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1. Introduction

This papet focuses on our recent tesearch effott aimed
at developing human-like, intelligent agents (virtual
mumans)  for  large-scale, interactive  simulation
environments  (virtuad  reafity). These  simulated
environments have sufficiently high fidelity and
realism [LL, 23] that constructing intelligent agents
requires us to face many of the hard research challenges
faced by physical agents in the teal wotld — in
particular, the integration of a variety of intelligent
capabilities, including goal-driven behavior, reactivity,
real-time performance, planning, learning, spatial and
temporal reasoning, and natural language
communication. However, since this is a synthetic
environment, these intelligent agents de not have to deal
with issues of low-level perception and robotic control
Important applications of this agent technology can be
found in areas such as education [14],
manufacturing [11], entertainment [2, 12] and
training [7, 24].

To begin our effort, we have focused on building
intelligent pilot agents to control simulated military
aitcraft in battlefield simulation environments. These
environments are based on Distributed Interactive
Simulation (DIS) technology [L1], in which large-scale
interactive simulations, potentially involving hundreds or
even thousands of simulated entities, are built from a set
of independent simulators linked together via a network
These simulations provide cost-effective and realistic
settings for training and rehearsal, as well as testing new
doctrine, tactics and weapon system concepts. Our
intelligent pilot (henceforth IP) agents ate to engage in
simulated combat with other automated agents and
humans in these environments. The IPs interact with
theit environments via simulated aircraft provided by
ModSAF [4], a distributed simulator that has been
commercially developed for the military.

Most of our early research effort, since the beginning
of this project in the Fall of 1992, was focused on the
creation of IPs for simulated fighter jets. These IPs,
either individually or in groups, can now engage in
simulated "ait-to-ait" combat with other individual or
groups of fighters.! Since the summer of 1994, we have

"The work on fighter jer IPs was a collaborative effort with
Randelph Jones, John Laird, Frank Koss and Paul Nielsen of the
University of Michigan.

begun developing IPs for other types of aircraft, such as
bombers and attack helicopters, involved in very
different types of missions, such as “air-to-ground"
missions.  Figute | shows a snapshot taken from
ModSAF’s plan-view display of a combat situation.
Here, IPs ate contrelling simulated AH-64 Apache attack
helicopters. The other vehicles in the figure are a convoy
of "enemy" ground vehicles such as tanks, and anti-
aircraft vehicles. The helicopters are at approximately
2.5 miles from the convoy of ground vehicles. (All of
the vehicle icons in the figure have been artificially
magnified for visibility.) The background shading
delineates the terrain and contour lines. The contour
lines indicate that the two helicopters are on a hill, just
behind a ridge, while the convoy of enemy vehicles is in
a valley. This is an ideal location for the IPs to hide their
helicopters. The IPs unmask their helicopters by popping
out from behind the ridge to launch missiles at the enemy
vehicles, and quickly remask (hide) by dipping behind
the ridge to survive retaliatory attacks. The smaller
windows along the side of the figure display information
about the active goal hierarchies of the IPs controlling
the helicopters. In this case, one of the IPs has seen the
enemy vehicles, and is firing a missile at them. The
second IP is unmasking its helicopter. (The small
window at the bottom left is for simulation control) The
eventual target of our effort is to deliver to ARPA IPs for
a large variety of simulated military aircraft, including
fighter jets, helicopters, bombers, troop transports,
refueling aircraft and reconnaissance aircraft. These IPs
are to participate in a series of demonstrations called the
simulated theater of war (STOW) demonstrations. One
such demonstration, called STOW-E, took place in
November 1994, It involved abeout two thousand
simulated military vehicles — some of them human
controlled and others by automated agents. IPs
patticipated successfully in this demonstration. The next
demonstration, in 1997, is planned to be a much larger
scale one, involving the participation of ten to fifty
thousand automated agents, and up to one thousand
humans.
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Figure 1: A snapshot of ModSAF’s simulation of an air-to-ground combat situation.

For research and development of the IPs, we have
focused on Soat, a softwate architectute being developed
as a basis for integrated intelligent systems [10, 18], and
as a unified theory of cognition [15, 17]. (For readers
unfamiliar with Sear, a brief description appears in the
Appendix.) The system we have developed within Soar,
TacAir-Soar [6, 22], represents a generic IP. A specific
IP is created by specializing it with specific parameters
and domain knowledge. TacAir-Soar-based IPs can fly
fighter jets, bombers and attack helicopters, on different
types of “aircraft vs aircraft”, as well as “aircraft vs
ground target" combat missions. The creation of these
IPs has consumed about two yeat’s wotth of effort of our
research team of about six people.

This paper outlines some of the constraints and design
cheices in our effort to implement IPs in the form of
TacAir-Soar. Overall, the design of TacAir-Soar [Ps is
guided by two general sets of constraints. The first set of
constraints, which we will tefer to as rop-down
constraints, arises from the combat simulation
environnent. Figure 2 lists these constraints in the form
of capabilities that an IP must possess if it is to succeed
in this environment. We have attempted to match these

capabilities with the list of issues provided by the
sylnposiuin erganizers in their call for papets. The match
is not one-to-one, and in some cases, there are multiple
capabilities that are relevant to an issue. Two of the
issues — agent generality and awareness of space and
tine — are our additions to the list of issues. Note that
this simulation environment has been commercially
developed based on the specifications of the military, and
as agent designers, we have little control over it. Thus,
the list of capabilities cannot be medified to suit our
{agent designer’s) needs.



Lssue 1::Knowledge representation and organization: Knowledge must be organized and represented such that [Ps
possess the following capabilities:

a. Goal-driven behavior: 1Ps need to accomplish the missions specified to them, while remaining faithful to
the mission-related constraints. In Figure [, the IP’s mission is to provide support to friendly ground
forces while being stationed behind a hill. These missions and mission related parameters help te specify
a pilot’s goals, including high-level goals such as execute mission and survive, and lower level goals such
as fire a missile at an opponent, hide from an opponent to evade his/her missile etc.

b. Knowledge-intensive behavior: For an IP to be able to generate goal-driven behavior, it needs a large
amount of knowledge related to the various missions, mission-related parameters, tactics, maneuvers,
aircraft, missile and radar types and their parameters, etc.

Issue 2::Coordination of actions and behaviors: In addition to the capability of goal-driven behavior mentioned
above, the capabilities relevant to this issue are:
a. Reactiviry: Situations in combat environments can change very rapidly. Unexpected events can occur,
€.g., an on-target missile may fail to explode, or an aggressive adversary may take some preemptive action
disrupting an on-going maneuver. An [P must be able to react to such a rapidly evolving situation.

b. Qverlapping of performance of multiple high-level tasks: 1Ps often have to petform multiple tasks
simultaneously, €.g., an IP may be increasing the altitude of its helicopter, while communicating with an
IP of a friendly helicopter, and simultaneously attempting to identify the vehicles in its field of view.

<. Planning: A helicopter’s IP may need to replan a route if it sees that the planned one is blocked; ot it may
need to plan a hiding location for its helicopter after launching missiles at the enemy as in Figure 1.

Issue 3::Learning: Although learning has not proven to be a critical requirement so far, we expect learning to
eventually play an impertant role in improving performance both during and across engagements.

Issue 4::Human-like behavior: For tealism in training and tactics development, an [P must exhibit human-like
capabilities for goal-driven behavior, reactivity, planning, learning, and in fact all of the other capabilities listed
in this figure. In addition, an TP must conform te human reaction times and other human limitation. Thus, an IP
must not maneuver a simulated aircraft like either a "superhuman" or an idiot.

Issue 5::Real-time Performance: IPs have to participate in combat simulations where they may interact with
humans acting in real-time.

Issue 6::Generality:  Although our effott began with implementing IPs for simulated F-14 fighter aitcraft in a
specific air-to-air combat situation, the effort has extended to other combat situations, other fighter aircraft, and
now to air-to-ground combat situations faced by helicopters. This has forced a continuous movement towards
design generality, so that capabilities can be shared and re-used.

Issue 7::Awareness of space and time: The capabilities involved hete include:
a. Spatial reasoning: Helicopter pilots need to reason about the terrain, e.g., to hide their helicopters behind a
hill, se that they can protect themselves from enemy fire.

b. Temporal reasoning: IPs need to reason about the effect of actions over time intervals, e.g., to locate the
position of an opponent who may have become invisible for a minute.

Issue B::fnterface with other agents: The capabilities involved include:
a. Multi-agent co-ordination: Mission specifications for IPs notmally requite them to execute missions in
groups of two, four or eight aircraft. Coordination among such agents is key to the success of such
missions.

b. Agent modeling (especially opponent modeling): For effective interaction with other agents, IPs need to
track other agents’ low-level actions, such as the movement of their aircraft, to infer higher-level plans,
maneuvers and goals.

c. Communication: Communication is important for coordination among IPs, e.g., they may communicate in
performing a coordinated maneuver or exchange information about enemy aircraft.

d. Explanation: An IP needs to explain the reasons for its actions to "domain experts", so that they may have
some confidence in its decision-making capability.

Figure 2: List of capabilities for Intelligent Pilots (based on [22]).



The second set of constraints atises from the fact that
in designing IPs, we have not engineered a new agent
architecture from scratch. Instead, we have begun with
Soar as the undetrlying architecture. Soar embodies a
vatiety of counstraints resulting from theoretical and
psychological considerations, as well as tefinements
inspired by its application in a large number and variety
of domains over the past dozen years. We will refer to
these constraints as botfom wp constraints. A majority of
them are positive in that they provide concrete integrated
solutions, so that TacAir-Sear-based IPs can easily
exhibit many of the tequited capabilities. However, for
some of the capabilities, the constraints provide only a
loose framework, and in fact, in some cases they appear
to be a hindrance. Should Soar be medified in response
to such hindrances? The answer is not obvious as yet.
Given that the design decisions in Soar attempt to
capture key insights from a variety of domains,
atchitectural modifications are not to be taken lightly.
The hindrances that Soar offers could actually be
opening up new avenues for addressing the relevant
issues.

‘We may consider the TacAir-Soar [Ps, although based
on Scar and constrained by Scar, as nonetheless
possessing an architecture that is distinct from Scar.
This paper will focus on the constraints — both top-
down and bottom-up — on this [P architecture, as well as
the design choices involved in it. The next section
discusses these constraints and design cheices in more
detail. In doing so, it focuses on the issues listed in
Figure 2, patticularly issues 1-6. Although issues 7-8 are
also important, most of the relevant capabilities are
currently under investigation, and their interactions with
the Soar architecture are as yet unclear.

2. Issnes in Designing Intelligent Pilots

We begin with a discussion of the knowledge
organization and representation in TacAir-Soar, since
that illustrates the basic design of the system. The
subsequent sequencing of issues is an attempt to best
illustrate various design choices in TacAir-Soar.

2.1. Knowledge Representation and
Organization

The top-down environmental constraint on knowledge
otganization and representation is that TacAir-Soar [Ps
must have the capabilities for goal-driven and knowledge
intensive behavior. The bottom-up constraint offered by
Scar is in the form of its architectural primitives —
specifically, goals, problem spaces, states and operators
at an abstract problem space level, and a tule-based
system plus a preference language at a lower
implementation level that aid in knowledge
otganization and fepresentation (Appendix I presents a
description of these levels). All of the knowledge in

TacAir-Soar is represented in terms of these architectural
primitives at the two levels. In this section, we will
focus on the problem space level; we will return to the
lower implementation level in the next section.

Given the above top-down and bottom-up constraints,
the available design choice is to select the approptiate
problem spaces — with appropriate combinations of
operatots — from the knowledge acquired from the
domain experts. An appropriate problem space refers to
the relevant knowledge being quickly available to an IP
when it attempts to achieve a particular goal. For
example, a problem space combining operators for
employing different weapon types enables an IP to
quickly access relevant knowledge to achieve its goal of
destroying an opponent. If the same set of operators ate
spread out in different problem spaces, an IP would not
be able to easily and quickly access them. As another
example, consider a complex tactic employed by an I[P to
avoid enemy fire in Figure L. Tt masks its helicopter by
dipping behind the ridge, flies at a very low altitude to a
different location while still masked behind the ridge (so
the enemy cannot predict its location) and then unmasks
by popping out from behind the ridge. Representing this
tactic as a set of appropriately conditioned cperaters that
mask, select a new masking location, move to new
masking location and unmask, ensures that the
knowledge is available in other situations where there
may be a need to unmask. If the same tactic is
teptesented as a single monolithic opetatot, it would be
unavailable (this motivation is related to an additional
motivation that big monolithic operators are difficult te
execute in this dynamic environment).

To describe the basics the knowledge organization that
results from the above consideration, we will focus on a
concrete illustrative example of an IP as it controls a
helicopter and fires a missile at a tank, as shown in
Figure |. Figure 3 depicts an IP’s hierarchy of problem
spaces and operators. Goals ate teptesented implicitly in
this diagram as the desires to apply impassed operators.
Boxes indicate problem spaces, with names in beld to
their right. Names within boxes indicate operators
available within problem spaces. An italicized name
indicates a currently selected opetrator in a problem
space; non-italicized names indicate the other available
operators in the problem space.

This hierarchy gets genetated as follows. In the top-
most problem space (TOP-PS), the IP is attempting to
accomplish ~ its  mission by applying  the
EXECUTE-MISSION  operator. The tetmination
condition of this operator is the completion of the TP’s
mission (which is to suppett friendly ground forces for a
mission-specified time period). Since this has not yet
been achieved, a subgoal is generated to complete the
application of EXECUTE-MISSION. The
EXECUTE-MISSION problem space is selected for use
in this subgeal. Operators in this problem space — —
ATTRIT, RAID, FLY-WING and others — implement
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Figure 3: An IP’s problem space hierarchy as it launch

the missions that IPs can engage in. IP selects the
ATTRIT operator to perform its mission. The termination
condition of this operator — that the opponent forces are
reduced in strength— is also not yet achieved, leading to
a second subgoal of completing this mission. The
ATTRIT ptoblem space is selected for use in this
subgoal. Within this problem space the IP selects the
ENGAGE operator, to engage the opponents in combat.
This leads to a fourth subgoal, into the ENGAGE
problem space, within which EMPLOY-WEAPONS is
applied to either destroy the opponents or to force them
to run away. This leads to a fifth subgoal into the
EMPLOY-WEAPONS problem space.  Hete, the
EMPLOY-MISSILE operator indicates the choice of a
missile as the weapen to use in the given situation. This
leads to the next subgoal The EMPLOY-MISSILE
problem space is selected for use in this subgoal. The
LAUNCH-MISSILE operatot then indicates that the IP is
about to launch a missile. Launching a missile includes
the eperations of turning to point the missile launcher at
an enemy vehicle, providing initial guidance to the
missile (e.g., by illuminating the target with a laser), and

also pushing the fire button. The PUSH-FIRE-BUTTON
operator in the LAUNCH-MISSILE problem space
performs this latter function, by issuing a fire missile
command to the simulator, thus causing a missile to be
fired at the selected target. If the firing of the missile
causes the tetmination conditions of any of the operatots
in the hierarchy to be satisfied, then that operator is
terminated, and all of the subgoals generated in response
to that operator are removed — they are now irrelevant.
In this case, since the firing of the missile causes the
termination condition of the LAUNCH-MISSILE operator
to be achieved, that operatot is terminated and treplaced
by the SUPPORT-MISSILE operator, to provide remote
guidance to the missilke from the helicopter. The
subgoals associated with the LAUNCH-MISSILE
operator are flushed.

This goal/problem space hierarchy provides TacAir-
Scar the capability of goal-driven behavior. In addition,
it also provides the capability of knowledge-intensive
behavior. The knowledge-intensive aspect atises
because all of TacAir-Scar’s behavior is driven by
accessing trelevant knowledge about action. The
generation of alternative operators occurs via rules that
examine the goal, problem space, and state and create
instantiated operators that may be relevant. Once these
operators are generated, further rules fire to generate
preferences that help select the operator most appropriate
for the current situation. Once an operator is selected,
additional tules fire to petform the approptriate actions.

Some evidence of the appropriateness of our initial
problem space and operator design (from fighter jet IPs)
came in the form of the extensive re-use of these
problem spaces and cperators for helicopter IPs. The air-
to-air combat missions for fighter jet [Ps and the air-to-
ground combat missions for helicopter TPs are quite
different. However, there are some skills that they do
share, such as firing missiles; and indeed, this sharing is
teflected in the reuse of problem spaces and operators
from the fighter jet IPs in helicopter IPs. Table I
illustrates this situation. Tt shows the total number of
problem spaces, operators and rules in the helicopter IPs,
the number reused from the fighter jet IPs, and the
percentage reuse. Note that we ate still in the early stages
of developing a helicopter IP, and thus, the amount of
te-use could change in the future.?

2.2, Coordination of Behaviors and Actions
The constraints here are as follows:

¢ Top-down: An IP must have the ability to combine
goal-driven and reactive behaviors; it must also

?Since It is net straightforward to get a precise count of tule reuse,
it is overestimated somewhar here. In particular, there are rules that
ate te-used from the fighter jet IPs, which although not useful for this
task, are harmless, and have not been weeded out.



Entity Total in Reused from Percentage

teused Helicopter IP | Fighter jet IP teuse
Problem spaces 14 6 42
Operators 45 29 654
Rules 1196 1030 86

Table 1: Reuse of problem spaces, operators and rules in IPs.

have the ability to simultaneously petform multiple
high-level tasks. In addition, an IP must have the
capability of planning, and constraining its behavior
based on the resulting plans [3]. However, since we
have only recently begun investigating the issue of
planning in this environment, we will not discuss it
here.

* Bontom-up: The relevant constraints arising from
Socar are its decision procedure and its rule-based
representation of knowledge, both of which
facilitate TacAir-Soat’s ability to support the above
capabilities; and its single goal hierarchy, that
possibly hinders these capabilities.

Here, there are two design decisions for TacAir-Soar
IPs. The first, rather obvious one, is to take advantage of
the features of the Socar architecture that facilitate the
combination of goal-driven and reactive behaviors.
These features ate its open and integrative decision
procedure and its production (rule-based) representation.
All of TacAir-Soat’s knowledge is encoded in terms of
productions. These productions can test the current goals
and operatets being pursued (e.g., EMPLOY-MISSILE or
EVADE-MISSILE), as well as relevant aspects of the
current situation (e.g., sensors may indicate a sudden
movement by an enemy vehicle). Based on either or
both of these tests, the productions may suggest new
operatots to pursue at any level in the goal hierarchy,
generate preferences among suggested operators, and
terminate existing operators. When the preductions have
finished making their suggestions (generating their
preferences) the decision procedure integrates all
available suggestions/prefetences together to determine
what changes should actually be made to the
goal/opetator hieratchy. This enables TacAit-Soar-based
IPs to be reactive, and also combine this reactivity with
goal-driven behavior. While using rules in this manner
to provide reactivity is similar to the approach taken in
pure situated-action systems [1], there is one important
difference: the use of persistent internal state. TacAir-
Soar IPs cannot rely on the external environment to
provide them all of the required cues for effective
petformance. For instance, even if an IP evades enemy
fire by masking its helicopter behind a hill, it needs to
maintain information regarding enemy pesition on its
state. Not doing so would cause it to be repeatedly
surprised by enemy fire when it unmasks, giving the
enemy ample time to fire at the helicopter. Therefore,
TacAir-Soar IPs do engage in a substantial effort to
deliberately maintain intetnal state information.

With respect to simultaneous performance of multiple
high-level tasks, there is an apparent hindrance from the
Soar architecture TacAir-Scar cannot directly
construct multiple independent goal hierarchies in
service of multiple high-level tasks. For instance,
consider a situation whete an [P needs to reason about a
new vehicle in its field of view while simultancously
attempting to fite a missile. In this case, the IP constiucts
a goal hierarchy for firing the missile, as shown in Figure
3. The problem is that, though a second goal hierarchy is
also requited hete — to identify the new vehicle in the
field of view, to check if it is a thteat to IP’s helicoptet,
etc. — the [P cannot independently construct it because
of the constraint imposed by Soar that there be only a
single goal hierarchy.

There are two general approaches to resolving this
appatent mismatch between Soar’s architectural features
and requirements of the environment [8]. The first
approach is to view the single goal hierarchy as a
negative constraint, and attempt to relax the constraint by
proposing a change in the Soar architecture to allow the
use of a forest of goal hierarchies. Such a forest would
enable TacAir-Soar IPs to casily engage in simultancous
petformance of multiple high-level tasks. However,
changing the Soar architecture in this manner leads to
important questions regarding the interactions of this
approach with other aspects of the architecture. These
questions are actively under investigation.

The second approach is to consider the mismatch
caused by Soar’s single goal hierarchy as only an
appatent one tather than a real one, and attempt to
develop solutions that will conform to this constraint.
These include cur currently implemented solution in
TacAir-Soar. It requires an [P to commit to just one of
the goal hierarchies, and to install operators for the
remaining high-level goals, as needed, at the bottom of
this goal hierarchy. Thus, in the above example, the TP
commits to a hierarchy for firing a missile, but then
installs an fdentify-vehicle operator as a subgoal of the
push-fire-button operator. While this sclution can be
made to work, one significant problem here is that any
attempt to update the upper goal hierarchy eliminates the
lowet one, because Scar automatically interprets "lowet"
as meaning "dependent on”, even though the hierarchies
really are independent hete. We generally attempt te
minimize this problem by ensuring that the lower
hierarchy is present for only a brief instant, however, a
more general solution seems necessary. A second
solution in this class is to attempt to merge operators
actoss goal hierarchies so that a single hietarchy can
represent the state of all of the hierarchies
simultaneously [5]. However, doing automatic merging
of opetators is an open issue. A third sclution attempts to
flush the current goal hierarchy whenever a new one
needs to be established, while depending on learning to
compile goal hierarchies into single operators, and thus
to reduce (or eliminate) the ovethead of constantly



flushing and rebuilding large geal hierarchies [19].

2.3. Support for Learning

The top-down constraint on learning is that it is an
impottant capability for IPs, though not a critical one as
yet; while the bottom-up constraint is that learning must
occur via chunking, which is Soar’s only learning
mechanism. In general, Soar systems tightly couple
chunking with performance, and the benefits from this
tight-coupling have alteady been illustrated in a variety
of Soar systems. However, TacAir-Soar does not
petform extensive planning or search (or other nen-
execution oriented cognitive activities) which is where
learning can provide extensive speedups — as explained
latet, TacAir-Scar is for the most patt a model of expert
execution behavior. Nonetheless, chunking can be used
within the curtent system to "collapse” the goal hieratchy
and compile the knowledge even further for a linear
speedup.

Expetiments with chunking in TacAir-Scar have
however uncovered three interesting issues. The first
issue relates to the fact that external actions in this
domain take relatively extensive amounts of time
compared to the time it takes to expand the goal
hierarchy. For instance, consider an IP controlling the
helicopter by expanding the goal hierarchy to unmask
from a position behind a hill (see Figure 1). Expanding
this goal hierarchy takes 0.1 to 0.2 seconds. Chunking
could cut down this time to say 0.0l seconds, by
providing commands to unmask without requiring the
expansion of the hietarchy. However, the execution of
the commands in the simulated world takes about 100
seconds. Chunking simply cannot imptove upon this
execution time — given the speed of the helicopter, it
always takes about 100 seconds to unmask. Thus, if we
compute the overall speedup in performance due to
chunking for the task of unmasking, as is normally done
in other Soar systems, it is negligible: L100.L/100.0L.
Second, typically, in Soar systems, chunks obviate
subgoaling since they instantaneously produce results
that originally required the subgoaling. However, in
TacAir-Soar, the long execution times inhibit the
instantaneous reproduction of results. For instance, even
after a chunk issues a command te ummask, the
helicoptet takes 100 seconds to unmask. This delay
causes Soar to expand the goal/subgoal hierarchy. Thus,
even though chunking seeks to eliminate the expansion
of the goal hierarchy, the long execution times prevent
immediate feedback and cause the hierarchy to be
expanded nonetheless. While neither of the two issues —
the negligible speedup, or the expansion of the hierarchy
after chunking — illustrate necessarily inappropriate
behavior, these are contrary to the effects of chunking on
most other Soar systems.

A third issue that comes up in our experiments is the
intetaction between chunking and the petformance of

multiple high-level tasks (discussed in the previous
section). [n particular, chunking is based on the presence
of the goal-subgoal hierarchy. Modifications to this
hierarchy — either in the form of insertion of
independent goals as subgoals of existing goals, or in the
form of creation of a forest of geal hierarchies — both
interact with chunking. There are many such issues, and
addressing them is one of the major outstanding
challenges.

Thete are again two appreaches being investigated to
address this challenge. The first attempts to medify
chunking and its dependence on the single goal
hierarchy. The second attempts to maintain chunking in
its present form, by suggesting changes in other aspects
of the architecture, such as subgoaling. There is much
on-going research on this topic [20]. Since learning has
not been a critical requirement so far — particularly
since expert-level performance is already being modeled
— the key design choice here has been to not introduce
learning, at least as vet, in TacAir-Soar.

2.4. Psychology: Mimicking Human Capabilities
in Design

Exhibiting human-like capabilities is key to the
success of [Ps in this environment. This includes human-
like flexibility in behavior, as well as conformance to
human reaction times and human limitations (such as
inability to make very hard turns). In particular, the
motivation in creating IPs is not to win simulated combat
by any and all means available. Rather, it is aid in
creating an effective battlefield simulations that provides
realistic settings for training humans, developing tactics
ot evaluating products. For instance, if the IPs teact too
quickly (or not quickly enough), trainces may learn to act
in an excessively defensive (or aggressive) manner.
Training in these situations could actually be harmful.
Additionally, TPs need to be able to explain their
behavior te human experts so that they can gain
confidence in IP’s capabilities. If experts realize that IPs’
are not performing their tasks as humans would, they
may not have confidence in IPs’ behavior.

Thus, closely mimicking human capabilities in
designing IPs is not a choice in this environment, but a
necessity. The Soar architecture provides us great
support in this endeavor — it is a developing unified
theoty of cognition, and provides a number of
constraints, €.g., on knowledge representation, reaction
times, accuracy and learning, that start us off in the right
ball park with respect to psychelogical verisimilitude.

2.5. Real-time Performance

The top-down constraints on real-time performance
are: (i) for human-like behavior, [Ps must remain within
plausible cognitive limits [15] (decisions must occur in
less than 300 milliseconds); (ii) for reasonable



petformance, IPs must remain within simulator time
limits (decisions must occur within 500 milliseconds).
While these are not hard deadlines, missing them
continuously can be fatal. In addition to these
constraints on individual decisions, there is also a top-
down consttaint on the number of decisions before
action. In particular, if IPs engage in extensive meta-
level reasoning or planning before acting, that can be
problematic in time-critical segments of combat. The
bottom-up constraints for real-time performance are that
at a lower implementation level, all of the knowledge in
Soat is tepresented in the form of rules. All of these
rules, plus all of the changes that they cause, must be
processed at every decision. Fortunately, the Scar
architecture is already heavily optimized with respect to
this processing, with a new C-based implementation [9]
that is a factor of 15-20 faster than the previous Lisp-
based implementation. Nonetheless, rule processing can
be a significant burden for real-time petformance.

Given these constraints, there were two key design
decisions for TacAir-Soar. The first involved attacking
the problem of [Ps engaging in potentially large numbets
of decisions before action. The design decision here was
to focus on expert-level performance. This expert-level
knowledge allows operators and actions to be selected
without impasses occurring in Soar, and therefore
without extensive numbets of decisions.

The second design decision here is with respect to the
time for individual decisions in TacAir-Scar. We have
attempted to minimize the time it takes to process rules
by using tule coding styles that help ensure inexpensive
rule match [21], and detecting and eliminating
unnecessary tule firings. In addition, we have attempted
to avoid flooding an IP with unnecessary information,
and thus avoid forcing it to perform a lot of low-level
computation. For instance, consider an IP contrelling a
helicopter that is given the task of flying "NAP-of-the-
EARTH" (NOE). This involves flying very close to the
tetrain, about 25 feet above ground level. Here, the IP
needs some information about the terrain, so that it does
not crash into the (simulated) forests, hills, or other
tetrain features. Yet, providing the TP a description of
every terrain feature in its field of view would be
problematic. The solution we have adopted is to provide
the TP information about the altitude and lecation of the
highest point within a hundred meters of its direction of
flight — the TP then attempts to fly 25 feet above this
highest point. Although this topic remains under
investigation, preliminary results indicate that the
information about this single point is sufficient to enable
an [P to fly NOE. This approach may seem
inappropriate. However, it turns out that designers of
militaty aitcraft use similar strategies to reduce a pilot’s
cognitive load as much as possible by off-loading many
of the low-level, bottom-up computations onto the
plane’s instruments.

3. Conclusion

This paper described the lessons learned in designing
some specific agents — IPs for simulated battlefield
enviromments. For these [Ps, the simulated environment
is their target environment; we de not intend for them te
fly real aircraft! Nonetheless, the IPs face the hard
research challenge of integrating a broad range of
capabilities (see Figure 2) so that they can participate in
simulated combat, both with and against humans. To
address this challenge, we have been building a system
called TacAir-Soar that is based on the Soar integrated
architectute. TacAir-Soar IPs may be considered as
having their own architecture, which although distinct
from Soar, is nonetheless based on Soar, and constrained
by both Socar and the combat simulation environment.
The paper discussed the design decisions in TacAir-Soar
IPs, and illustrated that: (i) the Soar architecture is
capable of providing specific integrated solutions so that
TacAir-Soar can easily exhibit a number of the required
capabilities; (ii) there are other capabilities for which the
Soar architecture provides only a loose framework for
their development, or indeed proves somewhat of a
hindrance to their development — these have presented
an interesting set of research issues, and they may likely

contribute to the further evolution of the Soar
architecture.
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Appendix 1. Soar

The Soar integrated architecture forms the basis of our
work on intelligent automated pilots. In the following,
Soar is characterized as a two-level hierarchy of
descriptions. The higher, problem space level is
discussed briefly, followed by a more detailed
architecture level or symbol level description.

At the higher, problem space level of description, Soar



can be described as a set of interacting problem spaces.
All tasks are formwlated as achieving goals in these
problem spaces. A problem space consists of states and
opetatots. Within a problem space, knowledge is used to
repeatedly select and apply operators to a state to reach a
goal. A state in a problem space is a Soat agent’s cutrent
situation, possibly including perceptions of the external
environinent as well as internally generated structures.
An operator may directly medify this state or it may
instigate an external action/event, such as causing an
aitcraft to tutn. The perception of the effects of this
external action can then indirectly modify the state. The
operator application may be explicitly terminated either
upoh its successful completion (c.g., the aircraft has
turned to the desired heading), or upon a need to be
abandon it (e.g., it is necessary to dive instead of
continuing to turn the aircraft).

At the lower, architectural (implementation) level of
description, Soar’s problem space operations can be
described in more detail as follows. The knowledge for
selection, application and termination of operators is
stoted in the form of productions (condition-action rules)
in Soar’s knowledge-base, a production system.
Changes in Scar’s state, including changes caused by
perceptions, can trigger these productions to fire. Upon
firing, the productions generate preferences for objects in
the state as well as for operators. A prefetence is an
absolute or relative statement of worth of an entity, such
as ah opetatot, given the cuttent situation. For instance,
a preference might be that an operator to turn left is
better than an operator to turn right, given the current
situation. Following their generation, Soar’s decision
mechanism examines the operator preferences and
selects an operator as the current one. This selection can
trigger productions for operator application, which as
mentioned above, can modify the state ditectly or
indirectly (by instigating external actions). These
modifications may in turn trigger additional productions
that further modify the state or generate preferences for
the termination of the selected operator and the selection
of the next operator. Based on the new set of
preferences, the current operator may then be replaced by
a different operator. The cycle of operator selection,
application and termination can thus continue. However,
in some cases, productions generating approptiate
preferences may fail to be triggered, e.g., no preferences
may be generated for the termination of the selected
operator, or for the selection of the next operator. In such
cases, al [Mpasse occurs.

Secar responds to an impasse by creating a subgoal to
resolve it. A new problem space is installed in service of
this subgoal. The process of selection and application of
operatots tecuts in this subgoal. If a further impasse
occurs while resolving one impasse, a new subgoal is
created. With this recursive subgealing, a whole
goal/problem-space hietarchy may be generated. An
impasse is resolved if the processing in a subgoal can

return the requisite result (leading te a decision in a
supergoal) to the original space.

Subgoals and their results form the basis of Soat’s sole
learning mechanism, chunking. Chunking acquires new
productions, called chunks, that summarize the
processing that leads to results of subgeals. A chunk’s
actions are based on the results of the subgeals. Tts
conditions ate based on those aspects of the goals above
the subgoal that are relevant to the determination of the
results. Once a chunk is learned, it fires in relevantly
similar futare situations, directly producing the required
result, possibly avoiding the impasse that led to its
formation. This chunking process is a form of
explanation-based learning (EBL) [13, 16].
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