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Abstract

Al eseachers ave stiiving to build complex multi-agent
wotlds with intended applications tanging from the Robo Cup
tobotic soccer towrnaments, to interactive vivtual theatie, to
lage-scale ieal-would battlefield simulations. Agent track-
ing — monitoting other agent’s actions and infewing thei
highe-level goals and intentions — is a central tequitement
in such worlds. While previons wotk has mostly focused on
tracking individual agents, this paper goes beyond by focus-
ing on agent teams. Team tracking poses the challenge of
tracking a team’s joint goals and plans. Dynamic, real-time
envitonments add to the challenge, as ambiguities have to be
tesolved in real-time.

The central hypothesis undeilying the present work is that
an explicit team-oviented perspective enables effective team
tracking. This hypothesis is instantiated using the model
fracing technology employed in tracking individual agents.
Thus, to track team activities, fearm models ace put to service.
Team models are a conciete application of the joint intern-
fions framework and enable an agent to track team activities,
regardless of the agent’s being a collabovative paticipant o
a non-participant in the team. To facilitate veal-time ambigu-
ity tesolution with team models: (i) aspects of hiacking, ae
cast as constraint satisfaction problems to exploit constraint
propagation techniques; an (ii) a cost minimality cuiterion is
applied to constrain tracking search. Empuical wesults fiom
two sepavate tasks in real-world, dynamic envitonments —
one collaborative and one competitive — are provided.

Introduction

In many multi-agent domains, the interaction among in-
telligent agents — collaborative or non-collaborative —
is both dynamic and real-time. For instance, in educa-
tion, intelligent tutoring systems interact with students to
provide real-time feedback{Anderson er al. 1990). In
entertainment, projects such as virtual immersive envi-
ronments{Maes et af. 1994) and virtual theatre{(Hayes-
Roth, Brownston, & Gen 1995) involve real-time and dy-
namic interaction. Similarly, in training, dynamic, real-
time simulations — e.g., traffic or air-traffic control(Pi-
mentel & Teixeira 1994) and combat(Rao & Murray 1994;
Tambe er af. 1995) simulations — invelve such collabora-
tive and non-collaborative interaction among tens or hun-
dreds of agents {(and humans). Such interaction is also seen

in robotic domains, e.g., collaboration by observation(Ku-
niyoshi et al. 1994), RoboCup soccer(Kitano et al. 1995).

In all these environments, agent tracking — monitoring
other agents’ observable actions and inferring their high-
level goals, plans and behaviors — is a central capability
tequired for intelligent interaction{Anderson er al. 1990;
Rao 1994; Tambe & Rosenbloom 1995). While this capa-
bility is obviously essential in non-collaborative settings, it
is also important in collaborative settings, where communi-
cation may be restricted due to cost or risk. The key to this
capability is tracking an agent’s flexible and reactive behav-
iors in dynamic, multi-agent domains. This contrasts with
previous work in the related area of plan recognition(Kautz
& Allen 1986), which mostly focuses on static, single-agent
domains.

This paper takes a step beyond tracking individual
agents — the current state of the art in agent tracking
and plan-recognition — by focusing on team tracking.
We (humans) see team activity all around, e.g., team-
work in games (soccer, hockey or bridge), an orches-
tra, a ballet, a discussion, a play, etc. Naturally, this
teamwork is being reflected in various agent worlds, e.g.,
RoboCup. The key in tracking such teamwork is to rec-
ognize that it is not merely a union of individual simulta-
neous activity, even if coordinated(Grosz & Sidner 1990;
Cohen & Levesque 1991). For instance, ordinary auto-
mobile traffic is not considered teamwork, despite the si-
multaneous activity, coordinated by traffic signs(Cohen &
Levesque 1991). Teamwork invelves team members’ joint
goals and joint intentions, i.e., joint commitments to joint ac-
tivities(Cohen & Levesque 1991). Consequently, tracking
teamwork as independent activities of individual members
is difficult. Consider the example of two children collabo-
ratively building a tower of blocks(Grosz & Sidner 1990)
— they cannot be tracked as building two individual tow-
ers of blocks with gaps in just the right places. Similarly,
in (RoboCup) soccer, the collaborative pass play of two at-
tackers cannot be tracked as independent activities. Robotic
collaboration by observation{Kuniyoshi er al. 1994) would
also require tracking such joint activities.

Thus, team tracking raises the novel challenge of track-
ing a team’s joint goals and intentions. Previous ap-
proaches(Anderson eral. 1990; Rao 1994 ; Tambe & Rosen-



bloom 1995}, that focus on tracking individual agents, fail
to track such team activities. One basic problem is in-
expressiveness. In particular, these approaches are based
on medel tracing, which involves executing an agent’s
runnable model, and matching the model’s predictions with
actual observations. However, an individual’s model simply
does not express a team’s joint goal and activities. Farther-
more, by failing to exploit such jointness, these approaches
also fail to adequately meet the demands of dynamic, real-
time domains (the focus of our current work). The main
difficulty in real-time domains is that the tracker (tracking
agent) has to tesolve ambiguities in multiple team members”
actions in real-time. Here, the jointness of teamwork is itself
key in addressing this challenge. In particular, given this
jointness, recognizing one team-member’s actions helps to
disambiguate other members’ actions. Unfortunately, un-
able to exploit such jeintness, the individual-oriented ap-
proaches engage in unconstrained search; this can be par-
ticulatly problematic when tracking large teams. Finally,
the above approaches also fail to address the dynamism in
teamwork, particularly, dynamic formation and dissclution
of subteams for different subtasks.

Some recent work has attempted to go beyond individuals
and track multiple agents. One such approach tracks a group
of agents engaged in identical activity(Tambe 1993). Yet, a
group (e.g., cars driving in ordinary traffic) differs from a
team (e.g., driving in a convoy) precisely due to the lack of
any jointness of purpose. Thus, for instance, this approach
fails totrack teamwork where agents engage in non-identical
activities. An alternative approach(Rao & Murray 1994),
although focused on multi-agent domains, tracks mental
states of individual agents rather than joint mental states of
teams. As shown later, such individual oriented approaches
are found lacking in both solution quality (due to lack of
expressiveness) and efficiency (due to lack of jointness)
when tracking teams.

As a concrete basis for the above discussion, consider

simulated air-combat scenario (Figure 1}, from a real-world
coinbat simulation environment{Calder et al. 1993). Here,
a pilot agent D confronts ateam of fourenemy fighters J, K,
L and M. InFigure | -a, D detects the four opponents turning
towards its aircraft, and infers that they are approaching it
with hostile intent. In Figure 1-b, the four opponents split
up into two subteams, and begin a pincer maneuver(Shaw
1988). That is, one subteam (J and K) starts turning left,
while the other subteam (L. and M) starts turning right. Their
goal is to trap D in the center, and attack it from two sides.

By correctly tracking the pincer D effectively counteracts
it — it turns away from the center (Figure 1-b). Although
this puts the second subteam (L and M) outside of D’s radar
sight, recognizing the pincet also enables D to anticipate
this second subteam’s possible actions. In Figute |-c, upon
reaching its missile fiting range, D turns and fires a missile
at J. In Figure |-d, D executes an Fpole turn, to provide
radar guidance to its missile, without flying right behind the
missile. Although D’s missile is invisible to their radars,
J and K track D’s mancuvers and infer a missile firing.
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Figure |: Simulated | vs4 air-combat.

Therefore, in Figure 1-d, they attempt to evade the missile
(actually its radar-guidance) via a 90° beam turn. While
beaming defeats D’s missile, it also, unfortunately, dismupts
the team’s pincer. Basically, unaware that J and K have
reneged on their part of the pincer, the second subteam (L
and M) continues with its part. Meanwhile, anticipating
this second subteam’s possible turn behind its (D’s) back
(Figure 1-€), D plans an appropriate response.

One key point of this scenario is a concrete illustration
of the need to express a team’s joint goals and intentions.
In Figure 1-b, for instance, the foutr opponents are not ex-
ecuting independent left and right turns! They are jointly
executing a pincer. Yet, by focusing on individual models,
D may be unable to exptess such jointness. In particulat,
D may possibly execute an individual model to track an
individual, such as J, as executing a pincer. However, J's
singlehanded pincer is meaningless, since a pincer mandates
the participation of two or more agents. This expressive in-
adequacy persists even if all agents are tracked as simulta-
neously executing individual pincers, e.g., is this one pincer
with all four agents invelved (Figure 1-b) or two separate
pincers with two agents each?

The scenario also illustrates the difficulty in real-time
ambiguity resolution. In Figure 1-b, for instance, a pin-
cer is only ohe of many possible team tactics. The team
could be beginning a post-hole tactic, whete one subteam
turns in a circle, to confuse D by disappearing and reap-
peating on its radat, while the second subteam attempts to
attack D. Or, each subteam may possibly be attacking D
independently. In resolving such ambiguity, it is useful to
exploit the teamn’s jointness, i.e., to recognize that if one sub-
team is executing one half of the pincer, the other subteam
must be executing the other half, and cannot be engaged in
some untelated activity.! Finally, the scenaric also shows
the dynamic formation of subteams and their sometimes

'This work will assume that subteams begin a joint activity
together; over time though, a subteam may deviate.



unsychronized activities. Team members begin with almost
identical activities{Figure 1-a), then dynamically split into
subteams to begin a pincer (Figure 1-b), and finally, cne
subteam dynamically deviates from its role (Figure L -d).

The key hypothesis in this paper is that adopting a team
perspective enables effective and efficient tracking of a
team’s activities, thus alleviating the difficulties dogging
the agent-oriented approaches. In model tracing terms, this
implies executing a team’s runnable model, which predicts
the actions of the team and its subteams (rather than sepa-
rate models of individual team members). A team model
treats a team as a unit, and thus explicitly encodes joint
goals and intentions required to addtress the challenge of
tracking a team’s joint mental state. Indeed, team tracking
based on team models is among the first practical applica-
tions of the joint intentions theory developed in formalizing
teamwork{Cohen & Levesque L991). The paper shows
that team models are uniformly applicable in tracking even
if an agent is a participant in a team, rather than a non-
patticipant. Furthermore, it shows that the team models
are efficient: (i) they explicitly exploit a team’s jointness to
constrain tracking effort; and (ii) by abstracting away from
individuals, they avoid the execution of a large number of
individual agent models. This abstraction in team models
also provides robustness, e.g., changes in number of tean
members may not disturb tracking. To track with such team
models in real-time dynamic environiments, we build on the
RESC(Tambe & Rosenbloom 1995) approach for tracking
individual agents. The new approach, RESC; ¢gpm, is aimed
at real-time, dynamic team tracking.

Before describing team models and RESC;zpy, in more
detail, the following section first provides an overview of
RESC. The description below assumes as a concrete basis,
pilot agents based on the Soar architecture(Tambe et al.
1995). We assume some familiarity with Scar’s problem
solving, specifically, applying operators to states to reach a
desited state{Newell 1990).

RESC: Tracking Individual Agents

The RESC (REal-time Situated Commitments) approach
to agent tracking(Tambe & Rosenbloom 1995) builds on
model tracing(Anderson ef af. 1990). Here, a tracker ex-
ecutes a model of the trackee (the agent being tracked),
matching the model’s predictions with observations of the
trackee’s actions. One key innovation in RESC is the
use of commitments. In particular, due to ambiguity in
trackee’s actions, there are often multiple matching execu-
tion paths through the model. Given real-time constraints
and resource-bounds, it is difficult to execute all paths,
or wait so trackee may disambiguate its actions. There-
fore, RESC commits to one, heuristically selected, execu-
tion path through the model, which provides a constraining
context for its continued interpretations. Should this com-
mitment lead to a tracking etrot, a real-time repair mecha-
nism is invoked. RESC is thus a repair-based approach to
tracking (like a repair-based approach to constraint satisfac-
tion{Minton ef al. 1990)).

A second key technique in RESC leads to its situated-

ness, i.e., ability to track the trackee’s dynamic behaviors.
A key asswmption here is that the tracker is itself capable of
the flexible and reactive behaviors required in this environ-
ment. That is, the tracket’s architecture can execute such
behaviers. Therefore, this architecture is reused to execute
the trackee’s model to allow dynamic model execution.

As a concrete example of RESC, consider D’s tracking of
J inFigure 1-d, assuming J is the onfy opponent present. To
illustrate architectural rense for tracking, we first describe
D’s generation of its own behaviors. Figure 2-a illustrates
D’s operator hieratchy during its Fpole (Figure 1-d). The
top opetatot, execute-mission indicates that D is executing
its mission {(e.g., defend against intruders). Since the mis-
sion is not complete, D selects the intercepr operator in a
subgoal to combat its opponents. In service of intercept,
D applies employ-missife in the next subgoal. Since a mis-
sile has been fired, D selects the fpole operator in the next
subgoal to guide the missile with radar. In the final sub-
goal, maintain-heading causes D to maintain its heading.
All these operators used for generating D’s own actions will
be denoted with the subscript D, e.z., fpofep. Operatorp
will denote an arbitrary operator in D’s operator hierar-
chy. Statep will denote D’s state. Together, statep and
the operatotp hierarchy constitute D’s model of its present
dynamic self, referred to as modelp.
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Figure 2: (a) Modelp; (b) Modelp;. Dashed lines are unse-
lected alternative operators. Modelp and Modelpy need not
be identical.

To reuse own architecture for tracking, I uses a hierarchy
such as the one in Figure 2-b to track J's actions. Here,
the hierarchy represents D’s model of J’s current operators
in the situation in Figure 1-d. These operators are denoted
with the subscript DJ. This operatorpy hierarchy and stateny
constitute D’s model of J or modelpg, used to track J's
behavior. For instance, in the final subgoal, D applies the
start-&-maintain-turnpjopetator, which predicts J's action.
Thus,if J starts turning right towards beam, then there is a
match with modelpy — D believes that J is turning right to
beam and evade its missile, as indicated by the higher-level
operators in the operatorpy hierarchy.

Such architectural reuse provides situatedness in RESC,
€.g., operatorpy may now be reactively terminated, and



flexibly selected, to respond to the dynamic world sit-
uation. (Such architectural reuse is also possible with
other architectures(Hayes-Roth, Brownston, & Gen 1995;
Rao 1994).) As for RESC’s commitments, notice that from
D’s perspective, there is some ambiguity in J's right turn in
Figure 1-d — it could be part of a 90° beam turn or a 150°
turn to run away. Yet, D commits to just one operatorpy
hierarchy. This commitinent may be inaccurate, resulting
in a match faifure, i.e., a difference between the modelpy’s
prediction and the actual observed action. For example,
if J were to actually turn 150°, there would be a match
failure. RESC’s primaty repair mechanism to recover from
such failures is “‘current-state backtracking™, which involves
backtracking over the operatorpg hierarchy, within the con-
text of the current continuously updated state. Thus, RESC
attempts to generate a matching new operatorpy hierarchy
without re-examining past states.

Tracking with Team Models

To step beyond tracking individuals, and track a team’s
goals and intentions, team models are put to service. A
tracker’s model of a team consists of a team state and team
operators. A team state is used to track a team’s joint state,
and it is the union of a shared patt and a divergent part. The
shated patt is one assumed common to all team members
(e.g., overatching team mission, team’s participants). The
divergent part refers to aspects whete membets’ states differ
(e.g., 3-D positions). One approach to define this divergent
part is to compute a region or boundary encompassing all
individual members; another approach may be to compute
an average of individual attributes. While these approaches
are desirable, in the absence of appropriate low-level sen-
sors, their cost can be prohibitive. Therefore, the approach
currently preferred in this work is to equate the divergent
patt to the state of a single paradigmatic (or representa-
tive) agent within the team, e.g., the team’s orientation is
the paradigmatic agent’s orientation (as in (Tambe 1995)).
Such a paradigmatic agent is selected by a separate module
(which currently selects one agent in a prominent location).
Thus, a generic team © is tepresented as {mp {m;...m, ...} },
where m; are some arbitrary number of team members, and
my is the paradigmatic agent. © may have N sub-teams,
o1...0x5, cach also possessing its own members, state and
paradigmatic agents. Unless subteams are known in ad-
vance, they are detected dynamically based on individual
agent movements. Similarly, merging of subteams into a
larger team is also detected (see the final section for further
discussion of detecting (sub)teams). A dynamically de-
tected subteam inherits the joint part, but not the divergent
patt. Thus, 7, the team of opponents in Figure L-b con-
sists of {J{JK,L,M}}, with two subteams &={J,{JK}}
and 8;={L {L,M}}. For the sake of consistency, a sin-
gle agent is considered a singleton team, which is its own
patadigmatic agent: {my,{m }}.

A teaimn operator in a team model represents the team’s
joint commitment to a joint activity. A key aspect of a team
operator are the refes, which define activities that subteams
undertakes in service of the team operator. For instance, in

the game of bridge, opponents” bidding team operator has
two roles, e.g., NORTH and SOUTH. The pincer team op-
crator in Figure 1-b has two roles LEFT and RIGHT. While
the notion of roles has previously appeared in the context
of teamwork(Kinny et al. 1992}, it is exploited here via
the specification of a role coherency constraint, ie., there
must be one subteam per role for the performance of the
team operator. However, roles for a single operator need
not all be distinct. For the team ®, a team operator with
‘R roles is denoted as operatota< 1, ..., ¥R >. The chil-
dten of this operator in the operator hierarchy must then
define the activities for subteams in these roles. Thus, for
instance, the opponents’ pincer in Figure 1-b is denoted
pincerr <LEFTRIGHT> (and D’s model of it is denoted
pinceryr <LEFT,RIGHT:>). Some abstract high level op-
erators may require multiple definitions as they allow mul-
tiple role combinations. Such operators may essentially
impose no role coherency constraints; hence their roles are
not explicitly denoted.

Following is now the RESC; ¢4y, approach to team track-
ing:

1. Execute the team model on own (tracker’s) architecture. That
1s, comumit to a team operator hietarchy and apply it to a team
state to generate predictions of a team’s action. 1o doing so, if
alternative applicable operators available (ambiguity):

{a) Prefer ones where number of subteams equals number of
1oles.

{b) 1f multiple opevators still applicable, hewistically select one.

2. Check any tracking failues, specifically, match ov ole failwes;
if none, goto step 1.

3. I failure, determine if failure in tracking the entive team o just
one subteam. If team failure, repair the team operator hicrarchy.
1f one subteam’s failwe, temove subteam assignmentto role in
team operator, repair only subteam hierarchy. Goto step 1.

Step | reuses tracketr’s architecture for flexible tean
model execution, to track dynamic team activity. Step L{a)
selects among multiple operators based on the number of
subteains, while 1(b) relies on domain-independent and de-
pendent heutistics for such selection, e.g., one heuristic is
assuming the worst about an opponent in an adversarial
setting. The commitiment in step | creates a single team op-
crator hierarchy. With this commitment RESC,; ¢4, always
has a current best working hypothesis about the team activ-
ity — an anytime quality suitable for a real-time domain.

In step 2, tracking failure is redefined in RESC;.qm.
Match failure — where a team’s actions {(e.g., orientation}
does not match RESC, o0 ’s current predictions — is cer-
tainly a tracking failure. However, in addition, inaccurate
commitments in RESC, .4 can also cause role failure, a
new tracking tailure, which may occur in one of three ways
due to violation of the role coherency constraint. First, rofe
overload failure occurs if the number of subteams exceeds
the nmumber of roles in a team operator. Second, role under-
subscribe failure occurs if the number of subteams falls short
of the required number of roles — particularly, if subteams
merge together. Third, rele assignment failure occurs if the
number of subteams equals the number of roles, but they



do not match the roles. Both match and rele failures cause
the same repair mechanism to be invoked — current-state
backtracking — although in case of role failures, operators
with higher (or lower) number of reles may be attempted
next. (Abstract higher level operators, which may not im-
pose role-coherency constraints, are not susceptible to role
failures). One novel issue in team tracking, outlined in step
3, is whether the match failure of one subteam is one of
just that subteam or the whole team (discussed in the next
Section).

The result of RESC; g4 in tracking the situation from
Figure |-a is shown in Figure 3-a. At the top-most level,
execute-missionpr denotes the operator that I uses to track
7’s joint mission execution. Since 7 s mission is not yet
complete, D applies the inferceptyr operator in the sub-
goal to track 7’s joint intercept. In the next subgoal,
employ-weaponspr is applied. Following that, ger-firing-
positionpyr tracks I's belief that 7 is attempting to get to
a missile firing position, and so on. Each operator in this
operatorpy hierarchy indicates D’s model of 7 ’s joint com-
mitment to that activity.
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Figure 3: Team tracking via team operators. Some team
operators require exactly one role. Rather than naming
such a role, we denote it with a “#".

When the team in Figure L-a splits into two subteams,
role overload failure causes employ-weaponspr to fail. Af-
ter current state backtracking, operatorpr hierarchy in Fig-
ute 3-b results, which correctly tracks the on-going pincer.
Here, pincerpr <LEFT, RIGHT> has two roles. The chil-
dten of this operator specify activities — starting left and
tight arms of the pincer — for the two subteams formed.

Team models and RESC;eom ptovide improved expres-
siveness, efficient ambiguity resolution and robustness re-
quired for team tracking. Team operators are expressive,
since they explicitly encode a team’s joint activity, with
roles expressing different activities for subteams. For in-

stance, the team operator hierarchy in Figure 3-b clearly
expresses the team’s joint pincer, the subteams involved
and their roles in it. Team operators also facilitate real-time
ambiguity resolution by enforcing jeointness. Farthermore,
tole coherency in team operators adds further constraints,
since subteams may only fill unassigned roles. For instance,
in Figure 3-b, if one subteain is assigned to the LEFT role of
a pincet, the othermust also be part of the pincer, and in fact,
must fulfill the RIGHT role. Additionally, team models also
execute fewer operator hierarchies, e.g., instead of execut-
ing fout separate opetator hierarchies corresponding to four
individual opponents, Id executes only one team operator
hierarchy. Even if subteam hierarchies are generated, they
are still fewer than the number of agent hierarchies. Finally,
team models provide robustness due to abstraction from in-
dividual agents to teamns and subteamns. Thus, tracking is
not disturbed if agents switch allegiance from one subteam
to another, or heretofore unseen agents emerge in a team,
etc., unless this forms new subteams.

Team models and RESC;eq,, are applicable for track-
ing even if an agent is a collaborative participant in the
team. Consider the scenario in Figure 3-c, which shows a
team of simulated helicopters executing its mission(Tambe,
Schwamb, & Rosenbloom 1995), again in the real-world
combat simulation environment{Calder er al. 1993). He-
licopter radio communications ate often restricted to avoid
detection by enemy. It is thus essential for a helicopter pilot
agent to infer relevant information from the actions of its
teamumates, €.2., the team has reached a pre-specified hold-
ing area since teammates have begun hovering. To track
team activities, a team member executes a team model, us-
ing RESC;egm. In Figure 3-c, the tracker happens tobe a
subordinate in the team, and the result of its tracking is the
operator hierarchy shown. That is, the tracker believes its
own team as jointly engaged in execute-mission. In service
of mission execution, the team is flying a flight plan via
a technique called traveffing. Travefling involves a LEAD
tole, and two othet FOLLOWER roles, causing the operator
hierarchy to branch out.

The key point in Figure 3-c are the two types of unifor-
mities shown. First, team models and RESC, . 4n, are shown
to be uniformly applicable in a collaborative situation. Sec-
ond, the process of an agent’s generation of its own actions
and its tracking of its teanumates” actions are also shown to
be uniform. The tracker executes the follow-feaderoperator
branch to generate its own behaviors, while executing the
other branches to track teammates.

The Joint Intentions Framework

While team tracking has received little attention in the liter-
ature, reseatchers are investigating teamwork(Grosz & Sid-
ner 1990; Cohen & Levesque 1991 ;Kinny ef af. 1992). One
leading theoty of teamwork is the joint intentions frame-
work(Cohen & Levesque 1991). Very briefly, this theory
states that a team jointly intends an activity if it is jointly
committed to completing that activity (commitments have
a comunon escape clause g). Joint commitment implies that
{(at least initially) team members have a mutual belief that



they are each committed to that activity. Furthermore, a
team jointly intending an activity, leads subteams to intend
todotheir share in that activity, subject to the joint intention
remaining valid.

In a team model, a team operator selected in an opera-
tor hierarchy (as in Figure 3) is or tracks a joint intention
in the above sense. Thus, team models are among the first
practical applications of the joint intentions framework; and
their application here is certainly novel — tracking team ac-
tivities. This application raises one issue: joint intentions
pack with them the responsibility of a team member when
it privately comes to believe that the team’s jointly intended
activity is unachievable {or achieved) — this team member
is left with the commitment to communicate this private
belief to its teammates. However, if conumunication itself
is very costly — breaking radio silence may be risky for a
helicopter pilot agent — such a commitment may be inap-
propriate. Thus, when tracking, RESC; ¢4y, does not assume
that all subteams are aware of a subteam’s deviation from
its role{more in the next section).

Enhancements in Team Tracking
Efficient Role Assignments

‘While team operators do constrain tracking effott via joint-
ness and role coherency, role assignment in team oper-
ators can potentially be inefficient. Given a team op-
crator with R roles, a tracker may need to test all R!
petmutations of subteam to role assignments; generating
R children cperators in each test. TFurthermere, such a
team operator could itself be defined in terms of multiple
role combinations. Although in some such cases almost
no role combinations may be disallowed, in other cases,
there may be a fixed set of allowable role combinations.
For example, half-pincer< STRAIGHT,RIGHT> and half-
Pincer< STRAIGHT,LEFT > are two separate definitions of
half-pincer — in one tole combination, one subteam flies
straight to attack, while a second subteam attacks from the
left; while the second combination invelves an attack from
the right. If there are C such role combinations, the total
operators executed are R xR!xC. Furthermore, observa-
tions of match failure are often not instantly available —
and thus, real-timme role assignment can be difficult.

To alleviate this inefficiency, any multiple definitions of
a team operatot, corresponding to its multiple role combina-
tions, are unified together, with explicit constraints to define
allowable role combinations. The role assigmment problem
for this unified operator is now cast as a constraint satisfac-
tion problem (CSP)(Kumar 1992). In this CSP, subteams
are variables and possible roles are the domains of those
vatiables. Constraints are the explicit constraints among
roles, i.e., their allowable combinations. Figure 4 shows
the role assignment for kalf-pincer cast as a CSP. Subteams
81 and &, are variables, with the roles of half-pincer as
their domains. The static constraints specify that in a half-
pincer, one subteam must take on the role STRAIGHT, the
other must take on either RIGHT or LEFT. Observations of
subteam actions provide dynamic unary constraints.

Static Constraints =

Lynamic {(LEFT,STRAIGHT) Dynamic
observations RIGHT.STRAIGHT)} ohservations
L= So

Domain= {LEFT,RIGHT STRAIGHT} Dormain = { LEFT,RIGHT,STRAIGHT}

Figute 4: Detailed illustrative CSP (two variables).

Unifying role combinations and casting the problem as a
CSP provides several benefits. First, while detecting match
failures is the simplest consistency check (node consis-
tency), other constraint propagation techniques such as arc
consistency or path-consistency(Kumar 1992) can acceler-
ate the process of role assignment (or detecting failures).
For instance, in Figure 4, if node-consistency rules out the
tole STRAIGHT fot subteam &;, then arc-consistency will
automatically tule out roles LEFT and RIGHT for &. This
is important, given complex constraint graphs tested (up to
four vatriables), and the absence of immediate observations.
Additionally, independently testing the node consistency of
variables converts the multiplicative effect of generating
combinations of role assignments into an additive effect. Tn
general, given this mapping, more of tracking could be cast
as a CSP — an issue for fututre work.

Based onthe above, RESC,.qm was modified so that roles
in a team operator are assigned to subteams via CSP (unless
the role assignment is known). So far, only arc-consistency
has been incorporated in RESC;eqm. RESCieqm, being a
repair-based approach, solves this CSP via a repair-based
approach(Minton et al. 1990) — it commits to one assign-
ment of roles to subtcams, and dynamically repairs incon-
sistent assignments.

Minimum Cost Repair in Tracking

Repairing role assignments to subteams is, however, more
complex than indicated in the previous section. In particular,
team tracking raises a novel issue — ambiguity about a
subteam’s degree of adherence to its role. If a subteam is
strongly adherent it is very likely to fulfill its role in the
joint activity; but if it is weakly adhetent, it may deviate.
Thus, when a subteam is observed to not fulfill its role,
there are two possible explanations: (i) the subteam being
strongly adherent is fulfilling its role, but there is an error
in tracking the entire team tactic; or (ii) this single subteam
being weakly adherent is deviating from its role to respond
to some event. For example, in Figure 1-d, we assumed that
a weakly adherent subteam responded to a missile firing by
abandoning the teamm’s on-going pincer. However, if this
subteam were known to be strongly adherent, then it would
never deviate from its role, and thus there is an error in
tracking — the whole team was not executing a pincer. A
symmetrical issue arises if a subteam is seen to fulfill its
tole despite a reason to deviate. This could be because it is
strongly adherent; but if it is weakly adherent, then there is
an error in tracking.

This ambiguity greatly increases the search space of re-
pairs in RESC; ¢pm. To tame the search, RESC;eqm uses
the heuristic of minimal cost repair — where cost measures



the amount of repair effort required to continue error-free
tracking. Zero repair to the team model is naturally consid-
ered lowest cost. Repairing a single subteam’s model (i.c.,
operators involving just a single subteam) within the team
model is considered higher cost {(given a possible reason for
the subteam deviation). Repairing operators involving the
entire team is considered to be even higher cost.

The tracker uses this minimal repair cost heuristic in at-
tributing a degree of adherence to subteams. Thus, if a
subteain is fulfilling its role despite events that could cause
deviation from that role — e.g., if a missile has been fired at
the subteain — RESC; ¢4, attributes strong adherence to the
subteain; this attribution suggests zeto repair for continued
error-free tracking. If, however, a subteam does not fulfill its
role during such an event, then RESC; ¢4, attributes weak
adherence to the subteam — the event supports a cheap
repair to explain this single subteam’s deviation. Thus,
RESC;eam assumes that this single subteam has abandoned
its role in the joint activity. In terms of CSP, this aban-
donment implies disabling outward constraint propagation
from this subteam variable. Thus, this subteam is no longer
assumed as part of the joint activity; however, the other
subteam is assumed to continue. In contrast, if a subteam
deviates without an explaining event, RESC,; .40, assumes
team-wide etror (applies normal CSP).

The pragmatic rationale behind the above heuristic is
that it reduces teal-time repair expense. Theoretically, it
leans towards parsimonious explanations (it is based on
minimality of fault models{Stefik 19957). This heuristic is
actually already incorporated inte individual-agent RESC
in that once committed to an interpretation, RESC avoids
repairs until failure.

Implementation Results and Evaluation

We have implemented experimental variants of Scar-based
pilot agents for both simulated fightets and helicoptets. The
otiginal pilot agents have participated in various large-scale
exercises, some involving expert human pilots(Tambe et
al. 1995). Our experimental pilots {called pilot”““’") in-
cotporate RESC; e, (contain over 1000 rules). Promising
results have led the teain models to be ported to the original
agents.

We have run the pilots agents in several combat
simulation scenarios outlined by our human experts. Fig-
ute 5-a compares a fighter pilot?"2¢%¢"s performance when
tracking with team models versus when using individuals’
models. The scenario in Figure | is used as a basis for
comparison, with four agents in the opponents” team. Fig-
ute 5-a shows the percent of its total time that pilot®2¢%¢”
spends in acting and tracking. Thus, when using team mod-
els in tracking, a pilot*"2%%¢” spends only 18% of its time is
tracking. In contrast, it spends 71% of its time in tracking
when using individual agents” models. Basically, individ-
ual agents” models fail to cortectly track the team’s pincer.
This failure is not simply in tetms of inexpressivity, but also,
unable to exploit the teams” jointness, they engage in a large
unconstrained tracking effort. Thus, they run out of time,
before they can each at least individually detect the pincer.

irocker

Similarly, with team models, pilot”““" spends only 7%

of its time in deciding on its own actions{SELF), since it
can quickly and accurately track its opponents. In contrast,
pilot*”2°% e incorrectly readjusts its own maneuvers when
using individual models; hence spends 28% of time deciding
on its own actions. Figure 5-b provides similar comparative
numbers for a team consisting of three opponents. (Thus,
when using team models, a pilot™™2°*¥¢” spends 25% (18%
TRACKING + 7% SELF) of time in mental activity, and
the rest it waits for its maneuvets to complete. When using
individual models, most of the time is spent tracking.)

% of 0 _| %of 7°_| mm TEAM MODEL
Total Total
Time 50 _| Time 850 | g INDIVIDUAL MODELS
50 50
40 an
30 | a0 ]
20 | 20 ]
10 10

1 =
TRACKING SELF
{by Three Agents in TEAM

TRACKING  SELF
{a) Four Agents in TEAM

Figure 5: Comparing the efficiency of team models and
individual models. Time measured in simulation cycles.

Focusing only on role-assighment, Table | presents the
reduction in tracking effort due to team models and CSP
(assuming four agents in each tactic). Column | names dif-
ferent tactics{Shaw 1988). Column 2 estimates the (worst-
case) total number of operators searched assuming roles
assigned to individual agents rather than subteams. Col-
umn 3 shows the factor reduction in the operators searched
when role assignment is based on teams/subteams. The final
colummn shows the actual results from the RESC; .5y im-
plementation, with operator role-unification and CSP. The
reduction in tracking effort is substantial, and it will only
grow with increasing numbers of agents.

Tactic Num opettors Reduction | Reduction

name indivdul models | team model | team+CSP
Pincer 56 14 14
Half-pincer 112 14 22
Posthole 112 14 22
Pincer-trail 144 g 24

Table 1. Factor reduction in role assignment effort due to
operator rele-unification, team models and CSP.

Summary and Discussion
Animal and human (natural) world is full of collaborative
and competitive team activities: aimongoose team surround-
ing a Cobra, a pack of chectahs hunting a prey, games of



soccer or cricket, an orchestra, a discussion, a coauthored
paper, a play, etc. It is only natural that this teamwork is
{and will be) reflected in virtual and robotic agent worlds,
e.g., robotic collaboration by observation(Kuniyoshi et af.
1994), RoboCup soccer{Kitano er af. 1995}, virtual the-
atre(Hayes-Roth, Brownston, & Gen 1995), virtual battle-
fields(Tambe et al. 1995). If agents are to successfully
inhabit such worlds, they must understand and track team
activity. This paper has taken a step towards this goal and
advanced the state of the art in agent tracking and plan recog-
nition. Key contributions/ideas in this papet include: (i) the
use of explicit team models for team tracking; (ii) uniform
application of teamm models regardless of an agent’s being
a participant or non-participant in a team; (iii) demonstra-
tion of the key advantages of team models, specifically,
efficiency, robustness and expressivity gained viajointness,
and team abstractions; (iv) use of constraint satisfaction
for improved tracking efficiency; (v) use of a minimal cost
tepair criterion to constrain tracking search.

Team models are one of the first to practically instanti-
ate the theoretical joint intentions framework. While team
models and other key ideas could be applied in different ap-
ptoaches to tracking, we presented one specific apptroach:
RESCieam - Althoughbased on RESC, RESC, ¢4y, includes
several additions to address subteam formation{merging),
role assignments and subteam deviations. RESC;eqs has
been applied to two different tasks in a synthetic yet real-
world environment: (i) a collaborative task involving sim-
ulated helicopters; and (ii) an adversarial task involving
fighter combat.

One concern raised in generalizing this work to other do-
nains is detecting that observed agents actually forma team.
Currently, the team is either known in advance (e.g., heli-
copters) ot it is detected based on agents’ proximity to each
other (e.g., pilot agents conclude that enemy fighters within
34 kilometers form a team). It appeats that in many do-
mains, teams ate indeed known in advance (e.g., RoboCup
Soccer or collaboration by observation); nonetheless, fu-
ture work will hopefully uncover some general heuristics
for team detection. Another issue for future work is track-
ing (apparantely) ill-structured team activity. To this end,
we are currently testing RESC;e g, in RoboCup soccer sim-
ulation(Kitano et al. 1995).
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