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Abstract

Recent real-world deployments of Stackelberg se-
curity games make it critical that we address hu-
man adversaries’ bounded rationality in comput-
ing optimal strategies. To that end, this paper
provides three key contributions: (i) new efficient
algorithms for computing optimal strategic solu-
tions using Prospect Theory and Quantal Response
Equilibrium; (ii) the most comprehensive experi-
ment to date studying the effectiveness of different
models against human subjects for security games;
and (iii) new techniques for generating representa-
tive payoff structures for behavioral experiments in
generic classes of games. Our results with human
subjects show that our new techniques outperform
the leading contender for modeling human behav-
ior in security games.

1 Introduction
Recent real-world deployments of attacker-defender Stackel-
berg games, including ARMOR at the LAX airport [Pita et
al., 2008] and IRIS at the Federal Air Marshals Service [Tsai
et al., 2009], have led to an increasing interest in building
decision-support tools for real-world security problems. One
of the key sets of assumptions these systems make is about
how attackers choose strategies based on their knowledge of
the security strategy. Typically, such systems apply the stan-
dard game-theoretic assumption that attackers are perfectly
rational and strictly maximize their expected utility. This is
a reasonable proxy for the worst case of a highly intelligent
attacker, but it can lead to a defense strategy that is not ro-
bust against attackers using different decision procedures, and
it fails to exploit known weaknesses in the decision-making
of human attackers. Indeed, it is widely accepted that stan-
dard game-theoretic assumptions of perfect rationality are not
ideal for predicting the behavior of humans in multi-agent de-
cision problems [Camerer et al., 2004].

Thus, integrating more realistic models of human decision-
making has become necessary in solving real-world security
problems. However, there are several open questions in mov-
ing beyond perfect rationality assumptions. First, the litera-
ture has introduced a multitude of candidate models, but there

is an important empirical question of which model best repre-
sents the salient features of human behavior in applied secu-
rity contexts. Second, integrating any of the proposed models
into a decision-support system (even for the purpose of em-
pirically evaluating the model) requires developing new com-
putational methods, since the existing algorithms for security
games are based on mathematically optimal attackers [Pita et
al., 2008; Kiekintveld et al., 2009]. The current leading con-
tender that accounts for human behavior in security games is
COBRA [Pita et al., 2010], which assumes that adversaries
can deviate to ε−optimal strategies and that they have an an-
choring bias when interpreting a probability distribution. It
remains an open question whether other models yield better
solutions than COBRA against human adversaries.

We address these open questions by developing three new
algorithms to generate defender strategies in security games,
based on using two fundamental theories of human behavior
to predict an attacker’s decisions: Prospect Theory [Kahne-
man and Tvesky, 1979] and Quantal Response Equilibrium
[McKelvey and Palfrey, 1995]. We evaluate our new algo-
rithms using experimental data from human subjects gathered
using an online game designed to simulate a security scenario
similar to the one analyzed by ARMOR for the LAX airport.
Furthermore, we designed classification techniques to select
payoff structures for experiments such that the structures are
representative of the space of possible games, improving the
coverage relative to previous experiments for COBRA. Our
results show that our new algorithms outperform both CO-
BRA and a perfect rationality baseline.

2 Background and Related Work
Security games refer to a special class of attacker-defender
Stackelberg games, including those used in ARMOR and
IRIS [Pita et al., 2008; Tsai et al., 2009]. The defender needs
to allocate limited security resources to protect infrastructure
from an adversary’s attack. In this paper, we will use a more
compact representation of defender’s strategy: the probability
that each target will be protected by a security force, which
will be introduced in Section 3.1. In Stackelberg security
games, the defender (leader) first commits to a mixed strat-
egy, assuming the attacker (follower) decides on a pure strat-
egy after observing the defender’s strategy. This models the
situation where an attacker conducts surveillance to learn the
defender’s mixed strategy and then launches an attack on a
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Figure 1: PT functions [Hastie and Dawes, 2001]

single target. In these non zero-sum games, the attacker’s
utility of attacking a target decreases as the defender allocates
more resources to protect it (and vice versa for the defender).
In this work, we constrain the adversary to select a pure strat-
egy. Given that the defender has limited resources (e.g., she
may need to protect 8 targets with 3 guards), she must design
her strategy to optimize against the adversary’s response to
maximize effectiveness.

One leading family of algorithms to compute such mixed
strategies are DOBSS and its successors [Pita et al., 2008;
Kiekintveld et al., 2009], which are used in the deployed AR-
MOR and IRIS applications. These algorithms formulate the
problem as a mixed integer linear program (MILP), and com-
pute an optimal mixed strategy for the defender assuming that
the attacker responds optimally. However, in many real world
domains, agents face human adversaries whose behavior may
not be optimal assuming perfect rationality. COBRA [Pita et
al., 2010] represents the best available benchmark for how to
determine defender strategies in security games against hu-
man adversaries, and it outperforms DOBSS with statistical
significance in experiments using human subjects.

This paper introduces alternative methods for computing
strategies to play against human adversaries, based on two
well-known theories from the behavioral literature, Prospect
Theory (PT) and Quantal Response Equilibrium (QRE).

Prospect Theory is a nobel-prize-winning theory [Kah-
neman and Tvesky, 1979], which describes human decision
making as a process of maximizing ‘prospect’. Prospect is
defined as

∑
i π(pi)V (Ci), where pi is the actual probability

of outcome Ci. The weighting function π(pi) describes how
probability pi is perceived. π(·) is not consistent with the def-
inition of probability, i.e. π(p) + π(1 − p) ≤ 1 in general.
An empirical form of π(·) is shown in Fig. 1(a). The value
function V (Ci) reflects the value of outcome Ci. PT indi-
cates that individuals are risk averse regarding gain but risk
seeking regarding loss, and care more about loss than gain, as
shown in Fig. 1(b) [Hastie and Dawes, 2001].

Quantal Response Equilibrium is an important model in
behavioral game theory [McKelvey and Palfrey, 1995]. It
suggests that instead of strictly maximizing utility, individ-
uals respond stochastically in games: the chance of selecting
a non-optimal strategy increases as the cost of such an error
decreases. Recent work [Wright and Leyton-Brown, 2010]
shows Quantal Level-k1 [Stahl and Wilson, 1994] to be best

1We applied QRE instead of Quantal Level-k because in Stack-
elberg security games the attacker observes the defender’s strategy,

suited for predicting human behavior in simultaneous move
games. However, the applicability of QRE and PT to secu-
rity games and their comparison with COBRA remain open
questions.

3 Defender Mixed-Strategy Computation
We now describe efficient computation of the optimal de-
fender mixed strategy assuming a human adversary’s re-
sponse is based on either PT or QRE.

3.1 Methods for Computing PT
Best Response to Prospect Theory (BRPT) is a mixed inte-
ger programming formulation for the optimal leader strategy
against players whose response follows a PT model. Only
the adversary is modeled using PT in this case, since the de-
fender’s actions are recommended by the decision aid.

max
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BRPT maximizes, d, the defender’s expected utility. The
defender has a limited number of resources, Υ, to protect the
set of targets, ti ∈ T for i=1..n. The defender selects a strat-
egy x that describes the probability that each target will be
protected by a resource; we denote these individual probabil-
ities by xi. Note that x = 〈xi〉 is the marginal distribution
on each target which is equivalent to a mixed-strategy over
all possible assignment of the security forces2. The attacker

so level-k reasoning is not applicable.
2It is proved in [Korzhyk et al., 2010] that the marginal proba-

bility distribution of covering each target is equivalent to a mixed-
strategy over all possible resource assignments when there are no
assignment restrictions.



chooses a target to attack after observing x. We denote the
attacker’s choice using the vector of binary variables qi for
i = 1..n, where qi=1 if ti is attacked and 0 otherwise.

In security games, the payoffs depend only on whether or
not the attack was successful. So given a target ti, the de-
fender receives rewardRdi if the adversary attacks a target that
is covered by the defender; otherwise, the defender receives
penalty P di . Respectively, the attacker receives penalty P ai in
the former case; and reward Rai in the latter case.

The defender optimization problem is given in Equations
(1)-(12). PT comes into the algorithm by adjusting the
weighting and value functions as described above. The ben-
efit (prospect) perceived by the adversary for attacking tar-
get ti if the defender plays the mixed strategy x is given
by π(xi)V (P ai ) + π(1 − xi)V (Rai ). Let (P ai )′ = V (P ai )
and (Rai )′ = V (Rai ) denote the adversary’s value of penalty
P ai and reward Rai , which are both given input parameters
to the MILP. We use a piecewise linear function π̃(·) to ap-
proximate the non-linear weighting function π(·) and empir-
ically set 5 segments3 for π̃(·). This function is defined by
{ck|c0 = 0, c5 = 1, ck < ck+1, k = 0, ..., 5} that represent
the endpoints of the linear segments and {bk|k = 1, . . . , 5}
that represent the slope of each linear segment. Accord-
ing to PT, the probability xi is perceived by the attacker as
x′i=π̃(xi)=

∑5
k=1 bk · xik, as discussed below.

In order to represent the piecewise linear approximation,
i.e. π̃(xi) (and π̃(1− xi)), we break xi (and 1− xi) into five
segments, denoted by variable xik (and x̄ik). We can enforce
that such breakup of xi (and 1 − xi) is correct if segment
xik (and x̄ik) is positive only if the previous segment is used
completely, for which we need the auxiliary integer variable
zik (and z̄ik). This is enforced by Equations (3)∼(8). Equa-
tion (9) defines x′i and x̄′i as the value of the piecewise linear
approximation of xi and 1− xi: x′i=π̃(xi) and x̄′i=π̃(1− xi).
Equations (10) and (11) define the optimal adversary’s pure
strategy. In particular, Equation (11) enforces that qi=1 for
the action that achieves maximal prospect for the adversary.
Equation (12) enforces that d is the defender’s expected util-
ity on the target that is attacked by the adversary (qi=1).

Robust-PT (RPT) modifies the base BRPT method to
account for some uncertainty about the adversaries choice,
caused (for example) by imprecise computations [Simon,
1956]. Similar to COBRA, RPT assumes that the adversary
may choose any strategy within ε of the best choice, defined
here by the prospect of each action. It optimizes the worst-
case outcome for the defender among the set of strategies
that have prospect for the attacker within ε of the optimal
prospect.

We modify the BRPT optimization problem as follows: the
first 11 Equations are equivalent to those in BRPT; in Equa-
tion (13), the binary variable hi indicates all the ε−optimal
strategies for the adversary; the epsilon-optimal assumption
is embed in Equation (15), which forces hi = 1 for any tar-
get ti that leads to a prospect that is within ε of the optimal
prospect, i.e. a; Equation (16) enforces that d is the mini-
mum expected utility of the defender against the ε−optimal

3This piecewise linear representation of π(·) can achieve a small
approximation error: supz∈[0,1] ‖π(z)− π̃(z)‖ ≤ 0.03.

strategies of the adversary.
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Runtime: We choose AMPL (http://www.ampl.com/) to
solve the MILP with CPLEX as the solver. Both BRPT and
RPT take less than 1 second for up to 10 targets.

3.2 Methods for Computing QRE
In applying the QRE model to our domain, we only add noise
to the response function for the adversary, so the defender
computes an optimal strategy assuming the attacker response
with a noisy best-response. The parameter λ represents the
amount of noise in the attacker’s response. Given λ and
the defender’s mixed-strategy x, the adversaries’ quantal re-
sponse qi (i.e. probability of i) can be written as

qi =
eλU

a
i (x)∑n

j=1 e
λUa

j (x)
(17)

where, Uai (x) = xiP
a
i + (1 − xi)Rai is the adversary’s ex-

pected utility for attacking ti and x is the defender’s strategy.

qi =
eλR

a
i e−λ(R

a
i−Pa

i )xi∑n
j=1 e

λRa
j e−λ(R

a
j−Pa

j )xj
(18)

The goal is to maximize the defender’s expected utility given
qi, i.e.

∑n
i=1 qi(xiR

d
i + (1− xi)P di ). Combined with Equa-

tion (18), the problem of finding the optimal mixed strategy
for the defender can be formulated as

max
x

∑n
i=1 e

λRa
i e−λ(R

a
i−Pa

i )xi((Rdi − P di )xi + P di )∑n
j=1 e

λRa
j e−λ(R

a
j−Pa

j )xj
(19)

s.t.
n∑
i=1

xi ≤ Υ

0 ≤ xi ≤ 1, ∀i, j
Given that the objective function in Equation (19) is non-

linear and non-convex in its most general form, finding the
global optimum is extremely difficult. Therefore, we focus on
methods to find local optima. To compute an approximately
optimal QRE strategy efficiently, we develop the Best Re-
sponse to Quantal Response (BRQR) heuristic described in
Algorithm 1. We first take the negative of Equation (19), con-
verting the maximization problem to a minimization problem.
In each iteration, we find the local minimum4 using a gradient

4We use fmincon function in Matlab to find the local minimum.



descent technique from the given starting point. If there are
multiple local minima, by randomly setting the starting point
in each iteration, the algorithm will reach different local min-
ima with a non-zero probability. By increasing the iteration
number, IterN , the probability of reaching the global mini-
mum increases.

Algorithm 1 BRQR
1: optg ← −∞; . Initialize the global optimum
2: for i← 1, ..., IterN do
3: x0 ← randomly generate a feasible starting point
4: (optl, x

∗)← FindLocalMinimum(x0)
5: if optg > optl then
6: optg ← optl, xopt ← x∗

7: end if
8: end for
9: return optg, xopt

Parameter Estimation: The parameter λ in the QRE
model represents the amount of noise in the best-response
function. One extreme case is λ=0, when play becomes uni-
formly random. The other extreme case is λ=∞, when the
quantal response is identical to the best response. λ is sen-
sitive to game payoff structure, so tuning λ is a crucial step
in applying the QRE model. We employed Maximum Like-
lihood Estimation (MLE) to fit λ using data from [Pita et al.,
2010]. Given the defender’s mixed strategy x and N samples
of the players’ choices, the logarithm likelihood of λ is

logL(λ | x) =

N∑
j=1

log qτ(j)(λ)

where τ(j) denotes the target attacked by the player in sample
j. Let Ni be the number of subjects attacking target i. Then,
we have logL(λ | x)=

∑n
i=1Ni log qi(λ). Combining with

Equation (17),

logL(λ | x) = λ

n∑
i=1

NiU
a
i (x)−N · log(

n∑
i=1

eλU
a
i (x))

logL(λ | x) is a concave function5. Therefore, logL(λ | x)
only has one local maximum. The MLE of λ is 0.76 for the
data used from [Pita et al., 2010].

Runtime: We implement BRQR in Matlab. With 10
targets and IterN=300, the runtime of BRQR is less than
1 minute. In comparison, with only 4 targets, LINGO12
(http://www.lindo.com/) cannot compute the global optimum
of Equation (19) within one hour.

4 Payoff Structure Classification
One important property of payoff structures we want to ex-
amine is their influence on model performance. We certainly

5The second order derivative of logL(λ | x) is

d2 logL

dλ2
=

∑
i<j −(U

a
i (x)− Uaj (x))2eλ(U

a
i (x)+Ua

j (x))

(
∑
i e
λUa

i (x))2
< 0
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Figure 2: Payoff Structure Clusters (color)

cannot test over all possible payoff structures, so the chal-
lenges are: (i) the payoff structures we select should be repre-
sentative of the payoff structure space; (ii) the strategies gen-
erated from different algorithms should be sufficiently sepa-
rated. As we will discuss later, the payoff structures used in
[Pita et al., 2010] do not address these challenges.

We address the first criterion by randomly sampling 1000
payoff structures, each with 8 targets. Rai and Rdi are integers
drawn from Z+[1, 10]; P ai and P di are integers drawn from
Z−[−10,−1]. This scale is similar to the payoff structures
used in [Pita et al., 2010]. We then clustered the 1000 payoff
structures into four clusters using k-means clustering based
on eight features, which are defined in Table 1. Intuitively,
features 1 and 2 describe how ‘good’ the game is for the ad-
versary, features 3 and 4 describe how ‘good’ the game is
for the defender, and features 5∼8 reflect the level of ‘con-
flict’ between the two players in the sense that they measure
the ratio of one player’s gain over the other player’s loss. In
Fig. 2, all 1000 payoff structures are projected onto the first
two Principal Component Analysis (PCA) dimensions for vi-
sualization. We select one payoff structure from each clus-
ter, following the criteria below to obtain sufficiently different
strategies for the different candidate algorithms:

• We define the distance between two mixed strate-
gies, xk and xl, using the Kullback-Leibler diver-
gence: D(xk, xl) = DKL(xk|xl)+DKL(xl|xk), where
DKL(xk|xl) =

∑n
i=1 x

k
i log(xki /x

l
i).

• For each payoff structure, D(xk, xl) is measured for ev-
ery pair of strategies. With five strategies (discussed
later), we have 10 such measurements.

• We remove payoff structures that have a mean or min-



Table 2: Strategy Distance
Payoff Structure 1 2 3 4 5 6 7
mean DKL 0.83 1.19 0.64 0.88 0.32 0.15 0.12
min DKL 0.26 0.25 0.21 0.25 0.07 0.02 0.04

Figure 3: Game Interface

imum of these 10 quantities below a given threshold.
This gives us a subset of about 250 payoff structures in
each cluster. We then select one payoff structure closest
to the cluster center from the subset of each cluster .

The four payoff structures (payoffs 1-4) we selected from
each cluster are marked in Fig. 2, as are the three (payoffs
5-7) used in [Pita et al., 2010]. Fig. 2 shows that payoffs 5-7
all belong to cluster 3. Furthermore, Table 2 reports the strat-
egy distances in all seven payoff structures. The strategies are
not as well separated in payoffs 5-7 as they are in payoffs 1-
4. As we discuss in Section. 5.2, the performance of different
strategies is quite similar in payoffs 5-7.

5 Experiments
We conducted empirical tests with human subjects playing an
online game to evaluate the performances of leader strategies
generated by five candidate algorithms. We based our model
on the LAX airport, which has eight terminals that can be
targeted in an attack [Pita et al., 2008]. Subjects play the
role of followers and are able to observe the leader’s mixed
strategy (i.e., randomized allocation of security resources).

5.1 Experimental Setup
Fig. 3 shows the interface of the web-based game we de-
veloped to present subject with choice problems. Players
were introduced to the game through a series of explanatory
screens describing how the game is played. In each game in-
stance a subject was asked to choose one of the eight gates to
open (attack). They knew that guards were protecting three
of the eight gates, but not which ones. Subjects were re-
warded based on the reward/penalty shown for each gate and
the probability that a guard was behind the gate (i.e., the ex-
act randomized strategy of the defender). To motivate the
subjects they would earn or lose money based on whether or
not they succeed in attacking a gate; if the subject opened a
gate not protected by the guards, they won; otherwise, they
lost. Subjects start with an endowment of

Table 3: Model Parameter
Payoff Structure 1 2 3 4 5 6 7
RPT-ε 2.4 3.0 2.1 2.75 1.9 1.5 1.5
COBRA-α 0.15 0.15 0.15 0.15 0.37 0 0.25
COBRA-ε 2.5 2.9 2.0 2.75 2.5 2.5 2.5

We tested the seven different payoff structures6 from Fig. 2
(four new, three from [Pita et al., 2010]). For each payoff
structure we tested the mixed strategies generated by five al-
gorithms: BRPT, RPT, BRQR, COBRA and DOBSS. There
were a total of 35 payoff structure/strategy combinations and
each subject played all 35 combinations. In order to miti-
gate the order effect on subject responses, a total of 35 dif-
ferent orderings of the 35 combinations were generated using
Latin Square design. Every ordering contained each of the 35
combinations exactly once, and each combination appeared
exactly once in each of the 35 positions across all 35 order-
ings. The order played by each subject was drawn uniformly
randomly from the 35 possible orderings. To further mitigate
learning, no feedback on success or failure was given to the
subjects until the end of the experiment. A total of 40 human
subjects played the game.

We could explore only a limited number of parameters for
each algorithm, which were selected following the best avail-
able information in the literature. The parameter settings for
each algorithm are reported in Table 3. DOBSS has no pa-
rameters. The values of PT parameters are typical values re-
ported in the literature [Hastie and Dawes, 2001]. We set ε
in RPT following two rules: (i) No more than half of targets
are in the ε−optimal set; (ii) ε ≤ 0.3Ramax, where Ramax is
the maximum potential reward for the adversary. The size of
the ε−optimal set increases as the value of ε increases. When
ε is sufficiently large, the defender’s strategy becomes max-
imin, since she believes that the adversary may attack any tar-
get. The second rule limits the imprecision in the attacker’s
choice. We empirically set the limit to 0.3Ramax. For BRQR,
we set λ using MLE with data reported in [Pita et al., 2010]
(see Section 3.2). For payoffs 1∼4, we set the parameters for
COBRA following the advices given by [Pita et al., 2010] as
close as possible. In particular, the values we set for α meet
the entropy heuristic discussed in that work. For payoffs 5∼7,
we use the same parameter settings as in their work.

5.2 Experiment Result
We used defender’s expected utility to evaluate the perfor-
mance of different defender strategies. Given that a subject
selects target ti to attack, the defender’s expected utility de-
pends on the strategy she played:

Udexp(x|ti) = xiR
d
i + (1− xi)P di

Average Performance: We first evaluate the average de-
fender expected utility, Udexp(x), of different defender strate-
gies based on all 40 subjects choices:

Udexp(x) =
1

40

n∑
i=1

NiU
d
exp(x|ti)

6Refer to http://anon-submission.webs.com/ for information of
payoff structures, defender’s mixed strategy and subjects’ choices.



whereNi is the number of subjects that chose target ti. Fig. 4
displays Udexp(x) for the different strategies in each payoff
structure. The performance of the strategies is closer in pay-
offs 5∼7 than in payoffs 1∼4. The main reason is that strate-
gies are not very different in payoffs 5∼7 (see Table 2). We
evaluate the statistical significance of our results using the
bootstrap-t method [Wilcox, 2003]. The comparison is sum-
marized below:
• BRQR outperforms COBRA in all seven payoff struc-

tures. The result is statistically significant in three
cases (p<0.005) and borderline (p=0.05) in payoff 3
(p<0.06). BRQR also outperforms DOBSS in all cases,
with statistical significance in five of them (p<0.02).
• RPT outperforms COBRA except in payoff 3. The dif-

ference is statistically significant in payoff 4 (p<0.005).
In payoff 3, COBRA outperforms RPT (p>0.07). Mean-
while, RPT outperforms DOBSS in five payoff struc-
tures, with statistical significance in four of them
(p<0.05). In the other two cases, DOBSS has better per-
formance (p>0.08).
• BRQR outperforms RPT in three payoff structures with

statistical significance (p<0.005). They have very simi-
lar performance in the other four cases.
• BRPT is outperformed by BRQR in all cases with sta-

tistical significance (p<0.03). It is also outperformed by
RPT in all cases, with statistical significance in five of
them (p<0.02) and one borderline (p<0.06). BRPT’s
failure to perform better (and even worse than COBRA)
is a surprising outcome.
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Figure 4: Average Expected Utility of Defender

Robustness: The distribution of defender’s expected util-
ity is also analysed to evaluate the robustness of different de-
fender strategies. Figure 5 displays the empirical Cumulative

Distributed Function (CDF) of Udexp(x|ti) for different de-
fender strategies based the choices of all 40 subjects. The x-
axis is the defender expected utility, the y-axis shows the per-
centage of subjects against whom the defender has gained less
than certain amount of expected utility. As the curve moves
towards left, the defender expected utility decreases against
a certain percentage of the subjects; and vice versa. The left
most positive point on the curve indicates the worst defender
expected utility of a strategy against different subjects. On
the other hand, the range of the curve on the x-axis indicates
the reliability of the strategy against various subjects.

As can be seen from Figure 5, defender expected utility has
smallest variance when BRQR strategy is played; DOBSS
and BRPT strategies lead to large variance in defender ex-
pected utility. Furthermore, BRQR achieves highest ‘worst’
defender expected utility in all payoff structures except in
payoff 5, where the CDF of BRQR and RPT strategies are
very close.

BRPT and DOBSS are not robust against an adversary that
deviates from the optimal strategy. BRQR, RPT and COBRA
all try to be robust against such deviations. BRQR considers
some (possibly very small) probability of adversary attacking
any target. In contrast, COBRA and RPT separate the targets
into two groups, the ε-optimal set and the non-ε-optimal set,
using a hard threshold. They then try to maximize the worst
case for the defender assuming the response will be in the ε-
optimal set, but assign less resources to other targets. When
the non-ε-optimal targets have high defender penalties, CO-
BRA and RPT become vulnerable, especially in the following
two cases:
• ‘Unattractive’ targets are those with small reward but

large penalty for the adversary. COBRA and RPT con-
sider such targets as non-ε-optimal and assign signifi-
cantly less resources than BRQR on them. However,
some subjects would still select such targets and caused
severe damage to COBRA and RPT (e.g. about 30%
subjects5 selected door 5 in payoff 4 against COBRA).
• ‘High-risk’ targets are those with large reward and large

penalty for the adversary. RPT considers such targets as
non-ε-optimal and assigns far less resources than other
algorithms. This is caused by the assumptions made by
PT that people care more about loss than gain and that
they overestimate small probabilities. However, experi-
ments show RPT gets hurt significantly on such targets
(e.g. more than 15% subjects5 select door 1 in payoff 2).

Overall, BRQR performs best, RPT outperforms COBRA
in six of the seven cases, and BRPT and DOBSS perform the
worst.

6 Conclusions
The unrealistic assumptions of perfect rationality made by ex-
isting algorithms applying game-theoretic techniques to real-
world security games need to be addressed due to their limi-
tation in facing human adversaries. This paper successfully
integrates two important human behavior theories, PT and
QRE, into building more realistic decision-support tool. To
that end, the main contributions of this paper are, (i) Devel-
oping efficient new algorithms based on PT and QRE models
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Figure 5: Distribution of Defender’s Expected Utility (color)

of human behavior; (ii) Conducting the most comprehensive
experiments to date with human subjects for security games
(40 subjects, 5 strategies, 7 game structures); (iii) Design-
ing techniques for generating representative payoff structures
for behavioral experiments in generic classes of games. By
providing new algorithms that outperform the leading com-
petitor, this paper has advanced the state-of-the-art.
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