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Abstract

Illegal extraction of forest resources is fought, in many de-
veloping countries, by patrols that try to make this activity
less profitable, using the threat of confiscation. With a limited
budget, officials will try to distribute the patrols throughout
the forest intelligently, in order to most effectively limit ex-
traction. Prior work in forest economics has formalized this
as a Stackelberg game, one very different in character from
the discrete Stackelberg problem settings previously studied
in the multiagent literature. Specifically, the leader wishes to
minimize the distance by which a profit-maximizing extrac-
tor will trespass into the forest—or to maximize the radius
of the remaining “pristine” forest area. The follower’s cost-
benefit analysis of potential trespass distances is affected by
the likelihood of being caught and suffering confiscation.
In this paper, we give a near-optimal patrol allocation algo-
rithm and a 1/2-approximation algorithm, the latter of which
is more efficient and yields simpler, more practical patrol al-
locations. Our simulations indicate that these algorithms sub-
stantially outperform existing heuristic allocations.

Introduction
Illegal extraction of fuelwood and other natural resources
from forests is a problem confronted by officials in many
developing countries, with only limited success (MacKin-
non et al. 1986; Dixon and Sherman 1990; Clarke, Reed,
and Shrestha 1993; Robinson 2008). To cite just two exam-
ples, Tanzania’s Kibaha Ruvu Forest Reserves are “under
constant pressure from the illegal production of charcoal to
supply markets in nearby Dar es Salaam,”1 and illegal log-
ging is reportedly “decimating” the rosewood of Cambodia’s
Central Cardamom Protected Forest (see Fig. 1). In many
cases, forest land covers a large area, which the local people
may freely visit. Rather than protecting the forest by denying
extractors entry to it, therefore, protective measures take the
form of patrols throughout the forest, seeking to observe and
hence deter illegal extraction activity (Lober 1992). With a
limited budget, a patrol strategy will seek to distribute the
patrols throughout the forest, in order to minimize the re-
sulting amount of extraction that occurs or protect as much
of the forest as possible.
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Figure 1: “A truck loaded with illegally cut rosewood passes
through Russey Chrum Village...in the Central Cardamom Pro-
tected Forest.” Photo from (Boyle Dec 21 2011).

We follow (Albers 2010) in posing this problem as a
Stackelberg game in which the policymaker or leader pub-
licly chooses a (mixed) patrol strategy; in response, the ex-
tractor or follower then chooses whether or not to extract,
or to what degree. The problem we study is of comput-
ing optimal leader strategies in such a game. The potential
extraction-preventing benefits of patrols are twofold: extrac-
tion is prevented directly, when catching would-be extrac-
tors in the act, and also indirectly, through deterrence. As
in other Stackelberg application settings, here the followers
are presumed likely to learn the leader’s chosen strategy—
the patrol personnel are often observed by the (many) vil-
lagers, who can communicate with one another over time.
The leader wishes to arrange the potential troublemaker’s
environment so as to render his choice of engaging in this
behavior as expensive for him as possible.2 More precisely,
given the continuous nature of this setting, the leader seeks
a patrol allocation that minimizes the distance by which
the profit-maximizing follower will trespass into and extract
from the forest.

Background. Economists have studied the relationship
generally between enforcement policy for protecting natural
resources and the resulting incentives for neighbors of the
protected area (Milliman 1986; Robinson 2008; Sanchirico
and Wilen 2001). Our point of departure in this paper is the
forest protection model of (Albers 2010) (see also (Robin-

2By convention, we refer to leader as she and follower as he.



son, Albers, and Williams 2008; 2011)), in which a circular
forest is surrounded by villages (hence potential extractors);
the task is to distribute the probability density of patrols
within the forest area; the objective is to minimize the dis-
tance by which rational extractors will trespass into the for-
est and hence (since nearby villagers will extract as a func-
tion of this distance (Hofer et al. 2000)) or maximize the
resulting amount of pristine forestland. We assume extrac-
tors are rational, risk-neutral economic actors, who choose
a trespass distance in order to maximize expected profits
(Becker and Landes 1974). In the language of mathemati-
cal morphology (Soille 2004), the pristine forest area due
to a given patrol strategy (or no patrols) will be an erosion
F 	 B of the forest F by a shape B, where B is a circle
whose radius equals the trespass distance. The erosion is the
set of points reached by the center of B as it moves about
inside of F , which in this case is the pristine area.

We strengthen this model in several ways, permitting spa-
tial variation in patrol density, multiple patrol units, and
convex polygon-shaped forests. As has been observed (Al-
bers 2010), exogenous legal restrictions on patrol strategies,
such as requiring homogenous patrols, can degrade protec-
tion performance (MacKinnon et al. 1986; Hall and Rodgers
1992). Unlike the existing work on this model, we bring to
bear algorithmic analysis on the problem. Specifically, we
show that while certain simple allocations can perform arbi-
trarily badly compared to the optimal, provably approximate
or near-optimal allocations can be found efficiently.

The forest patrol problem we study here is an instance
of the leader-follower Stackelberg game model, which has
been the topic of much recent research, applied to a number
of real-world security domains, including the Los Angeles
International Airport (Paruchuri et al. 2008), the Federal Air
Marshals Service (Tsai et al. 2009), and the Transportation
Security Administration (Pita et al. 2011). The forest pa-
trol setting differs from the settings of these previous works,
most crucially in that it is essentially continuous rather than
discrete, both spatially and in terms of player actions. In the
existing problems there are a finite number of discrete loca-
tions to protect (e.g., modeled as nodes of a graph), whereas
ideally the entire forest area would be protected from extrac-
tion. The spatial continuity of our problem setting permits a
very different approach, in which we solve for optimal or ap-
proximate probability distributions over the region using ef-
ficient, combinatorial algorithms, without the use of general-
purpose solvers. (Of course, the continuous space could be
discretized by superimposing a grid on it, but such an ap-
proach would be inefficient due to the geometric density.)
Once we have computed a distribution over patrol locations,
selecting locations from the distribution is straightforward.
As such, our primary focus is on choosing and computing
this distribution on patrol density over the forest region.

Contributions. We give a full analysis of the problem of
maximizing pristine forest radius. Our main contributions
are efficient near-optimal and 1/2-approximation algorithms
for this problem (both with additive error ε due to binary
search), the latter of which has the advantage of both greater
efficiency and more practical, easier to implement solutions.

Our results generalize a) from one to multiple patrol units,
and b) from circular forests to convex polygon forests with
symmetric patrols. Simulations indicate that our algorithms
substantially outperform baseline strategies.

Problem Setting
In this section we present a version of the forest model of
(Albers 2010) and formulate a corresponding optimization
problem. Villagers are distributed about the forest perime-
ter (see Fig. 2), which is initially assumed to be a circular
region, of radius 1.

Follower strategies. An extractor’s action is to choose
some distance d to walk into the forest, on a ray from a
point on the perimeter towards the forest center, before re-
versing and returning to his starting point, extracting on the
return trip. We assume the extractors trespass towards the
forest center because they will naturally wish to avoid one
another as much as possible. In this case, the extractor only
extracts—and hence is in danger of getting caught doing
so—on the return trip, approaching the forest boundary.

d

Figure 2: The forest, with pris-
tine area shaded.

Extractors gain a bene-
fit if never caught and in-
cur a cost, based on a con-
vex increasing cost func-
tion C(d) and a concave
increasing benefit function
B(d), for trespassing dis-
tance d into the forest. If
caught, the extractor’s ben-
efit becomes 0 (the ex-
tracted resources are con-
fiscated) but the cost does
not change since the ex-
tractor has at this point al-
ready traveled distance d

into the forest and must exit the forest, despite having been
caught (there is no positive punishment beyond the confis-
cation itself and being prevented from performing further
extraction while exiting). Thus a given patrol strategy s will
reduce the extractor’s expected benefit for an incursion of
distance d from B(d) to some value Bs(d). Equivalently,
once the patrol strategy s is fixed, the choice of d determines
a cost C(d) and an expected benefit Bs(d).

The rational extractor will choose a distance trespass d
that maximizes his expected profit Bs(d) − C(d), which is
the d for which the curves bs(d) and c(d) intersect (see Fig.
3(a)) and his marginal profit bs(d)−c(d) equals zero. (Or the
infimum of such d if the intersection extends over an inter-
val, which can be justified by slight purturbations.) Beyond
this point, the marginal cost of extraction outweighs the
marginal benefit. We emphasize that the extractor’s strategy
(the value d) is chosen offline, in advance, with the knowl-
edge of the patrol allocation φ(·). The extractor acquires no
new information online that can affect his decision-making:
patrols are invisible to the trespasser until they catch him,
at which point he is forced to exit. For a sufficiently fast-
growing cost function relative to the benefit function, there
will be a natural core of pristine forest even with no patrols



at all (Albers 2010), which we assume.

Notation. b(·), c(·), φ(·) are the (marginal) benefit, cost,
and capture probability density functions, respectively, and
are the derivatives ofB(·), C(·),Φ(·), the corresponding cu-
mulative functions. p(·) = b(·)−c(·) andP (·) = B(·)−C(·)
are the corresponding (net) profits. ds for s ∈ {n, o, r} is the
trespass distance under no patrols, the optimal patrol, and
the best ring patrol, respectively. rs = 1 − ds is the radius
of the pristine forest area under some patrol strategy s. Sim-
ilarly for bs(·), Bs(·), ps(·), Ps(·), which, under patrols, are
benefits and profits in expectation. r̂s = rs − rn = dn − ds
is the pristine radius increase or trespass distance decrease
under patrol strategy s.

Detection models. An extractor is detected if he comes
within some distance ∆ << 1 of the patrol. Under our time
model, the patrol units move much less quickly than the ex-
tractors, and so patrols can be modeled as stationary from the
extractor’s point of view. Therefore, if e.g. φ(·) is constant
(for a single patrol unit) over the region R (of size |R|), then
the probability of detection for an extraction path of length
d is proportional to φd, specifically φd2∆/|R|, where the
total area within distance ∆ of the length-d walk is approxi-
mated as d · 2∆. That is, probabilities are added rather than
“multiplied” due to stationarity. (We assume the patrol unit
is not visible to the extractor.) The model described here also
covers settings in which the amount spent at a location de-
termines the sensing range ∆ there. For notational conve-
nience, we drop ∆ and |R| throughout the paper, assuming
normalization as appropriate.

Leader strategies. The leader has a budget E ∈ [0, 1]
specifying a bound on the total detection probability mass,
for the patrol’s presence at a given location, that can be dis-
tributed across the region. The task is to choose an allo-
cation in order to minimize the rational extractor’s result-
ing trespass distance ds. Due to forest symmetry and the
fact that extractors’ decisions are uncoordinated, the prob-
lem is essentially one-dimensional. Specifically, the leader
strategy specifies a patrol probability density φ(x) for each
x ∈ [0, 1], which density is reflected symmetrically about
the circle of radius x.

Definition 1. Let OPT (I) be the optimal solution value of
a problem instance I , and let ALG(I) be the solution value
computed by a given algorithm. An algorithm for a maxi-
mization problem is a c-approximation (with c < 1) with
additive error ε if, for every problem instance I , we have
ALG(I) ≥ c ·OPT (I)− ε.

Minimizing ds and maximizing rs are equivalent in terms
of optimal solutions; for approximations, we optimize for
maximizing rs. Note that a c-approximation for the pristine
radius increase r̂s = rs − rn implies a c-approximation for
radius rs.

Numerical precision issues. Our two algorithms involve
binary search, numerical integration, and root-finding, all of
which can introduce errors in subtle ways. Both algorithms’
binary search outer loops introduce an additive error ε to
the resulting pristine radius. When b(·) and c(·) are not both

polynomials, Algorithm 1 performs a numerical integration
whose error effectively reduces the algorithm’s budget by ε,
with the effect that the ε error bound is in comparison to the
optimal radius achievable with budget E − ε. Finally, both
algorithms’ binary search loops perform a root-finding step.
To simplify the analysis and presentation, we assume that
root-finding can be performed exactly in constant time.

Patrol Allocations
Let the patrol zone be the region of the forest assigned
nonzero patrol density. We note three patrol allocation
strategies that have been proposed in the past:

• Homogeneous: Patrol density distributed uniformly over
the entire region.

• Boundary: Patrol density distributed uniformly over a
ring (of some negligible width w) at the forest boundary.

• Ring: Patrol density distributed uniformly over a ring (of
negligible width w) concentric with the forest.

Boundary patrols can be superior to homogenous patrols,
since homogeneous patrols waste enforcement on the natu-
ral core (Albers 2010). It is interesting to note that this is not
always so. Suppose w is very small and the homogenous-
induced core radius is less than 1 − d for some trespass
distance d satisfying w < 1/2 < d ≤ 1. With homoge-
nous patrols, we will have Φ(d) = E/π · d. With bound-
ary patrols, however, this probability for any d ≥ w will be

E
π−π(1−w)2 · w = E/π · w

1−(1−w)2 , which approaches E
2π as

w → 0. In this case, homogeneous patrols will actually out-
perform boundary patrols. Intuitively, this is because patrols
in the interior will “intersect” more boundary-to-center tres-
pass rays than a patrol on the boundary will. Unfortunately,
both boundary and homogeneous patrols can perform arbi-
trarily badly.

Proposition 1. The approximation ratios of homogeneous
and boundary patrols are both 0.

Proof. To see this, consider the following example. Let the
(non-normalized) forest radius R be extremely large, with
B(x) = x for x ≤ R (and 0 thereafter) and C(x) = 0 for
all x. Then the rational extractor will trespass by distanceR,
and the natural core is empty.

Let the budget be fixed at E = 1, and first consider ho-
mogenous patrols. This implies a constant patrol density of
1

πR2 . For each possible trespass distance 0 ≤ x ≤ R, the cu-
mulative expected profit is (1− Φ(x))B(x) = (1− x

πR2 )x,
which is strictly increasing for all 0 ≤ x ≤ R.

A width-1 boundary patrol (recall R >> 1) with budget
1 will place a density of 1

π(R2−(R−1)2) = 1
π(2R−1) about

the perimeter. This yields an expected cumulative profit of
(1−Φ(x))B(x) =

(
1− min{x,1}

π(2R−1)
)
x, which again is strictly

increasing 0 ≤ x ≤ R.
Thus in both cases the rational extractor will continue to

trespass all the way to the forest center, yielding a pristine
area radius of 0, although a strictly positive pristine radius is
achievable. Consider, e.g., allocating constant density over
a radius-1 disk at the forest center, which would imply a
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Figure 3: The shaded regions in the latter two subfigures correspond to the reduction in marginal benefits within the patrol zone.
Note that the marginal benefits under patrols are also reduced following the patrol zone.

density of 1/π there. Then the expected cumulative profit for
R−1 ≤ x ≤ Rwill be (1−Φ(x))B(x) = (1− x−(R−1)

π )·x,
which is strictly decreasing for such x. Thus the rational
extractor will never enter this disk, and so the pristine area
radius is 1.

Instead, our optimal patrol will be of the following sort:

• Band: The shape of the patrol zone is a band, i.e, the set
difference of two circles, both concentric with the forest.

The cumulative profit for trespassing by distance x under
some patrol strategy s is:

Ps(x) = Bs(x)− C(x)

= (1− Φs(x)) ·B(x)− C(x)

= P (x)− Φs(x)B(x)

and so the marginal profit is:

ps(x) = dPs(x)/dx

= p(x)− Φs(x)b(x)− φs(x)B(x) (1)

Observe that φ(·) influences the extractor’s expected ben-
efit function, and hence his cost-benefit analysis, in two
ways. First, the probability of successfully traveling distance
x (on the return trip) is reduced by the cumulative probabil-
ity Φ(x) of capture up to that point, and so the marginal
profit at point x is reduced from p(x) by amount Φ(x)b(x).
Second, being caught at point x with probability density
φ(x) means losing the full benefit accrued so far, which fur-
ther reduces the marginal profit at this point by φ(x)B(x).
Lemma 1. Without loss of generality, we may assume:

1. The patrol zone of φo(·) is (do, eo) for some eo.
2. φo(x) at each point x ∈ (do, eo) is the smallest possi-

ble value providing no positive profit at point x, i.e., that
density yielding bo(x) = c(x).

3. bo(x) ≤ c(x) and φo(x) = 0 for x ≥ eo.

Proof. (1) is provable by a modification to the following ar-
gument proving (2). Consider an allocation φo(·) that suc-
cessfully stops the extractor at do but which violates the
stated property, at some particular level of discretization.
That is, partition the interval (do, eo) into n equal sized
subintervals, numbered x1, ..., xn. For this discretization, we
write Bo(xi) =

∑i−1
j=1 bo(j) and Φo(xi) =

∑i−1
j=1 φo(i)

(omitting coefficients). Let xi be the first such subinterval
for which po(xi) < 0, and let x+i be shorthand for xi + 1.
In this case (see Eq. 1) we have p(xi) − Φo(xi)b(xi) −
φo(xi)B(xi) < 0. We correct this by subtracting a value δ
from φo(xi) to bring about equality, and adding δ to φo(x+i ).

The marginal profit of step xi is then 0 (by construction),
and that of step x+i is only lower than it was before, so
there is no immediate payoff to walking from xi to x+i or
xi + 2. Clearly Φo(xi + 2) is unchanged. Finally, we verify
that the expected total profit of walking to position xi + 2
is unchanged. This benefit is affected by the changes to both
φo(xi) and φo(x+i ). First, δB(xi) is added to bo(xi) by sub-
tracting δ from φo(xi); second, bo(x+i ) becomes

b(x+i )(1 − (Φo(x+i ) − δ)) − (φo(x+i ) + δ) ·B(x+i )

= b(x+i )(1 − Φo(x+i )) + b(x+i )δ − φo(x+i )B(x+i ) − δB(x+i )

= b(x+i )(1 − Φo(x+i )) − φo(x+i )B(x+i ) + b(x+i )δ − δB(x+i )

= bo(x+i ) − δB(xi)

Thus, since these two changes cancel out and there was
no incentive for walking from xi past xi + 2 prior to the
modification, this remains true, and so the extractor will
walk no farther than he did before the modification. We re-
peat this modification iteratively for all earliest adjacent vi-
olations (xi, x

+
i ), and for discretization precisions n. Since

outer rings of circular (or, more generally, convex) forests
have greater circumference, each such operation of moving
patrol density forward only lowers the patrol’s total cost.

Finally, (3) follows from φo(·) being a band that stops the
extractor at position do.

Remark. We emphasize that the lemma implies that in
an optimal allocation the patrols will, perhaps counterintu-
itively, occur within the pristine area of the forest, and so the
rational trespasser will actually never encounter the patrols.
We remark that under the resulting allocation, patrol den-
sity will decline monotonically with distance into the for-
est. Intuitively, the reason for this is that as distance into
the forest grows, there is a smaller and smaller remaining
marginal profit p(x) that we need to compensate for with
threat of confiscation, and yet the magnitude of the potential
confiscation B(x) grows only larger. We also remark that
this point eo will occur strictly before dn, because for large
enough x ∈ (do, dn), p(x) will be small enough to ensure



Algorithm 1 Computing the optimal allocation(b, c, E, ε)

1: (d1, d2)← (0, dn)
binary search:

2: while d1 < d2 − ε do
3: d← (d1 + d2)/2

4: φ(x) ,
b(x)·

(
C(x)+P (d)

)
−B(x)c(x)

B(x)2

5: e← x s.t. d ≤ x ≤ dn and φ(x) = 0
6: E(d)←

∫ e
d

2π(1− x)φ(x)dx (within error +ε)

7: {d2 ← d, φ2 ← φ} if E(d) ≤ E else d1 ← d
8: end while
9: return (d2, φ2)

that Φo(eo)b(x) < c(x), rendering additional patrol density
within [eo, dn] superfluous.
Theorem 1. Algorithm 1 provides an allocation whose pris-
tine radius (obtained using budget E) is within ε of the opti-
mal pristine radius obtainable using budget E − ε.

Proof. We assume the properties stated by Lemma 1. Ob-
serve that for x ≤ do, bo(x) = b(x); for x ≥ eo, bo(x) is
determined only by b(x) and the cumulative capture prob-
ability, i.e., bo(x) = (1 − Φo(x)) · b(x). eo is the point at
which φo(x) = 0 and (1 − Φo(x)) · b(x) − c(x) = 0. Now
we compute φo(·). Setting Eq. 1 to 0 yields:

φo(x) =
p(x)− Φo(x)b(x)

B(x)
(2)

The solution to this standard-form first-order differential
equation (recall that Φo(x) =

∫ x
do
φo(y)dy, and note that

Φo(·) depends on the value do) is:

Φo(x) = e−
∫
R(x)dx ·

(∫
Q(x) · e

∫
R(x)dxdx+K)

)
where R(x) = b(x)

B(x) , Q(x) = p(x)
B(x) , and K is a con-

stant. Since
∫
R(x)dx =

∫ b(x)
B(x)dx = lnB(x), we have

e
∫
R(x)dx = B(x). Therefore,∫

Q(x) · e
∫
R(x)dxdx =

∫
p(x)

B(x)
·B(x)dx

=

∫
p(x)dx = P (x)

and, based on initial condition Φo(do) = 0,

K = −
∫
Q(x) · e

∫
R(x)dxdx

∣∣∣
do

= −P (do)

Since φo(x) = Φ′o(x), this yields:

Φo(x) =
P (x) − P (do)

B(x)

φo(x) =
b(x) ·

(
C(x) + P (do)

)
−B(x)c(x)

B(x)2

Then an allocation of φo(x) for x ∈ (do, eo) will pro-
vide the optimal trespass distance do for the budgetE(do) =

Algorithm 2 Computing the best ring patrol(b, c, E, ε)
1: (d1, d2)← (ε/2, dn)

binary search:
2: while d1 < d2 − ε/4 do
3: d← (d1 + d2)/2, a← d− ε/2
4: φ← E/(π((1− d)ε+ ε2/4)), Φ← φ · ε/2
5: f ← x s.t. (1− Φ)b(x) = c(x)
6: ∆P1 ← P (d)− P (a)− ΦB(d)
7: ∆P2 ← P (f)− P (d) + Φ · (B(d)−B(f))
8: {d2 ← d, φ2 ← φ} if ∆P1 + ∆P2 < 0 else d1 ← d
9: end while

10: return (d2, φ2)

∫ eo
do

2π(1 − x)φo(x)dx. We search for the smallest feasible
do by binary search, with error ε. The integral in line 6 is
computed within positive error ε (in some time τ(ε) depend-
ing on b(·) and c(·)), by adding ε/2 to a ±ε/2-error approx-
imation, which effectively reduces budget E to E − ε.

Remark. If b(·) and c(·) are polynomials, then the guar-
antee can be made relative to the same budget E, since in
this case φ(x) is a rational function and so E(do) is solvable
analytically, by the method of partial fractions.

The varying-density allocation of Algorithm 1 may be dif-
ficult or impractical to implement; moreover, each iteration
of the binary search loop requires an expensive iterative ap-
proximation parameterized by 1/ε, if the integral in line 6 is
not solvable analytically. Now we present a more efficient al-
gorithm that produces easier-to-implement allocations. As-
suming the intersection of b(·) and c(·) can be found in con-
stant time, Algorithm 2 runs in time O(log 1/ε).
Definition 2. Let Rε(r) indicate the interval (r, r + ε). Let
an ε-ring of radius r be a patrol of constant density over
Rε(r), rotated about the circle.
Lemma 2. The ε/2-ring given by Algorithm 2 increases
the pristine radius by within 3/4ε of the largest possible in-
crease achievable with an ε/2-ring (and budget E − ε).

Proof. For a given possible value r (set d = 1− r), an ε/2-
ring of radius r and interval (a, d) = (d − ε/2, d) has φ =
E/(πrε + ε2/4) for x within the ring and Φ = φ · ε/2 for
x beyond the ring. Consider an extractor choosing between
the stopping points of a and some point f > d beyond the
ring. In order to deter the extractor from continuing from a
to any such f , it must be the case that the resulting change
in expected profit is negative. That is, we must have ∆P1 +
∆P2 < 0, where these are the profit changes during the ring
Pr(x)

∣∣d
a

and after the ring Pr(x)
∣∣f
d

, respectively. Because
Φr(a) = 0 and Φr(d) = Φr(f) = Φ, we have:

∆P1 = P (d)− P (a)− Φr(d)B(d) + Φr(a)B(a)

= P (d)− P (a)− ΦB(d)

∆P2 = P (f)− P (d)− Φr(f)B(f) + Φr(d)B(d)

= P (f)− P (d) + Φ · (B(d)−B(f))

We do binary search for the smallest value d for which
∆P1 + ∆P2 < 0, to within error ε/4. This means the cho-
sen ring radius r is within ε/4 of the largest ε/2-ring radius
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(b) b(x) = 1 − x20, c(x) = x
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(c) b(x) = 1, c(x) = x
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(d) b(x) = 1, c(x) = 5x

Figure 4: Patrol strategy effectiveness for sample b(·), c(·) functions.

for which d − ε/2 is a better stopping point than anywhere
beyond the ring.

This does not preclude the possibility of there being a
smaller-radius ε-ring that would induce a smaller trespass
distance, since perhaps the trespasser could be induced to
stop within the ring itself. But the possible improvement to
obtained by decreasing the radius is of course bounded by
the width of the ring–ε/2. Thus the total error in trespass
distance compared to that of the best possible ε-ring patrol
is at most 3/4ε.

Lemma 3. There exists an ε/2-ring that increases the pris-
tine radius by at least 1/2r̂o − ε/4.

Proof. As x grows from do to dn, bo(x) falls monotonically
while c(x) grows, and Bo(x) and Φo(x) both grow mono-
tonically (because b(x) ≥ 0 and φo(x) ≥ 0). Thus by Eq. 2,
φo(x) falls monotonically over (do, dn).

Now consider the location dr = (do + dn)/2 + ε/4 and
the ε/2-ring of radius rr = 1 − dr, for which φr(·) =
1
ε/2

∫ dn
do

φo(x)dx within Rε/2(rr) and 0 elsewhere. The true
cost of patrol density φ(x) at location x rotated about the cir-
cle is 2π(1 − x)φ(x). Because φo(·) is monotonic decreas-
ing, we have

∫ dr
do
φo(x)dx ≥

∫ dn
dr

φo(x)dx. Thus φr(·) will
be only cheaper than φo(·), and so also in budget.

We claim that the rational extractor will be deterred from
crossing the constructed ε/2-ring, which means its pristine
radius increase is at least (ro−rn)/2−ε/4. Indeed, we know
by definition that Po(do) > Po(x) for all x ∈ (do, dn], and
in particular for all x ∈ [dr, dn] (recall do < dr < dn). With
the constructed ring patrol and for such x, we have Pr(x) ≤
Po(x), because Φr(x) ≥ Φo(x). Finally, we have Po(do) =
Pr(do), since for small enough ε (specifically, ε/2 < r̂o/2),
the ring will not begin until after do. Combining inequalities,
we obtain: Pr(x) ≤ Po(x) < Po(do) = Pr(do). Hence do

in particular is a better stopping point for the extractor than
any point x ∈ [dr, dn], and so the extractor’s best stopping
point will lie somewhere within [dr, rr).

Combining the two preceding lemmas, we then immedi-
ately obtain that Algorithm 2 is a 1/2-approximation:

Theorem 2. The allocation of Algorithm 2 increases the
pristine radius by at least (1/2r̂o−ε/4)−3/4ε = 1/2r̂o−ε.

We note that the approximation ratio is tight. To see this,
problem instances can be constructed satisfying the follow-
ing: c(x) = 0 and b(x) is constant (and small) over the
interval (do, dn) (which meets an empty natural core, i.e.
dn = 1), and E is very small and hence (do, dn) is very
narrow. In this case, Φo(x) grows very slowly over the pa-
trol region, and φo(x) declines very slowly over it. In the
extreme case, the weight of φo(x)’s probability mass to the
right of dr approaches the weight to the left.

Algorithmic extensions
Multiple patrol units. We can extend from one to mul-
tiple patrol units, weighted equally or unequally. Given k
patrol units, each given budget Ei ∈ [0, 1], with E =

∑
Ei,

we partition the forest into k sectors, each of angle 2πEi/E.
We run one of our algorithms above, with budget E. (Ob-
serve that for both algorithms, havingE > 1 is equivalent to
having E = 1 on some smaller slice of the circle.) Then we
choose positions for patrol unit iwithin sector i, i.e., propor-
tional to φ(·), which is reflected about the sector. Note that
an extractor’s path necessarily lies within a single patrol’s
sector, and so adding capture probabilities remains justified.

Other forest shapes. In the noncircular forest context,
permitting extractors to traverse any length-bounded path
from their starting points implies that the pristine area de-
termined by a given patrol strategy will again be an erosion



of the forest. Computing the erosion of an arbitrary shape is
computationally intensive (Soille 2004), but it is easily com-
putable for convex polygons, which will approximate many
realistic forests. In order to be practically implementable in
such cases, the patrol should be symmetric around the forest
area. Our algorithms above adapt easily to the setting of con-
vex polygon forest shapes, where pristine areas are erosions,
by integrating the cost of a patrol around the forest boundary.
In both cases, we replace the circle circumference 2π(1−x)
with the cost of the corresponding polygon circumference.
For large polygons with a reasonable number of sides, the
resulting error due to corners will be insignificant.

Experiments
We implemented both our algorithms, as well as the baseline
solutions of homogenous and boundary patrols. We tested
these algorithms on certain realistic pairs of benefit and cost
functions (with forest radius 1; see four examples in Fig. 4).
We now summarize our observations on these results.

In each setting (see left subfigures), we vary the patrol
budget (with E > 1 meaning multiple patrols), comput-
ing the patrol allocation function and hence the extractor’s
trespass distance ds, for each. First, the optimal algorithm
indeed dominates all the others. Both our algorithms per-
form much better overall than the two baselines, however,
up until the point at which the budget is sufficient to deter
any entry into the forest, using boundary and best ring. Best
ring will consider a ring at the boundary, so it cannot do
worse than boundary, and so the two curves must intersect
at zero. Prior to this best ring does outperform boundary. As
observed above, neither homogeneous nor boundary consis-
tently dominates the other.

We computed ring patrols for two ring widths, one very
narrow (1/104) and one less so (0.1). Interestingly, neither
ring size dominates the other. With a sufficiently large bud-
get, the rings will lie on the boundary, but a wider ring will
permit some nonnegligible trespass (part way across the ring
itself). With smaller budgets the rings will lie in the interior
of the forest. In this case, the narrow ring will spend the
entire budget at one (expensive) density level, whereas the
wider ring can will (more cheaply, and hence more success-
fully) spend some of its budget at lower-density levels.

Next (see middle subfigures), we plot the optimal φo(·)
functions under many different budgets. As can be seen,
these curves sweep out different regions of the plane, de-
pending on the b(·), c(·) pair.

Finally (see right subfigures), we illustrate the result of
applying Algorithm 1 to a rectangular forest, with one sam-
ple budget (3.5, normalized to the dimensions of the forest).
The patrol density is represented by the level of shading. The
border of the natural core is also shown.
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