacy or stability property can be derived from other ones.

4.5 Chaining

Let us consider how chaining behaves with these stability and privacy relations. Specifically, how do we
derive the relation for a chained transformation or measurement from the relations for its component parts?
Let T : X → Y be a transformation with stability relation RT and M : Y  Z be a measurement with
privacy relation RM . Intuitively, the privacy of M ◦ T should be derived from the fact that (a) close inputs
in X map to close elements of Y under T , and (b) close elements of Y map to close probability distributions
under M . Note that we are free to choose any notion of closeness on Y for which these two statements hold.
So the following would be a valid derivation of a privacy relation for the chained measurement M ◦T : X  Z:

RM◦T ((dX , din), (D, dout)) =

{
true if ∃(dY , dmid) RT ((dX , din), (dY , dmid)) ∧RM ((dY , dmid), (D, dout))

false otherwise

But in general it is not feasible to implement such a relation, as there may be many choices for the pair
(dY , dmid) — indeed, infinitely many if dmid is vector of real numbers. So, when chaining, we must provide a
hint function that specifies the intermediate notion of closeness to be used: (dY , dmid) = hint((dX , din), (D, dout)),
and we instead use the following relation:

RM◦T ((dX , din), (D, dout)) =

{
true if RT ((dX , din),hint((dX , din), (D, dout))) ∧RM (hint((dX , din), (D, dout)), (D, dout))

false otherwise

Note that the soundness of this relation does not depend on the choice of the hint function. A poorly chosen
hint function may result in a relation that outputs false more often than necessary, but will not make the
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relation output true when the chained measurement does not have the specified privacy property (assuming
the relations RM and RT are sound).

Let’s illustrate this by chaining BoundedSumL,U and BaseGaussσ to obtain GaussSumL,U,σ. We know
that BoundedSumL,U : MultiSets([L,U ]) → R is a max{|L|, |U |}-stable transformation from dSym to dR, so
here a natural hint function to use would set:

hint((dSym, din), (D, dout)) = (dR,max{|L|, |U |} · din).

In code:

1 def ChainingMT(trans: Transformation,meas: Measurement,hint):

2 if trans.output_domain!=meas.input_domain: raise Exception('domain mismatch')

3 input_metric = trans.input_metric

4 input_domain = trans.input_domain

5 def function(data): return meas.function(trans.function(data))

6 output_measure = meas.output_measure # --- new ---

7 def privacy_relation((m_in,d_in),(m_out,d_out)): # --- new ---

8 m_mid, d_mid = hint((m_in,d_in),(m_out,d_out))

9 return (trans.stability_relation((m_in,d_in),(m_mid,d_mid))

10 and meas.privacy_relation((m_mid,d_mid),(m_out,d_out)))

11 return Measurement(input_metric,input_domain,output_measure,privacy_relation,function)

12

13 def MakeBoundedSum(L: float, U: float):

14 # ... same as before except relation replaces stability constant ...

15 def stability_relation((m_in,d_in),(m_out,d_out)) =

16 if m_in==dist_sym and type(d_in)==float and m_out==dist_real and type(d_out)==float:

17 return (max(abs(L),abs(U)) <= d_out)

18 return Transformation(input_metric,input_domain,output_metric,output_domain,

19 stability_relation,function)

20

21 # Example

22 def hintGaussSum((m_in,d_in)(m_out,d_out)):

23 if (m_in==dist_sym and c==approxDP): return (dist_real, max(abs(L),abs(U))*b)

24 BoundedSum = MakeBoundedSum(l, u)

25 BaseGauss = MakeBaseGauss(sig)

26 GaussSum=ChainingMT(BoundedSum,BaseGauss,hintGaussSum)

Figure 9: Chaining revisited. ChainingMT has been revised to define a new privacy_relation function
that simply computes the conjunction of the relation checks for the operations being chained, with a hint

on the intermediate distance and metric supplied by the caller. As an example, GaussSum is made through
chaining.

We anticipate that most cases will be like the above, where the hint is obtained by just using the stability
constant of the transformation. Indeed, when a transformation is stable, this information should also be
provided by the relation, so that the hint function can specify just the distance measure dY and need not
calculate the number dmid. More generally, if dY is a univariate, monotone distance measure (i.e. where if y
and y′ are d-close under dY and d′ > d, then y and y′ are also d′-close under dY), then a hint for dmid can
also be automatically obtained by doing a binary search on RT ((dX , din), (dY , ·)).

4.6 Assumptions on the Measures

A crucial assumption about the privacy measures D is that they satisfy post-processing: if X and X ′ are
random variables distributed that are d-close with respect to D and f is any function, then f(X) and f(X ′)
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are also d-close with respect to D. (In particular, D should be a well-defined distance measure on probability
distributions over all representable objects, and not specific to their domain X .) This allows us to implement
our post-processing operator on measurements just as before.

Beyond post-processing, the proposed framework does not need to assume anything else about the mea-
sures. In particular, they need not be metrics in the standard mathematical sense. However, it may be
useful to annotate the distance measures with additional properties that may be useful to exploit in some
privacy analyses:

1. Symmetry: if x and x′ are d-close under dX , then x′ and x are d-close under dX . (Note that some of
the privacy measures like D∞ are most natural as non-symmetric measures.)

2. Monotonicity: whenever x and x′ are d-close under dX and d′ > d, then x and x′ are d′-close under
dX .

3. Triangle Inequality: if x and x′ are d-close under dX and x′ and x′′ are d′-close under dX , then x and
x′′ are (d+ d′)-close under dX .

4. Nonnegativity: if x and x′ are d-close under dX , then d ≥ 0.

(Some of these only make sense when dX measures privacy by a single real number, or at least in some ordered
domain with an addition operation.) For example, the measure D∞ used in defining pure differential privacy
does not satisfy symmetry, but it does satisfy monotonicity, the triangle inequality, and nonnegativity, and
the triangle inequality in particular underlies the “group privacy” property of pure differential privacy.

4.7 Composition

Let us illustrate how the basic composition of two DP mechanisms can be analyzed with different privacy
measures. Composing an (ε1, δ1)-DP mechanism and an (ε2, δ2)-DP mechanism yields an (ε1+ε2, δ1+δ2)-DP
mechanism. Composing a ρ1-zCDP and a ρ2-zCDP mechanism yields a (ρ1 + ρ2)-zCDP mechanism. Let
M1 : X  Y and M2 : X → Z be measurements with privacy relations R1 and R2. Then we can construct
a privacy relation R for their composition M : X  Y × Z where M(x) = (M1(x),M2(x)) as follows:

RM ((dX , din), (D, dout)) =



true if D = puredp and ∃ε1 R1((dX , din), (D, ε1) ∧R2((dX , din), (D, dout − ε1)

true if D = zCDP and ∃ρ1 R1((dX , din), (D, ρ1) ∧R2((dX , din), (D, dout − ρ1)

true if D = approxDP, dout = (ε, δ) ∈ R× R, and

∃ε1 R1((dX , din), (D, (ε1, δ/2))) ∧R2((dX , din), (D, (ε− ε1, δ/2)))

false otherwise

This composition relation is somewhat unsatisfactory because of the existential quantifiers (which can be
eliminated by doing a binary search) and because the composition for approximate DP assumes that the
δ is split evenly between the two measurements. Later we will describe a much more general “interactive”
composition primitive that allows for the privacy parameters of the individual measurements to be precisely
specified.

5 Interactive Measurements

The framework described before assumes that measurements are one-shot randomized functions M : X  Y.
However, many of the useful primitives in the differential privacy literature, such as Adaptive Composition,
the Sparse Vector Technique, and Private Multiplicative Weights are actually interactive mechanisms, which
allow one to ask an adaptive sequence of queries about the dataset. Having a library that supports such
interactive measurements is useful both for enabling the design of interactive query systems for end users,
as well as tools for the design of even noninteractive differentially private algorithms (such as differentially
private gradient descent).
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Here we will describe the basic theory and implementation of interactive measurements. For sake of
exposition, we will restrict attention to pure differential privacy and stable transformations on multisets
as in Section 2, but it can all be combined with the more general forms of privacy relations described in
Section 4.

5.1 Defining Interactive Measurements

An interactive measurement M is a (possibly randomized) function that takes a private dataset x ∈
MultiSets(X ) and then “spawns” a (possibly randomized) state machine Q = M(x) called a queryable.
The queryable consists of an initial private state s and an evaluation function Eval. It then receives a query
q1. Based on q1 and its current state s0, it generates a (possibly randomized) answer a1 and updates its
state to s1. That is, (a1, s1) ← Eval(q1, s0). It then receives a new query q2, and similarly generates an
answer and state update as (a2, s2)← EvalM (q2, s1). And so on, arbitrarily long.

To define privacy for interactive measurements, we consider an arbitrary adversarial strategy A interact-
ing with M(x), which selects each query qi adaptively based on all previous answers (a1, . . . , ai−1) and any
randomness of A. Let View(A ↔ M(x)) be a random variable denoting the A’s view of this entire interac-
tion, namely all of A’s randomness and the answers to all queries. We say that M is an ε-DP interactive
measurement if for every adversarial strategy A, and every pair x ∼ x′ of adjacent datasets in MultiSets(X ),
the random variables Y = View(A↔M(x)) and Y ′ = View(A↔M(x′))

D∞(Y ||Y ′) ≤ ε.

A noninteractive measurement M can be viewed as an interactive measurement M ′ where M ′(x) returns
a queryable whose initial state is s = M(x) and whose transition function always returns answer a = s and
does not change the state. However, there are more interesting interactive measurements, such the following
adaptive composition measurement. Here the queryable constructed keeps the dataset x and the remaining
privacy-loss budget ε in its state. It takes (noninteractive) measurements as queries, and evaluates them on
the dataset if it can do so within the remaining budget, in which case it decrements the privacy loss of the
query from the remaining budget.

AdaptiveCompositionε,X (x): return the queryable Q = (s0,EvalAC) defined as follows.

• s0 = (x, ε).

• Query evaluator EvalAC(q, s):

1. Parse s as s = (x, ε).

2. If q is not a syntactically valid noninteractive measurement object for data domain X , set a =
‘improper query’ and ε′ = ε.

3. Else if privacyloss(q) > ε, set a = ‘insufficient budget’ and ε′ = ε.

4. Else set a← q(x) and ε′ = ε− privacyloss(q).

5. Set s′ = (x, ε′) and return (a, s′).

Note that this construction uses the fact that the description of a (noninteractive) measurement includes its
privacy-loss parameter (ε) and that this is a publicly exposed attribute.

As we see in the above example, to describe an interactive measurement operator, we need to specify:

1. The domain X of its data records.

2. The privacy loss ε.

3. The (possibly randomized) function f that generates a queryable from a dataset.
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An example implementation of AdaptiveComposition in code is as follows:

1 class InteractiveMeasurement:

2 input_domain

3 privacy_loss

4 function # --- now the function will output a Queryable ---

5

6 class Queryable:

7 _state # --- underscore indicates that the state should be private ---

8 eval

9 def query(q):

10 (a, _state)=eval(q,_state)

11 return a

12

13 def AdaptiveComposition(dom,epsilon:float):

14 input_domain = dom

15 privacy_loss = epsilon

16 def function(data):

17 initial_state=(data,epsilon)

18 def eval(query: Measurement, state):

19 (st_data, eps) = state

20 if query.input_domain!=dom: return ('domain mismatch',eps)

21 elif query.privacy_loss > eps: return ('insufficient budget',eps)

22 else return (query.function(st_data),eps-query.privacy_loss)

23 return Queryable(initial_state,eval)

24

25 return InteractiveMeasurement(input_domain,privacy_loss,spawn)

26

27 # Example

28 queryable_obj=AdaptiveComposition(float,2).function(dataset)

29 res1=queryable_obj.query(NoisySum)

30 res2=queryable_obj.query(NoisyCount)

Figure 10: Adaptive Composition

In the example of AdaptiveComposition, the only portion of the state s = (x, ε) that needs to be kept
secret is the dataset x, and we can safely augment Eval with additional queries that allow asking for remaining
privacy-loss budget ε. However, other interactive queryables do have additional state that needs to be kept
secret for their privacy properties (e.g. the noisy threshold in the Sparse Vector Technique).

5.2 Post-processing

Recall that standard post-processing refers to performing an arbitrary computation with the privacy-protected
output of a noninteractive measurement operator, For interactive measurements, we think of the queryable
itself as the analogue of the “privacy-protected output” of the measurement operator — no matter how
one computes with the queryable (as a black box, without examining its internal state!), privacy is main-
tained. This gives rise to a post-processing principle for interactive measurements. Specifically we can apply
a queryable mapping function P that takes the queryable Q = M(x) produced by M and produces a new
queryable Q′ = P (Q). Importantly, P does not get to examine the internals of the queryable Q, only interact
with it as a (stateful) black box, issuing queries and receiving answers. P can also embed the queryable Q
inside the queryable Q′, so that whenever Q′ receives a query, it can issue some queries to Q to help compute
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an answer. Note that Q continually updates its state as P and then Q′ issues queries to it. Postprocess(M,P )
is the interactive measurement M ′(x) = P (M(x)) that outputs Q′.

The reason privacy is preserved under this interactive form of post-processing is that for every adversary
A interacting with with Postprocess(M,P ), there is an adversary Ain interacting with M and a function
fout such that for every dataset x,

View(A↔ Postprocess(M,P )(x)) = fout(View(Ain ↔M(x))).

That is, views of an adversary interacting with the post-processed mechanism can be obtained by applying a
function to the view of an adversary interacting with the original mechanism, and thus differentially privacy
of the latter implies differential privacy of the former.

We illustrate this interactive post-processing with two examples. First, we will show how to obtain an in-
stantiation of a differentially private Statistical Query (SQ) Model as a post-processing of AdaptiveComposition,
and then we will see how to obtain an instantiation of noisy gradient descent as a post-processing of the SQ
model.

Statistical Query Model. In the SQ Model, we are given a dataset x ∈ MultiSets(X ), and an analyst
can issue up to T queries that can be issued are bounded functions f : X → [−B,B] and obtain noisy
estimates of the average Ez←x [f(z)] = (

∑
z∈x f(z))/|x|. We will implement this using T + 1 queries to an

AdaptiveCompositionX ,ε queryable, spending half the budget on an initial query to estimate the size of the
dataset, and then dividing the remaining budget evenly over the T remaining queries to estimate the sum∑
z∈x f(x). In our implementation, we won’t require that the queries f are bounded as specified, but will

rather enforce it by evaluating the sums using NoisyClampedSum.
To this end, we will assume that for any function f : X → Y, we can construct the stability 1 transfor-

mation RowTransformf : MultiSets(X )→ MultiSets(Y) defined as

RowTransformX ,Y,f (z) = {f(w) : w ∈ z} (with multiplicity).

When Y = R, we can then use chaining to implement the ε-DP mechanism

NoisySumFunctionf,L,U,ε = NoisyClampedSumL,U,ε ◦ RowTransformX ,R,f : MultiSets(X ) R.

(We note that allowing arbitrary user-provided code to specify functions f can lead to severe side-channel
attacks. We discuss how to address such attacks in Section 7.)

In code, we have:
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1 def Postprocess(intMeas: InteractiveMeasurement,queryable_map):

2 input_domain = intMeas.input_domain

3 privacy_loss = intMeas.privacy_loss

4 def function(data):

5 queryable_inner=intMeas.function(data)

6 return queryable_map(queryable_inner)

7 return InteractiveMeasurement(input_domain,privacy_loss,function)

8

9 # Example

10

11 def MakeRowTransform(in_dom, out_dom, f):

12 ...

13

14 def MakeNoisySumFunction(in_dom,f,L,U,epsilon):

15 return(ChainingMT(MakeNoisyClampedSum(L,U,epsilon),

16 MakeRowTransform(in_dom, float, f)))

17

18

19 def MakeSQmodel(in_dom,T,B,epsilon):

20 def queryable_map(AC_queryable):

21 eps=epsilon/2

22 def sum_query(x): return 1

23 n=AC_queryable.query(MakeNoisySumFunction(in_dom,sum_query,-1,1,eps))

24 initial_state=T

25 def eval(query, state):

26 if state>0:

27 answer=AC_queryable.query(MakeNoisySumFunction(in_dom,query,-B,B,eps/T))/n

28 else

29 answer='no more queries'

30 fi

31 return (answer,state-1)

32 return Queryable(initial_state,eval)

33 return Postprocess(AdaptiveComposition(in_dom,epsilon),queryable_map)

Figure 11: Differentially Private SQ Model

Now we use our implementation of the SQ Model to obtain an instantiation of noisy gradient descent
via post-processing. Suppose we have a dataset z ∈ MultiSets(R×R) and our goal is to find a differentially
private slope θ minimizing Lz(θ) = E(x,y)∈z[`(x,y)(θ)], where `x,y(θ) = (θx − y)2. In each iteration of the
algorithm, we will take our current estimate θ, compute a differentially private estimate a of the derivative
L′z(θ) = E(x,y)∈z[`

′
x,y(θ)], where `′x,y(θ) = 2θ · (θx − y), and update to a ← θ − ηa, for a “learning rate”

parameter η. After a given number T of iterations, we simply output the current value of θ, embedded in
the state of a “noninteractive queryable” that will return θ on any query. Notice that in each iteration, we
are simply computing an average over the dataset, which we can estimate using a query to an SQ model
queryable. We will also need to specify a bound B to be enforced by the SQ model.

In code:
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1 def NoninteractiveQueryable(initial_state):

2 def eval(q,s): return (s,s) # always return the state and never change it

3 return Queryable(initial_state,eval)

4

5 # Example

6

7 def MakeNoisyGD(T,B,eta,epsilon):

8 def queryable_map(SQ_queryable):

9 theta=0

10 for i in range(T):

11 def derivative(z : float*float): return (2*theta*(theta*z[0]-z[1]))

12 a=SQ_queryable.query(derivative)

13 theta=theta-eta*a

14 return NoninteractiveQueryable(theta)

15 return Postprocess(MakeSQmodel(float*float,T,B,epsilon),queryable_map)

Figure 12: Noisy Gradient Descent

The examples of AdaptiveComposition and NoisyGD show that it is useful to build interactive mea-
surements from noninteractive ones and vice-versa. Thus, we propose that noninteractive measurements
are implemented as a special case of interactive measurements, to avoid duplicating operators (composition,
chaining, post-processing, etc.) that can simultaneously deal with both kinds of measurements.

5.3 Chaining and Composition of Interactive Measurements

Chaining generalizes in a straightforward way to interactive measurements. If T : MultiSets(X )→ MultiSets(Y)
is a c-stable transformation andM is an ε-DP interactive measurement for data domain Y, then their chaining
M ◦ T is a cε-DP interactive measurement for data domain X .

As far as composition, it is natural to extend the AdaptiveComposition procedure described above to
allow queries that can be interactive measurement operators themselves. For example, we should be able
to issue a query qi describing an interactive measurement operator Mqi that spawns an “inner queryable”
Mqi(x) within the Adaptive Composition queryable, to which we can issue subsequent queries. We can then
choose to allow for either:

1. Sequential Composition: all of the queries to the first inner queryable must be completed before another
inner queryable is spawned.

2. Concurrent Composition: multiple inner queryables can be spawned and be simultaneously active, with
queries to them arbitrarily interleaved.

The basic, additive composition of privacy loss for pure differential privacy applies for both sequential
composition and concurrent composition; indeed, PINQ allows for concurrent composition and a formal
proof of its correctness is given in [3].

Another restriction of AdaptiveComposition as described above is that when specifying the i’th query
qi = Mi, the privacy-loss εi = privacyloss(qi) is also specified, and is effectively “consumed” immediately
when Spawnqi(x) is executed. In contrast, in PINQ, each “inner queryable” does not have a preallocated
budget but separately tracks its accumulated privacy loss, and these are summed in order to track the overall
privacy loss. To support this in our proposed framework, we would need to implement a theory of privacy
odometers [12], which are variants of interactive measurements that track accumulated privacy loss rather
than specify a total privacy loss at the beginning. It should be relatively straightforward to modify the
programming framework to implement composition, chaining, and post-processing for pure-DP odometers,
as well as conversion of odometers to standard interactive measurements (by not answering a query if it will
make the accumulated privacy loss exceed the budget).
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However, we remark that the aforementioned generalizations of composition appear to be more complex
for variants of differential privacy (such as approximate differential privacy). Indeed, the Advanced and
Optimal Composition Theorems for approximate differential privacy do not hold as is for approximate-
DP odometers, and in fact they require the entire sequence of privacy-loss parameters ε1, ε2, . . . , εT to be
specified before any queries are made. (Specifying the sequence of privacy-loss parameters in advance is
often a good thing in any case, as it allows for verifying that the budget won’t inadvertently be consumed
before an analysis is complete.) As far as we know, there has also been no rigorous analysis of concurrent
composition for approximate differential privacy or other variants of differential privacy; this also seems to be
an important direction for future work. (The cryptography literature indicates that concurrent composition
is often much more subtle than sequential composition.)

6 Putting it Together

In Section 2, we described a basic framework of pure DP measurements and stable transformations on
multisets. In Sections 3, 4, and 5, we described three orthogonal extensions to the basic framework:

1. A framework for ensuring that measurements and transformations have their claimed privacy or stabil-
ity properties, by only allowing procedures that have been vetted (e.g. through the OpenDP editorial
board reviewing a written proof) the right to directly construct measurements and transformations.

2. Allowing for many sensitive datatypes (not just multisets), many measures of distance between sen-
sitive data items (not symmetric difference), and many measures of closeness between probability
distributions (not just the multiplicative notion used to define pure differential privacy). With this
generalization, stability and privacy are no longer measured by single parameters, but are given by
relations that tell us whether a given kind of “closeness” of inputs implies a given kind of “closeness”
of outputs.

3. Generalizing measurements to spawn interactive query procedures (randomized state machines called
queryables). This allows for modelling adaptive composition theorems as measurements, as well as more
sophisticated interactive DP algorithms. It also provides for in-library (and thus vetted) mechanisms
for managing privacy budgets, rather than delegating this to external systems.

Although we described these extensions separately for sake of exposition, we propose that all three be
combined in the OpenDP Programming Framework. They combine with each other in natural ways:

• Our definition of privacy for interactive measurements readily extends to other privacy notions, in
particular by simply asking that the views of the adversary on two input data items (that are close
according to some distance measure) are close according to any desired notion of closeness between
probability distributions (capturing, for example, approximate differential privacy or concentrated
differential privacy). We can replace the Adaptive Composition interactive measurement for pure DP
with other interactive composition procedures that can be analyzed using other privacy notions, and
the resulting bounds would be encoded by the privacy relation.

• The verification principle from Section 3 can and should be applied to more general measurements
and transformations from Sections 4 and 5. In particular, now a measurement or transformation is
considered valid if its privacy or stability relation is sound: it should never claim that a false privacy
or stability bound holds.

7 Ensuring Privacy in Implementation

Like with any other implementation of security or privacy critical code, we need to beware of places where
the mathematical abstraction used in the privacy analysis may deviate from the implementation.

22



For example, in the framework above we abstract transformations as functions T : X → Y and measure-
ments as randomized functions M : X  Y. Implicit in this modelling is that when executing T (x), the
only private information it has access to is x, and that it does not produce any observable output other than
T (x). That is, we need to prevent leakage of information through side channels.

One known side channel of concern is the timing channel, where the amount of time to execute a function
reveals information about its input. Standard mitigations against the timing channel include introducing
delays or truncating long executions to make a function essentially constant time. This problem and side
channels in general are exacerbated when a transformation or measurement is built using a user-defined
function f (which may come from an interactive query issued by an adversary). For example, RowTransformf

can cause privacy leakage if the function f can write to an I/O device observable to the adversary or if the
function f intentionally changes its execution time based on the data record it is fed. Side-channel attacks
using user-defined functions can be mitigated by some programming language support. (See Section 8.)

Another concern comes from the implementation of arithmetic. Like in much of statistics, in the math-
ematical analysis of differential privacy, we often model data using real numbers, use continuous noise
distributions, and allow probabilities that are arbitrary real numbers in [0, 1]. Indeed, we followed this tradi-
tion above, starting from the beginning of Section 2 when we presented NoisySum as taking input datasets
whose records are elements of the real interval [L,U ] and as adding continuous Laplace noise to the output.
In the code examples, however, we used floating-point numbers as a proxy for real numbers. Unfortunately,
as shown by Mironov [9] the discrepancy between floating-point numbers and true real numbers leads to
severe violations of differential privacy. For this reason, following [1], we advocate the use of fixed-point
numbers and integer arithmetic as much as possible in the OpenDP library. For code that is in the fully
certified library, any deviations from standard arithmetic (e.g. overflow of floating-point arithmetic) should
be explicitly modelled in the privacy analysis. (There may be versions of the library that are subject to less
rigorous constraints for the purpose of prototyping and experimentation.)

Differentially private algorithms also rely crucially on high-quality randomness. To avoid this being a
source of vulnerability, the OpenDP library should use a cryptographic-strength pseudorandom generator
for its random bits.

8 Discussion of Implementation Language(s)

The choice of programming language, or languages, for the OpenDP library implementation is an important
one. It has implications on performance, reliability and also impacts the degree to which the library will
achieve each of the goals identified in the introduction. This section identifies some features of the program-
ming language that might be particularly beneficial and offers a concrete proposal for OpenDP. It is likely
that no single language meets all criteria and that different components of the library will be implemented
using different languages. Our initial prototyping was done using Python with a mix of object-oriented and
functional paradigms, as reflected in the code examples above, and many of the features identified below are
a reflection of that experience.

Section 1 outlines high-level goals including usability and programmability. To support the goal of us-
ability, it will be important that the library offer APIs in languages that are commonly used in OpenDP’s
target use cases. The most common (open-source) languages for statistical/data analysis include Python and
R. By providing APIs in one or both of these languages, programmers will be able to integrate the library
into the conventional data workflows. There will also be a need to integrate with a variety of back-end
data access layers, which may necessitate re-implementing some core functionality in a back-end compatible
language such as as SQL. It is anticipated that this re-implementation would be limited to data-intensive
transformations, though prior work has also explored implementing measurements in the data layer [6]. To
support the goal of programmability, it may be preferable to select a language in the more familiar imperative
paradigm rather than adopt a purely functional language, though as noted below, choosing a language that
has support for some functional features may be desirable.
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8.1 Desired language support

Below are some specific programming language features that are desired.
Memory safety, encapsulation and immutability. Given the library’s principal goal of mediating

access to private data, securing the data against unauthorized access is a paramount concern. While systems
hardening will likely happen at many layers, some features at the programming language level can help avoid
inadvertent data leakage and reduce the verification effort for new contributions. These features include
memory safety and state encapsulation (in the object-oriented sense). For example, it should be impossible
for the user to access the internal state of a queryable. In addition, the ability to control mutability may be
desirable. For instance, if a query is implemented as a mutable object, then the programmer could potentially
manipulate the state of the query object while it is being evaluated by the queryable. Immutable structures
may help avoid programmer mistakes and make it easier to automatically analyze a program for its safety.

Abstract (parameterized) data types. Many of the code examples presented earlier make use of
specialized data types. In many cases these types are similar to conventional types but with additional
constraints on allowable values (e.g., a float that is bounded). Being able to precisely constrain the data
type has tangible benefits in the context of a DP library: it often simplifies privacy semantics for individual
functions and invites more modular design (upstream transformations often refine the type to make down-
stream processing easier). It also reduces the burden for verifying contributed functions: since the privacy
promise is conditional on type, narrower types reduce the scope of the claim to be verified. But to do all
of this, the library needs support from the programming language to enable the creation of specialized data
types. Further, these types are often parameterized (e.g., the bounds of a bounded float may not be specified
until runtime).

Type safety. Strictly speaking, the library provides its own layer of type enforcement (e.g., chaining
verifies type compatibility between chained functions). However, it may be beneficial to use a language
that helps programmers write type-safe code, so languages that are strongly and statically typed may be
preferable.

Functional features and “pure” functions. A number of functional paradigm features proved quite
useful in prototyping, including: higher-order functions, function composition (chaining), and partial function
evaluation. Some transformations, such as RowTransform, take an arbitrary, user-defined function and apply
it to the data. To ensure privacy, the library must enforce that this function is free of side effects, as discussed
in Section 7. This can be achieved by purifying user-defined functions (as is done in PINQ [8]) or requiring
users to express computations in a restricted domain-specific language (as is done in Psi [4]).

Generics. We would like to allow the programmer to construct general-purpose transformations (or
measurements) that are agnostic to the data type to which they are applied. An example where this would
be useful is RowTransform: ideally one implements a single generic routine that applies the user-defined
function to map a multiset of one type to a multiset of another type, where the types a generic and can be
specified at compile/run time. This kind of behavior can be supported even in statically typed languages
through the use of generics (parametric polymorphism).

Structures or object-orientation. In our implementation, we took advantage of the object-oriented
support of Python to define classes that allowed us to link together related functionality (e.g., a function and
its privacy relation) into a single object that can be treated as a unit. But similar functionality is present in
languages that are not considered object-oriented (e.g., Rust).

8.2 Proposal: Rust + Python

We and the OpenDP Design Committee propose to implement the core library using Rust. Rust is a fast-
growing, imperative functional language. It is both high performance and reliable with good memory safety
and type safety. It also meets many of the desiderata identified previously: structures, generics, higher-order
functions, and values are immutable by default. It has a strong ownership model that gives memory safety
without the necessity of garbage collection. Collectively, this makes Rust code much easier to reason about
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concretely. For example, there are no dangling pointers, there are no memory races as there are in C++.3

Where Rust may fall short is in the programmability criteria, as it is not a widely used language (though
interest in it is growing, and it has been ranked the “most loved” language on Stackoverflow, edging out
Python for the last four years) and it can be challenging to program (at least in part because of the built-in
safety features).

The OpenDP project has already been developing an end-to-end differential privacy system as a joint
project with Microsoft, and for this project required a library to stand in while the core OpenDP library is
not yet ready. The development team built a prototype library in Rust, using ideas from the PSI library [4]
and some advances in the direction of those proposed in this paper. All of the developers were new to Rust,
and all picked it up straightforwardly. Also, one graduate student who wished to contribute code from a
new research paper was able to quickly port their code to Rust with some small direction.

Our proposal is that Rust should be the language for the robust, polished, production code that enters
the maximally trusted OpenDP library. However, to encourage contributions from researchers and other
developers, as well as to encourage experimentation and sandboxing of performance, the library should be
able to work with Python and R code components. We propose to enable this through Python and R
bindings (through a Protocol Buffer API described next). Initial code could be contributed in Python (and
R), with the goal that final, vetted and performant code be ported to Rust, either by contributors when
possible, or by the core OpenDP development team, or in collaboration.

APIs. Rust uses the same Foreign Function Interfaces as C++ for bindings so the bindings compiled from
either Rust or C++ are identical. However, in the OpenDP project with Microsoft, the code to write these
bindings has been found to be clearer than in C++. That project has created Python bindings to the prototype
differential privacy library that have been heavily tested and work well. R bindings are in construction and
have been found to be straightforward too.

In that project, an API to the library was built using Protocol Buffers4, a serialized data language, like
JSON or XML, but heavily typed and very compact. This allowed for defining any sequence of calls to the
library as a plan, in the style of εktelo or more specifically, a computational graph of library components.
The protobuf API calls Rust components for the runtime. The Python and R bindings also call the API
which calls the Rust library. In the case of Python, these bindings can be distributed on PyPI and pip
installed, and executed in a Python notebook seemingly natively, although the actual execution is in Rust.
The OpenDP Design Committee proposes to release a Protocol Buffer API for the core library as part of
the OpenDP Commons, by which it will also offer Python and R bindings. This API would facilitate other
possible bindings, as well a way to call the library in more complicated system architectures.

9 Using the Library

The programming framework proposed in this paper is meant to capture all the mathematical reasoning
about privacy needed for use of differential privacy. However, we do not expect it to be directly used by end
users; instead it is meant as a substrate to build larger, user-friendly end-to-end differential privacy systems.
Here we discuss some aspects of how such a system should use the library envisioned here.

Calling the Library from a DP System.

1. The system should first determine, or elicit from its user, the following:

(a) The sensitive dataset on which differential privacy is going to be applied.

3The Microsoft Security Response Center (MSRC) released reports stating that 70% of security vulnerabilities addressed
through Microsoft security patches are memory safety issues that would have been avoided in Rust,https://msrc-blog.
microsoft.com/2019/07/18/we-need-a-safer-systems-programming-language/, and explicitly suggests moving away from
C++ to Rust https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming/.

4https://developers.google.com/protocol-buffers/
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(b) The type of the dataset (e.g. is it a multiset of records, or social network graph, or a collection
of tables). Do the records consist of a known set of attributes?

(c) The granularity of privacy protection. For example, if we want to protect privacy at the level
of individual human beings, we need to know whether every individual human corresponds to at
most one record in the multiset, at most one node in a social network graph, or at most one key
in a collection of tables.

(d) The privacy measure to be used (e.g. pure, approximate, or concentrated DP), and the desired
privacy-loss parameters.

Regarding the type of the dataset, it is best for the system to make as few assumptions as possible
about the data type, as long as the granularity of privacy can be well-specified, to reduce the chance
that an incorrect assumption leads to a violation of privacy. For example, it is safer to assume that
the dataset is a multiset of records of arbitrary type or a multiset of strings, rather than assuming it
is a multiset of records that each consist of 10 floating-point numbers in the interval [0, 1]. Additional
public, non-sensitive information about the dataset (e.g. a full schema) can typically be exploited later
for greater utility without being used for the privacy calculus. Note that specifying the granularity of
privacy requires keeping information in the datasets that one might be tempted to remove beforehand
— in order to enforce privacy at the level of individuals in a database where an individual might
contribute to multiple records, we need the data records to have a key that corresponds to distinct
individuals.

2. Then the system should select an interactive measurement family from the library (typically some form
of adaptive composition) that is compatible with the data type, granularity of privacy, and privacy
measure, and use it to spawn a queryable on the sensitive dataset that will mediate all future access
to the dataset.

3. If additional type information about the dataset is known (e.g. about the individual records, or even a
more complex property like being a social network of bounded degree), then before applying any queries
to the dataset, the library can be used to apply a stable “casting” transformation that ensures that the
dataset actually has the specified properties. For example, for multisets we can apply RowTransformf

for a function f that maps any record that does not have the specified type to a default value with
that type.

4. All queries to the dataset should be made through the initial queryable. The queryable automatically
ensures that we stay within the initially specified privacy-loss budget. Deciding how to apportion the
budget among current and future queries is for the system to decide, but we expect that statistical
algorithms in the library will expose their utility in ways that assist a system in making such decisions
(e.g. through a priori utility estimates provided analytically or through benchmarking).

Exposing System Features to the Library. To make efficient and safe use of the library, it is also
important to expose some system features to the library:

• Exposing the data-access model to the library. What means do the library functions have to read the
sensitive data? If, for example, the data is only available in a streaming format, that will limit the
choice of methods in the library that can be applied.

• Exposing the capabilities of the back-end data system to the library. Global data transformations,
aggregates, sorting, and joins can be performed much more efficiently if they are done by an optimized
database engine than if the data needs to be extracted from the database and computed on externally.
Thus, there should be a way of identifying which transformations in the library can be done by the
database system. On the other hand, this means that the resulting privacy properties also depend
on the database engine faithfully and securely implementing the specified transformation, without
observable side effects (including timing) that might leak sensitive data. More complex capabilities
that the database may have include randomized procedures like subsampling.
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• Defining the partition between secure and insecure storage and compute according to the threat model
(to what might the privacy adversary have access), so that private data does not cross the “privacy
barrier” until after the protections of differential privacy have been applied. Recall that in addition
to the original sensitive dataset, the results of transformations, and the state of queryables need to be
kept secret from the privacy adversary.

User interfaces. A system should also provide a user-friendly way for data custodians and data analysts
without expertise in differential privacy to make effective use of the library. In particular, we envision that
many existing DP systems can be built as layers on top of the library, using the certified code in the library
for all the privacy analysis. Such interfaces could include:

• A SQL-like interface as in PINQ and εktelo, where queries are specified as plans that are compiled into
DP measurements.

• A GUI for selecting from a predefined set of statistics and transformations, as in PSI.

• A Python-like notebook interface for issuing queries to the data, like in the OpenDP System being
built in collaboration with Microsoft.

Another important aspect of the user interface is how accuracy and statistical confidence are exposed to
users (so that analysts don’t draw incorrect conclusions due to the noise for privacy), and it is important
that the algorithms in the library provide support for this. We defer discussion of this to the Statistics
section of the OpenDP Whitepaper.

10 Contributing to the Library

Building on the discussion on Section 3, we elaborate here on the different types of code contributions we
envision to the library.

1. A new measurement or transformation family constructed by combining existing measurement and
transformation families in the library using operators that already exist in the library (like composition,
chaining, and post-processing).

This is the easiest kind of contribution, as the certificates of privacy or stability are automatically
generated by the built-in components, and we also expect it to be the most frequent contribution once
the library has a large enough base of building-block components. Although no proof of privacy or
stability is needed for such contributions, they will still need to be reviewed for having demonstrated
utility (see the Statistics section of the OpenDP Whitepaper), code quality, and documentation.

2. A new “atomic” measurement or transformation family, where the privacy or stability properties are
proven “from scratch.”

For the sake of modularity and ease of verification, such contributions should be broken down into
as small and simple sub-measurements or sub-transformations as possible, each of which has a proof
from scratch. Together with each such a contribution, one must also provide a mathematical proof
that it actually achieves its claimed privacy or stability properties. One day, we hope that some of
these proofs can be formally verified using the rapidly advancing set of tools for formal verification of
differential privacy. However, in many cases, we expect that what will be provided is a written proof
together with a pseudocode description of the algorithm and its claimed privacy properties. The DP
researchers on the OpenDP editorial board will be responsible for verifying that the proof is correct
for the pseudocode. The OpenDP Committers, with expertise on the programming framework and its
implementation, will be responsible for verifying that the actual code is a faithful implementation of
the pseudocode.
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Sometimes the privacy or stability proof of a new contribution will be based on some property of an
existing component in the library that is not captured by the privacy or stability properties of that
component. For example, “stability methods” for approximate differential privacy (like “propose–test–
release”) often rely on the accuracy of other DP mechanism (e.g. that with probability at least 1− δ,
the Laplace mechanism produces an estimate that is correct to within c log(1/δ)/ε). Whenever this
occurs, there should also be a proof provided that the said component has the given property, this proof
should be attached as a certified assertion to the implementation of that component, and the privacy
or stability relation for the new contribution should check the certificate. This way, if the component
later changes and the assertion has to be removed, the soundness of the contribution relying on it is
preserved.

3. A new combining primitive for measurements or transformations.

This can be a new form or analysis of composition or chaining, or something more sophisticated like
privacy amplification by subsampling (viewed as an operator on measurements). In the proposed
framework, these are also measurement or transformation families and the process for contributing
them and having them vetted and accepted is the same as above.

4. Adding a new private data type, distance measure between private data types, or privacy notion
(distance measure between distributions).

There should be a standardized format for adding such elements to the library, and what information
needs to be provided and checked (again by a combination of the editorial board and committers). For
example, for a new distance measure, one may provide a statement of the data types to which it applies,
specify whether it satisfies properties like monotonicity and symmetry, give conversions between it and
other distance measures, etc. For a new privacy notion, it needs to be verified that it satisfies the
post-processing property.

5. Adding a new type of privacy or stability calculus that is not supported by the existing framework.

Examples include introducing frameworks for privacy odometers, local sensitivity and variants (like
smooth sensitivity), or per-analyst privacy budgets. These will require a more holistic architectural
review before being incorporated.

11 The Scope of the Framework

The programming framework presented in Sections 2–6 is meant to be very general and flexible, and we
believe it can support a great deal of the privacy calculus in the differential privacy literature. However, it
does not support all important ways of reasoning about differential privacy. Thus, below we list some concepts
that we believe can be easily supported and others that would require an expansion of the framework.

11.1 Within the Current Framework

Many different private dataset types and granularities of privacy. This includes unbounded DP
(multisets, adjacency by adding or removing a record), bounded DP (datasets consisting of a known number
of records, adjacency by changing a record), networks with edge-level or node-level privacy, a data stream with
person-level or event-level privacy, multirelational databases with person-level privacy, DP under continual
observation.

Many different measures of privacy loss. This includes pure DP, approximate DP, zero-concentrated
DP, Rényi, and Gaussian DP. (We require the privacy-loss measure to be closed under postprocessing, so
the original formulation of concentrated DP would not be supported.) Group privacy is also captured by
the proposed privacy relations, as it allows for interrogating about the privacy loss at inputs of different
distances.
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Combining primitives to build complex mechanisms from simpler ones. This includes many of the
sophisticated composition theorems for differential privacy (such as the advanced and optimal composition
theorems for approximate differential privacy, the composition of zCDP, and more), “parallel composition”
via partitioning, privacy amplification by subsampling, the sample-and-aggregate framework.

Global-sensitivity-based mechanism families. The exponential mechanism, the geometric mechanism,
the (discrete) Gaussian mechanism, the Matrix Mechanism, and the Sparse Vector Technique.

Common database transformations. Subsetting according to a user-defined predicate, partitioning
according to a user-defined binning, clamping into a given range/ball, vectorizing into a histogram, join (or
variant) on a multi-relational dataset, user-defined row-by-row transformations, and summing over a dataset.

Restricted sensitivity and Lipschitz projections. Both of these refer to (global) stability properties
of transformations with respect to rich data types, which the framework supports.

11.2 Outside the Current Framework

Below are some general concepts in differential privacy that the proposed framework does not currently
support reasoning about. When these concepts are used only as an intermediate step to proving a standard
privacy property, then the entire mechanism can be added to the library as a measurement. But the
framework would not support reasoning directly these concepts without further augmentation.

Local sensitivity and mechanisms based on it. We envision that the local sensitivity of a transfor-
mation could be captured by adding a “local stability” relation to the attributes of a transformation, which
takes a dataset as an additional argument. Such a relation would also need to be verified similarly to the
already-proposed stability relations. By appropriate augmentations like this to the framework, we hope
it will be possible to support reasoning about differentially private mechanisms based on variants of local
sensitivity, such as smooth sensitivity, stability-based mechanisms, and propose-test release.

Privacy odometers. These are variants of interactive measurements that track accumulated privacy loss
rather than specify a total privacy loss at the beginning [12]. As discussed in Section 5, it should be relatively
straightforward to modify the programming framework to incorporate at least pure-DP odometers.

Complex adversary models. These include pan-privacy with a limited number of intrusions, computa-
tional differential privacy, adversaries with limited collusion (e.g. when we give different analysts budgets of
their own)

Randomized transformations. It is possible and sometimes useful to reason about stability properties
of randomized transformations, often via couplings. For example, we can call a randomized transformation
T : MultiSets(X )  MultiSets(Y) c-stable if for every two adjacent datasets x ∼ x′, there is a coupling
(Y, Y ′) of the random variables Y = T (x) and Y ′ = T (x′) such that it always holds that dSym(Y, Y ′) ≤ c.
The framework should be easily extendable to this way of capturing the stability properties of randomized
transformations, but more complex coupling properties may be more challenging to capture.

Interactive transformations. In some DP systems, like PINQ, transformations can also be performed in
an interactive and adaptive manner, creating a multitude of derived datasets (behind the “privacy barrier”)
on which queries can subsequently be issued. The framework proposed so far only allows for measurements
to be interactive, which may mean that the same derived dataset is recomputed multiple times if it is an
intermediate dataset in multiple measurements formed by chaining. This can be potentially remedied by
modifying the execution engine to retain previously derived datasets and recognize when they are being
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recreated. However, it may eventually be useful to extend the programming framework to directly work with
some form of interactive transformations, just as we allow interactive measurements. (But a general theory
of interactive transformations and how they may be combined with measurements may need to be developed
first.)
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