To appear in Computer Generated Forces and Behavioral Representation: 1994

Event Tracking in Complex Multi-agent Environments

Milind Tambe and Paul 8. Rosenbloom
Information Sciences Institute
University of Southemn California
4676 Admiralty Way
Marina del Rey, CA 90292
email: {tambe, rosenbloom]@isi.edu

Abstract

The Soar-l1FOR project is aimed at developing
intelligent automated pilots for simulated tactical
air-combat. One key requirement for an automated
pilot in this environment is evenr rracking: the
ability to monitor or track events instigated by
opponents, so as to respond to them appropriately.
These events include the opponents’ low level
actions, which the automated pilot may directly
observe, as well as opponents’ high level plans and
actions, which the automated pilot can not observe
(but only infer). This paper analyzes the challenges
that an automated pilots must face when tracking
events in this environment. This analysis reveals
some novel constraints on event tracking that arise
from the dynamic multi-agent interactions in this
environment. In previous work on event tracking,
which is primarily based on single-agent
environments, these constraints have not been
addressed. This paper proposes one solution for
event tracking that appears better suited for
addressing these constraints. The solution is
demonstrated via a simple re-implementation of an
existing automated pilot agent for air-combat
simulation.

1. Introduction

The Soar-1IFOR project is aimed at developing
intelligent automated pilots for simulated tactical
air-combat environments [11, 17]. These
automated pilots are intended to participate in
large-scale exercises with a variety of human
patticipants, including human fighter pilots. These
exercises are to be used for training as well as for
development of tactics. To participate in such

'This resesarch was supported under subcontract to the
University of Southern California Information Sciences Institute
from the University of Michigan, as part of contract NO0014-92-
K-2015 from the Advanced Systems Technology Office (ASTO)
of the Advanced Research Projects Agency (ARPA) and the
Naval Research Laboratory (NRL). Critical support has been
provided by Dennis McBride of ARPA/ASTO; and Tom Brandt,
Bob Richards, and Ed Harvey of BMH Inc.

exercises, the automated pilots must act in a
realistic manner, ie., like trained human pilots.
Otherwise, both the training and rtactics
development in these environments will not be
realistic.

To act in a realistic manner, an automated pilot
must, among other things, be responsive to events
in its environment — it must modify and adapt its
OWD maneuvers in respouse to relevant events.
These events may correspond to simple actions of
other pilots, such as changes in heading or altitude,
which the automated pilot may directly observe on
its radar. Alternatively, these events may involve
the execution of complex, high-level actions or
plans of other pilots, which the automated pilot can
not directly observe. For instance, one crmcial
event is an opponent’s firing a missile at an
automated pilot’s aircraft, threatening its very
survival. Yet, the automated pilot cannot directly
see the missile until it is too late to evade it
Fortunately, the automated pilot can monitor the
opponent’s sequence of maneuvers, and infer the
possibility of a missile firing based on them, as
shown in Figure 1. The automated pilot is in the
dark-shaded aircraft, and its opponent is in the
light-shaded one.

S A AR .

(a} tb) e}

SR A e

Figure 1: Manuevers of the automated pilot (in dark-shaded
alccraft) and its opponent (in light-shaded one).

Suppose that initially the two aircraft are headed
right toward each other as shown in Figure l-a.
The range (distance) between the two aircraft is

To appear in Computer Generated Forces and Behavioral Representation: 1994

more than 10-15 miles, so they can only see each
other on radar. This range is slightly short of the
range from which the opponent can fire a radar-
guided missile at the automated pilot’s aircraft.
However, the opponent is already well-positioned
to fire this missile once its range is reached. In
patticular, given that the two aircraft are pointing
right at each other, the opponent’s aircraft is at
attuck heading (a point slightly in front of the
automated agent’s aircraft, as shown by a small x
in the figure). At this juncture, the automated pilot
turns its aircraft as shown in Figure 1-b. Given that
the opponent wants to fire a missile, she turns her
aircraft in response to re-orient it to attack heading
(Figure 1-c). 1n this situation, she reaches her
missile firing range, and fires a missile (shown by
-). While the automated agent cannot observe this
missile, based on the opponent’s turn it can infer
that the opponent may be attempting to achieve
attack heading as part of her missile firing
behavior. Unfortunately, at this point, it cannot be
certain about the opponent’s missile firing, at least
not to an extent where trained fighter pilots would
infer a missile firing. However, if the opponent
subsequently engages in an Fpele maneuver then
that considerably increases the likelihood of a
missile firing (Figure 1-d). This maneuver
involves a 25-50 degree turn away from the attack
heading (it is executed after firing a missile to
provide radar guidance to the missile, while
reducing the closure between the two aircraft).
While at this point the opponent’s missile firing is
still not an absolute certainty, its likelihood is high
enough, so that trained fighter pilots assume the
worst, and react as though a missile has actually
been fired. The automated pilot reacts in a similar
manner, by engaging in a missile-evasion
maneuver. This involves turning the aircraft
roughly perpendicular to the missile-flight (Figure
l-e), which causes the aircraft to “drop-off”
(become invisible to) the opponent’s radar.
Deprived of radar guidance, the opponent’s missile
is rendered harmless.

The above example illustrates that an automated
pilot needs to continually monitor a variety of
events in its environment, such as the opponent’s
turns and her (inferred) missile-firing behavior, so
as to react to them appropriately. We refer to this
capability as evenr rracking. Here, an event may be
considered as any coherent activity over an
interval of time. An event is similar to a process in
qualitative process theory [8], as something that
acts through time to change the parameters of
objects in a situation. This event may be a low-
level action, such as an agent’s Fpole tum, or it
may be a high-level behavior, such as its missile-

firing behavior, which consists of a sequence of
such tums. The event may be internal to an agent,
such as maintaining a goal or executing a plan, or
external to it, such as executing an action. The
event may be instigated by any of the agents in the
environment, including the agent tracking the
events, or by none of them (e.g., a lightning bolt).
The event may be observed by an agent, perhaps
on radar, or it may be unobserved, but inferred.
Tracking any one of these events refers to
recording it in memory and monitoring its progress
as long as necessary to take appropriate action in
response to it. Tracking an event also includes the
ability to infer the occurrence of that event from
other events.

Event tracking is closely related to the problem
of plan recognition [12], the process of inferring an
agent’s plan based on observations of the agent’s
actions. The term event tracking is preferred in
this investigation, since it also involves events
other than plans, and since it is a continuous on-
going activity. However, more important than the
terminology, of course, is gaining a better
understanding of the nature of this capability. In
particular, does the realistic multi-agent setting of
air-combat simulation reveal anything new about
event tracking? Given the complexity of this
domain, answering this question in its entirety is
beyond the scope of this single investigation.
However, this paper takes a first step by focusing
on events relating to the actions and behaviors of
one or two opponents as they confront the
automated pilot. Section 2 illustrates that even
within this restricted context, the air-combat
domain brings forth some novel constraints on
event tracking. Following this, Section 3 presents
one approach that we have been investigating to
address these constraints. The key idea in this
solution is a basic shift in the agent’s reasoning
framework: from the usual agent-centric to world-
centric. Finally, Section < presents a summary and
issues for future work.

2. Event Tracking in Air-Combat

Simulation

The primary constraint on event tracking in air-
combat simulation atises from the fact that this is a
dynamic environment, where agents continually
interact. This continuous interaction implies that
the agents cannot rigidly commit to performing a
fixed sequence of actions. Instead, they need high
behavioral flexibility and reactivity in order to
achieve their goals. For instance, in Figure 1-c, the
opponent has to re-orient herself to a new attack
heading in response to the automated pilot’s turn in

Rl

To appear in Computer Generated Forces and Behavioral Representation: 1994

Figure 1-b. 1f the automated pilot had turned in
the opposite direction, so would have the
opponent. A more complex interaction occurs in
Figure l-e, where the automated pilot’s missile
evasion maneuver is a response to the opponent’s
overall maneuvers in Figures 1-¢ and 1-d, which
are identified as part of her missile firing behavior.

These types of agent interactions extend well
beyond situations involving just two aircraft. For
instance, consider a situation where there are two
opponents attacking the automated pilot’s aircraft,
as shown in Figure 2-a. Again, the automated pilot
is in the dark-shaded aircraft, and the opponents
are in the light-shaded aircraft. These opponents
may either closely co-ordinate their attack or they
may attack independently. One method of close
co-ordination in the opponent’s attack is shown in
Figure 2-b. Here, the opponent closer to the
automated pilot’s aircraft (the lead) leads the
attack, while the second opponent, marked with x
(the wingmean) just stays close to the lead, and
follows her commands. Thus, as the lead wrns to
gain positional advantage, the wingman needs to
turn in that direction as well, so as to fly in
formation with the lead, all the while making sure
that she does not get in between the lead and the
automated pilot’s aircraft. Another method of close
co-ordination is shown in Figure 2-c. Here, the
opponents execute a coordinated pineer manenver
— as the lead turns in one direction, the wingman
turns in the opposite direction, so as to confuse the
automated pilot and attack it from two sides.
There are other possibilities of co-ordinating the
attack as well. Of course, the opponents may not
co-ordinate their attack. They may instead try to
gain positional advantage in the combat
independently of each other, and attack
independently. In all these situations, all three
aircraft continually influence each other’s actions
and behaviors in different ways. 1f other aircraft
are involved in the combat — for instance, if the
automated pilot is coordinating its attack with a
friendly aircraft — then they also interact with the
other aircraft involved in the combat.

This dynamic interaction among the agents leads
to the primary constraint on event tracking in this
domain: an agent must be able to track highly
flexible and reactive behaviors of its opponent. In
so doing, the agent must take the appropriate agent
interaction into account. Without an understanding
of this interaction, an opponent’s action may lead
to unuseful or even misleading interpretation. For
instance, the opponent’s turn in Figure 1-c needs to
be tracked as a response to the automated pilot’s
own turn in Figure 1-b. Otherwise, that turn may
appear meaningless. Similarly, as shown in Figure

'y +

(a)

N
s #

Figure 2: Agent interactions: (a)two opponents attacking
the automated pilot’s aciaft; (b) opponents stay
close; (c) opponents stage a co-ovdinated "pincer”.

2, the wingman may mainly be reacting to its
lead’s turns, or she may be reacting to the
automated pilot’s aircraft independently.
Understanding this interaction is important in
tracking the wingman’s actions.

A second related constraint here is that event-
tracking must occur in real-time and must not
hinder an agent from acting in real-time. For
instance, in Figure 1, if the automated pilot does
not track the missile firing event in real-time or
does not react to it in real-time, the results could be
fatal.

The third constraint on event tracking is that
agents must be able to expect the occutrence of
unseen, but on-going events. This constraint arises
from the weakness of the sensors in this domain —
an agent must sometimes track opponent’s actions
even though they are not visible on radar. For
instance, suppose in the situation in Figure 2-c, the
automated pilot concentrates its attack on the lead,
and as a result the wingman (marked with x) drops
off the automated pilot’s radar. Here, given that the
opponents are inferred to be executing a pincer
maneuvert, even though the wingman drops off the
radar, some expectation about her position can be
developed. Thus, the automated pilot can re-orient
its radar and reset its mode to re-establish radar
contact with the wingman if there is a need to do
so later during the combat.

The fourth and final constraint on event tracking
is that it is not a one-shot recognition task. Instead,
it occurs on a continual basis, at least as long as it
is relevant to the agent’s achievement of its goals
(such as the completion of its mission).

Thus, this domain poses a challenging
combination of constraints for event tracking. The
most novel constraint here is the first one. In
previous investigations in the related areas of
plan/situation recognition [12, 16, 6, 18,3] —
including one investigation focused on plan

To appear in Computer Generated Forces and Behavioral Representation: 1994

recognition in airborne tactical decision making [2]
— this constraint has not been addressed. In
patticular, plan recognition models have not been
applied in such dynamic, interactive multi-agent
situations, and hence do not address strong
interactions among agents and the resulting
flexibility and reactivity in agent behaviors. 1n
patticular, these models assume that a single
planning agent (or multiple independent planning
agents) has some plans, and a recognizing agent
recognizes these plans. The planning agent may be
either actively cooperative (it intends for its plans
to be recognized by the recognizing agent) or
passive (it is unconcerned about its plans being
recognized) [4]. The recognizing agent’s job is to
recognize these plans and possibly provide a
helpful response. However, neither the recognizing
agent, nor any other agents in the environment are
assumed to have any influence on these plans.
Consequently, these plan recognition models can
rely on pre-compiled plan libraries, where each
plan lists the sequence of events and the temporal
relationships among the events[l16]. However,
such lists cannot be employed in tracking highly
flexible and reactive agent behaviors. 1n particular,
all possible variations on agent behaviors would
need to be included in such lists, leading to a
combinatorial explosion in the number of plans
(unless a highly expressive plan language is
developed).

Grosz and Sidner [9], in their work on discourse
situations, attempt to partly address the above
constraint on event tracking. They focus on what
they characterize as the "master-slave” relationship
between the planning agent and the recognizing
agent assumed in plan-recognition models, and
attempt to remedy it by using shared plans.
Agents in their discourse situations arrive at a
shared plan by establishing mutual beliefs and
intentions about things such as their role in
executing the plan. However, their discourse
situations involve agents that are actively
cooperative, while agents in air-combat simulation
range from actively co-operative to passive to
actively un-cooperative.

Interestingly, while plan-recognition systems
have not dealt with such dynamic multi-agent
situations, Distributed Al (DAl) systems, which
have dealt with such situations, have not addressed
the problem of plan recognition. There is some
work in DAl on understanding other agents’
plans [7]. However, it focuses on agents
exchanging their plan data strucrures for active
cooperation, rather than on plan recognition. Thus,
the first constraint actually appears to give rise to a
novel issue intersecting the areas of plan-

recognition and DAL

The remaining three constraints on event
tracking — real-time performance, expectations
and continuous tracking — have been addressed in
previous research (e.g., in [6]). The next section
presents an approach that we have been
investigating for event tracking that addresses all
four constraints outlined above.

3. Towards a Solution for Event

Tracking

The key idea in the proposed solution for event
tracking is based on the following observation. All
of the agents in this environment possess similar
types of knowledge, they have similar goals, and
similar levels of flexibility and reactivity in their
behaviors. In particular, an automated pilot agent
that requires the capability to track events shares
these similarities with its opponent. Thus, the key
idea is that all the knowledge and implementation
level mechanisms that the automated pilot agent
uses in generating its own flexible behaviors may
be used in service of tracking flexible behaviors of
other agents.

To understand this idea in detail, it is first useful
to understand how an agent generates its own
flexible and reactive behaviors. Section 3.1
explains this by focusing on an automated pilot
agent A_ and its flexibility and reactivity. Section
3.2 then illustrates how A, may exploit this for
tracking other agent’s behaviors. Section 3.3
outlines the issues that arise in such an endeavor.
Finally, Section 3.4 presents a simple re-
implementation of an existing pilot agent based on
the ideas presented in this section.

Note that while the solution presented here
originated with the observation of similarity
among agents, it is not necessarily limited to only
those situations. For instance, it is possible that
even though the other pilot agents may possess
similar levels of flexibility and reactivity, they may
be constrained in their behavior by their doctrine.
To track these types of constrained behaviors, A
would need to use similar types of doctrine-based
constraints in tracking behaviors of other agents.

3.1. An Agent’s Own Behavior

This section illustrates how an automated pilot
agent A generates flexible and reactive behavior.
This illustration is provided using a concrete
implementation of A in Soar [11, 17]. Soar is an
integrated problem-solving and learning
architecture that is already well-reported in the

To appear in Computer Generated Forces and Behavioral Representation: 1994

literature [14, 15]. The description below abstracts
away from many of the details of this
implementation, and mainly focuses on Soar’s
problem space model of problem-solving. Very
briefly, a problem space consist of states and
operators. An agent solves problems in a problem
space by taking steps through the problem space to
reach a goal. A step in a problem space usually
involves applying an operator in the problem space
to a state. This operator application changes the
state. If the changes are what are expected from the
operator application, then that operator application
is terminated, and a new operator is applied. 1f the
operator does not change the state, or if the
changes it causes do not meet the expectations,
then a subgoal is created. A new problem space is
installed in the subgoal to attempt to achieve the
expected effects of the operator. (Note that the
system uses a procedural representation for these
operator expectations — a declarative
representation is not necessary. In particular, a
procedural representation is sufficient to determine
if the expectations are achieved.)

Figure 3 illustrates the problem spaces and
operators A employs while it is trying to get into
position to fire a missile. 1n the figure, problem
spaces are indicated with bold letters, and
operators being applied in italics. In some problem
spaces, alternative operators are also shown (these
are not italicized). 1n the top-most problem space,
named TOP-PS, A is attempting to execute its
mission by applying the execure-mission operator.
This is the only operator it has in this problem
space. The expected effect of this operator is the
completion of A_'s mission, which may be for
example to protect its aircraft carrier. Since this
expected effect is not yet achieved, a subgoal is
generated to complete the application of
execute-mission. This subgoal involves the
EXECUTE-MISSION problem-space. There are
vatious operators available in this problem space
to execute A s mission, including inrercepr (to
intercept an attacking opponent), fly-racetrack (to
fly in a racetrack pattern searching for opponents
when none is present), etc. 1n fact, in most of Als
problem spaces there are always several such
opiions available, and A has to select a particular
operator that would allow it to make the most
progress. In this case, A, selects the fnrercepr
operator so as to intercept the opponent’s aircrafi.
Given the presence of the opponent, this is the best
option available.

A, atempts to apply the intercept operaror.

However, the expected effect of this operator —
the opponent is either destroyed or chased away —

EXECHTE-MISSION EOEShS

!

4
INTERCEPT
FLY-RACETRACK

EMPLOY-MISSILE
CHASE-OPPONENT

1
GET-MISSILE-LAR
FINAL-MISLE-MANVER

}

L
ACHIEVE-PROXIMITY
CUT-TO-LE

START-TURN
STOP-TURM

EXECUTE-MISSION

INTERCEPT

EMPLOY-MISSILE

GET-MISSILE-LAR

DESIRED-MANEUVER

Figure 3: A s pioblem space/opetator hietarchy. Boxes
indicate problem spaces. Text in italics indicates
currently active operator within a problem space.

is not directly achieved. This leads to a subgoal
into the #rercepr problem space, where A
attempts to apply the employ-missile operator.
However, the missile firing range and position is
not yet reached. Therefore, A subgoals into the
EMPLOY-MISSILE problem space, and applies
the germissile-lar operator. (LAR stands for
launch-acceptability-region, the position for A to
fire a missile at its opponent). The ger-missile-lur
operator tesults in the application of the
achieve-proximiry operator in a subgoal. Finally,
this leads to a subgoal into the start-rum operator
in the DESIRED-MANEUVER problem space.
The application of this starr-rurm operator causes
A, to turmn. Another operator — sfop-rurn — will
be applied to stop the aircraft’s turn when it
reaches a particular heading (called collision-
course). This heading will be maintained until
missile firing position is reached. At that time, the
expected effect of A s ger-missile-lar operator
will be achieved, and hence it will be terminated.
A, can then apply the final-missile-maneuver
operator from the EMPLOY-WEAPONS problem
space. The final-missile-maneuver operator may
lead to subgoals in other problem spaces, not
shown in the figure.

Thus, by subgoaling from one operator into

To appear in Computer Generated Forces and Behavioral Representation: 1994

another a whole operator/problem-space hierarchy
is generated. The state in each of these problem
spaces consists of a global portion shared by all of
the problem spaces and a local portion that is local
to that particular problem space. This organization
supports reactive and flexible behaviors given
appropriate pre-conditions (or conditions) for the
operators, and the appropriate operator selection
and trermination mechanisms, as outlined in [13].
In particular, if the global state changes so that the
expected effects of any of the operators in the
operator hierarchy is achieved, then that operator
can be terminated. All of the subgoals generated
due to that operator are automatically deleted. Note
that A may also terminate an operator even if its
expected effects are not achieved. This may be
achieved if another operator is found to be more
appropriate for the changed situation. For instance,
suppose the opponent suddenly abandons the
combat and turns to return to it base while A is
attemnpting to fire a missile at the opponent as
shown above. 1n this case, the chase-apponent
operator may be more appropriate than the
employ-missile operator in the inrercepr problem
space. Hence, A, terminates the employ-missile
operator (all its subgoals get eliminated as well),
and instead, A, applies the chase-opponent
operator.

Since all of the above operators are used in
generation of A_'s own actions, they will be
henceforth denoted using the subscript own. For
instance, employ-missile ~ will denote the
operator A, wuses in employing a missile.
Operator,,,, will be used to denote a generic
operator that A uses to generate its own actions.
The global state in these problem spaces will be
denoted by stare, . Problem.—spaces that consist
of state_, ~and operator_ - will be referred to as
self-centered problem spaces. The motivation for
using this method for denoting states operators and
problem spaces will become clearer below.

3.2. Tracking Other Agent’s Behaviors

Given the similarities between A, and its
opponent, the key idea in our approach to event
tracking is to use A’s problem space and operator
hierarchy to track opponent’s behaviors. We will
first illustrate this idea in some detail using some
simplifying assumptions. The detailed issues
involved in operationalizing this idea will be
discussed in Section 3.3.

To begin with, let us assume that A, and its
opponent are exactly identical in terms of the
knowledge they have of this domain, and all their

other characteristics related to this domain. That is,
A, and its opponent have identical problem spaces
and operators at their disposal to engage in the air-
combat simulation task. This simplifies A ’s event
tracking task, since it can essentially use a copy of
its own problem-spaces and operators to track the
opponent’s actions and behaviors. Operators in
these problem spaces represent A ’s model of its
opponent’s operators. These operators are denoted
using the subscript opponenr. Thus, the
execule-mission operator used in modeling an
opponent’s execution of her mission is denoted by
execure-mission poncnt” Similarly, OPETALOL, et
will be used to cfenote a generic operator used by
the opponent.

The global state in these problem-spaces
represents A _’s model of the state of its opponent,
and is denoted by stateonent- Generating
state pronent FEQUIres Ag to mo el features such as
the opponent’s sensor input. Based on information
such as the range of opponent’s sensors, at least a
portion of this state can be generated. However,
other portions of State pponent My require fairly
complex computation, essentially mirroring the
computation that A requires to generate all of the
information in state . For instance, one
important piece of information that is computed in
state is the "angle off" (the angle between the

own
AJs flight path and opponent’s position).
Mirroring this computation in state - will

mean the computation of this "angle off” from the
opponent’s perspective (the angle between the
opponent’s flight path and A s position). For now,
we malke another simplifying assumption — that
A, generates a detailed and accurate state, onent
— and revisit this issue in Section 3.3.

The problem spaces consisting of state o, nonent
and OPErator o nent discussed above are referred
to as opponeni-ceniered problem spaces. With the
opponent-centered problem spaces, A can
essentially pretend to be the opponent. A, then
tracks opponent’s behaviors and actions by
pretending to engage in the same behaviors and
actions as the opponent. 1n particular, A, applies
OPEIATOTyypen 1O STALEG s thus modeling the
opponent’s actual application of her operator to her
actl.Jal state. Since A is modeling the opponent’s
action, Operator does not change
STALE onen IMStEd, if the opponent takes some
action in the real-world, then that change is
modeled as a change in state o nent If this change
matches the expected effects of OPEraAOL e
then thart effectively corroborares A 's modeﬁg of

To appear in Computer Generated Forces and Behavioral Representation: 1994

OPRIAOL,nent- (Note that as with AJ’s
operator_ . these expectations of operator_
may also only be represented procedurally. This
procedural representation is sufficient to match the
expectations.) If these expectations are
successfully matched, OPErator ot is then
terminated. As an example, consider
STAFT-TUF Tl et being applied to SUALE o ponent: 1f
the opponent actually starts turning, then the
operator siart-fursi o is corroborated and
terminated. Of course, low-level operators such as
SILHT-TU Lo pong ATE €2SY 10 corroborate in this
manner, since the actions they model are directly
observable. Others, however, may not generate
low-level actions that are directly observable. One
category of such operators are the higher level
operators like empfay—missifeop nenp Which
consists of a number of low-level actions. This
issue will be discussed below.

This technique of event tracking, where an agent
models another by pretending to be in that agent’s
position, has been previously used in automated
tutoring systems [1, 19]. These tutoring systems
need the ability to model the actions of the
students being tutored. For this, these systems use
student-centered problem spaces where states and
operators model the students under scrutiny. This
technique of modeling the student is referred to as
model iracing. The approach proposed here for
event tracking is thus based on this model tracing
work. However, there are some significant
differences. For instance, previous work has
primarily focused on static, single-agent
environments, where the agent being modeled is
the only one causing changes in the
environment [10]. There are some other
differences as well. However, before exploring the
impact of these differences, it is useful to first
understand in detail how A can perform event
tracking using its opponent-centered problem
spaces. This is explained below using the example
from Figure 1. While this explanation does not
directly describe the operation of an actual
implementation, it is based on an actual
implementation that will be described in Section
3+. Basically, the description presented here will
be used to motivate some representational
modification leading up to the implementation
described in Section 3.4.

Consider the situation in Figure 1-a. In this case,
A, models the opponent’s operator hierarchy as
shown in Figure 4-a. A is seen to accurately
model this goal hierarchy, and in particular without
any ambiguity about what actions the opponent is
exactly engaged in. This is again a simplifying

assumption, and we will return to it in Section 3.3.
Figure 4-b shows AJ’s own operator hierarchy
corresponding to the situation in Figure l-a. We
assume that A dovetails the execution of these
operator hierarchies, communicating imporntant
relevant information from one to the other.

OPERATOR-OPP
HIERARCHY

OPERATOR-OWN
HIERARCHY

EXECUTE-Mission | TOP-PS EXECUTE-Mission | TOP-PS

H EXECUTE B EXECUTE
INTERCEFT INTERCEFT e
FLY-RACETRACK Lo FLY-RACETR ACK Ll zlel]

; INTERCEPT ; INTERCEPFT

EMPLOY-MISSILE
CHASE-OPPONENT

]]

Y
FINAL-MISL-MANVR | EMPLOY-MISSILE
GET-WIZSILE-LAR

ACHIEVE-ATK-HEAD| FINAL-MISL

EMFLOY-MISSILE
CHASE-OPPONENT

FINA L-MISLE-MANY ER

GET_MISSHE-14R | EMPLOY-MISSILE

¥
ACHIEVE-FROXIMITY| SET-MISSILE-LAR

PUSH-FIRE-BUTTON RMANEULEH CUT-TO-L3

= DESIFED DESIRED
STOP_TLRN pESIRED mamnTAIN-HEADING | DESIRED
START-TURM START-TURM

(&) b}

Figure 4: (a) A model of opponent’ s operator hievavchy,
and (b} A s own opetator hietacchy.

Consider the model of the opponent’s operator
hierarchy from Figure +-a. One of the operators in
this hierarchy is ﬁnaI—mt‘ssfIe—rmneuversopponem,
which models the opponent’s final missile-
launching behavior. This is a high-level operator,
and its expectations cannot be directly
corroborated by observation. This operator is seen
to generate a subgoal, where the first operator is
ack:‘eve—mmck—kmdfngoppmem. This would require
A SIr-MMyneny OPerator to turn to attack-
heading. 1n Figure 1-a, attack heading is achieved,
and stateopponent encodes that fact. Hence,
stop-rum, . is being modeled as the current
opetator, to model the opponent’s stopping her
turn at attack-heading.

Now consider A_’s own operator hierarchy in
Figure +-b. A is artempting to get into position to
fire its own missile using the achieve-proximiry,,
operator in the GET-MISSILE-LAR problem
space. When the situation changes from Figure 1-a
to Figure 1-b, A selects the cut-ro-Is_,, operator

in place of the achieve-proximiry,, —operator in

To appear in Computer Generated Forces and Behavioral Representation: 1994

the GET-MISSILE-LLAR problem space. This
operator is intended to increase the lateral
separation between the two aircraft? The
cut-ro-Is , ~ operator causes A to turn its own
aircraft as shown in Figure 1-b. As the aircraft
turns to a particular heading, this new heading is
modeled in state . Thus the cur-ro-Is
operator leads to indirect modification of state

own’
This change in state_ has to be communicated

own

to state enpr 10 Updare A s heading in
State onent: This leads to further modification in
state indicating that the opponent’s attack

opponent?
heading is no longer achieved. Based on this

modification, ackieve—armck—kmdmgoppomm is re-
activated (or re-applied). This operator again
subgoals into the DESIRED-MANUEVER
problem space where the SEUT-TUTT o ne n
operator is reapplied. When the opponent starts
turning, this operator is corroborated and
terminated. The next operator in this problem
space is srop-rumiing .. When the opponent
actually stops turning after reaching attack
heading, as shown in Figure l-c, stateopponcnt is
modified to indicate that opponent’s attack-
heading is achieved, and hence
srop—mmfngoppomm operator is corroborated. The
change in heading in state onent needs to be
communicated back to state, . so that A may
readjust its heading in ewr-ro-Is if required.
Continuing with Figure l-c, the opponent’s
achievement of attack-heading also corroborates
the ackieve—arrack—keadingoppon nt ODerator, which
is now terminated. A new operator from the
FINAL-MISSILE- MANEUVERS problem space
= push—ﬂre—bummopponcm — is now applied.
This operator predicts a missile firing, but it is
known that that cannot be observed. Hence,
pusk—ﬁre—bmmnoppomm is terminated even though
there is no direct observation to support that
termination. However, the resulting missile firing
is marked as not being highly likely. Nonetheless,
this missile launch, even with its low likelihood, is
communicated to state,, ., so that A may react to
it (for instance if A ’s mission forbids it from
taking any risks at all). At this point, given the
termination of the push—ﬁre—burranoppomm

operator, opponent’s

?Lateral separation is defined as the perpendicular distance
between the line of flight of A s aircraft and the position of its
opponent. When the two aircraft are pointing right at each other
as in Figure l-a, there is no lateral separation between the two
aircraft. Increasing lateral separation provides a positional
advantage.

ﬁnaI—missﬂe—maneuversopponem operators is
corroborated and terminated. Following that, an
Fpoleopponcm operator in the EMPLOY-MISSILE
problem space predicts an Fpole turn. This again
generates a subgoal, back into the DESIRED-
MANEUVER problem space and the
STCAFI-TUI Loy ODTATOL is reapplied. When the
opponent executes her Fpole tum in Figure 1-d, the
Fpoleoppon‘,dnt operator is corroborated and
terminated. At this point, all of the expectations
for the high-level employ—missileoppomm operator
are corroborated; and hence state, e is
modified to indicate that a missile launcﬁ is highly
likely. These changes in state_ . — the change
in the opponent’s heading and the highly likely
status of the missile launch — are once again
communicated to statey, . Based on the high
likelihood of the missile launch, A activates the
operator missile-evasion_,, to evade the incoming
missile (Figure 1-¢). This change in A_’s heading
is once again communicated back to state yonent:

Thus, A, executes its own operators, and tracks
opponent’s actions and behaviors using the
OPeIatory nent and state o onent This can help
A, to track its opponent’s behaviors, and address
all of the constraints on event tracking outlined in
Section 2. However, there are some important
issues involved in addressing our -earlier
constraints with this approach. There are also
some simplifying assumptions that we made in
illustrating evenr tracking: (i) A and its opponent
are identical; (ii) A performs all of the complex
computation that is necessary to accurately model
opponent’s state; and (iii) A can accurately model
opponent’s operator hierarchy without any
ambiguity. Relaxing these assumptions leads to
some additional issues, which also relate to the
constraints on event tracking. These issues are all
discussed in the next Section.

3.3. Addressing Constraints on Event
Tracking
The first constraint on event tracking was for an
agent to track highly flexible and reactive
behaviors of its opponent, while taking appropriate

agent interactions into account. The use of
opponent-centered problem spaces with
OPETalOL oy and L — helps in partly

addressing this constraint (this was the motivation
behind this approach to begin with). 1In particular,
OPEIatory qnen; €l be activated and terminated in
the same flexible manner as operator,,,. There is
complete uniformity in the treatment of the two

To appear in Computer Generated Forces and Behavioral Representation: 1994

types of operators.

However, these opponent-centered problem
spaces by themselves do not address the issue of
modeling the interactions among the different
agents. In particular, the method outlined in
Section 3.2 requires building one operator
hierarchy for A, and one for each opponent, with
their own global states. This leads to a situation
where multiple compartimentalized operator
hierarchies with their own global states are
generated. Modeling the strong agent interactions
present in this domain requires passing messages
from one compattment to another. For instance, as
described above, when A changes heading, that
information need.s t9 be propagated from stat69wn
10 State o nent Similarly, when the opponent fires
a missile that information has to be communicated
to state , from state | ponent” Similarly, if A isto
take some action depending on whether the
inrerceplyy onent OPErator is being executed, then
that information would need to be propagated to
AJ’s compartment.

Given the level of interactions among A, and its
opponents, this message passing can be a
substantial overhead. Furthermore, there can be
many aircraft involved in the combat, leading to an
increase in the message passing overheads. This is
particularly problematical given the second
constraint on event tracking (of real-time
performance) and the fourth constraint (which
implies continuous agent interactions).
Additionally, the communication among the
different compartments essentially duplicates the
information of one compartment in another. For
instance, when a missile is fired, this information
is duplicated in different compartments. Such
duplication is problematical in terms of
maintaining its consistency. 1f a missile is removed
from one compartment, it must be removed from
all of the others.

The solution we are investigating to alleviate the
problem with this compartmentalization is to
merge the different operator hierarchies for the
different agents into a single compartment, which
we will refer to as world-centered problem space
{WCPS for short). WCPS eliminates the
boundaries between different self-centered and
opponent-centered problem spaces. Instead, the
different operator hierarchies are maintained
within the context of a single WCPS. There is also
a single world state. This state includes A ’s own
problem-solving state (state ,), A ’s model of the
state of its opponent (stateop nent) 3s well as A’s
model of the states of other entities, including
other opponents or friendlies in the world.

WCPS eliminates the need for passing messages
to model interactions. Instead, interactions get
modeled in terms of changes to the single global
state. Operatot,,,,,, and operator, ..., are
directly able to reference this global state as well
as other operators. Furthermore, the problem of
duplication of information is avoided. For instance,
a missile fired by the opponent gets modeled
within this single global state as a single missile.
Operator hierarchies modeling all of the different
agents can directly react to this missile.

An additional benefit of the single global state in
WCPS also telates to one of the assumptions
mentioned in Section 3.2. In particular, A need
not perform all of the complex computation
required in modeling opponent’s state, but instead
it may "re-use" some of the computation. Consider
the example of the computation of "angle off”
from the opponent’s perspective, as mentioned in
Section 3.2. With the global statre in WCPS, A
does not need to recompute this "angle off".
Instead, this is automartically computed in A ’s
state , and this can simply be reused. In
particular, A_’s state =~ already maintains rhe
computation of "target aspect” from its own
perspective (the angle between the opponent’s
flight path and A ’s position). This is precisely the
definition of “angle off" the opponent’s
perspective. Thus, instead of computing the "angle
off” from the opponent’s perspective and "target
aspect” from AJ’s perspective separately, a single
computation can be performed and used for both
purposes. Of course, not all of the complex
computation involved in generating the opponent’s
state can be avoided in this manner. The
interesting research question then is determining
what portion can be re-used in this manner, and
how much extra computation is really necessary.

This shift from small self-centered and
opponent-centered problem-spaces to WCPS is
related to the objective framework used in
simulation and analysis of DAI systems [5], which
describes the essential, "real" situation in the
world. However, the focus of our work is on an
individual agent using its wotld-centered model for
event-tracking. While this model introduces a shift
towards an objective point of view, by definition, it
is an agent’s subjective view of its environment,
and may contain approximations in
operato and state

r 3
opponent opponent”

*Note that if the agents do not interact, then a single WCPS
may not be appropriate, and separate problem spaces may be the
right cheice for modeling them.

To appear in Computer Generated Forces and Behavioral Representation: 1994

The second constraint on event tracking relates
to AJ's ability to track events in real-time. The
key impact of this decision is on generating an

accurate and unambiguous operatoroppomnt

hierarchy — one of the assumptions made in the
previous section. In particular, this constrains the
methods A can employ in attempting to generate
an accurate and unambiguous operator hierarchy.
For instance, Ward [19] presents one general
method for generating an unambiguous operator
hierarchy. This method involves an exhaustive
search over all possible operator applications until
the one that creates the right expectations, i.e., one
that matches the opponent’s current actions, is
created. If there is more than one such operator
application, then one is chosen randomly. A
wrong choice can be made in such situations.
However, as soon as that is discovered, another
exhaustive search can be performed. Given the
real-time constraint on event tracking, this type of
exhaustive search strategy can not be applied.
While Ward suggests some heuristics to constrain
the search, this remains a difficult problem. The
WCPS approach at least provides a partial answer
here. In particular, given the uniformity among
operator_, ~ and OPEratory ot in WCPS, the
mechanism employed in resolving ambiguity in
operator,,, . operators — search control rules —
can also be used in resolving ambiguity in
OPEIALOL et Besides search control rules,
another possibility for resolving ambiguity in
WCPS is to generate the goal hierarchy bottom-up
rather than top-down. While both of these are
powerful tools in WCPS, their advantages and
disadvantages in this context are not yet well
understood.

The real-time constraint also raises the issue of
abstractions in event tracking. 1n particular, Hill
and Johnson [10] have recently argued that
tracking an individual agent’s actions in detail in a
dynamic environment may prove computationally
intractable. They advocate detailed tracking only
where necessary, and reliance on abstractions
elsewhere. In WCPS, abstractions in modeling an
operator would imply that detailed subgoals for
modeling that operator need not be generated. For
instance, A may not mode! the detailed operators
used in accomplishing ger—mfssfle—laropponem.
Thus, when germissile-lar, . is activated, it
may not lead to any subgoals. However, when the
opponent actually reaches the LAR (missile firing
position), ger-missile-lar_ . can be considered
as corroborated and terminated. Unfortunately, this
method of abstract modeling may not be
appropriate for corroborating an operator such as

employ-missile | ponent? which involves multiple
maneuvers. 1n this case, the intermediate headings
of opponent’s aircraft may be important and just
testing the terminating position may be an
inappropriate test for corroboration. Automatic
generation of the right levels of abstraction is an
interesting issue for future work.

The third constraint on event tracking was the
generation of expectations for an unseen, but on-
going event. 1o WCPS, the application of an
OPEratory nene i €S3ENCE is the expectation for
the opponent to execute a certain plan or action.
Thus, this constraint can be addressed in a
straightforward manner. However, since the event
is unseen, there can be no corroboration of it. One
possibility to deal with this situation is to terminate
OPEIatOT e if the relevant action is known to
be unobservable (for instance, since the opponent’s
aircraft is not observable on radar).

The fourth constraint is related to the continuous
nature of event tracking. The main implication of
this constraint is the continuous interaction among
agents, which as discussed above, leads to the
move towards WCPS.

There were also three assumptions made in the
previous section to simplify event tracking. The
second and the third assumption, related to
modeling of the opponent’s state and operator
hierarchy have been discussed above. However,
the first one of the assumptions has not been
discussed. This assumption is that the automated
pilot agent A and its opponent are identical. The
key implication of this assumption is that A can
create a copy of its own operator and problem
space hierarchy to model the opponent. (This
creation of a copy by itself may not be
straightforward if all of AJ’s knowledge is
essentially procedural) This assumption
essentially substitutes for another assumption in
the plan recognition literature: the agent that is
recognizing a plan is assumed to have full
knowledge of all of the plans that the planning
agent can execute [12]. 1f A has such additional
knowledge about how its opponent’s plans or
operators, and how those differ differ from its own,
then A need the ability to interleave those with its
own copy of operators while tracking opponent’s
behaviors. 1If A_ does not have this additional
knowledge, then A, will need to model its
opponent with incomplete information, or to learn
that information from observation of the
opponent’s actions or by some other means.

10

To appear in Computer Generated Forces and Behavioral Representation: 1994

3.4. A Prototype WCPS-based Agent

An important test of the WCPS model is its
actual application in a dynamic, multi-agent
environment. The task of developing an automated
pilot for the air-combat simulation domain is
tailor-made for this test. The development of
automated pilots in this domain is currently based
on a system called TacAir-Soar [11, 17], which as
mentioned earlier, is developed using the Soar
integrated problem-solving and learning
architecture. TacAir-Soar is a "non-trivial" system
that includes about 800 rules. Its original self-
centered problem space design worked against an
initial inactive opponent. However, it very quickly
failed against an active opponent there was a
need for tracking events related to actions of the
other agents.

To survive in this real-time environment, the
system was forced to employ world-centered
problem spaces. However, these world-centered
problem-spaces are created based on an incomplete
and ad-hoc mechanism, that suffers from three
problems. First, event tracking is not robust,
meaning the automated pilot agent can and does
generate unuseful or misleading interpretations for
key opponent actions, such as the opponent’s turn
in Figure 1-c. This lack of robustness also implies
that the automated pilot is unable to deal with
sensor limitations effectively. Thus, sometimes if
radar contact is momentarily lost, the agent may
not track the opponent’s actions. A second
problem with the existing world-centered problem
spaces is that event tracking does not generate
expectations. A third problem is that the agent’s
real-time response can suffer due to sequential
oparator exacution.

We have implemented a variant of TacAir-Soar
that is fully based on WCPS. To create this
variant, we started with the operators and problem
spaces that are used by a TacAir-Soar-based
automated pilot in generating its flexible actions
and behaviors. We then generated a copy of these
operators and problem spaces to model the
automated pilot’s opponent within a single WCPS.
This copy was hand generated (since most of
TacAir-Soar’s knowledge is procedural, automatic
generation of such a copy is an interesting research
question that is left for future work). 1In generating
this copy, some of TacAir-Soat’s operators and
problem spaces were abstracted away — these
opponent actions were not modeled in detail. The

“Since the completion of the experiment described in this
section, the size of the TacAir-Soar system has grown to about
1500 rules.

result is an implementation that is able to track
events while generating expectations. 1t is also
promising in terms of being more robust in
tracking events. The implementation tracks
opponent’s action and behavior as described
provided in Section 3.2. Simultaneously, as
discussed in Section 3.3, it avoids the
communication overheads and duplication of
information. The implementation currently only
works in single opponent situation. Work on
extending the implementation to multiple opponent
situations is currently in progress.

4. Summary

This paper makes two contributions. First, it
presents a detailed analysis of event tracking in the
"real-world", dynamic, multi-agent environment of
air-combat simulation. This analysis reveals
interesting issues that represet a novel
intersection of the areas of plan recognition and
DA Tools and techniques that have emerged from
single-agent environments are inadequate to
address these issues. The second contribution of
the paper is the idea of world-centered problem
spaces (WCPS), for use in general multi-agent
situations. WCPS is independent of problem
spaces as such — the key idea is that an agent
treats the generation of its own behavior and
tracking of others uniformly. WCPS was used in
(re)implementing automated pilots for air-combat
simulation.

The paper also outlined several unresolved
issues in WCPS. Among them, resolving
ambiguity in opponent’s actions, generating
approximations, learning about the opponent from
observation, and so on. We hope that addressing
these issues will help in allowing WCPS to
perform event tracking in a more robust fashion.

References

1. Anderson, J. R., Boyle, C. F., Corbett, A. T.,
and Lewis, M. W. "Cognitive modeling and
intelligent tutoring”. Artificial Intelligence 42
(1990), 7-49.

2. Azarewicz,)., Fala, G., Fink, R., and
Heithecker, C. Plan recognition for airborne
tactical decision making. National Conference on
Adrtificial Intelligence, 1986, pp. 805-811.

3. Carberry, S. Incorporating default inferences
into Plan Recognition. Proceedings of National
Conference on Artificial Intelligence, 1990, pp.
471-478.

11

To appear in Computer Generated Forces and Behavioral Representation: 1994

4. Carberry, S. Plun Recognirion in Nurural
Language Dialogue. MIT Press, Cambridge, MA,
1590.

5. Decker, K., and Lesser, V. Quantitative
modeling of complex computational task
environments. Proceedings of the National
Conference on Anificial Intelligenence, 1993.

6. Dousson, C., Gaborit, P, and Ghallab, M.
Situation Recognition: Representation and
Algorithms. 1nternational Joint Conference on
Artificial Intelligence, 1993, pp. 166-172.

7. Durfee, E. H., and Lesser, V. R. Using Partial
Global Plans to Coordinate Distributed Problem
Solvers. 1In Bond, A. H., and Gasser, L., Ed.,
Readings in Distribured Arrificial inrelligence,
Morgan Kaufmann Publishers, Palo Alto, CA,
1988.

8. Forbus, K. "Qualitative Process Theory".
Arrificial tnrelligence 24 (1984), 85-168.

9. Grosz, B.)., and Sidner, C. L. Plans for
Discourse. 1n fnrentions in Corvrmurifcation, MIT
Press, Cambridge, MA, 1990, pp. 417-445.

10. Hill, R, and Johnson, W. L.. Impasse-driven
tutoring for reactive skill acquisition. Proceedings
of the Conference on Intelligent Computer-aided
Training and Virtual Environment Technology,
1993.

11. Jones, R. M., Tambe, M., Laird, J. E., and
Rosenbloom, P. Intelligent automated agents for
flight training simulators. Proceedings of the
Third Conference on Computer Generated Forces
and Behavioral Representation, March, 1993,

12, Kautz, A., and Allen J. F. Generalized plan
recognition. National Conference on Artificial
Intelligence, 1986, pp. 32-37.

13. Laird, J.E. and Rosenbloom, P.S. Integrating
execution, planning, and learning in Soar for
external environments. Proceedings of the
National Conference on Artificial Intelligence,
July, 1990.

14. Laird, J. E., Newell, A. and Rosenbloom, P. S.

"Soar: An architecture for general intelligence”.
Arrificial tnrelligence 33, 1 (1987), 1-6<.

15. Rosenbloom, P. S., Laird, . E., Newell, A,
and McCarl, R. "A preliminary analysis of the
Soar architecture as a basis for general
intelligence". Arrificial inrelligence 47, 1-3
(1991), 289-325.

16. Song, E. and Cohen, R. Temporal reasoning
during plan recognition. National Conference on
Artificial Intelligence, 1991, pp. 247-252.

17. Tambe, M., Jones, R., Laird, J. E.,
Rosenbloom, P. ., and Schwamb, K. Building
Believable Agents for Simulation Environments.
Proceedings of the AAA] Spring Symposium on
Believable Agents, 199-. (to appear).

18. Van Beek, P, and Cohen, R. Resolving Plan
Ambiguity for Cooperative Response Generation.
Proceedings of International Joint Conference on
Arificial Intelligence, 1993, pp. 938-94-f.

19. Ward, B. ET-Soar: Toward an ITS for
Theory-Based Representations. Ph.D. Th., School
of Computer Science, Carnegie Mellon University,
May 1991.

Milind Tambe is a computer scientist at the
Information Sciences Institute, University of
Southern California (USC) and a research assistant
professor with the computer science department at
USC. He completed his undergraduate education
in computer science from the Birla lnstitute of
Technology and Science, Pilani, India in 1986. He
received his Ph.D. in 1991 from the School of
Computer Science at Carnegie Mellon University,
where he continued as a research associate until
1993. His interests are in the areas of integrated
Al systems, and efficiency and scalability of Al
programs, especially rule-based systems.

Paul S. Rosenbloom is an associate professor of
computer science at the University of Southem
California and the acting deputy director of the
Intelligent Systems Division at the Information
Sciences Institute. He received his B.S. degree in
mathematical sciences from Stanford University in
1976 and his M.S. and Ph.D. degrees in computer
science from Carnegie-Mellon University in 1978
and 1983, respectively. His research centers on
integrated intelligent systems (in patticular, Soar),
but also covers other areas such as machine
learning, production systems, planning, and
cognitive modeling. He is a Councillor of the
AAA] and a past Chair of ACM S1IGART.

To appear in Computer Generated Forces and Behavioral Representation: 1994

Table of Contents
1. Introduction 1
2. Event Tracking in Air-Combat Simulation 2
3. Towards a Solution for Event Tracking 4
3.1. An Agent’s Own Behavior 4
3.2, Tracking Other Agent’s Behaviors 6
3.3. Addressing Constraints on Event Tracking 8
3.4. A Prototype WCPS-based Agent 11
4. Summary 11
References 11

Figure 1:

Figure 2:

Figure 3:

Figure 4:

To appear in Computer Generated Forces and Behavioral Representation: 1994

List of Figures
Manuevers of the automated pilot (in dark-shaded aircraft) and its
opponent (in light-shaded one).
Agent interactions: (a) two opponents attacking the automated pilot’s
aircraft; (b) opponents stay close; (c¢) opponents stage a co-ordinated
"pincer".
Al:’s problem space/operator hierarchy. Boxes indicate problem spaces.
Text in italics indicates currently active operator within a problem space.
(a) A model of opponent’s operator hierarchy, and (b) A ’s own operator

hierarchy.

