
Math Review for Stat 110
Prof. Joe Blitzstein (Harvard Statistics Department)

1 Sets

A set is a Many that allows itself to be thought of as a One.
– Georg Cantor

Amazon should put their cloud in a cloud, so the cloud will have the
redundancy of the cloud.
– @dowens

A set is a collection of objects. The objects can be anything: numbers, people,
cats, courses, even other sets! The language of sets allows us to talk precisely about
events (see the Translating Between Probability and Sets handout). If S is a set,
then the notation x ∈ S indicates that x is an element (a.k.a. member) of the set
S (think of the set as a club, with very precisely defined criteria for membership).
The set may be finite or infinite. If A is a finite set, we write |A| for the number of
elements in A, which is called its cardinality.

For example:

1. {1, 3, 5, 7, . . . } is the set of all odd numbers;

2. {Worf, Jack, Tobey} is the set of Joe’s cats;

3. [3, 7] is the closed interval consisting of all real numbers between 3 and 7;

4. {HH,HT,TH,TT} is the set of all possible outcomes if a coin is flipped twice
(where, for example, HT means the first flip lands Heads and the second lands
Tails);

5. {Stat 110} is the set of prerequisites for Stat 123.

To describe a set (when it’s tedious or impossible to list out its elements), we can
give a rule that says whether each possible object is or isn’t in the set. For example,
{(x, y) : x and y are real numbers and x2 + y2 ≤ 1} is the disc in the plane of radius
1, centered at the origin.
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1.1 The Empty Set

Bu Fu to Chi Po: “No, no! You have merely painted what is! Anyone
can paint what is; the real secret is to paint what isn’t.”
Chi Po: “But what is there that isn’t?”
– Oscar Mandel, Chi Po and the Sorcerer: A Chinese Tale for Philoso-
phers and Children

‘Take some more tea,’ the March Hare said to Alice very earnestly. ‘I’ve
had nothing yet,’ Alice replied in an offended tone, ‘so I can’t take more.’
‘You mean you can’t take less,’ said the Hatter: ‘It’s very easy to take
more than nothing.’
– Lewis Carroll

The smallest set, which is both subtle and important, is the empty set, which is
the set that has no elements whatsoever. It is denoted by ∅ or by {}. Make sure not
to confuse ∅ with {∅}! The former has no elements, while the latter has one element.
If we visualize the empty set as an empty paper bag, then we can visualize {∅} as a
paper bag inside of a paper bag.

1.2 Subsets

If A and B are sets, then we say A is a subset of B (and write A ⊆ B) if every
element of A is also an element of B. For example, the set of all integers is a subset
of the set of all real numbers. A general strategy for showing that A ⊆ B is to let x
be an arbitrary element of A, and then show that x must also be an element of B.
For practice, check that ∅ is a subset of every set! A general strategy for showing
that A = B for two sets A and B is to show that each is a subset of the other.

1.3 Unions, Intersections, and Complements

I won’t use Google+ until I can do arbitrary unions, intersections,
and complements of circles.
– @stat110

The union of two sets A and B, written as A∪B, is the set of all objects that are
in A or B (or both). The intersection of A and B, written as A∩B, is the set of all
objects that are in both A and B. We say that A and B are disjoint if A ∩ B = ∅.
For n sets A1, . . . , An, the union A1 ∪ A2 · · · ∪ An is the set of all objects that are
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in at least one of the Aj’s, while the intersection A1 ∩ A2 · · · ∩ An is the set of all
objects that are in all of the Aj’s.

In many applications, all the sets we’re working with are subsets of some set S
(in probability, this may be the set of all possible outcomes of some experiment).
When S is clear from the context, we define the complement of a set A to be the set
of all objects in S that are not in A; this is denoted by Ac.

Unions, intersections, and complements can be visualized easily using Venn di-
agrams, such as the one below. The union is the entire shared region, while the
intersection is the sliver of points that are in both A and B. The complement of A
is all points in the rectangle that are outside of A.

A∪ B

A B

A∩B

S

Figure 1: A Venn diagram.

Note that the area of the region A∪B is the area of A plus the area of B, minus the
area of A∩B (this is a basic form of what is called the inclusion-exclusion principle).

De Morgan’s Laws give an elegant, useful duality between unions and intersections:

(A1 ∪ A2 · · · ∪ An)c = Ac1 ∩ Ac2 · · · ∩ Acn

(A1 ∩ A2 · · · ∩ An)c = Ac1 ∪ Ac2 · · · ∪ Acn
It is much more important to understand De Morgan’s laws (why they’re true and

how to use them) than to memorize them! The first says that not being in at least
one of the Aj is the same thing as not being in A1, nor being in A2. For example,
let Aj be the set of all people who like the jth Star Wars prequel (for j ∈ {1, 2, 3}).
Then (A1 ∪ A2 ∪ A3)c is the set of people for whom it is not the case that they like
at least one of the prequels, but that’s the same as Ac1 ∩ Ac2 ∩ Ac3, the set of people
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who don’t like The Phantom Menace, don’t like Attack of the Clones, and don’t like
Revenge of the Sith.

For practice prove the following facts (writing out your reasoning, not just draw-
ing Venn diagrams)s:

1. A ∩B and A ∩Bc are disjoint, with (A ∩B) ∪ (A ∩Bc) = A.

2. A ∩B = A if and only if A ⊆ B.

3. A ⊆ B if and only if Bc ⊆ Ac.

4. |A ∪B| = |A|+ |B| − |A ∩B| if A and B are finite sets.

2 Functions

The concept of function is of the greatest importance, not only in
pure mathematics but also in practical applications. Physical laws are
nothing but statements concerning the way in which certain quantities
depend on others when some of these are permitted to vary.
– Courant, Robbins, and Stewart, What is mathematics?

Let A and B be sets. A function from A to B is a (deterministic) rule that,
given an element of A as input, provides an element of B as an output. That is, a
function from A to B is a machine that takes an x in A and “maps” it to some y in
B. Different x’s can map to the same y, but each x only maps to one y. Here A is
called the domain and B is called the target. The notation f : A→ B says that f is
a function mapping A into B.

Of course, we have many familiar examples, such as the function f given by
f(x) = x2, for all real x. It is important to distinguish between f (the function) and
f(x) (the value of the function when evaluated at x). That is, f is a rule, while f(x)
is a number for each number x. The function g given by g(x) = e−x

2/2 is exactly the
same as the function g given by g(t) = e−t

2/2; what matters is the rule, not the name
we use for the input.

A function f from the real line to the real line is continuous if f(x) → f(a) as
x→ a, for any value of a. It is called right continuous if this is true when approaching
from the right, i.e., f(x)→ f(a) as x→ a while ranging over values with x > a.

In general though, A needn’t consist of numbers, and f needn’t be given by an
explicit formula. For example, let A be the set of all positive-valued, continuous
functions on [0, 1], and f be the rule that takes a function in A as input, and gives
the area under its curve (from 0 to 1) as output.
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In probability, it is extremely useful to consider functions whose domains are the
set of all possible outcomes of some experiment. It may be very difficult to write down
a formula for the function, but it’s still valid as long as it’s defined unambiguously.
A key question to think about then is where does the randomness come from? –
after all, a function is deterministic!

3 Matrices

Neo: What is the Matrix?
Trinity: The answer is out there, Neo, and it’s looking for you, and it
will find you if you want it to.
– The Matrix

A matrix is a rectangular array of numbers, such as

(
3 1/e

2π 1

)
or

(
1 1 0
1 2 3

)
.

We say that the dimensions of a matrix are m by n if it has m rows and n columns
(so the former example is 2 by 2, while the latter is 2 by 3). The matrix is called
square if m = n.

To add two matrices A and B with the same dimensions, just add the corre-
sponding entries, e.g.,(

1 1 0
1 1 1

)
+

(
1 0 0
1 1 0

)
=

(
2 1 0
2 2 1

)
.

To multiply an m by n matrix A by an n by r matrix B, obtaining an m by r
matrix AB (for this to be well-defined, the number of columns of A must equal the
number of rows of B). The row i, column j entry of AB is

∑n
k=1 aikbkj, where aij

and bij are the row i, column j entries of A and B, respectively. Note that AB may
not equal BA, even if both are defined. To multiply a matrix A by a scalar, just
multiply each entry by that scalar.

The determinant of a 2 by 2 matrix

(
a b
c d

)
is defined to be ad−bc (determinants

can also be defined for n by n matrices in a recursive manner not reviewed here).

4 Partial Derivatives

If you can do ordinary derivatives, you can do partial derivatives: just hold all the
other input variables constant except for the one you’re differentiating with respect
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to. For example, let f(x, y) = y sin(x2 +y3). Then the partial derivative with respect
to x is

∂f(x, y)/∂x = 2xy cos(x2 + y3),

and the partial derivative with respect to y is

∂f(x, y)/∂y = sin(x2 + y3) + 3y3 cos(x2 + y3).

The Jacobian of a function which maps (x1, . . . , xn) to (y1, . . . , yn) is the n by n
matrix of all possible partial derivatives, given by

d~y

d~x
=


∂y1
∂x1

∂y1
∂x2

... ... ∂y1
∂xn

... ... ... ... ...

... ... ... ... ...
∂yn
∂x1

∂yn
∂x2

... ... ∂yn
∂xn

 .

5 Multiple Integrals

If you can do single integrals, you can do multiple integrals: just do more than one
integral, holding variables other than the current variable of integration constant.
For example, ∫ 1

0

∫ y

0

(x− y)2dxdy =

∫ 1

0

∫ y

0

(x2 − 2xy + y2)dxdy

=

∫ 1

0

(x3/3− x2y + xy2)|y0dy

=

∫ 1

0

(y3/3− y3 + y3)dy

=
1

12
.

5.1 Change of Order of Integration

We can also integrate in the other order, dydx rather than dxdy, as long as we are
careful about the limits of integration. Since we’re integrating over all (x, y) with x
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and y between 0 and 1 such that x ≤ y, to integrate the other way we write∫ 1

0

∫ 1

x

(x− y)2dydx =

∫ 1

0

∫ 1

x

(x2 − 2xy + y2)dydx

=

∫ 1

0

(x2y − xy2 + y3/3)|1xdx

=

∫ 1

0

(x2 − x+ 1/3− x3 + x3 − x3/3)dx

=

(
x3/3− x2/2 + x/3− x4

12

)
|10

=
1

12
.

5.2 Change of Variables

In making a change of variables with multiple integrals, a Jacobian is needed. Let’s
state the two-dimensional version, for concreteness. Suppose we make a change of
variables (transformation) from (x, y) to (u, v), say with x = g(u, v), y = h(u, v).
Then ∫ ∫

f(x, y)dxdy =

∫ ∫
f(g(u, v), h(u, v))

∣∣∣∣d(x, y)

d(u, v)

∣∣∣∣ dudv,
over the appropriate limits of integration, where

∣∣∣d(x,y)
d(u,v)

∣∣∣ is the absolute value of the

determinant of the Jacobian (we assume that the partial derivatives exist and are
continuous, and that the determinant is nonzero).

For example, let’s find the area of a circle of radius 1. To find the area of a region,
we just need to integrate 1 over that region (so any difficulty comes from the limits
of integration; the function we’re integrating is just the constant 1). So the area is∫∫

x2+y2≤1

1dxdy =

∫ 1

−1

∫ √1−y2

−
√

1−y2
1dxdy = 2

∫ 1

−1

√
1− y2dy.

Note that the limits for the inner variable (x) of the double integral can depend on
the outer variable (y), while the outer limits are constants. The last integral can be
done with a trig substitution, but instead let’s simplify the problem by transforming
to polar coordinates: let

x = r cos θ, y = r sin θ,
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where r is the distance from (x, y) to the origin and θ ∈ [0, 2π) is the angle. The
Jacobian of this transformation is

d(x, y)

d(r, θ)
=

(
cos θ −r sin θ
sin θ r cos θ,

)
so the absolute value of the determinant is r(cos2 θ + sin2 θ) = r. That is, dxdy
becomes rdrdθ. So the area of the circle is∫ 2π

0

∫ 1

0

rdrdθ =

∫ 2π

0

1

2
dθ = π.

For a circle of radius r, it follows immediately that the area is πr2 since we can
imagine converting our units of measurement to the unit for which the radius is 1.

This may seem like a lot of work just to get such a familiar result, but it served as
illustration and with similar methods, we can get the volume of a ball in any number
of dimensions! It turns out that the volume of a ball of radius 1 in n dimensions is
πn/2

Γ(n/2+1)
, where Γ(a) =

∫∞
0
xae−x dx

x
is the gamma function, a very famous function

which we will need later in the course.

6 Sums

‘So you’ve got to the end of our race-course?’ said the Tortoise. ‘Even
though it does consist of an infinite series of distances? I thought some
wiseacre or another had proved that the thing couldn’t be done?’
‘It can be done,’ said Achilles; ‘It has been done! Solvitur ambulando.
You see, the distances were constantly diminishing.’
– Lewis Carroll

There are two infinite series results that we use over and over again in Stat 110:
the geometric series, and the Taylor series for ex.

6.1 Geometric Series
∞∑
n=0

xn =
1

1− x
, for |x| < 1 (this is called a geometric series).
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6.2 Taylor Series for ex

∞∑
n=0

xn

n!
= ex, for all x (this is the Taylor series for ex).

6.3 Harmonic Series and Other Sums with a Fixed Exponent

It is also useful to know that
∑∞

n=1 1/nc converges for c > 1 and diverges for c ≤ 1.
For c = 1, this is called the harmonic series. The sum of the first n terms of the
harmonic series can be approximated using

n∑
k=1

1

k
≈ ln(n) + γ

for n large, where γ ≈ 0.577.
The sum of the first n positive integers is

n∑
k=1

k = n(n+ 1)/2.

For squares of integers, we have

n∑
k=1

k2 = n(n+ 1)(2n+ 1)/6.

For cubes of integers, amazingly, the sum is the square of the sum of the first n
positive integers! That is,

n∑
k=1

k3 = (n(n+ 1)/2)2.

6.4 Binomial Theorem

The binomial theorem states that

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k,

where
(
n
k

)
is a binomial coefficient, defined as the number of ways to choose k objects

out of n, with order not mattering. We have(
n

k

)
=

n!

(n− k)!k!
.
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We’ll see in the course that the binomial theorem is closely related to something
called the Binomial distribution.

To prove the binomial theorem, expand out the product (x+ y)(x+ y) . . . (x+ y)︸ ︷︷ ︸
n factors

.

Just as (a+ b)(c+ d) = ac+ ad+ bc+ bd is the sum of terms where we pick the a or
the b from the first factor (but not both) and the c or the d from the second factor
(but not both), the terms of (x + y)n are obtained by picking either the x or the y
(but not both) from each factor. There are

(
n
k

)
ways to choose exactly k of the x’s,

and for each such choice we obtain the term xkyn−k. The binomial theorem follows.

7 A Useful Limit

One of the most useful limit results to know is that(
1 +

x

n

)n
→ ex

as n → ∞, for any real number x. This has an interpretation in terms of a bank
paying compound interest on a deposit: as compounding occurs more and more
time per year, the growth rate approaches exponential growth. The case x = 1 is
sometimes taken as the definition of e.

8 Pattern Recognition

Much of math and statistics is really about pattern recognition: seeing the essential
structure of a problem, recognizing when one problem is essentially the same as
another problem (just in a different guise), noticing symmetry, . . . . We will see
many examples of this kind of thinking in this course. To take a quick math review
example, suppose we have the series

∑∞
k=0 e

tke−λλk/k!, with λ a positive constant.
The e−λ can be taken out from the sum, and then the structure of the series exactly
matches up with the structure of the Taylor series for ex. So we immediately have

∞∑
k=0

etke−λλk/k! = e−λ
∞∑
k=0

(λet)k/k! = e−λeλe
t

= eλ(et−1),

valid for all real t.
Similarly, suppose we want the Taylor series for 1/(1−x3) (about 0). It would be

tedious to start taking derivatives of this function. Instead, note that this function is
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reminiscent of the result of summing a geometric series. We then immediately have

1/(1− x3) =
∞∑
n=0

x3n,

valid for |x3| < 1 (which is equivalent to |x| < 1). What matters is the structure, not
what names we use for variables!

9 Common Sense and Checking Answers

Whenever possible, check whether your answers make sense intuitively. If it doesn’t
make sense intuitively, either it is wrong or it is a good opportunity to think harder
and try to explain what’s going on. Probability is full of results that seem counter-
intuitive at first, but which are fun to think about and reward the effort put into
trying to understand them. Even if an answer seems plausible, it should be checked
whenever possible. Some useful strategies for checking answers, each of which we will
see examples of throughout the course, are (a) trying out simple cases, (b) trying
out extreme cases, and (c) looking for an alternative method.

For practice, explain what is wrong with each of the following arguments:

1.

“

∫ 1

−1

1

x2
dx = (−x−1)|1−1 = −2.”

This makes no sense intuitively, since 1/x2 is a positive quantity ; it would be a
miracle if its integral were negative! But where is the mistake?

2. “Let us find
∫

1
x
dx using integration by parts. Let u = 1/x, dv = dx. Then∫
1

x
dx = uv −

∫
vdu = 1 +

∫
x

x2
dx = 1 +

∫
1

x
dx,

which implies 0 = 1.”

3. What is wrong with the following “proof” that all horses are the same color?
(This example is due to George Pólya, a famous mathematician who also wrote
the classic problem-solving book How to Solve It.) “Let n be the number of
horses, and use induction on n to “prove” that in every group of n horses, all
the horses have the same color. For the base case n = 1, there is only one
horse, which clearly must be its own color. Now assume the claim is true for
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n = k, and show that it is true for n = k + 1. Consider a group of k + 1
horses. Excluding the oldest horse, we have k horses, which by the inductive
hypothesis must all be the same color. But excluding the youngest horse, we
also have k horses, which again by the inductive hypothesis must have the same
color. Thus, all the horses have the same color.”

Also, be careful to avoid off-by-one errors such as thinking that there are m− n
numbers in n, n + 1, . . . ,m if n and m are integers with m ≥ n. Note that in the
extreme case m = n there is 1 number in the list. Few people would make the
mistake of saying that there are n− 1 numbers in 1, 2, . . . , n, yet it is very common
to make the same mistake when, for example, the sequence starts with 0. This is
also one of the most common and insidious programming blunders. But it is easy to
avoid by keeping it in mind and always checking simple and extreme cases.
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