Self-supervised IVIM parameter estimation with a physics based forward model

Serge Didenko Vasylechko, Simon K. Warfield, Onur Afacan, Sila Kurugol

Computational Radiology Laboratory, Boston Children’s Hospital and Harvard Medical School
Current limitations of IVIM parameter estimation

- Intravoxel incoherent motion model (IVIM) is estimated from DWI signal

\[S(b) = S_0 \left(fe^{-bD^*} + (1 - f)e^{-bD} \right) \]
Current limitations in IVIM parameter estimation

- Intravoxel incoherent motion model (IVIM) is estimated from DWI signal

\[S(b) = S_0 \left(f e^{-bD^*} + (1 - f) e^{-bD} \right) \]

- Ill-posed under clinically feasible acquisition times
Current limitations in IVIM parameter estimation

- Intravoxel incoherent motion model (IVIM) is estimated from DWI signal

\[S(b) = S_0 \left(f e^{-bD^*} + (1 - f) e^{-bD} \right) \]

- Ill-posed under clinically feasible acquisition times
- E.g. 7 b-values are acquired in ~6-7 minutes
Current limitations in IVIM parameter estimation

- Intravoxel incoherent motion model (IVIM) is estimated from DWI signal

\[S(b) = S_0 \left(f e^{-bD^*} + (1 - f) e^{-bD} \right) \]

- Ill-posed under clinically feasible acquisition times
- e.g. 7 b-values are acquired in ~6-7 minutes
- Pediatric scanning calls for scan time reduction
Intravoxel incoherent motion model (IVIM) is estimated from DWI signal

\[S(b) = S_0 \left(f e^{-bD^*} + (1 - f) e^{-bD} \right) \]

- Ill-posed under clinically feasible acquisition times
- E.g. 7 b-values are acquired in ~6-7 minutes
- Pediatric scanning calls for scan time reduction
- Can be achieved with spatial or temporal acceleration
Intravoxel incoherent motion model (IVIM) is estimated from DWI signal

\[S(b) = S_0 \left(fe^{-bD^*} + (1 - f)e^{-bD} \right) \]

Ill-posed under clinically feasible acquisition times
- e.g. 7 b-values are acquired in ~6-7 minutes
- Pediatric scanning calls for scan time reduction
- Can be achieved with spatial or temporal acceleration
- Voxelwise NNLS based methods are already very sensitive to noise
Current limitations in IVIM parameter estimation

- Intravoxel incoherent motion model (IVIM) is estimated from DWI signal

\[S(b) = S_0 \left(f e^{-bD^*} + (1 - f) e^{-bD} \right) \]

- Ill-posed under clinically feasible acquisition times
- e.g. 7 b-values are acquired in ~6-7 minutes
- Pediatric scanning calls for scan time reduction
- Can be achieved with spatial or temporal acceleration
- Voxelwise NNLS based methods are already very sensitive to noise
- No “ground truth” for supervised neural network training
Current remedies to ill-posedness of IVIM estimates

- Spatially constrained methods [1]

Current remedies to ill-posedness of IVIM estimates

- Spatially constrained methods [1]
- Bayesian methods [2]

Current remedies to ill-posedness of IVIM estimates

- Spatially constrained methods [1]
- Bayesian methods [2]
- Unsupervised (synthetic) voxelwise neural networks [3]

Self-supervised IVIM: fast, noise robust & label free

- No reference parameter estimates required for training
Self-supervised IVIM: fast, noise robust & label free

- No reference parameter estimates required for training
- Data provides supervision via proxy loss
Self-supervised IVIM: fast, noise robust & label free

- No reference parameter estimates required for training
- Data provides supervision via proxy loss
- CNNs are inherently robust to noise
Self-supervised IVIM: fast, noise robust & label free

- No reference parameter estimates required for training
- Data provides supervision via proxy loss
- CNNs are inherently robust to noise (and fast at test time)
Self-supervised IVIM: fast, noise robust & label free

- No reference parameter estimates required for training
- Data provides supervision via proxy loss
- CNNs are inherently robust to noise (and fast at test time)
• 84 pediatric Crohn’s disease patients
• 7 b-values of [0,50,100,200,400,600,800] s/mm²
• Geometrically averaged over 6 diffusion gradients

<table>
<thead>
<tr>
<th>DW-MRI</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>ss EPI</td>
</tr>
<tr>
<td>FOV (mm²)</td>
<td>300x260</td>
</tr>
<tr>
<td>Matrix</td>
<td>192x156</td>
</tr>
<tr>
<td>TR / TE (ms)</td>
<td>7500 / 77</td>
</tr>
<tr>
<td>Δz (mm)</td>
<td>5</td>
</tr>
<tr>
<td>Slices</td>
<td>36-44</td>
</tr>
<tr>
<td>NEX</td>
<td>1</td>
</tr>
<tr>
<td>Acq. Time (mins)</td>
<td>5.5</td>
</tr>
</tbody>
</table>
Evaluation on high SNR data

Evaluation on high SNR data

ns = non significant, * / ** = significant at 95% / 99% CI
Evaluation of repeatability on intrasession test-retest

- 6,4,4,3,3 repetitions for 5 healthy volunteers respectively
- 12 voxel ROI
Evaluation on data with decreasing SNR
Conclusions

• A self-supervised 2D CNN for IVIM parameter estimation
• No ground truth NNLS estimates required
• Increased robustness to low SNR signal
• Enables investigation for reduction of diffusion gradients (& scan time)

Questions?
• serge@crl.med.harvard.edu
• Multicomponent models of diffusion, perfusion and relaxation - Wed 19 May, 19:00 UTC

Supported by grants
• NIDDK R21DK123569-01
• NIBIB R21EB029627-01
• NIDDK R01DK125561-01A1
• Soc. of Ped. Rad. & Crohn's & Colitis Found.