Systems Integrations

Joshua Allen James Honaker

May 13, 2020
OpenDP: An Open-Source platform for Differential Privacy

OpenDP Commons: DP Library, Tools, Packages designed and built by the community

- OpenDP Library
- Privacy Budgeting Tool
- Common Documentation and Templates
- Testing package
- ...

OpenDP Systems:
End-to-end differential privacy systems, usually designed and built in a partnership to address a particular use case

- **System 1**
 - End-to-end solution for deploying OpenDP in partnership with Microsoft

- **System 2**
 - Another end-to-end solution for a different use case

- **System 3**
 - Package
 - Tool

Library and other common components used by the Systems

New components developed by OpenDP systems contributed back to OpenDP Commons
Library desiderata ⇒ System Principles

- Extensibility
- Flexibility
- Verifiability
- Programmability
- Modularity
- Usability
- Efficiency
- Utility
Key Questions

- What types of stores need Commons components integrate with?
- What types of **identity**, **authentification** and **authorization** systems will Commons integrate with?
- What are the use cases utilizing distributed data/distributed computation?
- Are there limitations that language choices for library impose on systems?
- What is the best API for library adoption? (language neutral? unopinionated?)
Example System Joint with Microsoft

- This system is an end-to-end platform to allow DP queries and statistical releases to sensitive data.
- We provide several basic building blocks that can be used by people involved with sensitive data, with implementations based on vetted and mature differential privacy research.
- We provide a pluggable open source framework that researchers can use to try newer mechanisms and algorithms.
Example System Joint with Microsoft
Components

Current Component List:

1. **Library** of DP algorithms, components, utilities
2. Analysis Graph **API**
3. **SDK** support to execute against CSV, SQL Server, PostgreSQL, Dataverse, in Azure
4. **SQL** an ODBC-style API to produce differentially private reports from SQL queries (SQL-92), focused on common aggregates used in analytics.
5. **Static Validator** certify a proposed analysis is DP and compose privacy loss
6. **Stochastic Validator** test workflows numerically against synthetic data for privacy violations
Library Language Choice

Library implemented in Rust:

- Rust is a fast-growing, imperative functional language.
- high performance, reliable, good memory safety and type safety.
- structures, generics, higher-order functions, and values are immutable by default.
- It has a strong ownership model that gives memory safety.

Collectively, this makes Rust code easier to reason about concretely.
Library Language Choice

Library implemented in Rust:

• Rust is a fast-growing, imperative functional language.
• high performance, reliable, good memory safety and type safety.
• structures, generics, higher-order functions, and values are immutable by default.
• It has a strong ownership model that gives memory safety.

Collectively, this makes Rust code easier to reason about concretely.

Proposal: Rust should be the language for the robust, polished, production code that enters the maximally trusted OpenDP library. However, to encourage contributions from researchers and other developers, the library should be able to work with Python and R code components.
Exploratory Analysis

- API to the library defines an analysis as a computational graph.
Exploratory Analysis

- API to the library defines an analysis as a computational graph.
- Proposed analysis is validated for privacy preservation.
- If certified, sent to the runtime.
API to the library defines an analysis as a computational graph.
Proposed analysis is validated for privacy preservation.
If certified, sent to the runtime.
Python and R bindings allow easy access to specify an analysis through the API.
with system.Analysis() as analysis:
 data = op.Dataset(path = data_path, column_names = var_names)

 income_histogram = op.dp_histogram(
 op.cast(data['income'], type='int', lower=0, upper=100),
 edges = income_edges,
 upper = 1000,
 null_value = 150,
 privacy_usage = {'epsilon': 0.5}
)

analysis.release()
income_edges = list(range(0, 100000, 10000))
education_categories = ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16']

with system.Analysis() as analysis:
 data = op.Dataset(path = data_path, column_names = var_names)

 income_histogram = op.dp_histogram(
 op.cast(data[income]), type='int', lower=0, upper=100,
 edges = income_edges,
 upper = 1000,
 null_value = -1,
 privacy_usage = {'epsilon': 0.5}
)

 income_pre = op.histogram(op.cast(data[income], type='int', lower=0, upper=100),
 edges = income_edges, null_value = -1)
 income_histogram2 = op.laplace_mechanism(income_pre, privacy_usage={'epsilon': 0.5, 'delta': 0.00001})

 sex_histogram = op.dp_histogram(
 op.cast(data[sex], type='bool', true_label='0'),
 upper = 1000,
 privacy_usage = {'epsilon': 0.5}
)

 sex_pre = op.histogram(op.cast(data[sex], type='bool', true_label='0'), null_value = True)
 sex_histogram2 = op.laplace_mechanism(sex_pre, privacy_usage={'epsilon': 0.5, 'delta': 0.00001})

 education_histogram = op.dp_histogram(
 data['educ'],
 categories = education_categories,
 null_value = '-1',
 privacy_usage = {'epsilon': 0.5}
)

 education_pre = op.histogram(data['educ'],
 categories = education_categories, null_value = '-1')
 education_histogram2 = op.laplace_mechanism(education_pre, privacy_usage={'epsilon': 0.5, 'delta': 0.00001})

analysis.release()

print("Income histogram Geometric DP release: " + str(income_histogram.value))
print("Income histogram Laplace DP release: " + str(income_histogram2.value))

print("Sex histogram Geometric DP release: " + str(sex_histogram.value))
print("Sex histogram Laplace DP release: " + str(sex_histogram2.value))

print("Education histogram Geometric DP release: " + str(education_histogram.value))
print("Education histogram Laplace DP release: " + str(education_histogram2.value))
We built a library API using Protocol Buffers, a serialized data language, like JSON or XML, but heavily typed, very compact.

Rust uses the same Foreign Function Interfaces as C++ so bindings direct to Rust are identical (cleaner to write).

API provides bindings to Python and R.

For Python, up on PyPI and pip installable.
API Exemplars

The following contain examples of the computational graph representation of an analysis (or plan) for a proposed release.
OpenDP: An Open-Source platform for Differential Privacy

OpenDP Commons: DP Library, Tools, Packages designed and built by the community

- OpenDP Library
- Privacy Budgeting Tool
- Common Documentation and Templates
- Testing package
- ...

OpenDP Systems:
End-to-end differential privacy systems, usually designed and built in a partnership to address a particular use case

- **System 1**
 - End-to-end solution for deploying OpenDP in partnership with Microsoft

- **System 2**
 - Another end-to-end solution for a different use case

- **System 3**
 - Package
 - Tool

Library and other common components used by the Systems

New components developed by OpenDP systems contributed back to OpenDP Commons
Key Questions

- What types of stores need Commons components integrate with?
- What types of **identity**, **authentification** and **authorization** systems will Commons integrate with?
- What are the use cases utilizing distributed data/distributed computation?
- Are there limitations that language choices for library impose on systems?
- What is the best API for library adoption? (language neutral? unopinionated?)