‘m__ﬂ

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order
Nbr. 4976, Amendment 20, under contract number F33615-87-C-1499, monitored by the Air Force
Avionics Laboratory and by the Encore Computer Corporation. The views and conclusions contained in
this document are those of the authors and should not be interpreted as represeting the official policies,
either expressed or implied, of the Defense Advanced Research Projects Agency or the US Government.

Why Some Chunks Are Expensive

Milind Tambe and Allen Newell
Department of Computer Science,
Carnegie Mellon University,
Pittsburgh, PA 15213

11 January 1988

Abstract

Soar is an attempt to realize a set of hypothesis on the nature of general intelligence within a single system. One
central hypothesis is that chunking, a simple experience-based learning mechanism, can form the basis for a general
leamning mechanism. It is already well established that the addition of chunks improves the performance in Soar a
great deal, when viewed in terms of subproblems required and number of steps within a subproblem. But this high
level view does not take into account potential offsetting costs that arise from various computational effects. This
paper is an investigation into the computational effect of expensive chunks. These chunks add significantly to the
time per step by being individually expensive. We decompose the causes of expensive chunks into three
components and identify the features of the task environment that give rise to them. We then discuss the
implications of the existence of expensive chunks for a complete implementation of Soar.

—

AvaE Vemeawesw as

Soar is a system that attempts to realize a set of hypothesis on the nature of general intelligence [8]. One central
hypothesis is that chunking [6], a simple experience-based learning mechanism, can form the basis for a general
learning mechanism.

Chunking improves performance in Soar by reducing the amount of problem solving required to achieve a goal.
At each step during problem solving, the system searches its knowledge base for knowledge relevant to the current
problem-solving situation. The knowledge base is encoded as a production system, i.e., a set of condition-action
rules, each of which fires whenever its conditions match elements in working memory. The chunking mechanism
creates new productions (chunks), based on the results of problem solving, and adds them to the existing set of
productions. These chunks then fire in appropriate later situations, to provide these results again. Thus, chunking
provides both a practice mechanism and, when similar situations arise, a learning-transfer mechanism.

In Soar all activity is expressed as problem solving, whether selecting an cperator to apply, implementing an
operator, deciding what space to use for problem solving, or whatever. Thus, chunking applies to all the aspects of
Soar’s operations, which is a necessary condition for chunking to be the basis for all of Soar’s learning. Soar is ©0
build chunks continuously, and at a roughly constant rate, throughout its lifetime. Current experience places the rate
of chunk building at more than 1 chunk per 100 production cycles. Thus, a long-running version of Soar will
ultimately comprise a large number of productions, essentially all of which will be chunks, created by the system
itself.

It is important to understand the computational properties of such a growing system. What happens to the
running time of Soar as it continues to add chunks? It is already well established that the addition of chunks
improves the performance a great deal, when viewed in terms of subproblems required and numbers of steps within
a subproblem [18]. But this high level view does not take into account potential offsetting costs that arise from the
growth of productions. The literature contains analyses of this tradeoff for Strips-like systems [9, 10], which
suggest that there may be real problems for Soar.

This paper is an investigation into one of the computational issues for Soar, namely that of individually expensive
chunks. To pose this issue, we need to separate it from other aspects of what happens to performance when learning
takes place. It is appropriate to think in terms of an ideal computational model for the production system, one that
says how much time is taken per step, as a function of relevant parameters. The simplest ideal model is the
constant-step model, namely that each step takes a constant amount of time, independent of the composition of the
production system, i.e., independent of the number of productions, the number and type of conditions, etc. Given
this ideal model, the effects of learning can be divided into two major types, which we will call cognitive and
computational, just to have two simple names. Cognitive effects are all the changes in the steps to solve a problem,
assuming the ideal model. These may be improvements, if the system does less problem solving because of the
recalled prior results; these may be failures and inefficiencies, if the recalled results lead the system down
inappropriate paths. These improvements can be measured by the number of steps as specified by the ideal model,
since per assumption these steps take constant time. ‘

Computational effects are all those that distort the model and invalidate it in various ways. There may be many
such effects, which may themselves need to be separated for purposes of study. For instance there is the average
growth effect, which is the average increase in time per step as the number of chunks grows. Some such effect must
exist asymptotically for any system with limited parallelism. However, the increase may not be large enough to be
of importance (and there exist some models of growth that support such a conclusion [5]). There may be other
effects. For instance, more condition elements (productions with more condition elements) could take more time,
with certain tasks or environments continually creating chunks with more conditions, even though the average

growth effect over all environments is constant.

Each such effect, if it is appreciable, may modify substantially any conclusion about learning made on the basis of
an analysis of cognitive effects alone. In the extreme, as conjectured in [9], it might be that there is no overall
improvement, with the losses in the computational model offsetting completely the gains in numbers of steps. Even
if this is the case, it may be possible to replace the simple constant-step model with another model that exhibits the
important dependencies, and hence permits a useful total analysis of leaming in terms of the ultimate measure,
namely time.

The computational question that this paper deals with is the nature of expensive chunks. These are individual
chunks that add significantly to the total time per step, and hence invalidate the ideal model. Such expensive chunks
do not necessarily say anything about the average growth effect. We seek first to establish that such expensive
chunks exist and then to establish their causes. Behind such an investigation is always the question of what can be

done to ducvmu: such (.lliilllb, t0 avoid their [Ell'lg CXpCﬂSlVC Oor o avoxu Dllll(lll'lg them. We wili comment on such
issues, but the main intent of the paper is understanding.

Before we start, we must settle the question of the ideal constant-step model, for there are two possibilities for
what a step should be. The constant-cycle model posits that each cycle of the production system takes a constant
amount of time, independent of the composition of the production system. The constant-action model posits that
each righthand side action of a production takes a constant amount of time, independent of the composition of the
production system. These models are related, of course, since a given production has a certain number of righthand
side actions (typically 3-4), and it might seem of little point to choose (unless the actions per production increased
over time or something). However, implementations define one quantity or the other (cycles or actions) as the
fundamental unit, and hence it is useful to choose the one dictated by the implementation. The implementation used
for Soar (the Rete net, described below) takes righthand side actions as fundamental, so we will use the constant-
action ideal model.

We will first establish that expensive chunks occur. Then we will step back to discuss the aspects of the
implementation that are necessary to the analysis. This will permit us to decompose the causes of expensive chunks
into three components. For each of these we will show something of the size of the effect and of the features of the
task environments that gives rise to them. Finally, we will discuss what the existence of expensive chunks implies
for a complete implementation of Soar.

2. Expensive Chunks Exist

Table 2-1 shows the effect of chunking in a number of tasks taken from our current experience with Soar (a
description of these tasks is given in the Appendix). The first column gives the name of the task. The second
column gives the number of steps in terms of right-hand side actions (called actions henceforth) when the system
. performs the task without (i.c., before) chunking. The third column gives the number of actions when the system
performs the same task after chunking on that task. The fourth column gives the speedup caused by chunking in
terms of number of actions. The fifth column gives the total match time for the task before chunking, i.e., the run
corresponding to column 2. The sixth column gives the total match time corresponding to the run in the third
column i.e., the run after chunking. The seventh column gives the speedup in terms of the total match time. The
eighth column gives the total number of chunks that were added to the system by chunking. These measurements
were done on the Soar/PSM-E [20], a system that uses the OPS83 software technology [3] for performing the
match.!

The Soar/PSM-E is mplunemed on the Encore Multiprocessor which uses the NS32032 processors, which are about 0.75 MIPS The
numbers presented here are for a uniprocessor configuration, so this paper does not address any issues of multiprocessing.

w

Task Numiber Number Speedup Total Total Speedup Number
of of in terms maich match in terms of

actions actions of nbr. time time of total chunks

Before After of Before After match added

chunking | chunking actions chunking | chunking time
. (sec) (sec)

8-Puzzle 3025 463 6.53 26.68 26.93 0.99 11
Queens 767 147 521 2.79 8.64 0.32 3
Path 5512 407 13.54 17.95 20.90 0.85 14
Magic-Square 2142 325 6.59 12.09 46.74 0.25 S
Syllogisms 1055 91 11.59 7.50 0.73 10.27 10
Monkey 1321 213 6.20 5.0 097 5.16 4
Waterjug 2623 287 9.13 10.51 2.01 522 11
Farmer 3427 309 11.09 17.64 3.50 5.04 14

Table 2-1: Effects of chunking on number of actions and total match time.

We see that chunking has caused a big speedup in the number of actions in all the tasks. This speedup is what we
have called the cognitive effect. However, we see that for the tasks in the upper half of the table, i.e. the 8-puzzie,
Queens, Path and Magic-Square? the total match has actually increased after chunking. For example, the Magic-
square task shows almost a four fold slowdown after chunking. For other tasks, (we have included Syllogisms,
Monkeys and Bananas, Waterjug and Farmer), the speedups in terms of number of actions due to chunking are
followed up by a speedup in the total match time.

Comparing the total match time before and after chunking, independent of the number of actions, does not present
a clear picture of the impact of chunking on the matcher. As mentioned in Section 1, it is better to think in terms of
the time/step, i.e. time/action instead of the total match time. Table 2-2 gives the effect of chunking on the
time/action for the set of eight tasks presented in Table 2-1. The first column gives the name of the task. The second
column gives the time/action, Ty, when the system performs the task without (before) chunking. The third column
gives the timefaction, T,, when the system performs the same task after chunking on that task. These runs
correspond to the runs in Table 2-1. .

It is clear that, out of T,, the time/action after chunking, some fraction is spent in processing the original set of
productions and some fraction is spent in processing the chunks. The implementation used in Soar (the Rete net,
described below) makes it difficult to make a precise measurement of the effort applied to match an individual
production or a subset of a given set of productions. However, we can obtain an approximate measure T, of the
time/action spent in processing the chunks by assuming that processing the original set of productions still consumes
Ty amounts of time/action. Thus Tg, which is the difference between T, and Ty gives us the approximate
time/action spent in processing the chunks. Column 4 in Table 2-2 presents T, for all the tasks.

We had observed in Table 2-1, that for 8-puzzle, Queens, Path and Magic-square, the total match time had
increased in spite of the decrease in the number of actions, after chunking. T in Table 2-2 shows that chunking has
caused a drastic increase in time/action in these four tasks, completely distorting the ideal computational model of
constant time/step. For the tasks in the lower half of Table 2-2, the time/action is seen not to increase nearly as

YThe Magic-square task requires a very large amount of memory after chunking. Due to virtual memory limitations of the current version of
the kemel running on the Encore, this task was therefore run only until memory was exceeded.

I~—_ﬁ'

4
Task Tg T, Te
Time/action Time/action =
Before After Tp-Tg
Chunking Chunking (ms)
(ms) (ms)
8-Puzzle 8.82 58.09 49.27
Queens 3.63 58.77 55.14
Path . 325 51.35 48.10
Magic-Square 5.64 143.81 . 138.17
Syllogisms 7.11 8.02 0.91
Monkey 3.79 4.56 0.77
Waterjug 401 7.03 30
Farmer 5.14 11.32 6.18

Table 2-2: Effect of chunking on time/action for a few Soar tasks.

much after chunking. Though Ty is an approximate measure of time/action spent in processing the chunks, we are
interested only in establishing the existence of expensive chunks and in dealing with the order of magnitude
differences between the time spent in processing expensive and cheap chunks. Therefore, a very precise measure of
the time spent in processing chunks is unnecessary and we will use T¢ as a measure of the cost of processing chunks
in the rest of the paper.

Thus the addition of a few chunks has caused a very large increase in time/action in some tasks. However, this

-increase, per se might not allow us to establish that these few chunks are expensive. For instance, some chunks

might appear to be expensive because they were fired a lot of times; while other chunks may appear to be cheap
because they fired only a very few times. To address this issue, we present a graph in Figure 2-1, which plots T on
the vertical axis against the number of firings of the chunks3 for the set of eight tasks examined above.

It can be seen from the graph that T¢, the increase in time/action caused by chunking is independent of the
number of chunk firings. Thus the expensive chunks are not somehow caused by the fact that they fire a lot of
times. Likewise, the tasks with cheap chunks i.e. with a small increase in time/action, are cheap independent of the
number of times they fired.

There is another possibility: the system may have unsuccessfully attempted firing some chunks a large number of
times. This could cause those chunks to appear expensive, though individually, firing those chunks may actually
require very little processing. In general for production systems, measuring the number of times the system
attempted to fire a chunk can be very difficult. This issue is simplified in Soar because every task done in Soar
consists of a set of states representing possible situations in the task domain and a set of operators that transform one
state into another one (described in detail in the next section). The system attempts to fire a chunk in a given state if
at all and then it is only in the next state that another attempt is made to fire that chunk again. Thus the number of
states that the problem solver goes through can serve as an approximate estimate of the number of times the system
tried to process the chunks, Figure 2-2 plots Tc on the vertical axis against the number of states used in problem-
solving.

Figure 2-2 shows that the differences in T cannot be due to the fact that the system has processed some chunks

3Note that a chunk firing implies firing of all instantiations of that chunk in that production cycle.

50 — * *

40 —
Tc

10 —

**

I l I 1
4 8 12 16

Number of Firings

Figure 2-1: T and the number of chunk firings.

more times than others. Thus the graphs in Figures 2-1 and 2-2 establish that the increase in time/action, T, is due
to individually expensive chunks that require very large amounts of time to process.* We have seen that expensive
chunks occurred in 8-puzzle, Queens, Path and Magic-Square tasks, but the chunks in Syllogisms, Monkeys and
Bananas, Waterjug and Farmer were seen to be relatively cheap. In sum, expensive chunks arise naturally, but not
universally. It is important to track them down and understand why they exist, how bad they might be, and what
might be done about them. They do not arise often — these four cases constituted the verifiable and analyzable set
that came to light upon investigation®. But when they do happen, they are dramatic in their effect.

3. Soar

The goal of the Soar project is to build a system capable of general intelligent behaviour. Soar has been applied
to a wide variety of tasks: many of the classic Al toy tasks, such as the blocks world and towers of Hanoi: tasks that
appear to involve non-search-based reasoning, such as syllogisms; and large tasks such as algorithm design and the
R1 computer configuration task (18, 19]. The next two subsections describe the two major components of the Soar
architecture, the performance system and the mechanism of chunking, just enough to support the further analysis.

‘Ahemalive!y. the number of firings can viewed as providing a lower bound and the number of states as providing an upper bound on the
number of attempts made by the system in processing the chunks. The graphs in Figures 2-1 and 22 together allow us to establish that the
difference in the cost of expensive and cheap chunks is not due to a difference in the number of times the chunks are processed.

SOther putative expensive chunks were profferred or rumored, but could not be tracked down or could not be replicated in the C-based
Soar/PSM-E system rather than the Lisp-based versions used mostly.

R M“““ﬁ

(=,

133—-! *
50 — * ok *
40 —
Tc
30 —
20 —
10 —
*
*
* *
| | | 1
4 8 12 16
Number of states
Figure 2-2: T and the number of states used in problem-solving.
3.1. The performance system

Soar is based on formulating all symbolic goal-oriented processing as search in problem spaces [12]. The problem
space determines mesetofstatesandoperatorsthatcanbeusedduringthcprocessingtoauainagoal. The states
represent situations. There is an initial state, representing the initial situation, and a set of desired states that
represent the goal. An operator, when applied to a state in the problem space, yields another state in the problem
space. The goal is achieved when a desired state is reached as a result of a sequence of operator applications starting
from the initial state.

Each goal defines a problem-solving context. A context is a data structure in Soar’s working memory — a
short-term declarative memory — that contains, in addition to a goal, roles for a problem space, a state and an
operator. Problem solving for a goal is driven by the acts of selecting problem spaces, states, and operators for the
appropriate roles in the context. Each such deliberate act of the Soar architecture is accomplished by a two-phase
decision cycle. First, during the elaboration phase, the description of the current situation (that is, the contents of the
working memory) is elaborated with relevant information from Soar’s production memory — a long-term
procedural memory. The elaboration phase proceeds in a sequence of synchronous cycles. During each cycle of the
elaboration phase, all of the productions in the production memory are matched against working memory, and then
all of the resulting production instantiations are executed, i.c., all the instantiated right-hand side actionsS. The net

SThus Soar has a degree of logical parallelism. However, we are analyzing serial implementations, so that this parallelism is not reflected at
the implementation level, i.e., time/action is still (total time)/(total number of actions).

effect of these production firings is to add information to the working memory. New objects are created, new
knowledge is added about existing objects, and preferences are generated.

There is a fixed language of preferences, which is used to describe the acceptability and desirability of the
alternatives being considered for selection. By using different preferences, it is possible to assert that a particular
problem space, state or operator is acceptable (should be considered for selection), rejected (should not be
considered for selection), better than another alternative, and so on. When the elaboration phase reaches quiescence
— that is, no more productions can fire — the second phase of the decision cycle, the decision procedure, is entered.
The decision procedure is a fixed body of code that interprets the preferences in working memory according to their
fixed semantics. If the preferences uniquely specify an object to be selected for a role in a context, then a decision
can be made, and the specified object becomes the current value of the role. The decision cycle then repeats,
starting with another elaboration phase.

If, when the elaboration phase reaches quiescence, the preferences in working memory are either incomplete or

inconsisient, an impasse occurs in probiem soiving because the system does not know how to proceed. When an
impasse occurs, a subgoal with an associated problem-solving context is automatically generated for the task of
resolving the impasse. The impasses, and thus their subgoals, vary from problems of selection (of problem spaces,
states, and operators) to problems of generation (e.g., operator application). Given a subgoal, Soar can bring its full
problem-solving capability and knowledge to bear on resolving the impasse that caused the subgoal. When
impasses occur within impasses, then subgoals occur within subgoals, and a goal hierarchy results (which therefore
defines a hierarchy of contexts). The top goal in the hierarchy is a task goal: such as to recognize an item. The
subgoals below it are all generated as the result of impasses in problem solving. A subgoal terminates when its
impasse (or some higher impasse) is resolved.

3.2. Chunking in Soar _

Chunking [6] in Soar is a learning mechanism that acquires new productions that summarize the processing that
leads to results of the subgoal. The conditions are based on those aspects of the pregoal situation that were relevant
to the determination of the results. Relevance is determined by using the traces of the productions that fired during
the subgoal. Starting from the production trace that generated the subgoal’s result, those production traces that
generated the working-memory elements in the condition elements are found, and so on, until elements are reached
that existed prior to the subgoal. Productions that only generate preferences do not participate in this backtracking
process — preferences only affect the efficiency with which a goal is achieved, and not the correctness of the goal’s
result.

An example of this chunking process is shown schematically in Figure 3-1. The circled letters are objects in
working memory. The two vertical bars mark the beginning and ending of the subgoal. The objects to the left of the
first bar (A, B, C, D, E, and F) exist prior to the creation of the subgoal. The objects between the two bars (G, H, and

*I) are internal to the subgoal. P1, P2 and P3, and P4 are production traces; for example, production trace P1 records

the fact that a production fired which examined objects A and B and generated object G. The highlighted production
traces are those that are involved in the backtracing process.

Chunking in this figure begins by making the result object (J) the basis for the action of the chunk. The condition
finding process then begins with object J, and determines which production trace produced it — trace P4. It then
determines that the conditions of trace P4 (objects H and I) are generated by traces P2 and P3, respectively. The
condition elements of traces P2 and P3 (objects C, D, E and F) existed prior to the subgoal, so they for the basis for
the conditions of the chunk. The resulting chunk is:

C&D&EG&GF -->J

|

(7]

.
7
)

0Q

ﬁ-@
s\

\P3 |
>\
o N

QO

Figure 3-1: Schematic view of the chunking process in Soar.

Once a chunk has been learned, the new production will fire during the elaboration phase in relevantly similar
situations in the future, directly producing the required information. No impasse will occur, and problem solving
will proceed smoothly. Chunking is thus a form of goal-based caching which avoids redundant future efforts by
directly producing a result that once required problem solving to determine.

4. The Matcher :

Soar uses the Rete [2] algorithm for matching productions. The next subsection briefly describes the Rete
matching algorithm. Using this description, we develop a model of the matcher which we will use throughout the
rest of this paper to analyze expensive chunks. The important features of current production-system matching
algorithms that are relevant in the analysis of expensive chunks are captured by this model and therefore our
analysis here is independent of the matching algorithm used.

4.1. The Rete matching algorithm

Rete is a highly efficient matching algorithm for production systems. The Rete algorithm gains its efficiency
from two optimizations. First, it exploits the fact that only a small fraction of working memory changes each cycle,
by storing results of matching from previous cycles and using them in subsequent cycles. Second, it exploits the
commonality between condition elements of a production (both within the same production and between different
productions) to reduce the number of tests that it has to perform to do match. It does so by performing common
tests only once.

The Rete algorithm uses a special kind of a data-flow network compiled from the left hand side of productions.
To generate a network for a production, the compiler begins with the individual condition elements in the left-hand
side. For each condition elements it chains together test nodes that check for the intra-condition constraints that
have to be satisfied by that condition. Each node in the chain performs one such test. Once the algorithm has
finished with the individual condition elements, it adds nodes that check for consistency of variable bindings across
the multiple condition elements in the left hand side. Finally the algorithm adds a special terminal node to represent

1

the production corresponding to this part of the network.

The production system in Figure 4-1 illustrates the Rete algorithm. The production svste

uusirates the Rete algonthm ¢ proquction system consisis of one
production length-2, consisting of three condition elements and one action element. The working memory elements
(wmes) in Figure 4-1 describe the map shown in the figure.

(Production length-2

(goal “goto-point x “from-point y) E

(exists-path “from y “to z)

(exists-path “from z “to x)

-—>

(write exists-path of length 2 from x to Y))
o]

/** The working memory #**/
(exists-path “from B ~to ()
(exists-path “from B ~to D)
{(exists-path “from B “to E)
(exists-path “from C “to A)
(exists-path “from D “to A) b

A
Figure 4-1: An example Production System

goal exists-path

node

Figure 4-2: Rete net for production length-2

The Rete network built for the production length-2 is shown in Figure 4-2. The branch of the network shown
along path-1 tests for wmes matching the first condition element. Since conditions 2 & 3 have common tests only
one branch along path-2 exists for both of them. The nodes marked as m nodes are the memory of the network
which store the match information, €.g., m2 stores the wmes that matched condition 2. Rete thus saves state in the
memory nodes. The functions of other nodes will become clear as we go along,

Consider the wme (exists-path from B to E). The first attribute of this wme equals exists-path, the second
attribute is from and the fourth attribute is to. It will therefore pass the tests shown along path-2 and get stored in the
memories m2 and m4 (which stores wmes that have matched the 3rd condition element of the production). All the
other existing wmes will also get stored in m2 and m4. These wmes form the right-activations of nodes A1l and A2.

—
(]

Suppose now a wme (goal goto-point A from-point B) is created. It will travel along path-1 and get stored in m1.
The node Al tests if the variable bindings for wmes in m1 and m2 match each other. Al then creates tokens for
marching wmes. Tokens indicate what conditions have matched and under what bindings. Thus three tokens will be
created at Al: (2; x=B,y=A,2z=C),(2;x=B,y=A,z=D) and (2; x =B, y= A, z=E). The number 2 indicates
that the token has matched the first 2 condition elements. These tokens will be stored in m3. The node A2 will test
wmes stored in m4 with the tokens in m3 and create 2 new tokens (3;x=B,y=A,z=C)and (3;x=B,y=A,z=
D). This will create two instantiations for the production length-2. Thus the two instantiations generated required
the creation of S tokens. The next subsection presents a high-level view of this activity in the matcher.

4.2. The cost of matching productions

In the previous subsection we described the flow of tokens in matching the production length-2. In (5], the cost of
matching an expensive production has been attributed to two effects associated with the flow of tokens in the Rete
network, shown in Figure 4-3.

e The Long-chain effect: If a production has a large number of condition elements, then that leads to a
long chain of token creation i.e. one token creation leads to the creation of a successor token, which in
turn causes the creation of its successor token & so on.

e The Cross-product effect: If a single token flowing into a two input node finds a large number of
elements in the opposite memory with consistent variable bindings, then it generates a large number of
tokens to be processed at the successor two input node.

CE1 CE2 v CE1 CE2

CE3

\ | CEK-1
\ * CEK

long-chai
effect

cross-product
effect

Figure 4-3: The token flow model.

A combination of these two effects can be used as a model for making qualitative predictions about the cost of a
production e.g. the production length-2 is cheap since it does not have either a long-chain or a cross-product. We
will refer to this model as the token flow model.

We will, however, use a somewhat different model to analyze expensive chunks, which subsumes the token-flow
model and can make approximate quantitative predictions about the cost of a production. This model seems to
provide a better insight into the activity of the matcher for the purpose of analyzing expensive chunks. The alternate
model is developed from two observations:

CES

11

* Measurements on Soar/PSM-E indicate the time spent in the match per token generation i.e. time/token,
is approximately a constant (about 1 ms per token).” This provides a constant-operation base for the

W & VVLsuCTVp WAVl vaoy 1UL UIC

computational effects, so that the analysis can be independent of physical machines.

* The tokens generated in the Rete network create a match tree of tokens. In the previous subsection we
described how 5 tokens are generated in matching the production length-2. These tokens generated in
the Rete network create a match tree as shown in Figure 44.

B

C D E

/ |

/a4 a

Figure 4-4: The match tree of tokens.

Therefore, for Soar productions, the number of tokens in the match tree is a good estimate of the work done in
performing match. This match tree represents the search done by the Rete net to match productions. This search is
done in the knowledge base of the system, so we will call it k-search, to distinguish it from the search done in the
problem space.

The state saving in the Rete net makes sure that a partially done k-search from previous cycles is saved for use in
the future cycles. Therefore the k-search is not repeatéd from scratch with addition of every working memory
element (wme). Once a chunk fires, most of the state is removed and the next firing of this chunk requires a
different k-search. This effect of repeating the k-search for every firing is seen in most Soar productions. Sharing
makes sure that k-search for similar productions is shared. However, compared to the differences in match times we
are dealing with, the speedup obtained from sharing in the Rete net is fairly limited [5, 1118, hence for the purposes
of this paper, we can ignore this effect. Thus performing k-search on each production in isolation for every firing of
a production is a reasonable way of modeling the activity that goes on in the Rete net to match a production.

There are two important features of the k-search, which can be seen in the example in Figure 44,

® The matcher has to find all possible solutions of the k-search: All the possible instantiations for a
production are found in matching that production. In the example shown in Figure 4-4, both the
instantiations for the production length-2 are found.

* No heuristics are available to the matcher in performing k-search: The matcher does not have any
knowledge about the semantics of the production it is trying to match. For example, the Rete matcher in
Figure 4-2 does not have any knowledge about the objective of matching the production length-2, i.e. of
finding a path of length 2. Further, no other knowledge such as the maximum number of instantiations
for a production or the maximum number of different bindings for a variable is available to the matcher.

"The timeAoken before chunking is usually more than the time/ioken after chunking due to the large number of right activations before
chunking, that do not produce any new tokens. In general, the maximum variation in time/token has been seen to be about a factor of two.

8In (5], a speedup of 1.63 is reported due to sharing, while {11] reports a factor of 1.1. But in any case, the speedup is much smailer than the
order of magnitude differences we are dealing with.

1

Therefore, the matcher cannot pruns its k-search.

The matcher is therefore forced to perform k-search by doing an exhaustive search to find all possible ways of
instantiating productions. The features of the k-search performed by the Rete matcher are not unique to the Rete
matcher alone, but are also seen in all the other match algorithms that are known to the authors, such as Treat [11],
which saves less state than Rete, and Oflazer’s algorithm [13], which saves more state than Rete, A naive algorithm
thatmatchwallmepmdwtionswithanmewm&ateveryswp, (does not save any state at all) also has these
features. Thus, this model embodies the features of these algorithms essential for our analysis. Therefore we can
use it with an understanding that the analysis based on this model will hold true for all these algorithms,

5. Expensive Chunks: The internal view
As noted in the previous section, the k-search finds all solutions and proceeds without any heuristics. The

following example demonstrates how the nature of k-search causes chunks to be expensive.

In this example, a Robot has to move from point A to point B. The various edges connecting A and B are shown
in Figure 5-1. TheopaatorsavailablctotheRobotallowittomovefmmapointXtoapointYifpoimsXandY
are connected by path of length 1. Adepm-ﬁrstsearchispexfonnedinLheproblemspacetoreachB,fromA.The
k-search tree for this task is also shown in Figure 5-1. A path of length 4 (highlighted in the figure) is found
betweenAandB.‘I‘heconditionsofoneofmechunksformedinperformingmistaskwilltcstforthecxistmceofa
path of length 4 between the source and the destination. If a path of length 4 is found, then the actions of the chunk
will recommend taking the first step along that path,

J K B

Figure 5-1: Moving from point A to B.

Given the same problem again, the chunk tries to identify a path of length 4 from A to B, giving rise to the
k-search tree shown in Figure 5-2. In this example we see that before chunking 7 tokens are generated in 4 steps to
solve the problem. However, the chunk consumes 19 tokens in 1 step, thus becoming more expensive than the
original multi-step solution.

We refer to the above explanation as the internal view of the cost of a chunk. Given a chunk and the working
memory, this view states that the chunk is expensive because the k-search tree of that chunk has a large number of

e

13

Figure 5-2: Match tree after Chunking.

tokens. We call it internal, because it explains the cost in terms of the k-search tree of the chunk; but it does not
explain the origin of the chunk or the working memory, which define the size of the k-search tree.

The number of tokens in the k-search tree is dependent on the height of the tree, which is determined by the
number of condition elements in the chunk. The number of tokens is also dependent on the breadth of the k-search
tree at various levels, which in turn depends on the presence of condition elements that can match a large number of
wmes that pass the test associated with that condition element. Presence of two or more such condition elements can
lead to a combinatorial explosion i.c. a big increase in the breadth of the k-search tree at some level.

A third factor that determines the number of tokens in the k-search tree is the order of node expansion in the tree.
The order of node expansion depends on the order of condition elements in the chunk. Figure 5-3 shows an example
of how the order condition elements can impact the size of the k-search tree. The figure shows the production
system of Figure 4-1, with a modified version of the map. It shows the production length-2 and the k-search tree of
the production length-2. The figure also shows the production length-2-mod, which is production length-2 with a
change in the order of condition elements. We see that the number of tokens in the k-search tree has been reduced.
This shows why the order of condition elements in the k-search tree is important,

Using the internal view we have identified three factors that can cause chunks to be expensive:
* A large number of condition elements in the chunk.
* Presence of two or more condition elements in the chunk that match a large number of wmes and

increase the breadth of the k-search tree. The breadth thus also depends on the structure of the working
memory.

* A bad ordering of condition elements in the chunk.

6. Expensive Chunks: The external view

In the previous section we used the internal view to identify three characteristics of a chunk and the working
memory that determine the cost of a chunk. In this section, we identify the causes relating to things external to the
matcher that determine these characteristics. These are aspects of the task structure and it is in their terms that one

14
8

(Production length-2 /N
(goal “goto-point x “from-point y) \\‘
(exists-path “from y “to z)

(exists-path “from z “to x) / D !C E F
-—>
A

(write exists-path of length 2 from x to y))
A

/** reoxrdered production **/

(Production length-2-mod
(goal “goto-point x “from-point y) c
(exists-path “from z “to x)

(exists-path “from y “to z)

—-—>>

. B
(vrite exists-path of length 2 from x to y)) 8
Figure 5-3: The effect of ordering condition elements.

can understand how expensive chunks arise. We refer to this as an external view of thé cost of a chunk. We try to
account for the expense of the expensive chunks we have come across.

6.1. A big footprint :
If a large number of aspects of the pre-subgoal situation are examined during processing in the subgoal to produce
results, then the chunk has a large number of conditions. We refer to this as a big footprint. The size of the footprint

determines the number of condition elements in the chunk and hence the height of the k-search tree. Examples
below illustrate the effect of the size of the footprint.

The first example demonstrating the effect of the footprint is the 8-puzzie task. A description of the task appears
in the appendix. It has eight numbered tiles in a 3x3 frame. One cell is always blank and there is a single general
operator to move adjacent tiles into the blank cell. For a given state, an instance of this operator is created for each
of the cells adjacent to the blank cell. This gives rise to an impasse to select the appropriate instantiated operator 0
do next. The present state and desired state are given and thus form part of the pre-subgoal situation. To resolve the
impasse, the instances of these operators are evaluated using comparison of the tiles in the present state and the
desired state. In this formulation, the initial set of productions create an evaluation of positive 1 if a move causes a
tile to go from out-of-place to in-place, negative 1 if a move causes a tile to go from in-place to out-of-place and O if
a move causes a tile to go from out-of-place to out-of-place. In-place and out-of-place positions are determined by
explicit comparison of the position of tiles in the present state and the desired state. This evaluation is used in
selecting the operator to be performed next. Thus, to decide the better of two instantiated operators, the problem-
solver creates a big footprint by touching all the tiles in the given and the desired states for both the operators. The

— '“"uﬁ'

o
(¥}

big footprint leads to large number of condition elements in the chunk, causing the chunk to be expensive, The first
row of Table 6-1 presents the average number of condition elements in the chunks, the number of chunks added to
the system during a run of the 8-puzzle, and the increase in time/action due to chunking Te.

Task Avg. number of Number Increase in
conditions of time/action

in the chunks chunks due to
that fire added chunking

Tc

(ms)

8-Puzzle 34 11 49.27

New-8-Puzzle 22 11 17.35

The representation of the 8-puzzle can be changed, such that explicit in-place and out-of-place augmentations
(attributes) are used to describe the position of each tile relative to the desired state. Thus for any given state, the
in-place or out-of-place status of each tile is known, without a comparison with the desired state®. Therefore, the
operator selection does not require the examination of the desired state. This reduces the size of the footprint, and
hence reduces the cost of the chunks. Let us call this new version of the 8-puzzle with a changed representation:
New-8-puzzie. The second row of Table 6-1 presents the average number of condition elements in the chunks of the
New-8-puzzle. The number of chunks added in performing this task can be seen to be the same as the 8-puzzle. The
increase in time/action due to chunking is also shown. The time/action has reduced from 49.27 to 17.35 a factor of
25.

A second example demonstrating the effect of a big footprint is the Queens task, which requires placing two
queens on a 3x3 board, so that no queen can take another. A forward (depth first) search is performed to obtain two
positions that do not take one another. The conditions of the chunk formed test for two positions that do not take
one another and then recommend these positions. Each position in the task is described using horizontal, vertical
and diagonal attributes, and since these descriptions are touched to solve the problem, the chunk contains the
descriptions of each position in terms of these horizontal, vertical and diagonal attributes. The description of these
two positions creates a chunk with a large number of condition elements. The first row of Table 6-2 presents the
number of condition elements in the chunks, the number of chunks added during a run of the Queens task and the
value of T.

Task Avg. number of Number Increase
conditions of in time/action
in the chunks chunks due to
that fire added chunking
Tc
(ms)
Queens 21 3 55.14
New-Queens 6 3 1.36

Table 6-2: Effect of changing representation of the Queens task.

We can change the representation of the positions of the queens on the board by not describing them in terms of

We thank John Laird for this representation.

l“"“* [

16

the horizontal, vertical or diagonal attributes. Instead, each position X is augmented by Safe positions i.c., by
positions that cannot be taken by a queen placed at X. Again the chunk formed tests for two positions that do not
take one another and then recommends those positions. However, the size of the chunk is reduced, since the
conditions just test if one of the positions has the other one as a Safe position. Let us call the Queens task with a
changed representation: New-Queens. The second row of Table 6-2 shows the effect of changing representation in
the Queens task. The number of condition elements in the chunks has reduced. This leads to a large reduction in Tc.
from 55.14 to 1.36 a factor of 25.

Table 6-3 shows the average number of condition elements in the chunks in various tasks. We see that in general
the expensive chunks have a larger footprint, although the separation is not large and the inexpensive waterjug has a
big footprint. Since the size of the footprint explains only the height of the k-search tree, we need to examine the
other factors to be able to explain all the data.

Task Average Increase
number of in time/action
conditions in due to
the chunks that chunking
fire Tc
(ms)
8-puzzle M4 49.27
Queens 21 55.14
Path 20 48.10
Magic-Square 18 ' 138.17
Syllogisms 15 - 091
Monkey 14 0.77
Waterjug - 26 3.02
Farmer 18 6.18

Table 6-3: Number of condition elements in the chunks formed in various tasks.

6.2. Multi-Objects: Multi-attributes and Preferences
We have seen in Section 5 that one of the factors that determine the cost of a chunk is the presence of condition
elements and working memory that produce a large number of tokens at a particular level in the k-search tree i.e.

’

that cause an increase in the breadth of the k-search tree. Before proceeding to understand how this breadth arises in

Soar, it is necessary to make a brief digression into the structure of condition elements and working memory in Soar.
A detailed description of both can be found in [7].

Soar uses a variation on OPS5 [1] as the basic representational scheme of working memory and productions
provided in OPSS. In Soar, there are two different types of data representations in working memory: objects and
preferences. Certain restrictions of the OPSS scheme force Soar to represent objects using multiple wmes, each
containing only four fields: name (or class) of the object, the identifier of the object, and one attribute-value pair for
that object. Thus a block, with a identifier B1, with two attributes color and size will be represented as two wmes:
(Block B1 A Color Blue) and (Block B1 A Size 10). Thus the general form of a wme in Soar is:

(Object-name Identifier “Attribute Value)

A condition element that matches the above kind of wmes also has four fields in it. The condition element always
contains a variable in the field that matches the identifier, and sometimes contains a variable in the value field.

A “_n_ﬂ [

Among the other two fields, the object-name field and the attribute field almost always contains a constant {(none of

=

the condition elements in the chunks in this paper has a variables in those fields).

A preference is a wme that asserts the relative or absolute worth of an object for a context slot. Preferences are
special wmes of length nine and the condition elements that match preferences are also nine elements long.

Given the above structure of warking memory, we can now understand the source of breadth in the k-search tree
in Soar. As we have seen, the breadth of the k-search tree is dependent on the order of condition elements. Soar
uses a fixed condition ordering mechanism to order all its productions. The condition ordering mechanism makes
sure that the identifier variable of a condition element is bound before the condition appears in the chain of
conditions in the production, i.e., the identifier variable appears in the value field of some other condition preceding
this condition. This chain is then anchored in the conditions ma_mching the current goal-context. This makes sure that
even if a large number of wmes related to the old goal-context stack are present in the system {as they are likely o

1Lt LI OIL &

be), they do not affect the k-search.

Consider a condition element as mentioned above, i.e., with a bound identifier variable and the only other variable
possibly appearing in the value field. When a token is passed on to this condition element, the only way it can
generate more than one token, introducing breadth in the k-search tree, is if there are multiple wmes that have the
same symbols in the object-name identifier and attribute fields, and different symbols in the value fields. Such a
collection of wmes which differ only in the value field are used in representation of sets in Soar and an attribute that
has such multiple values is called a multi-attribute. Thus in the Magic-square task, the state has one multi-attribute:
squares, with nine values. Internally, this will be represented as a collection of nine working memory elements of
the form (State M1 A Squares S1), (State M1 A Squares S2), etc.

The only other source of breadth in the k-search tree are the preferences. Under the current ordering scheme, the
identifier of a preference is not required to be bound in a condition preceding the preference. Thus many different
preferences can match a condition testing a preference. If the preferences are for objects with different names or if
some other easy to test characteristic of the preferences is different, then very few k-search nodes are required to
select the right preference. On the other hand, if the preferences are for different instantiations of the same object,
such as different instantiations of the same operator, a large number of k-search nodes are required to be expanded
to select the right preference. Thus, it is only the preferences for multiple instantiations of the same object that are of
any consequence. We will refer to the multi-attributes and preferences for multiple instantiations of the same object
as multi-objects.

If the problem-solver uses multi-objects in resolving an impasse, then the chunk formed will have condition
elements that test for the presence of these multi-objects. The above analysis predicts that expensive chunks, i.e.,
chunks with a large breadth in their k-search tree have such condition elements, that match multi-objects. The
analysis also predicts that if a chunk does not test the presence of multi-objects or tests only a few multi-objects with
2-3 values each, then the breadth of the k-search tree will be small and the chunk will be cheap.

Table 6-4 presents data on our set of eight tasks that establishes the validity of the above analysis. The first
column gives the name of the task. The second column gives the maximum breadth of the k-search tree in the task
i.e. the maximum number of tokens generated during the course of the run, for matching a single condition element
in the chunk. Though it certainly is not a precise measure of the total breadth of the k-search tree, a comparison of
the maximum breadth in expensive and cheap chunk tasks indicate that it is a good enough estimate for our analysis.
The third column contains the average number of conditions, that match multi-object, in the chunks. The fourth
column contains the maximum number of multi-objects that match a condition element testing their presence. The
details of the representation of these tasks appear in the appendix.

18
Task Maximum Average Maximum
breadih number of number of
of k-search condition multi-objects
tree elements matching
in the chunk conditions
that match in Col. 3
multi-objects
8-Puzzle 108 8 8
Queens 648 14 9
Path _ 440 7 24
Magic-Square 4536 4 9
Syliogisms 2 1 2
Monkey 5 0 0
Waterjug 6 1 3
Farmer 4. 2 3

Table 6-4: Maximum breadth of the k-search tree in the eight Soar tasks.

Though no precise relation obtained between the maximum breadth of the k-search tree and the numbers in

~ column 3 and 4, Table 6-4 allows us to state that expensive chunks i.e. chunks with a large breadth of their k-search

tree are formed by presence of conditions matching multi-objects.!® The above analysis of the breadth of the
k-search tree is dependent on the particular condition-ordering algorithm used, where the identifier variable of a
condition element is bound before the condition is used in the production. In the new version of Soar, the old state
structures objects will not be maintained. Even if the ordering mechanism is then changed, multi-objects will remain
responsible for the breadth of the k-search tree. The reason becomes clear if we consider the fact that even if the
identifier field of the condition element is not bound, a large number of wmes will match the condition element if
the symbols appearing in their object-name (first) slots and attribute (third) slots are identical. Such a collection of
wmes can either be multi-objects, or can arise indirectly as a result of multi-attributes when the wmes are attribute-
value statements about the elements of the set represented as multi-attributes. For example, in the case of Magic-
square, such wmes contain attribute-value statements about each element of the set of squares used to represent a
state. Such wmes would be of the type (Square S1 A Contains Zero), (Square S2 A Contains one), etc.

We have seen how the breadth of the k-search tree depends heavily on the condition ordering mechanism. In the
next subsection we examine the impact of the ordering mechanism in detail.

6.3. Ordering condition elements

The ordering of the condition elements of a production determines the order in which nodes get expanded in the
k-search done to match that production. A suboptimal ordering of the condition elements of a chunk can generate a
large number of k-search nodes and can cause a cheap chunk to appear expensive. The problem of generating
optimal ordering is, unfortunately, an NP-complete problem [21]. Therefore, in the worst case, it is necessary to
examine a large number of possible orderings to come up with an optimal one.

Soar has a fixed process, the Reorderer, that orders the conditions of the original productions as well as the

10The breadth of the k-search tree in Monkeys and Bananas and Waterjug is breadth is due to the presence of preferences. However, these
preferences are for operators with different names and as explained above, such preferences are not counted as multi-objects.

oy
o

productions added by chunking. Since Soar productions can have a very large number of condition elements, (c.g.
Cypress-Soar [19] has over 100 condition elements in some productions), guaranteeing optimality could mean
examining a large number of condition orderings, causing a slow-down. To avoid this slow-down, the Reorderer
sacrifices guaranteeing optimality and cuts down the number of orderings it has to search through, by using various

heuristics, described in detail in [15].

To determine the factor contributed by possible suboptimal orderings to the cost of the chunks generated in the
tasks examined in this paper, it is necessary to produce an optimal ordering for those chunks. We therefore created
another Reorderer that would perform an exhaustive search and produce an optimal ordering. This new Reorderer
was given complete information about cost of matching each individual condition element in the chunk — the
number of wmes that condition element will match, if none of its variables is bound; or if one of its variables is
bound; if both the variables in the condition element are bound by conditions that are already ordered. An
exhaustive search would require examining a very large number of condition orderings, therefore we used the
following heuristics to cut down the search for an optimal ordering.

o If the cheapest condition element — one that matches the least number of wmes given the variable
bindings in the conditions ordered so far — does not expand the size of the k-search space, then that
condition element is chosen first. The resulting ordering is guaranteed to be optimal [17].

o If the cost of a partial order exceeds the current minimum, then that partial order is not examined any
further (Branch and Bound).

e The most expensive condition element in the set of condition elements that remain to be ordered is
never chosen to be the next one in the ordering. According to [17] this heuristic preserves optimality.

e Conditions relating to the current goal context are ordered as the first few condition elements of the
chunk. In the tasks examined in this paper, these conditions match only single wmes and therefore
placing them at the beginning is justified by the first heuristic.

Thus if the estimates of the cost of matching individual condition elements are correct, the new Reorderer is
guaranteed to produce an optimal order. However, producing exact estimates is difficult, because Soar does not
remove wmes relating to the old state structures, and as the problem solving progresses, the number of such wmes
keeps increasing. Our estimates are based on the number of wmes related to a single state; but, since conditions
testing for the current state are placed at the beginning of the chunks and since the tasks examined in this paper use
very few states in problem-solving after chunking, the effect of the old state structures should be extremely small.

Table 6-5 shows the result of the new ordering algorithm. The first column gives the name of the task. The
second column gives the average number of condition elements in the chunks in that task. The third column gives
the original value of T¢. The fourth column gives the increase in time/action when the new reordering is used. This
is denoted by T, The fifth column gives the speedup due to the new reordering.

The cheap chunk tasks show no speedup due to the new reordering algorithm. We have seen in previous
subsection that the breadth of the k-search tree in the cheap chunks is very low. Reordering therefore cannot make
any measurable difference in these tasks, since very little further reduction is possible in the breadth of the k-search
trees of the chunks, in these tasks. The number of condition elements in the chunks in New-8-Puzzle is small
compared to the 8-puzzle and hence the gain due to reordering is less. The same explanation holds for the Queens
task.

In the expensive-chunk tasks, we can see that about 50% to 75%of the cost is attributable to a bad ordering by the
old Soar Reorderer. This is because, due to multi-objects and a large number of condition elements, whenever the
heuristics for ordering chunks do not work, a heavy price is paid.

‘u—uﬁ

20
Task Avg. Te ToNew Speedup

number of od New To/TeNew

condition Reorder Reorder

elements (ms) (ms)
8-Puzzle 34 49.27 15.93 3.09
Queens 21 55.14 29.49 1.86
Path 20 48.10 13.06 3.68
Magic-Square 18 138.17 10.17 13.5811
New-8-Puzzle 2 17.35 9.05 191
New-Queens 6 2.18 1.55 140
Syllogisms 15 091 091 i
Monkey 14 0.77 0.77 1
Waterjug 26 3.02 3.02 1
Farmer 18 6.18 .6.18 1

Table 6-5: Effect of using the new reordering algorithm .

.

7. Discussion

We have addressed the issue of expensive chunks in this paper. It was necessary to understand the activity
performed by the matcher in order to analyze expensive chunks. We therefore presented a model of the matcher,
which shows that the cost of a chunk will be determined by the number of condition elements in the chunk, the
presence of condition elements in the chunk matching a large number of working memory elements and the ordering
of conditions. We have shown that the size of the footprint affects the cost of a chunk by determining the number of
condition elements and that the condition elements matching large number of multi-objects are the only possible

source of a combinatorial explosion. We have also shown that the Soar Reorderer manages to produce a fairly
optimal ordering of condition elements.

We now address two issues raised by the k-search model and our analysis of expensive chunks:

* Can some sources of knowledge be made available to the matchers or can some restrictions be placed

on the matcher so that the matchers do not have to perform an exhaustive search to find all
instantiations of a production?

e Will such smart matchers deal with expensive chunks effectively?

7.1. Smarter matchers

Performing a better k-search to match productions does not necessarily require understanding the semantics of the
production. For example, one could use a scheme such as selective backtracking (14] to prune the search. Other
sources of knowledge such as the number of possible instantiations of a production or the number of possible
variable bindings for a solution could also be used to limit the search. A method for cutting off reasoning when all
of the answers to a problem have been found is described in [16).

''The extremely large specdup in the Magic-Square is because the original ordering required a very large amount of tokens, which cluttered up
some hash tables used in our implementation, causing almost a 3 fold increase in the time/token as compared to other tasks. The new reordering

lowers the cost of time/token besides reducing the number of individual tokens.

-]

[]
—

P PR P,

d side that do not appear on the
right hand side. Soar treats its working memory as a set. Therefore, firing two instantiations of a production
carrying two different bindings for a variable on the left hand side that does not appear on the right hand side results
in putting into working memory the results generated by the actions of only one of those instantiations.!2 This effect
can only occur in tasks with multi-objects and is in fact seen in three of the four expensive chunk tasks examined in
this paper. Table 7-1 shows the impact of this effect when it is at its worst. The first column contains the name of
the task. The second column presents the number of chunk instantiations in one particular elaboration cycle. The
third column presents the number of instantiations of that chunk that actually produce an action, in that cycle. The
other instantiations are fired without producing any actions. Some improvement in the execution time can certainly
be expected by preventing such extra instantiations. 13

Py hn 1afse Lo
An obvious source of knowledge is the occurrence of variables on the left kb

Task Number of Number of
instantiations | instantiations
generated that produce
Queens 64 8
Path 10 1
Magic-Square 463 9

Table 7-1: . Left-hand side variables that do not appear in the
right-hand side: worst case situations.

It is clear that some changes should occur in the matcher, because the requirement of finding all solutions causes
the matcher to perform more work than is necessary to solve the problem in some cases. This effect was seen in the
example from the Path problem in Section 5, where, after chunking, all paths from point A to point B were found
despite the fact that finding only one path was all that was required. This effect is also seen in the 8-puzzle task —
in a particular situation, the best operator among four available operators is to be found; but after chunking, 8
possible relations among the 4 operators are delivered by the matcher — it may certainly have been possible to work
with a fewer relations. In the Magic-square task, the chunk presents as many positions as are available for placing
the next number, when only 1 would have been good enough. Similar situation also arises in the Que¢ns task, where
only one placement of the 2 queens on the 3x3 board is to be found: but after chunking, the matcher delivers all 8
positions of placing the first queen on the 3x3 board and after placing the first queen, 2 positions for placing the
second queen are found. It is only the expensive-chunk tasks that show this effect, because the presence of
multi-objects in these tasks generates situations where the chunk can apply to more than one cbject. Such extra
work can be avoided by limiting the number of possible instantiations per production, possibly to only one
instantiation. Limiting the number of instantiations would certainly help in reducing the search done to match
productions.

Though such improvements in the matcher will reduce the cost of expensive chunks, it will clearly introduce more
complexity into the matcher, incurring overheads. Thus smarter matchers can exist at the expense of an increase in
the complexity of their operation.

12The case of an extra variable on the right hand side that would allow the two instantiations to fire and produce resulis is not included.

13A mechanism to prevent such extra instantiations will be introduced in the next version of Soar.

N
N

7.2. Can Smart Matchers Eliminate Expensive Chunks

If very smart matchers really existed, then they would certainly reduce the cost of the expensive chunks in the
examples we presented. However, they may not eliminate those cases. In fact, it can be proved that the smarter
matchers will not be able to eliminate all expensive chunks. This can be illustrated by an example involving
directed graphs.

Given a directed graph, the task is to compute the transitive closure of that graph. Assume initially, the system has
solved no graph problems and therefore cannot provide the transitive closure of the given graph. An impasse is
reached, and a subgoal is created to solve the problem. This subgoal chooses a problem space called fundamental.
There is one operator available in this problem space: add-edge. Given that there is an edge from node A to node B,
and an edge from node B 0 node C, the add-edge operator adds an edge from A to C (if A to C does not already
exist). Figure 7-1 shows the effect of the application of the operator add-edge.

1f Given ¥ Given

o4

then
A add-edge
then

add-edges o4
—_—>
A C : o2
o3 - o4
02

ol

Before Chunking After Chunking

Figure 7-1: The transitive closure problem: The operator before chunking and the chunk formed.

When the transitive closure is complete, no more operators can be selected and so an impasse is reached. This
means that the task is completed. This task structure fits our template of the task structures that generate expensive
chunks perfectly. The domain is full of multi-objects, in fact only one type of object exists: edge. Every edge is
described in terms of the two vertices it touches. The entire context from the original description is touched, since
for every two edges, a third edge is added. The chunk created is very expensive. It encodes in its lefthand side a
description of the graph in terms of the edges and the two vertices for edge. Figure 7-1 shows the effect of firing the
chunk. Given any graph, this chunk will try to match that graph. This, however, is subgraph isomorphism on
digraphs, which is a well-known NP-complete problem [4). We have thus transformed a polynomial-time problem (
O(N?) number of tokens would be generated before chunking), to an NP-compléte problem. The chunk has as its
action a description of the closed graph. The NP-completeness shows that, in the worst case, no fundamental
improvement in the k-search is possible. This is hardly the only task of this type. Consider another problem on
directed graphs, this time to add an edge in the opposite direction of every existing edge in the graph. If the
problem-spaces are set up in the same way as above, we would again get a chunk that encodes in its left hand side
the entire graph. These are not isolated examples. Many such cases can be constructed where an arbitrary sized
footprint would lead to the formation of extremely expensive chunks. Smart matchers will not be able to deal with

23

these chunks in the worst cases.

The chunks generated in these artificial tasks and in the naturally occurring expensive-chunk tasks examined in
this paper cannot be dismissed as results of peculiar representations. If Soar is to build its own representations and
keep building chunks using those representations, then it is important to guarantee that such extreme slow-downs do
not occur under any circumstances.

This analysis suggests that uitimately, it may be necessary to modify the computational model employed by Soar
in order to deal with expensive chunks effectively. Such modifications could appear in several places: matching -
(the matcher may not complete the match every time); chunking (some chunks may not be created); or
representations (some preblem spaces that cause expensive chunks may not allowed). However, it is important to
understand all the different computational effects before modifications are made to the computational model. Thus,

sbhn cnmnnal O PR ORI S S | AbEa o a2t

Ui 1GCailil U1 l.lllb paper lb Jubl. a IIrst mstaiment on unuulg a DCI.I.CI' LUlIlpUld[lOﬂdl [IIOUCI

8. Acknowledgements

We thank Lanny Forgy, Anoop Gupta, John Laird, Steve Minton, David Steier, Paul Rosenbloom and Gregg Yost
for providing very useful comments on earlier drafts of this paper. We also thank members of the Production
System Machine (PSM) group — Brian Milnes, Dirk Kalp and Ken Hughes — for many interesting discussions on
this topic.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA Order Nbr.
4976, Amendment 20, under contract number F33615-87-C-1499, monitored by the Air Force Avionics Laboratory
and by the Encore Computer Corporation. The views and conclusions contained in this document are those of the
authors and should not be interpreted as represeting the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the US Government.

-—_ﬁ

1. A Description of the Eight Tasks

Problem-statement: There are eight numbered movable tiles in a 3x3 frame. One cell of the frame is always
blank, making it possible to move an adjacent tile into the blank cell. The problem is to transform one configuration
to a second by moving the tiles.

States: The state is described in terms of nine bindings each of which connects a cell from a static 3x3 structure
of cells to a tile from a dynamic structure of individual tiles. There is only one operator: move-tile. The instances of
this operator are the only instantiated operators and there can be up to four of them at a time. These instantiated
operators move the dynamic structure around until the desired configuration is reached.

Queens
Problem-Statement: Placing two queens on a 3x3 chess board such that no queen takes another.
States: The states are represented as a 3x3 array of positions. Each position has one horizontal, one vertical and

two diagonal attributes. There is only one operator: place-queen. Up to nine instantiations of this operator may be
created at a time,
Path

Problem-statement: Find a path between two points on a 4x4 grid.
States: There are 24 paths that connect nodes. There is only one operator: goto . There can be up to four
instantiated goto operators at one time.

Magic-Square

Problem-statement: Completing the 3x3 magic-square.

States: A state has nine bindings that associate a number with a square. Thus we have nine squares each of which
is 0 initially. There is only one operator and it can create up to nine instantiations.

Syllogisms

Problem-statement: A sylloglsm is a logic puzzle of two assertions involving pairs of terms (e.g. All P are Q; All
Q are R) from which some conclusion (in this example : All P are R) is to be drawn. The problem-solving is done
using mental models.

States: Each state is made up of two premises or statements, one model built out of two to three objects and the
focus (on one object in the model). There are four different operators that can add an object, focus on a premise,
focus on an object, and augment an object. But these are operators with different names.

Monkeys and Bananas

Problem-statement: A monkey has to get the bananas hung from the ceiling in a room. A ladder is available and
the Monkey can move around.

States: The position of the Monkey in terms of its position on the ground and its height, and the position of the
bananas. There are five different operators are available for the Monkey to climb the ladder, eat the bananas, get the
bananas, climb down the ladder, and move.

Waterjug

Problem-statement: Given a five gallon jug and a three gallon jug, how can precisely one gallon of water be put
into the three gallon jug. There is a well nearby, but no measuring devices are available, other than the jugs
themselves.

States: The amounts of water in the five gallon and the three gallon jug. Six operators are available, one for each
combination of pouring water between the well and the jug. Each of them specifies what container it is pouring
water to and what it is pouring water from. Since each jug is named after the amount of water it contains, separating
out the desired operator from the collection of six available operators does not require much effort.

N
W

M semee nme

|
Iralliiicli

Problem-Statement: A farmer has to cross a river with a wolf, a sheep and some cabbage. There is a boat that can
carry him and one more load at a time. The problem is to take the wolf, the sheep and the cabbage across without
letting the wolf eat the sheep or the sheep eat the cabbage.

States: The status of four different objects: The farmer, the sheep, the wolf and the cabbage. Two operators are
available, but only three or four instantiations of the two operators combined are available in any one state.

mﬁu_ﬁ

(1]
(2]
(3]
(4]
[5]
[61 .
(7]
(8]
9
(10]
(11]
[12]
(13]
(14]

(15]

26

References

Forgy, C. L.
OPSS5 User's Manual.
Technical Report, Carnegie Mellon University Computer Science Department, 1981.

Forgy,C. L.
Rete: A fast algorithm for many pattern/many object pattern match problem.
Articificial Intelligence 19:17-37, 1982.

Forgy, C. L.
The OPS83 Report.
Technical Report 84-133, Carnegie Mellon University Computer Science Department, May, 1984.

Garey, M. R. & Johnson, D. S.

Computers and Intractability: A guide to the theory of NP-completeness.

aLiay e

W. H. Freeman and Company, San Francisco, CA, 1978.

Gupta, A.
Parallelism in Production Systems.
PhD thesis, Camegie Mellon University, March, 1986.

Laird, J. E., Newell, A., & Rosenbloom, P. S.
Towards chunking as a general learning mechanism.
In Proceedings of AAAI-84. Austin , Texas, 1984.

Laird, J. E.
Soar User's Manual.
Technical Report, Xerox Palo Alto Research Center, 1986.

Laird, J. E., Newell, A., & Rosenbloom, P. S.
Soar: An architecture for general intelligence.
Artificial Intelligence 33:1-64, 1987.

‘Minton, S.
Selectively generalizing plans for problem-solving.
In Proceedings IJCAI-9, pages 596-599. Los Angeles , CA, August, 1985.

Minton, S., Carbonell, J. R., Etzioni, O., Knoblock, C., Kuokka, D.
Acquiring effective search control rules: Explanation-based learning in the Prodigy system.
In Proceedings of the Fourth International Machine Learning Workshop. Irvine, CA, 1987.

Miranker, D. P.
Treat: A better match algorithm for AI production systems.
In Proceeding of AAAI-87. Seattle, Washington, 1987.

Newell, A.
Reasoning, problem solving and decision processes: The problem space as a fundamental category.
In Nickerson, R. (editor), Attention and Performance VIII. Hillsdale, N.J .:Erlbaum, 1981.

Oflazer, K.
Fartitioning in Parallel Processing of Production Systems.
PhD thesis, Camegie-Mellon University, March, 1987.

Pereira, L. M. & Porto, A.
Selective backtracking.
In Clark, K. L. & Tamlund, S.-A. (editor), Logic Programming. Academic Press, 1982.

Scales, D. J.
Efficient Matching Algorithms for the Soar/Ops5 Production System.
Master’s thesis, Stanford University, June, 1986.

m‘”“ﬁ [

(16]

(17]

(18]

(19]

(201

[21]

27

Smith, D. E.
Finding all of the solutions to a problem.

In Proceedings of AAAI-83. 1983.

Smith, D. E. and Genesereth, M. R.
Ordering Conjunctive Queries.
Articificial Intelligence 26:171-215, 1988.

Steier, D. 5., Laird, J. E., Newell, A., Rosenbloom, P. S., Flynn, R., Golding, A., Polk, T. A., Shivers, O.,
Unruh, A. & Yost, G.R.

Varities of learning in Soar.

In Proceedings of the Fourth International Machine Learning Workshop. Irvine, CA, 1987.

Steier, D.
Cypress-Soar: A case study in search and learning in algorithm design.
In Proceedinos IJCAI-10. Milano, Italv August, 1987

VLo limirge v L AVARAGIIU) AVEAL J g 4 alg A7U 0.

Tambe, M. S., Kalp, D., Forgy, C. L, Gupta, A, Milnes, B., Newell A |

Soar/PSM-E: Implementing Soar on the Production System Machine.
Technical Report, Carnegie Mellon University Computer Science Department, Forthcoming.

Ullman, J. D.
Principles of Database Systems.
Computer Science Press, Rockville, MD, 1982.

