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Abstract. Common wisdom says that the greater the level of teamwokk, th
higher the performance of the team. In teams of cooperatit@enamous agents,
working together rather than independently can increaseettim reward. How-
ever, recent results show that in uncertain environmentsgasing the level of
teamwork can actually decrease overall performance. @dineteam uncer-
tainty penalty this phenomenon has been shown empirically in simulation,
the underlying mathematics are not yet understood. By wtaleding the math-
ematics, we could develop algorithms that reduce or eliteitiais penalty of
increased teamwork.

In this paper we investigate the team uncertainty penaltyvorfronts. First, we
provide results of robots exhibiting the same behavior $eamulations. Sec-
ond, we present a mathematical foundation by which to aealye phenomenon.
Using this model, we present findings indicating that theteacertainty penalty
is inherent to the level of teamwork allowed, rather thanpecfic algorithms.

1 Introduction

Recently there has been a rise in autonomous teams of agerkmgvcooperatively.
Teams of artificial agents, whether software or robotic @edpdeployed today in a va-
riety of scenarios, including mobile sensor networks (Ghetral., 2005; Marden et al.,
2007; Jain et al., 2009), and teams of underwater autonosougs (Zhang et al.,
2005). Many problems are universal across multiagent syst&ven in fully observ-
able environments, centralized solutions scale poorli thieé number of agents. Often
centralization is not an option, and agents must behavéfpaindependently while
still working with each other to facilitate cooperation.ftanderlying understanding of
these issues is that the higher the level of teamtit& better the outcome.

Recently, however, the question ibfagents should work together has arisen. As
such, we do not concern ourselves with issues of commuaitétithis paper, but in-
stead focus on when and if the level of teamwork amongst agdnauld be increased.
We recently introduced the notion of tkeam uncertainty penaltffaylor et al., 2010).
Put informally, this result shows that agents should samegiact alone, rather than at-
tempt to coordinate, even if communication is free. Presiwork points to the density
of a graph as the leading culprit, but the underlying causeies a mystery.

! This paper focuses on cooperative multi-agent problemsenéié agents may be considered
part of a single team as they share a common reward functiowel#r, we use the term
“level of teamwork” to refer the amount of partial centralimn among agents, reflected in
how much information they share, how they coordinate astiamd how many agents may
simultaneously perform a joint action. More precisely,H@glevel of teamwork will refer to
higher values of; in the k-optimal andk-dependent algorithms that follow.



Empirical evidence has shown manifestations of the teanerteiaty penalty in
simulation (Taylor et al., 2010). While analysis of thessutes suggest when the phe-
nomenon will be observed, there has not yet been a way tordietesa priori when
the team reward will or will not suffer from increasing ageobperation. Outside of
simulation, the extent of the team uncertainty has not yenhlsudied and it is un-
known how debilitating it can be in robotic applications. idover, as of yet there is no
mathematical framework under which the specifics of the phemon can be analyzed.

This paper provides experimental evidence of robot teamibig similar results
as those found in simulation. We also provide a mathemadioalysis used to help
pinpoint the contributing factors of this counter-intuggiphenomenon. Additionally, in
Section 5.3, we provide evidence showing that the team taingr penalty is a part of
the DCEE framework rather than an artifact of specific alfpons. We introduce the
notion of L-Movement and analyze that ramifications of restrictingdiewed total
movement of an agent team. We also introducectirdiguration hypercubor specific
problem formulations and propose that analysis on the fibsiEc structure of this
hypercube will lend key insights into the behavior of preasly explored algorithms.
In particular, we suggest that analysis of the hyperculgwalide a heuristic by which
one can predict the effects of increasing the level of teark\iar a given problem.

2 Background

The Distributed Constraint Satisfaction Proble(@COP) (Mailler & Lesser, 2004;
Modi et al., 2005; Petcu & Faltings, 2005) framework is begagrcommon for mod-
eling cooperative multiagent scenarios. Because of itétyabd model the need for
cooperation via the notion of joint rewards, the formulatie being used in several
problems, such modeling sensor networks and for multiagkam coordination (Cox
et al., 2005). Solving a DCOP (determining a globally optic@anfiguration) is NP-
Hard (Modi et al., 2005), and thus there is substantial wowkatrds finding fast, locally
optimal algorithms (Maheswaran et al., 2004; Pearce e2@08; Stranders et al., 2009).

In real world applications, the rewards are not knanpriori, and discovering them
requires exploration. Moreover, agents are concernedanittal, online reward achiev-
able in a limited time frame. We present one example of sudipafication in Section
4. When working in such environments, agents must strikdanba between exploit-
ing their current knowledge and exploring their environtm&vhile exploration vs. ex-
ploitation is a common problem for single agents (c.f., i@icement learning (Sutton
& Barto, 1998) and multi-armed bandits (Robbins, 1952)yjinga multiagent system
where rewards are determined by the coordination of ageluts a level of complex-
ity. The DCOP framework, however, assumes that all aspddtsecenvironment are
known. Allowing uncertainty to be modeled, the notion ddtributed Coordination
of Exploration and ExploitatiodDCEE) problem was recently introduced (Jain et al.,
2009). This extension of DCOP to real world environment®aats for the uncertainty
of rewards, as well incorporating the notion of a limitedeihmorizon. For reference, we
describe DCEE here.

A DCEE domain is much like a DCOP, with several key differenc@pecifically,
the rewards in the constraint matrices are not known urdiyf tire explored. That is to
say that the reward achieved by ageAtsand A; when they assign their variables to



Am and ), respectively is not known until a point thali; assigns value\,,, and A4,
simultaneously assigns valug. What is knowra priori, however, is something about
the distribution over rewards for each constraint. In tlsipgr we assume the underlying
distribution of rewards is known.

A DCEE consists of a sep of n variables{x;, 2, ..., z, }, assigned to a set of
agents, where each agent controls one (or more) variatdsigranent. For this paper
we concern ourselves with the case when every agent has oelyariable. Agents
have at mosf’ roundsto modify their variables:;, which can take on any value from
the finite domainD;. The goal of such a problem is for agents to choose values for
the variables such that the cumulative sum over a set of pir@rstraints and associ-
ated payoff or reward functiong;; : D; x D; — R, is maximized over time hori-
zonT € N. More specifically, the agents attempt to pick a set of assanis (one
per time step:Ay, ..., Ar) such that the total reward (tmeturn) is maximized:R =
E?:O Ewi,wjev fu(dl,dj), Wheredi S Di,dj S Dj anda:i “— di,]}j — dj c Ag.

The following is a list of select properties that DCEEs hdue,DCOPS do not: (1)
agents initially know the constraint graph but only disaoesvards through exploration
(i.e., a pair of agents set their values to explicitly dismoa reward), (2) problems
last a set amount of time, (3) there are more combination®ofain values than can
be explored within this time (disallowing exhaustive explion), and (4) we seek to
maximize the online global reward for the team over this thogzonT'.

A DCEE can be thought of as being defined in part by a gi@ph {V, E'}. In this
framework, every variable corresponds to a verteX jrand every constraint is an edge
in E. Every edge is thus a two dimensional matrix where every efginas been drawn
i.i.d. from a known distribution. Throughout this paper vegar to an agent changing
its variable’s value as that agembving

2.1 k-Optimal

Centralized algorithms for DCOPs scale poorly, as findindodaly optimal reward
is NP-Hard (Modi et al., 2005). Because of this, approxinid@OP algorithms are
heavily worked investigated (Zhang et al., 2003; Pearce & 2007). The notion
of k-optimal configurations expresses the level of a locallyroat solution. The lower
the value ofk, the more local thé-optimal solution.

Algorithms previously presented (Taylor et al., 2010) camelifferent variants
based on the value &f This value indicates the maximum size of a coalition of agen
that can move at each step. In a DCOR:@ptimal configuration is defined as one where
no coalition of up tok agents would benefit by changing their variable. The notion o
k-optimal does not extend directly to DCEE, as we discuss ati@e5.1.

2.2 SE-Optimistic

The DCEE algorithm SE-Optimistic-1, wheke= 1, will behave as follows. A group
of agents is considered to be in a neighborhood if the sulbgregated by those agents
form a connected graph. In each round, every agent caldhi@itepotential gain (how
much they could improve their reward) obtained by movingearrtie assumption that
all other agents in their neighborhood will not move. Eachrdglso queries each of
its neighbors for their potential gain. If an agent has a &ighotential gain than any
of its neighbors in a given round, it will move so as to obtagmwmaximum gain. In



SE-Optimistic-2, wheré& = 2, a pair of agents (in the same neighborhood) will move
if their total potential gain is higher than any other paiegents in their neighborhood.

Intuitively, these algorithms perform a greedy searchalcheround, the agents who
would most benefit by moving alone do so, while others in theesaeighborhood do
not move.k = 2 algorithms allow more agents to attempt to improve theiiviodal
rewards in each around, while in= 1 algorithms only one agent per neighborhood
may move per round.

2.3 MGM-Omniscient

Omniscient algorithms (Taylor et al., 2010) are artifigighrovided the values of all
rewards of joint actions and thus do not need to explore. Ti@mation, causing
the algorithms to be “omniscient” in regards to the rewardsdifies a DCEE into a
DCOP. The omniscient DCEE algorithms referred to in thisgsapamely omni-1 and
omni-2, are previously introduced algorithms run on thiiteng DCOP. In omni-1, in
each round every agent calculates how much it could imptsv@vn reward by being
the one in its neighborhood to move. After agents commueitease values amongst
others in their neighborhood, the agent who can increasertiveard the most moves,
and others in the same neighborhood do not. Omni-2 is siptitarallows for agents
to form coalitions of two agents in the same neighborhood, lasth may move in a
single round. These algorithms, callei@ximum Gain MessagdGM), are described
in detail elsewhere (Pearce & Tambe, 2007).

3 Team Uncertainty Penalty

Intuitively, it seems that the more teamwork amongst twithidooperative agents the
better the overall performance of the team. Increasingetiel lof teamwork among
agents will add to communication overheads and computatomsts, but in this work,
we ignore both communication and computational costseatstthe team uncertainty
penalty has to do with decreased total reward (in some cistamees) when teamwork
is increased (Taylor et al., 2010).

The prevalence of the team uncertainty penalty has beenrsbaowirically. It has
been observed in varying graph topology, and across sealg@ithms. In Section 5.3
we present experimental results of a more mathematicaten#ttat suggest the team
uncertainty penalty in even more general, being an artidft¢he level of teamwork
rather than the specifics of the algorithms.

Before discussing the penalty in more depth, we first outfireedomain used and
then discuss results in the domain exhibiting this coumiteritive behavior.

3.1 Simulator Domain

The DCEEmMobile wireless netwongroblem was first introduced elsewhere (Jain et al.,
2009). To explore this problem, we have built and releasdthalator that models a
set of mobile robots with wi-fi antennas that must optimize $khm of the inter-agent
signal strengths. Value settings correspond to agent {rddeations, constraints are
determined by the network topology, and rewards are basdihloguality between
robots. As in prior work, we assume that the topology is fixbdt small changes to

2 Available atht t p: / / t eantor e. usc. edu/ dcop.



agent locations causes signal strengths for that agenttmeuncorrelated with their
previous values (i.e., small scale fading dominates (Mhli005)), and that signal
strengths between agents are symmetric.

3.2 Simulator Results

Previous results (Jain et al., 2009; Taylor et al., 2010)alestrated that multiple DCEE
algorithms were effective at improving the online rewardhia simulated domain over
multiple numbers of agents, experiment lengths, and néttagologies. To quantify
performance, we consider ttetal gainof different algorithms, where the gain on round
n is defined as the difference between the team’s reward ordrawand the team’s
reward on round.

Figure 1 shows the total gains of algorithms on graphs of ®dtsyun for 50 rounds
each (averaged over 10 independent trials). First, contigeOmniscient algorithms
(Omni, Omni-2, and Omni-3). In the left half of the graph, ve=ghat as the amount
of teamwork (i.e. k) in the Omniscient algorithm increases, the total rewandndu
experiments on chain graphs increases. The right half gfrédygh shows the same trend
for complete graphs: @sincreases, the Omniscient algorithm receives more reward.

Results of the Optimistic algo-
rithms in Figure 1 tell a different story.  40.000
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decrease the team reward (relative to
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nomena is further analyzed and dis- 0
cussed elsewhere (Taylor et al., 2010),
but strictly on an empirical basis. Fig. 1. In most cases, increasing the amount of
teamwork improves the team reward of agents.
4 Robot Experiments However, as teamwork increases in SE-Optimistic
. ) . ) in a ring graph, team performance decreases. The
This section provides novel experimeny.axis shows the “total gain,” which is a measure
tal results on physical robots, corroboof the total on-line improvement over the length of
rating the results from simulation dis-the experiment, relative to no optimization.
cussed in the previous section. Previous results (Taylat.e2010) come from simu-
lations of DCEE. Here we provide evidence that the DCEE fdatien holds true to
real world scenarios, specifically in the case of mobile tslsonnected via a wireless
network. Moreover, we demonstrate the team uncertaintglpemanifesting on actual
hardware.
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4.1 Problem Setup

Robots in this section run DCEE algorithms in order to maxarthe signal strength
between wireless network receivers, analogous to the atinnldescribed in Section 3.



An agent can measure the wireless signal strength betwsalhaind each neighbor,
corresponding to measuring the reward for the pair of agesigaments. Agents select
from a set of possible physical locations (i.e., a variasli@gnment). Because the time
for movement in physical robots dominates communicatiahcaiculation time (Jain
et al., 2009), we measure experiment length by the numberunfds defined by the
period in which every agent may decide to move to a new paoséiad then reach that
position. All agents may choose to eittsdray in their current position oexpl or e.

The Create, made by iRobot, is used as the platform for ougraxents (see Fig-
ure 2). Additionally, an ebox-3854 is used as an on-boardoeter and the EMP-8602
mini PCI card is used for 802.11 b communication between thets. More details
can be found attt p: / / enl . usc. edu/ proj ect s/ peg/platformhtn .

4.2 Results
This section discusses the results

of executing the SE-Optimistic-
1 and SE-Optimistic-2 algorithms
on physical robots. To corrobo-
rate the results in simulation, the
two algorithms are tested on both
chain and complete graphs of five
agents each. Figure 3 shows the
average gain per round of the four
different setups. The plots aver-
age ten trials and error bars show
the standard error. In all cases, the
algorithms improve the reward of
the team, although SE-Optimistic-1 on the complete gragindaves much more slowly.
One possible reason for this discrepancy is that the gaieesth by the agents is de-
pendent on the starting configuration — the worse the stadgimfiguration, the more
latitude exists for achievement. Unfortunately, the pbglsagents cannot be returned
to exactly the same start state, and thus different triale lthfferent initial signal
strengths. The average team initial reward for the comgletphs when run using SE-
Optimistic-1 was 574t 55, whereas the average for SE-Optimistic-2 was 5081,
thus SE-Optimistic-1 has a relatively harder time imprguine team’s reward.

Figure 4(a) displays the total gain (i.e., the area undectimees in Figure 3). We
again see that SE-Optimistic-1 on a complete graph perferanse than all other al-
gorithms. Most important is that the trends from section & sgen again. In a chain
graph,k = 1 outperforms: = 2, and in a complete graph,= 2 outperforms: = 1.
As such, these experiments on five robots confirm trends qieetlin simulations of
10-50 virtual agents.

Fig. 2. Three Creates with additional hardware.

5 Analysis of the Team Uncertainty Penalty

This section provides a mathematical foundation for anatythe team uncertainty
penalty. We extend the notion ofaoptimal configuration in a DCOP to the DCEE for-
mulation. We also introduce the notion bfmovement which expresses the flexibility
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Fig. 3. This plot shows performance of SE-Optimistic on two differgraph topologies fot = 1
andk = 2. The x-axis shows the round number and the y-axis shows time Basults are
averaged over 10 trials, each using 5 agents. Standard em®shown only ok = 1 plots for
readability.

in exploration of a given DCEE algorithm. Finally, we presamathematical model of
DCEE problems based on the interplay of random variables.

Previously introduced algorithms such as SE-Optimistieyd SE-Optimistic-2 have
behavior defined by the valug controlling the number of agents that cooperate in each
round. We refer to this class of algorithms laslependentPrevious work points to
graph density as a strong contributing factor (Taylor et2010), and we extend this
analysis by introducing the notion @¢movement, which ties directly to graph density.
In addition, we provide simulation results showing the etfeof changing the value of
k in k-dependent algorithms.

We hope that the DCEE formulation will eventually be undeostfully on a the-
oretic level. This section provides a foundation for suctuaderstanding, as well as
some initial results from the proposed mathematical mod&l.show that the team
uncertainty penalty may not be the fault of the individugaalthms, and provide evi-
dence that the phenomenon is an inexorably tied to DCEE fiation and algorithms’
dependence oh.

5.1 Extendingk-Optimality and Introducing L-Movement

In a DCOP, a configuration is defined faoptimal if no connected group of at most
agents would benefit by jointly moving (Maheswaran et alQ£@earce et al., 2008).
In a DCEE, however, the rewards are not known, and thus art égregroup of agents)
cannot know whether or not they would increase their rewgrdhanging their vari-
able(s). Therefore the notion éfoptimality does not extend directly from DCOP to
DCEE. However, if the reward distribution(s) are known in @EE, a natural exten-
sion of thek-optimal definition is that a DCEE configurationisoptimal if and only

if no connected group of up th agents has a positive expected gain by choosing an
entirely new configuration. However, this does not allow thee possibility of agents
reverting to a previously seen (partial-)configuration.



Average Total Gain
10,000

]
=~ x
i
T
L

8,000

6,000

4,000

2,000

Scaled Gain

-2,000]

-4,000

= 8
5 @
5 3
S
(a) Robot Results (b) Topologies

Fig. 4. The chart in (a) shows that the total gain in robot tests ¥ollee trends from simulation.
SE-Optimistic-1 outperforms SE-Optimistic-2 on chaingirs, but underperforms it on complete
graphs. Standard error over the 10 trials are shown for egtting (b) depicts two topologies
used throughout the paper: a five node ring graph (top), anve adide complete graph (bottom).

In a starting configuration of a DCEE, where only one configara(the current
one) has been explored, this definition is reasonable, amtexts well with the notion
of k-optimality of a DCOP configuration. After even one roundweweer, groups of
agents have the option to jointly move back to a configuratibare some or all of the
constraint reward values have been observed. As such;dptimality of a configura-
tion would depend on the set of configurations already oleseWe therefore provide
a definition ofk-optimal in DCEE as follows.

Definition 1. A DCEE configuration, combined with the history of exploredfigu-
rations, isk-optimal if and only if no group of up té agents has a positive expected
gain by selecting another configuration with zero or more st@int values already
explored.

This says a configuration is onkroptimal if no coalition of up tdk agents could move
S0 as to increase their total reward by each agent eithesléigtsng previously explored
values and obtaining the known rewards, or (ii) selectingxptored actions leading to
a positive expected gain in total reward. Because of thertpece on explored and
unexplored configurations, the set of potentiatpptimal configurations of a DCEE is
extremely large. Consider the following example.

Example 1.A DCEE with two agentsA; and A, and one constraint. When each vari-
able takes on the first value, the first reward is known — supjitois 120.A4; then
moves, selecting a new value, and the constraint yields arceof 110. At this point
two rewards are known. Suppose eitligror A, can select an action that will yield a
reward of 110 with probability .5, and a reward of 100 with Ipaility 5. Selecting a
new action would yield an expected gainidfo — 105 = —5. However, if A; reverts
to its previous action it can increase the total rewardl®y — 110 = 10. Thus this
configuration, combined with the history of explored confaions, is noti-optimal.

We now focus on a different aspect kfdependent algorithms. First we introduce
L-Movementa value we will use heavily in our analysis.



Definition 2. The L-movement, denoted ds of a DCEE algorithm on a graply is
the maximum number of agents that can move in any one round.

There is no restriction inherent to the DCEE formulation lo@ humber of agents
that can move at each step. For example a valid, albeit nalgerithm would move
every agent at every step. In SE-Optimistic-1 and SE-OptimR, as well as other
k-dependent algorithms, only a limited subset of agents carerat each step.

This restriction of movement is caused by the fact that amtagannot move if
more thank — 1 of its neighbors also move. For a given graph, we denote thémnoen
number of agents that can move in each round/etigpendent algorithm ds. We that
note L is dependent on the graph topology, for examplé ia 1 algorithmsL is the
size of the largest maximal independent set of the graphlue kaown to be NP-hard
to calculate for a general grapb-movement is central to our analysis presented in 5.3
where we show the change Incaused by changing determines the change in team
performance. Consider a ring graph and a complete graph,\ith 5 vertices (see
Figure 4(b)). In the ring graph, the size of the maximal irefggent set is 2, whereas in
the complete graph itis only 1. In general, the size of theimakindependent set of a
ring graph isU—‘Q/'J, and is 1 for a complete graph.

5.2 The Configuration Hypercube
For a DCEE problem, we use the following notation:
G={V,E} The graph of the DCEE.

A={A1,... Ay} The setagents.
R ={Ri,...,Ryg} The set of constraints.

T The distribution from which the rewards &; are drawn.
T The number of rounds for which the algorithms are run.
xT; The variable of the agem;.

D; The domain of;.

C The configuration hypercube (defined below).

Ai The value of theé-th coordinate of a location ié.

We consider the set of all DCEE algorithms where:

— The starting configuration is initialized randomly.
— The algorithm is run fok steps, ending with some configuration.
— That ending configuration is then chosen for every step f@rdist of time.

This is to say that steps are allotted to exploration, after which the algamitbnly
exploits (keeps the same configuration) for the remaifiirgs rounds. We analyze the
reward achieved after thesteps of exploration.

To analyze such algorithms we defin¢glg-dimensional hypercub@ as theCon-
figuration HypercubeEach dimension of corresponds to an agent, with the loca-
tion within that dimension defined by the assignment of then&g variable. We let
C[A1, A2, ..., \v|] be the total reward when agesf takes value;.

We note that, for a given agent, no value for its variable ikelded a priori to
be more beneficial than any other. Therefore, without losgewferality we say that
each agent|; has an ordered list of valugs= a1, ..., o p,|, and that at each round
of a DCEE algorithm, an agent has only two choices: (1) selactalue previously



chosen, or (2), select the first value (the value with the &iredex) that has not yet
been assigned. Further, for any DCEE algorithm, we assuganavithout loss of
generality) that all agents begin with their first varialdtisg, o .

At each round of an algorithm, zero or more agents move. Natestt any location
A= (A1...Ay)) inC, the achievable locations after one step are all locatidjzcant
to A (I distance to\ is 1). Thatis to say thatis reachable if and only if mak\;) < s.
Further, for a general DCEE algorithm, the locations reblghfrom the starting loca-
tion in s steps form ar{s + 1)-sized|V'|-dimensional hyperculi& where all locations
havel, distance to the starting location less than or equal Tdhe expected maximum
value ofC; is an upper bound for the total reward achievable by any DOB&righm
(under conditions described above) runningdoounds.

However, computing the expected maximum elemenfofs non-trivial. Every
entry inC, is the sum of E| values (one from each constraint), and thus the entries are
highly dependent. Furthermore, while each constraintrdmrtess? values toC, and
the expected maximum of each of these can easily be compigenhntains only a
subset of the possible sums of constraint values. The esgp@aaximum is not simply
the sum of the expected maximums of the constraint matriMdeseover, this subset is
a function of the graph structure and finding the expectedmmamx can be difficult.

We note that the expected maximum@fis the expected maximum reward ob-
tainable by an algorithm that does need to explore. By thisn@an an algorithm with
perfect knowledge of the values of all locationg(i, but with the limitation that con-
figurations outside of’; are unreachable. As such, it is not a tight bound for DCEE
algorithms. We illustrate this fact with the following exafe.

Example 2.Consider a DCEE with two agents, and A,, and one constraint between
them. LetM,;(7) denote the expected maximumicfamples drawn independently from
distributiond. The specific form of\/,(¢) is unimportant for our results, but the func-
tion can be computed for the distributions we use. The 2-dgimnal cube’, would
have(s + 1)? values, with the expected maximum beihg;((s + 1)?). An algorithm
that knows all values i@ could assign values for both agents’ variables such that thi
reward is obtained. An algorithm without access to the iiddial values, however, has
four choices at each step — changgs variable, changel,’s variable, change both
agents’ variables, or leave the configuration unchangedceniither or both of the
agents change their variable the (only) constraint is mpded. Thus the best an algo-
rithm could hope to achieve is the expected maximus+pfl samples, i.e My(s+1).

Achieving the maximum value af; requires the algorithms to know more about
the reward matrices than is allowed in the DCEE frameworkal&e note an additional
relaxation. Ink-dependent algorithms, not @&lisized subsets of agents can move in one
round. For example, runningfa= 1 algorithm on a five vertex ring graph has a value
of L = 2. Our experiments take the maximum valueCafreachable by changing any
two (or fewer) agents in each round Adependent algorithm, however, could not have
two adjacent agents change their variable’s value in asirgind wherk = 1.

Even with these relaxations, insights can be gained by slewhat happens
when we consider the portion 6f reachable when we restrict the number of agents
that can move at each step. Consider the example with twasdencribed above as
we discuss the locations in the configuration hypercubediteateachable. If zero, one,



or both agents can move at every stép=¢ 2), then all(s + 1)? locations inC, are
reachable. However, if at most one agent can move in eachidus 1), at every step

2
only one (or neither) agent can move, then oh?ligi + s locations can be reached.
See Figure 5.

For a DCEE, recall thaf, is defined as all locations ii with [, distance to the
starting point less than or equal4olf only one agent can move per step, the reachable
locations ofC, instead are all locations = (A ... \jy|) in C with [; distance less than
or equal tos (i.e.,>;(\;) < s). When two or more agents can move at each step, the
set of reachable locations ihbecomes less intuitive. We now define such sets.

In general a location = (A1, Az, ..., Ajy) in C; is reach-
able if and only if

\4
Z)\i < Ls
i=0

where L is the maximum number of agents that can move
a single step, as defined above. To understand this inegua
imagine having: bins corresponding to the agents (see Fig-
ure 6). In each round of the algorithm, you can placd.uylls
into these bins, with the restriction that you cannot placeen rig. 5. ¢, for a two
than one ball in any one bin in a single round. Placing a badrtex, single edge
in thei-th bin on thej-th round corresponds to the agefif graph, where the initial
changing its variable on thgth round. Afters rounds, there configuration  corre-
are two restrictions of the ending quantities in the biny1ljg sponds to the lower left
most full bin can contain at mostballs, and (2) the total num-corner and shaded cells
ber of balls must be less than or equalta Restriction 1 says &€ reachable by an
the location must be within the confines@f, and the above 2/901thm withZ = 1.
inequality upholds restriction 2.

o

= O

-+

5.3 L-Movement Experimentation
We constructed; for s = 1...30 for a complete graph
and a ring graph (both containing 5 nodes). Every COM \'_./ \0_/ \_/ \';'/
straint has its rewards drawn from a Gaussian distribu’] 2 3 4 5
tion with mean 100 and variance 16. Fbr= 1...5,
we calculated the maximum value of the achievable IBig. 6. For a five agent graph
cations. Values are averaged over 50 trails. and aL = 2 algorithm, up to
Note that the plots for Ring graphs and Completwo of the five bins could re-
graphs are exceptionally similar (see Figure 7). The dffeive a ball in each round. A
ference betweedh = i andL = i + 1 decreases asconfiguration (such as the one
i increases in both figures — thie = 4 curve overlaps shown above) would indicate
- . e that agentA; takes value);
almost entirely with the. = 5 curve. Spe_cmcally, WE \\here there arg balls in thei-
note that thel, = 1 curve is drastlca_llly dlffert_ant from i, bin. The configuration shown
the L = 2 curve. This indicates thdlt is a considerable ghoye is reachable by & = 2
contributing factor to the team uncertainty penalty. Wagorithm in 4 rounds, but not
ran experiments on other graphs as well, and using dif-3 rounds — bin 5 contains 4
ferent distributions for reward values. All results showeghlls.
similar behavior in regards to changiig See Figure 8.
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Fig. 7. These plots show the best team reward found in each rouné exyloring five-agent ring
and complete graph DCEEs where all rewards are drawn fronuaggan distribution with mean
100 and standard deviation 16 fér= 1...5. Note that the performance difference between
L =1andL = 2is larger than betweeh = 2 and L = 3. This relative performance difference
decreases ak increases. Values are averaged over 50 runs, and errotmavssandard error of
the mean.

Let us consider the specific case of SE-Optimistic-1 and $EA@stic-2 running
on DCEEs defined in part by these graphs (see Figure 9). Irotinglete graph, = 1
for k = 1 andL = 2 for k = 2. Thus we would imagine that SE-Optimistic-2 would
outperform SE-Optimistic-1 by a fair margin. In the ring gha on the other hand,
L = 2fork = 1andL = 3 for k = 2. This means that in the complete graph,
we are potentially obtaining a large benefit from chanding 1 to £k = 2 because
doing so means we go froth = 1 to L = 2. In the ring graph, however, the same
change ink yields a change fromk = 2 to L = 3 which has a much smaller potential
performance gain. Therefore we would expect to see a sniapgovement, if any, of
SE-Optimistic-2 over SE-Optimistic-1. Empirically, thisprecisely what is exhibited
both in simulation and on robots.

These results indicate that tHemovement, determined by the value /af may
contribute to the team uncertainty penalty rather than gexations of the specific al-
gorithms. A general algorithm with = 2 will have the ability to explore more d;
than an algorithm with. = 1. Note thatL is strictly determined by the graph topol-
ogy andk, thus anyk-dependent algorithm will experience diminishing retuass:
increases. It is worth noting that tiemovement difference betweén= 1 algorithms
andk = 2 algorithms will only be higher in larger ring and completagins. Recall that
for a general ring graph the maximum independent set is ef@éj, and is always 1
for a complete graph. This means that fienovement for & = 1 algorithm is always
L =1 for a complete graph, but increases with the number of \estic a ring graph.

5.4 Predictions
We consider how. varies withk. For these graphs we have the following table:

5 Agents Ring Graph Complete Graph
k=1: L=2 L =1

k=2: L=3 L=2
k=3: L=3 L=3
k=4: L=4 L=4
k=5: L=5 L=5
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Fig. 8. The first two figurggugtﬁlow curves for graphs where all rewgr(éjgwwn uniformly from
the range 0 ...200. The next two figures show curves genefiatedfour agent graphs, with
rewards drawn from a Gaussian wjth= 100 ando = 16. The final two figures again have five
agents, but rewards were drawn from a Gaussian with 100 ando = 32.

This indicates that the difference betweeh & 1 algorithm and & = 2 algorithm is
much greater in a complete graph than in a ring graph. Moretivea given graph and
a givenk, there is a uniqué. Thus this analysis provides a heuristic by which one can
a priori determine if a team will suffer from the team uncertaintyggnby estimating
the potential benefit of a highét

Previous results both from simulation (Taylor et al., 20a0) from on robots we
see thak = 1 optimistic algorithms out perforrh = 2 algorithms on ring graphs, but
underperform on complete graphs. Our experimental arsabfsl.-movement shows
that when increasing the-movement of an algorithm fromh = 1 to L = 2, a much
greater gain is expected than when increasing/tilmovement froml, = 2to L = 3.
In the case of complete versus ring graphs, changing anitdlgofromk = 1tok = 2
corresponds exactly with changirigfrom 1 to 2 (on a complete graph), and from 2
to 3 (on a ring graph). Our results also predict that & 3 algorithm on a ring graph
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Fig. 9. The difference betweeh = 1 andk = 2 for a complete graph is far greater than for a
Ring graph. In the ring graph, the increase frbra: 1 to k = 2 results in an increase froi = 2
to L = 3. In the complete graph, however, we instead have 1 andL = 2.

would perform very similarly to & = 2 algorithm, becausé = 3 for both graphs.
On a complete graph we would predict that & 3 algorithm would see a gain in total
reward over &k = 2 algorithm, albeit it a smaller increase than that frém= 1 to

k = 2. This is observed both in simulation and on robots.

6 Conclusions and Future Work

The DCEE framework is a recent extension of DCOPs enabliegtago cope with
uncertainty in the environment and problems in which ont@ard is critical. While
investigating the effect of teamwork in DCEEs, our earli@rkv(Taylor et al., 2010)
showed the counter-intuitive team uncertainty penaltyimuation. This paper as
further strengthened the claim that the team uncertaintalpeis an important phe-
nomenon worth studying by confirming its existence on phatsigents.

By understanding the team uncertainty penalty and whatesaiiswe will better
be able to design algorithms to avoid or less its impact. tleoto attempt to better
understand this phenomenon, this paper has made a numbmartdbations. First, we
have introduced the notion di-movement in the context of a DCEE, an extension
of k-optimality from the DCOP literature. Second, we show hbwnovement and:-
optimality are related in a graph-dependant manner, andestighat the uncertainty
penalty may be due to this relation. Third, we have introduttee notion of a con-
figuration hypercube in a DCEE, which we will leverage in th&ufe to theoretically
analyze different classes of DCEE algorithms.

This paper has presented evidence that the team uncenp@&néjty is possibly an
intrinsic phenomenon of the-movement algorithms, which is determined not by the
specifics of the algorithms, but the level lof In the future, we will continue analysis
of the configuration hypercube to develop boundg.emovement algorithms, design



algorithms to maximize the expected reward found on a gieerfiguration hypercube,
and to fully explain the team uncertainty principle.
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