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ABSTRACT
Recent years have seen a rise of interest in the deployment of mul-
tiagent systems in energy domains that inherently have uncertain
and dynamic environments with limited resources. In such do-
mains, the key challenge is to minimize the energy consumption
while satisfying the comfort level of occupants in the buildings un-
der uncertainty (regarding agent negotiation actions). As human
agents begin to interact with complex building systems as a col-
laborative team, it becomes crucial that the resulting multiagent
teams reason about coordination under such uncertainty to optimize
multiple metrics, which have not been systematically considered in
previous literature. This paper presents a novel multiagent system
based on distributed coordination reasoning under uncertainty for
sustainability called SAVES. There are three key ideas in SAVES:
(i) it explicitly considers uncertainty while reasoning about coordi-
nation in a distributed manner relying on MDPs; (ii) human behav-
iors and their occupancy preferences are incorporated into planning
and modeled as part of the system; and (iii) the influence of various
control strategies for multiagent teams is evaluated on an existing
university building as the practical research testbed with actual en-
ergy consumption data. We empirically show the preliminary re-
sults that our intelligent control strategies substantially reduce the
overall energy consumption in the actual simulation testbed com-
pared to the existing control means while achieving comparable
average satisfaction level of occupants.

Categories and Subject Descriptors
I.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed Artificial
Intelligence

General Terms
Algorithms, Human Factors

Keywords
Sustainability, Multi-Objective Optimization, Energy, Satisfaction,
Multiagent Systems

1. INTRODUCTION
Over the decades, energy issues have been getting more impor-

tant. In the U.S., about 40% of energy consumption is from build-
ings (shown in Figure 1), of which 25% is associated with heating
and cooling [21] at an annual cost of $40 billion [21]. Furthermore,
on an annual basis, buildings in the United States consume 73%
of its electricity. Recent developments in multiagent systems are
opening up the possibility of deploying multiagent teams to achieve

Figure 1: Distribution of US energy use in 2006, grouped by end-use
sector (transportation, buildings, industry). Annual consumption for
2007 was 101.6 quads (1015 BTU)

complex goals in such energy domains that inherently have uncer-
tain and dynamic environments with limited resources.

This paper focuses on a novel planning method for distributed
coordination under uncertainty (regarding agent negotiation ac-
tions) to optimize multiple competitive objectives: i) amount of
energy used in the buildings; ii) occupant’s comfort level; and iii)
practical usage considerations. There have been some trials to bal-
ance energy consumption and enhancement of building services
and comfort levels [15, 19, 23, 25] and to monitor and collect en-
ergy consumption data [15, 16] in energy domains. Other works
have explicitly focused on design optimization and use of multia-
gent systems [13, 17, 20] in different domains. In addition, some
multiagent systems [5, 6, 8, 9, 10, 11, 22] and the underlying the-
ory for their decision supports [12] have been employed to model
home automation systems. Unfortunately, past work in the energy
domain has three key weaknesses. First, they do not consider un-
certainty while reasoning about coordination and mostly rely on
deterministic plans. Second, they limitedly incorporate intelligence
of occupancy or occupancy preferences into the system and thus oc-
cupants are not explicitly modeled as agents in the system. Third,
their works are mostly evaluated in their own simulation environ-
ments, which are not constructed on the actual energy data and oc-
cupants’ responses in the buildings. Thus, their assumptions may
not be realized in real-world problems.

This paper presents a novel multiagent system based on dis-
tributed coordination reasoning under uncertainty for sustainabil-
ity called SAVES (Sustainable multi-Agent systems for optimiz-



Figure 2: Testbed - Educational Building at USC

ing Variable objectives including Energy and Satisfaction). SAVES
provides three key contributions to overcome limitations in past
work. First, we explicitly consider uncertainty while reasoning
about coordination in a distributed manner. In particular, we rely
on MDPs (Markov Decision Problems) to model agent interactions,
specifically focusing on rescheduling meetings, which will be ex-
tended to decentralized MDPs. Second, human behaviors and their
occupancy preferences are incorporated into planning and modeled
as part of the system. As a result, SAVES is capable of generat-
ing an optimal plan not only for building usage but also for occu-
pants. Third, the influence of various control strategies for multi-
agent teams is evaluated on an existing university building as the
practical research testbed with actual energy consumption data in
the simulation. Since the simulation environment is based on actual
data, this result can be easily deployed into the real-world. Prelim-
inary results show that our intelligent control strategies substan-
tially reduce the overall energy consumption in the actual simula-
tion testbed compared to the existing control means while achiev-
ing comparable average satisfaction level of occupants.

2. MOTIVATING DOMAINS
This work is motivated by energy domains where multiagent co-

ordination can be the key issue. To pin down the domain problem,
we consider an actual educational building (shown in Figure 2) as a
representative test case to measure and collect the energy consump-
tion and responses of occupants because it is a multi-functional
building of sufficient size and activity for research.1 Furthermore,
the building is representative in that it has been designed with a
building management system, and it provides a good environment
to test various control strategies to mitigate energy consumption.
The research can be easily generalized to other building types,
where we can observe many different types of energy-use aware-
ness based on the behavioral patterns of occupants in the buildings.

Our research testbed is focused on testing different operation op-
timization strategies based on the scope of occupant behaviors and
schedules. The simulation component will include the building, its
human occupants, and its facility management. It will then interact
with the occupants and management via proxy agents [24] to ad-
vise them on how to reduce energy use while measuring occupant
comfort level. More specifically, human occupants are divided into
two main categories — permanent and temporary building occu-

1The size and other parameters of the building are given in the
evaluation section.

pants. Permanent building occupants include office resident such
as faculty, staff, and researchers and laboratory residents like re-
searchers in web labs, structural labs, etc. Temporary building oc-
cupants have scheduled occupants who include students or faculties
attending classes or meetings and unscheduled occupants who are
students or faculty using common lounge or dining space. In this
domain, proposed human energy behaviors are entering/leaving a
room, turning on/off light sources, turning on/off computers and
other electronics, adjusting thermostat (heating or cooling), adjust-
ing window shading, opening an operable door or window, adjust-
ing personal clothing, and adjusting activity level. Building com-
ponents and equipments that are another type of agent in the build-
ings include HVAC systems, which are composed of air handler
units, VAV boxes, temperature sensors, and thermostats, lighting
systems, office electronic devices such as computer and AV equip-
ments, and laboratory equipments. Measurement of energy con-
sumption for each equipment action may be estimated from design
specifications. In our work, we choose and implement a subset of
agents and their energy-related behaviors listed above.

3. RELATED WORK
With rising energy costs, the need to design and integrate scal-

able energy consumption reduction strategies in buildings calls
for novel approaches. There are numerous challenges associated
with energy resources such as supply and depletion of energy re-
sources and heavy environmental impacts [19] (ozone layer deple-
tion, global warming, climate change, etc.). The rise in energy
consumption in buildings can be attributed to several factors such
as enhancement of building services and comfort levels [15, 19, 23,
25], through heating, cooling and lighting needs and increased time
spent indoors [19].

To model and optimize buildings’ energy consumption, building
owners and facility managers are demanding robust, intelligent and
adaptable performance monitoring techniques. These techniques
are important in energy consumption data collection [15, 16] and
ambient environmental conditions control [15]. Existing heating,
cooling, ventilation, and lighting systems generally operate with
no intelligence of occupancy or occupancy preferences and there-
fore are unable to optimize operations. Even more, no feedback is
available to occupants about how their actions and schedules im-
pact building energy consumption. To realize both tangible bene-
fits such as energy and operation savings, value property, reduction
in occupant complaints as well as the intangible benefits such as
occupant comfort and satisfaction, designers must develop energy
adaptive capabilities within the building environmental control sys-
tems.

Abras et al. [5], Conte et al. [9] and Roy et al. [22] have em-
ployed multiagent systems to model home automation systems (or
smart homes) and simulating control algorithms to evaluate per-
formance. While there is relevance in terms of the problem do-
main and employing multiagent systems, our representation and
approaches are different in having to account for human prefer-
ences and decisions directly.

Research by Fahrioglu et al. [14], Mohsenian-Rad et al. [18] and
Caron et al. [7] provide incentive compatible mechanisms for dis-
tribution of energy among interested parties. This thread of re-
search is complementary, especially in designing incentives for hu-
mans to reveal their true energy preferences. However, these ap-
proaches assume a centralized controller with whom all the mem-
bers interact, which is not present in our domain. Instead, there are
peer-to-peer negotiations between humans regarding their energy
consumption and comfort level.



Figure 3: Overall System Design

4. DESIGN DECISIONS
The SAVES system consists of a simulation module, an in-

put/output module to communicate with agents, and an underlying
reasoning and planning module. Figure 3 shows a generic loop of
the system. In particular, the input/output module first collects data
and constructs the world model. Given the world model, the rea-
soning and planning module generates policies to achieve the given
objectives in the context of coordination. With these world model
and generated policies, the simulation module models agents’ phys-
ical and behavioral interactions in the system and realize the coor-
dination in the actual world via the input/output module. We now
describe the modules as well as the particular instantiations of these
modules in the energy domain.

The simulation module provides a 2D, OpenGL environment
based on the open-source project OpenSteer [2] as shown in Fig-
ure 4(a) & 4(b). The simulation module consists of two different
types of agents as described below, modeling their physical and
behavioral interactions. It can be used for efficient statistical anal-
ysis of different control strategies in buildings before deploying the
system to an actual physical world.

The input/output module makes a connection among different
modules in the system by collecting actual data in the domain,
transferring data to the reasoning module, sending output results
to either the simulation or deployed module in the world to repre-
sent outputs, and providing means to communicate with agents via
proxy and handheld devices.

The coordination and planning module generates optimal poli-
cies to achieve the given team missions considering multiagent in-
teractions in the context of coordination in the mutiagent setup.

Here we describe the design issues regarding agents, first intro-
ducing building component agents and human agents, then detail-
ing the method to calculate the properties of agents, and finally dis-
cussing different control strategies considering agent interactions.

4.1 Building Component Agents
We consider three building component agent categories: a HVAC

(Heating, Ventilating, and Air Conditioning) agent, a lighting
agent, and an appliance agent. The HVAC agent (Figure 5(a)) is
modeled based on the principles of thermodynamics, fluid mechan-
ics, and heat transfer. We assume that this agent mainly controls the
temperature of the assigned zone. The lighting agent (Figure 5(b))

(a)

(b)

Figure 4: Screen capture

controls the lighting level of the room. For the appliance agent, we
only include the computer device including the desktop and laptop
computers in this work. These agents have two possible actions:
“on” 2 and “standby”. When the lighting or appliance agents are
“on”, they consume some fixed amount of energy. We measure
the average amount of energy used by these agents, which will be
detailed in Section 6.

Since the energy consumption of HVAC agents relies on a set of
parameters including the temperature change in the space, air flow,
and number of people, etc., the average value cannot be simply
measured. Instead, we describe how to compute the energy use by
HVAC agents below.

2Note that the “on” action can be divided into several actions with
different output levels, e.g., “on” with 30%, 60%, and 100% power.

(a) HVAC Agent (b) Lighting Agent

Figure 5: Agents



Calculating Total Energy Consumption: Since the building is
composed of a large number of HVACs and they are the main con-
sumers of the energy, it is important to choose the right set of
parameters and reasonable values for them. In particular, the en-
ergy consumption of HVAC agents is calculated as following [1, 4]
mainly based on changes in air temperature and airflow speeds:

Q =
1.1× CFM ×∆T

3412.3
,

∆T = log(
CFM

C
),

where Q is the amount of energy used (kWh), CFM is an air volume
flow rate (ft3/min), which is typically ranged between 500–1500
(ft3/min), ∆T is the temperature change in a zone (◦F), and C is a
scale factor.

4.2 Human Agents
There are four different types of human agents such as a faculty,

staff, graduate student, and undergraduate student. Each agent has
access to a subset of the six available behaviors according to their
types — wander, attend the class, go to the meeting, teach, study,
and perform research, any one of which may be active at a given
time, where the behavior is selected via the given class and meeting
schedules.

During execution of these behaviors, individual travelers may
move at integer speeds from 0 to 3. Each agent also has spe-
cific levels of emotions and information about the environment.
Specifically, every agent has a property about the satisfaction level
based on the current environmental condition and knows his or her
current location without any noise. A more extended discussion of
the satisfaction property will take place below.

Calculating Satisfaction Level: The satisfaction level (SL) of an
individual human agent is modeled as a percentage value between
0 and 100 (0 is fully unsatisfied, 100 is fully satisfied). SL of the
individual occupant is calculated as following:

SL = 100.0− PPD,

PPD = 100.0− 95.0 · exp−(0.03353·PMV 4+0.2179·PMV 2),

where SL is the satisfaction level (%), PPD is the Predicted Per-
cent Dissatisfied (%), PMV is the Predicted Mean Vote. The PMV
index is calculated from an equation of thermal balance for the hu-
man body in ASHRAE Standard [3], involving the parameter val-
ues shown in Table 1.

The PMV model uses heat balance principles to relate the seven
key factors for thermal comfort listed in Table 1 to the average re-
sponse of people on the above scale. The PPD index is calculated
using the PMV as defined in [3]. It is based on the assumption that
people respond about their comfort level with a number between -3
and +3 (-3 is cold, +3 is hot and 0 is neutral) on the thermal sensa-
tion scale and that the simplification that PPD is symmetric around
a neutral PMV.

5. CONTROL STRATEGIES
In a given scenario, all agents within the simulation will use the

same strategy. Possible strategies include: i) manual control strat-
egy, ii) reactive control strategy, iii) proactive control strategy, and
iv) proactive control strategy based on multiagent coordination.

5.1 Manual Control

Table 1: Parameters for the Satisfaction Level
Parameter Value Range
Clothing 0.5 – 1.0 (light to heavy clothing)

Metabolic Rate 1.0 – 2.0 (low to high activity)
External Work 0

Air Temperature 20 – 28 (◦C)
Radiant Temperature 20 – 28 (◦C)

Air Velocity 0 – 0.2 m/s
Relative Humidity 30 – 60 %

The manual control strategy simulates the current building con-
trol strategy maintained by USC facility managers. Specifically,
we assume that HVAC agents are not controlled by human agents
and that appropriate temperature points are centrally set/given by
facility managers. For HVAC agents, the CFM values are fixed
throughout the simulation. In this control setting, HVAC agents al-
ways try to reach the pre-set temperature using the fixed CFM value
regardless of the presence of human agents in the specific space and
their preferences in terms of temperature. Lighting agents are con-
trolled by only human agents. Control actions (i.e., turning on/off
the light) of human agents are either deterministic or stochastic ac-
cording to the type of action. In particular, when human agents
enter the space, they always turn on the light. When they leave the
space, they stochastically turn off the light. For appliance agents,
we simply assume that they are always on.

5.2 Reactive Control
Since the manual control strategy simply follows the pre-defined

policy provided by the facility managers, it is fairly easy to come
up with action plans of building component agents. However, it
does not adapt the given policies based on actual schedules or pref-
erences of occupants in the building, and thus the building com-
ponent agents are limited to adapt their control policies appropri-
ately according to the dynamic changes. Particularly, HVAC agents
keep operating to reach the desired point, even though the space is
empty, which ends-up wasting energy. At the same time, since they
do not consider occupants’ preferences in the space and instead pri-
oritize the pre-determined points, the average satisfaction level of
occupants can decrease.

Here we discuss about another control strategy that building
component agents reactively respond to the behaviors of human
agents. In this setting, we assume that HVAC agents are not con-
trolled by human agents and that appropriate temperature points are
measured based on the average preference of human agents in the
specific space. HVAC agents automatically turn on and off accord-
ing to the presence of people and temperature set points, and the
CFM values are adjusted based on the desired temperature point.
In the reactive control strategy, the lighting and appliance agents
are now automatically controlled. In particular, they are turned on
and off according to the presence of people. For instance, when
people enter the specific room, the lighting and appliance agents
are automatically turned on, and when people leave the room, they
are turned off.

While human agents follow their given schedules, with the re-
active setting, the building component agents can act more intel-
ligently than the manual policy as they operate based on human
agents’ actual needs. As a result, we can reduce the cases where
the energy is wasted for unnecessary spaces, which will contribute
to the reduction of the overall energy consumption.

5.3 Proactive Control



Figure 6: Simplified MDP model — d: disagree, a: agree

Although the reactive control strategy can adapt their policies
based on actual needs of occupants in the building, this approach is
still limited in a sense of optimality. In practice, there is a delayed
effect in changing temperature. In other words, HVAC agents can
only change a certain amount of degree in temperature per hour.
This property exposes the weakness of the reactive control strat-
egy. Although HVAC agents know the desired temperature of hu-
man agents at a specific time point, it takes a certain amount of
time to reach the desired temperature point from the current air
temperature, and the satisfaction level of occupants in the space
will decrease during that time.

To overcome limitations of the reactive setting, we suggest a
third control strategy operated in a proactive manner. Given the
meeting and class schedules of human agents, the building compo-
nent agents can predict: i) what their preferences are in terms of
temperature, ii) how long it will take to reach the preferred temper-
ature point from the current air temperature, iii) what CFM value
is required, etc. In this setting, the building component agents can
access the meeting/class schedules of human agents. Based on that
prior knowledge, they now generate more optimal policies to re-
duce the overall energy consumption while maximizing the aver-
age satisfaction level of occupants in the building. For instance, a
HVAC agent knows that the current air temperature is 55◦F and the
preferred temperature of the group of human agents who will use
the space in 2.5 hours is 70◦F. If the maximum possible tempera-
ture change by HVAC is 10◦F/hr with the maximum CFM value,
the HVAC agent predicts that it needs to change the temperate by
6◦F per hour with a smaller CFM value which will use less energy.
With this proactive plan, when human agents get to the space, the
air temperature is already 70◦F, which is the desired temperature
point of people, and thus their satisfaction level increases.

5.4 Modeling Multiagent Coordination:
MDP representation

With the existence of human agents, agent interactions are a fun-
damental aspect of our energy simulation. In SAVES , all agents
share a common architecture based on MDP (Markov Decision
Problem) frameworks, possessing varying degrees of knowledge
about the world and other building agents (i.e., local knowledge).

MDPs have been used to tackle such real-world multiagent plan-
ning and coordination problems under transition uncertainty, which
are described by a tuple 〈S,A, T,R〉, where

• S = {s1, ..., sk} is a finite set of world states.

• A is the finite set of actions of an agent.

• T : S × A × S 7→ R is the transition probability function,
where T (s′|s, a) denotes the transition probability from s to

s′ if an action a is executed.

• R : S×A×S 7→ R is the reward function, whereR(s, a, s′)
denotes the reward that an agent gets by taking a from s and
reaching s′.

We denote a policy computed by MDP π : S 7→ A is a map-
ping from world state to action. Our goal is effective multiagent
team coordinations to minimize the total energy consumption while
maximizing occupant’s comfort level.

This section describes our MDP representation in the energy
domain for illustration. The MDP model represents a class of
MDPs covering all types of meetings for which the agent may take
rescheduling actions. In our work, we construct a MDP for each
meeting as shown in Figure 6. Alternatively, we can model all
meetings in the building as a single MDP. However, if we consider
a gigantic MDP model for rescheduling all meetings together, the
number of states and actions exponentially explodes as the number
of agents increases. In addition, the complexity to handle all pos-
sible coordinations among agents significantly increases, which is
burdensome to handle within a reasonable amount of time.

As preliminary work, we construct a simplified MDP model for
rescheduling meetings. For each meeting, a meeting agent can per-
form any of three actions — reschedule, find another slot 3, and ask.
For the “ask” action 4, an agent can autonomously reduce its own
autonomy and ask a human agent whether he or she agrees with
rescheduling the existing meeting. The human agent can respond
to the meeting agent with “agree” or “disagree”.

The agent may choose to perform any of these actions in var-
ious states of the world. State is composed of three features:
〈f1, f2, f3〉, where f1 is the status whether meeting location and
time is changed (i.e., pending or changed), f2 is the number of
“ask” actions invoked so far, and f3 is a set of responses from all
meeting attendees: 〈rpi,1, rpi,2, ..., rpi,n〉, where n is the num-
ber of attendees of meeting i and rpi,k is a response of agent k to
rescheduling meeting i (i.e., agree or disagree).

The MDP’s reward function has its maximum value when the
meeting agent invokes the “reschedule” action in the state where
all meeting attendees agreed to reschedule. We denote the com-
ponent of the reward function that focuses on the expected energy
gain by rescheduling the meeting as renergy . However, there is
clearly a high team cost incurred by forcing all of the attendees to
rearrange their schedules. This team cost is incorporated into the
MDP’s reward function by adding a negative reward, rrearrange.
The magnitude is also an increasing function in the number of at-
tendees (e.g., rescheduling a meeting of a large group is more costly
than rescheduling a one-on-one meeting). The overall reward func-
tion for taking the “reschedule” action, areschedule, in a state s is a
weighted sum of these components:

R(areschedule, s) = α · renergy + (1− α) · rrearrange

, where 0 ≤ α ≤ 1. In addition, a small amount of cost is incurred
to invoke actions of “ask” and “find another slot”.

The MDP’s transition probabilities represent the likelihood over
possible action outcomes. Specifically, the transition function is de-
fined considering four factors: i) meeting constraints of attendees;
ii) level of energy consciousness, which determines how much they
care about energy; iii) degree of intimacy among occupants; and iv)
3This action can be modeled differently, e.g., delay 1 hr, delay 2
hrs, ..., delay n hrs, delay 1 day, ..., delay n days, cancel the meet-
ing, change location (but same time), etc.
4The ask action can be divided into several actions with different
amount of incentives, e.g., ask with 5% incentive, ask with 10%
incentive, etc.



Table 2: Parameter Values for the Experiments

Temperature CFM Likelihood
Manual 65–70◦F 1500.0 50%
Reactive Preference 500.0–1500.0 Automatic
Proactive Preference 500.0–1500.0 Automatic

Proactive w/ MDP Preference 500.0–1500.0 Automatic

Table 3: Parameter Values for the SL Calculation
Parameter Value
Clothing 1.0

Metabolic Rate 1.2
External Work 0

Air Temperature Zone temperature
Radiant Temperature 65◦F

Air Velocity 0.1 m/s
Relative Humidity 40 %

the current status of responses, which can be related to emotional
contagion within the group. Since we store the current set of re-
sponses from individual agents and number of “ask” actions called
so far, the repeated “ask” action may result in different transitions.
In particular, the “ask” action, by which the agent queries the hu-
man agent, has 2ni + 1 possible outcomes, where n is the number
of attendees of the meeting i. First, the human agent may not re-
spond at all, in which case, the agent is performing the equivalent
of a “wait” action for a given timeout. Other set of possible out-
comes are decided depending on responses of meeting attendees
as illustrated in Figure 6. We assume that the “find” action reset
values of features in the state.

One possible policy, generated for a subclass of possible meet-
ings, specifies “ask” and then “wait” in state S0 of Figure 6, which
prompts the agent to give up its autonomy. If the agent then reaches
state S1, the policy specifies “find”, so the meeting agent figures
out another available location or time for rescheduling. However,
if the agent then reaches state S2, the policy again chooses “ask”,
which asks the human agents once more to collect their responses.
Similarly, if the agent reaches S4, the “reschedule” action is chosen
according to the policy.

Based on this MDP model, the agent reasons about different
tradeoffs in team costs. This reasoning follows a fundamental tenet
of teamwork in our system, that the individual team members act
responsibly towards the team.

6. EMPIRICAL VALIDATION
We evaluate the performance of SAVES in our energy domain

Table 4: Average Energy Consumption of Lighting & Appli-
ance Agents

Agent Type Category On Off/Standby

Lighting
Office 0.128 kW/hr 0 kW/hr

Conference room 0.192 kW/hr 0 kW/hr
Classroom 0.768 kW/hr 0 kW/hr

Appliance Desktop 0.150 kW/hr 0.010 kW/hr
Laptop 0.050 kW/hr 0.005 kW/hr

Figure 7: Floor Plan - Educational Building at USC

and compare four different control techniques: 1) manual control,
2) reactive control, 3) proactive control, and 4) proactive control
with MDP. We focus on measuring two different criteria — total
energy consumption (kWh) and average satisfaction level of occu-
pants (%). The parameter values used in the experiments are shown
in Table 2. In Table 2, column 2 shows the desired temperature for
HVAC agents (Note: Preference in rows 3–5 means that the desired
temperature is decided based on the average preference values of
building occupants) and column 4 displays the likelihood value for
the “turn off” action for the lighting agent. To calculate the energy
consumption by the HVAC agent, we set the scale factor to 100.0.
For the satisfaction calculation, we used the same parameter values
in Table 3 while performing the experiments across four different
control strategies. The experiments were run on Intel Core2 Quad-
core 2.4GHz CPU with 3GB main memory. All techniques were
evaluated for 100 independent trials throughout this section. We
report the average values.

6.1 Experimental Domain Description
We have identified an educational building in conjunction with

USC Facilities Management Services, as our practical testbed. This
campus building is composed of classrooms, offices for faculty and
staff, and conference rooms for meetings. Specifically, we use one
floor of the actual university building in the experiments, which
has 18 zones and 33 rooms as illustrated in Figure 7. There is
one HVAC agent for each zone, and one lighting agent for each
room. We also assume that each person in the office has either one
desktop or laptop computer, and conference room and class room
has two computers, respectively. There are four human agent cat-
egories: faculty, staff, graduate student and undergraduate student.
Throughout the entire simulation, we consider a typical winter sea-
son in southern California (i.e., starting indoor temperature is 55◦F
in the simulation). During the simulation, indoor temperature goes
down by -1◦F per timestep, where each time step is 30 minutes.
Possible temperature range in the building is between 50 and 90◦F.
Students follow 2010 Fall class schedule, and we generated the ar-
bitrary meeting schedules for faculty, staff, and student agents. The
measurement is performed during a working hour (i.e., 8:00am –
7:00pm), and the preference value of each occupant in tempera-
ture is randomly drawn from the uniform distribution between 60
– 70◦F. To calculate the energy consumption of the lighting and
appliance agents, we collect actual energy consumption data in the
testbed building and used the average values shown in Table 4.

6.2 Comparison: Total Energy Consumption
We compared the cumulative total energy consumptions mea-



(a) Total Energy Consumption (b) Average Satisfaction Level

Figure 8: Comparison

Figure 9: Energy Consumption Distribution

sured during work hours for all control strategies in the energy do-
main. Figure 8(a) shows the cumulative total energy consumption
on the y-axis in kWh and the time step on the x-axis. Time step
1 indicates 8:00am and each time step increases by 30 minutes.
As shown in the figure, the manual control strategy showed the
worst result since it does not take into account behaviors or sched-
ules of human agents and building component agents simply follow
the predefined policies. The reactive and proactive control strate-
gies showed lower energy consumptions than the manual setting by
43.0% and 55.6%, respectively. The proactive control strategy with
the MDP model showed the best results among all different control
strategies and statistically significant improvements (via t-tests) in
terms of energy used in the testbed building, relative to other con-
trol strategies. Specifically, the proactive control with MDP re-
duced the energy consumption by 59.9% than the manual control
strategy.

Although we did not tune the parameter values and only applied
the simplified MDP model, with considering multiagent coordina-
tion in SAVES, we could achieve significant improvements. These
outcomes are still preliminary results and yet only tested in the sim-
ulation environment, all experimental results were measured based
on the actual data and testbed. Later, we will be able to show even
more improvement with the optimally tuned parameters and extend
our work to deploy it into the actual building with proxy agents.
Furthermore, as we revise the equations shown in Section 4.1, we
will be able to get more exact results for analysis.

Now, we analyze how various control strategies can cause dif-
ferent results. Figure 9 shows the energy consumption distribution

over zones for all control strategies. In the figures, the x-axis shows
the group number of data obtained by each control strategy and the
y-axis displays the total energy consumption for each zone in kWh.
The floor plan we used in the simulation has four different types of
zones, which decides the total energy consumptions. Specifically,
zones 1–4 (blue), 9 (green), and 12 (yellow) have two offices per
zone, zones 5–7 (light blue or cyan) are class rooms, zones 13–15
(orange or red) are conference rooms, and zones 11 (yellow), 16
(light red), and 17 (red) have three offices per zone. As shown in
the first group of Figure 9, the manual control strategy results in
the similar level of energy consumptions according to the differ-
ent types of zones. This result clearly indicates that the manual
setting is only impacted by the physical constraints of the building
space itself, which never considers the interactions among agents.
The normalized standard deviation was 0.134. In the reactive (the
second group in Figure 9) and proactive setting (the third group
in Figure 9), it now started showing the difference in terms of the
amount of energy used even within the same type of zones since
those methods consider the actual behavioral patterns and sched-
ules of human agents, and building component agents respond and
adapt their policies based on them. Their normalized standard de-
viations are 0.205 and 0.312, respectively, which are higher than
the value of the manual setting. Lastly, the proactive control strat-
egy with the MDP model considers rescheduling of meetings. The
target meetings to reschedule are ones with less than 4 people in
the conference rooms in zones 13–15. We only considered the lo-
cation reallocation and did not assume the meeting time can be also
changed. New candidate locations are small faculty offices in zones
1–4. As shown in the fourth group of Figure 9, it showed increased
energy consumptions in zones 1–4 due to the reallocated meetings,
but simultaneously showed much more reduction in zones 13–15,
as a result the overall energy consumption decreased. The normal-
ized standard deviation was 0.313, which was the highest among
different control strategies. These results give us a lesson that mul-
tiagent coordination/negotiation can benefit our model in SAVES,
and by considering higher degree of coordination among agents,
we will be able to achieve the significant energy reduction in this
domain.

6.3 Comparison: Average Satisfaction Level
Here, we compare the average satisfaction level of human agents

under different control strategies in the simulation. We used the
equations discussed in Section 4.2.

Figure 8(b) shows the average satisfaction level in percentage on
the y-axis and time step on the x-axis, which are the same as men-
tioned in the previous section.5 As shown in the results, all methods
were able to achieve at least 80% or higher results on average, and
the manual and proactive with MDP settings showed the best results
among them. Note that the equations to calculate the individual sat-
isfaction level are based on the average model about the responses
according to different environmental conditions, which is mostly
related to air temperature, and they do not consider individual pref-
erences. Thus, although the reactive and proactive control strate-
gies act more intelligently by additionally considering the prefer-
ences of human occupants, we could not obtain explicit benefits to
improve the satisfaction level and even in some cases, the solution
quality may be harmed. On the other hand, the manual setting just
make HVAC agents attempt to reach the desired temperature set
point over time. Once HVAC agents get to the desired point, they
are turned off, which will decrease the satisfaction level. If the tem-

5Note that the starting indoor temperature of the building is 55◦F
in the simulation, which causes the low average satisfaction level
for a while.



perature is again away from the scope of desired temperature point,
HVAC agents are turned on and the satisfaction level increases. As
a result, the manual setting shows a race condition in the graph,
which means it eventually cannot go over a certain point in terms
of the satisfaction level. With revised equations considering more
factors from the coordination perspective such as preferences, en-
ergy awareness, emotional contagion effect, etc., we expect more
significant improvements in terms of the satisfaction level.

In our work, we still only separately consider two different op-
timization criteria — the energy consumption and the satisfaction
level since this is still preliminary work. However, as we will even-
tually optimize multiple objectives in SAVES, we will be able to
achieve effective multiagent team coordinations to minimize the
total energy consumption while maximizing occupant’s comfort
level.

7. CONCLUSION
This paper aims to open a new area of research for multiagent

systems: in many real-world problems, specifically in energy do-
mains, we see many different levels of agent interactions and co-
ordinations involved, and hence multiagent systems must address
such complex situations to achieve the given objectives under un-
certainty. In this work, we presented a new framework called
SAVES based on distributed coordination reasoning for sustain-
ability. There are three major new ideas in SAVES. SAVES: (i)
explicitly considers uncertainty while reasoning about coordination
in a distributed manner relying on MDPs; (ii) incorporates human
behaviors and their occupancy preferences into planning and mod-
els them as part of the system; and (iii) evaluates various control
strategies for multiagent teams on an existing university building
as the practical research testbed with actual energy consumption
data. We justified our design decisions in SAVES through a pre-
liminary empirical evaluation and showed that SAVES can pro-
vide solutions to significantly reduce the energy consumption while
achieving the comparable satisfaction level of building occupants.
For future work, we will consider opportunities for direct occupant
participation and incentivization via handheld devices and deploy
our system to the real-world.
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