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Abstract. In a Network Security Game (NSG), security agencies must allo-
cate limited resources to protect targets embedded in a network, such as impor-
tant buildings in a city road network. A recent line of work relaxed the perfect-
rationality assumption of human adversary and showed significant advantages of
incorporating the bounded rationality adversary models in non-networked secu-
rity domains. Given that real-world NSG are often extremely complex and hence
very difficult for humans to solve, it is critical that we address human bounded
rationality when designing defender strategies. To that end, the key contributions
of this paper include: (i) comprehensive experiments with human subjects using a
web-based game that we designed to simulate NSGs; (ii) new behavioral models
of human adversary in NSGs, which we train with the data collected from human
experiments; (iii) new algorithms for computing the defender optimal strategy
against the new models.
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tal Response

1 Introduction

In the last few years there has been an increasing interest in using game theory to build
decision-support tools for real-world security problems, in which security forces must
allocate resources (such as patrol cars and canine units) to protect one or more potential
targets that attackers (e.g. terrorists) would like to damage or destroy. Since in these
domains the attacker can usually observe the defender’s strategy before deciding on a
plan of attack, it is natural to model this as a Stackelberg game where the leader (the
defender) commits to a randomized strategy before the follower (the attacker) chooses
a strategy. Such attacker-defender Stackelberg game models have been used as the ba-
sis of decision-support systems that have been successfully deployed in real-world do-
mains, including ARMOR at the LAX airport [1] and IRIS at the Federal Air Marshals
Service [2].

In this paper we focus on security games whose domains have structure that is natu-
rally modeled as graphs. For example, in response to the devastating terrorist attacks in
2008 [3], Mumbai police deployed randomized checkpoints as one countermeasure to
prevent future attacks [4]. This can be modeled as a Stackelberg game on a graph with
intersections as nodes and roads as edges, where certain nodes are targets for attacks.



The attacker chooses a path on the graph ending at one of the targets. The defender can
schedule checkpoints on edges to try to catch the attacker before a target is reached.
Such graph-based Stackelberg security games have received recent study [5,6,7].

A common assumption of these previous studies is that the attacker is perfectly
rational (i.e. chooses a strategy that maximizes their expected utility). This is a reason-
able proxy for the worst case of a highly intelligent attacker, but it can lead to a defense
strategy that is not robust against attackers using different decision procedures, and it
fails to exploit known weaknesses in the decision-making of human attackers. Indeed,
extensive experimental studies have shown that standard game-theoretic assumptions
of perfect rationality are not ideal for predicting the behavior of humans in multi-agent
decision problems, and various alternative models have been proposed [8,9,10,11]. Re-
cently, Yang et al [12] studied human behavior models of attackers in the setting of
(non-networked) Stackelberg security games, and showed that defender strategies based
on a quantal response model (an adaptation of McKelvey and Palfrey’s Quantal Re-
sponse Equilibrium (QRE) concept [10] to the Stackelberg setting) achieved promising
performance when tested against human subjects, outperforming previous methods for
security games [13,14] as well as a behavior model based on Prospect Theory [8].

In this work, we initiate the study of human behavior models of adversaries in graph-
based security games. Compared to the non-networked domains, the network structure
of this domain further complicates the decision process of the human adversaries, fur-
ther motivating the need to relax assumptions of perfect rationality. Specifically, the at-
tacker must choose a path in the graph where each edge is covered by the defender with
some observed probability, and thus must reason about sequences of random events.
Our goal is to explore any bias and/or heuristic behavior exhibited by human adversaries
when facing such decision problems, and to design defender strategies that exploit such
behavior.1 While it is generally accepted that humans tend to rely on heuristics when
faced with complex problems (e.g., [15]), we are not aware of any existing studies that
specifically addressed heuristic human behavior when faced with the kinds of prob-
lems in our domain. Burgess and Darken [16] proposed a fluid-simulation-based model
for human path planning in continuous terrains. However, this model is less applicable
to our domain in which the choices are discrete. Instead, we considered two behavior
models for attackers in network security games. First, we adapted the quantal response
model of [12] to network security games. For the second model (which we call quantal
response with heuristics), the attacker’s behavior now depends on the values of several
easy-to-compute features of the attacker’s decision problem. The rationale is that the
attacker could be using some of these features as the basis of a heuristic decision pro-
cedure. In order to train our models and to evaluate their performances, we developed a
web-based game that simulates the decision tasks faced by the attacker, posted the game
on Amazon Mechanical Turk and collected data on how humans played the game. We

1 We note that another source of complexity for human adversaries is the fact that the number
of possible paths grow exponentially in the size of the graph. Thus for large graphs it becomes
impractical for human adversaries to enumerate all paths and thus they must rely on other
algorithms or heuristics. In this paper we instead focus on small graphs in which it is relatively
easy to enumerate all paths, in order to isolate and study the effect of human reasoning of
sequential random events. We plan to extend our setting to large graphs in future work.



trained our models using maximum-likelihood estimation given data from an initial set
of experiments. We then computed defender strategies that optimize defender utility
against each of these behavior models of the attackers, and compared the performance
of these strategies in a subsequent set of experiments on Amazon Mechanical Turk.
Overall, our models learned from data significantly outperformed the rational model as
well as two other baseline models.

2 Problem Statement

We model a network security domain, similar to that introduced by Tsai et al [5]. We
use the following notation to describe the game, which are also listed in Table 1. The
game is played on a graph G = (V,E). The attacker starts at one of the source nodes
s ∈ S ⊂ V and travels along a path chosen by him to get to one of the target nodes
t ∈ T ⊂ V . The attacker’s set of pure strategiesA then consists of all the possible paths
from some s ∈ S to some t ∈ T , which we denote A1, . . . , A|A| ⊂ E. Meanwhile, the
defender tries to catch the attacker by setting up check points on the passing edges
before the attacker reaches the target. Let M be the total number of security resources,
meaning the defender could then set up at most M simultaneous check points in the
network. Thus the set of defender’s pure strategiesD consists of all subsets ofE with at
most M elements, which we denote D1, . . . , D|D|. If the attacker chooses a path which
has at least one edge covered by the defender, then the attacker gets caught and receives
a penalty, and the defender receives a reward for catching the attacker; otherwise, the
attacker receives a reward for successfully attacking the target and the defender receives
a penalty. Formally, assuming the defender plays an allocation Di, and the attacker
chooses a path Aj , the attacker succeeds if and only if Di ∩Aj = ∅.

The game was assumed to be zero-sum in earlier work [5,6]. In this paper, we relax
this assumption to consider a more general class of games. We use Raj to denote the
rewards received by attacker for a successful attack through path Aj , and P dj to denote
the penalty received by the defender. If the attacker gets caught on path Aj , we denote
his penalty by P aj and the reward received by the defender by Rdj . In this paper, we
make no other assumptions on the payoff of the game except for the natural assumption
that Rai > P ai and Rdi > P di , ∀i ∈ {1, . . . , |A|}. In other words, adding more resources
to protect a path would benefit the defender and harm the attacker. Taking everything
together, we define a network security game Γ as the tuple:

(G,S, T,M, {Rdi }, {P di }, {Rai }, {P ai })

The attacker conducts surveillance to learn about the defender’s strategy, so it is
important for the defender to randomize her strategy to avoid exploitable patterns. In
other words, the defender has to commit to a distribution over her pure strategies. We
use xe to denote the probability that an edge e ∈ E will be covered by the defender
and x = 〈xe,∀e ∈ E〉 to denote the vector of marginal probabilities of covering each
of the edges in the graph. In general, if the attacker chooses path Ai, the probability
that he will be captured (denoted pi) is the probability that at least one edge on the path
Ai is covered by the defender. Tsai et al [5] showed that given x, the sum of marginals
on the edges of the path

∑
e∈Ai

xe is an upper bound of pi, and this upper bound



Table 1. Notations used in this paper

G = (V,E) Network game graph
M Total number of defender resources
A Set of attacker paths, A = {Ai}
Ai ith attacker path
Ra

i Reward for attacker for a successful attack through path Ai

P a
i Penalty for attacker if he gets caught on path Ai

Rd
i Reward for defender for catching attacker on path Ai

P d
i Penalty for defender for a successful attack through path Ai

D Set of defender allocations (strategies), D = {Dj}
Dj jth defender allocation
Γ A network security game
xe Probability that edge e will be covered by a resource

can be reached if the defender can ensure that in each pure strategy Dj played with
positive probability, only one edge on the path Ai is covered. Tsai et al [5] proposed
algorithms that sample defender pure strategies from x, however such techniques are not
guaranteed to reach this upper bound in all cases. In this paper, we make the simplifying
assumption that the total amount of defender resourcesM is equal to 1 for the following
two reasons: 1) with only one resource, the upper bound on covering pathAj is reached;
2) we are focusing on small graphs. In the future, we plan to relax the restriction of
only one resource. Then since at most one edge of the graph will be covered in any pure
strategy Dj , we have pi ≡ pi(x) =

∑
e∈Ai

xe for all i. Then we can write the expected
utility of the defender if attacker chooses path Ai as

Udi (x;Γ ) = pi(x)Rdi + (1− pi(x))P di (1)

and the expected utility for the attacker if he chooses Ai as

Uai (x;Γ ) = (1− pi(x))Rai + pi(x)P ai (2)

Let qi(x;Γ ) denote the probability that attacker chooses path Ai, given the de-
fender’s marginal coverage on all the edges x. The optimal strategy for the defender is
to maximize the average expected utility:

max
x

∑
Ai∈A

qi(x;Γ )Udi (x;Γ ) (3)

It is thus important for the defender to accurately model the attacker’s response to her
strategy, i.e., qi(x;Γ ) for all i.

We assume that the attacker can observe M (which is equal to 1), as well as the
the defender’s marginal coverage on all the edges x. A fully rational attacker would
be able to deduce that pi =

∑
e∈Ai

xe for all i and choose a path that maximizes his
expected utility: i∗ = argmaxi U

a
i (x;Γ ). However in real-world security problems,

we are facing human attackers who may not respond optimally. The goal of this paper
is to explore models that can better predict the behavior of human attackers.



3 Adversary Models

In this section, we propose several models of how a human attacker responds to the
defender’s strategy.

3.1 Basic Quantal Response Model

In our first model the attacker’s mixed strategy is a quantal response (QR) to the de-
fender’s strategy. Under this QR model, given a graph game Γ and a defender’s strategy
x, the probability that the adversary is going to choose path Ai is

QR : qi(λ | x;Γ ) =
eλU

a
i (x;Γ )∑

Ak∈A e
λUa

k (x;Γ )
(4)

where λ > 0 is the parameter of the quantal response model [10], which represents
the error level of adversary’s quantal response. When λ = 0, the adversary chooses
each path with equal probability; when λ = ∞, the adversary becomes fully rational
and only selects the paths which give him the maximum expected utility. It is shown in
many empirical studies that λ usually takes a positive finite value. A version of the QR
model for non-networked security domains was studied in [12].

3.2 Quantal Response with Heuristics

In a network security game Γ , in order to evaluate the expected utility of a path Ai,
Uai (x;Γ ), the attacker has to compute pi, which requires reasoning about a sequence
of random events, i.e., whether or not each edge on the path will be covered by the
defender. Even in our simplified games in which M = 1 and thus a perfectly-rational
attacker can compute pi as the sum

∑
e∈Ai

xe, computing this probability can be more
difficult for bounded-rational human attackers who might not know this formula. In-
stead, the adversary might use simple heuristics to evaluate the “utility” of each path.

We propose the following model of the attacker’s behavior which we call Quantal
Response with Heuristics (QRH):

QRH : hi(µ | x;Γ ) =
eµ·fi(x)∑

Ak∈A e
µ·fk(x)

(5)

where µ = 〈µ1, ..., µm〉 is a vector of coefficients of the model and given x,

fi(x) = 〈fi1(x), .., fim(x)〉

is a vector of m features for path Ai that influences the attacker’s decision making.
We observe that under both QR and QRH models the attacker’s mixed strategy

belongs to the exponential family of distributions widely used in statistical learning.
The form of the QRH model is more general than QR: it allows linear combinations of
multiple features, and furthermore fij(x) can be any function, including the attacker’s
expected utility Uai (x;Γ ) used in the QR model. On the other hand, since our focus for
the QRH model is on simple heuristics, we use a set of five features that are easy to
compute for humans and thus could be used as basis for heuristics. These features are
listed in Table 2.



Table 2. Lists of Path Features

fi1(x) :=
∑

e∈E Aie Number of edges
fi2(x) := maxe∈Ai xe Minimum edge coverage
fi3(x) := mine∈Ai xe Maximum edge coverage
fi4(x) :=

∑
e∈Ai

xe Summation of edge coverage
fi5(x) := fi4(x)/fi1((x)) Average edge coverage

4 Learning

4.1 Data Collection

In order to estimate the values of the parameters of our models, we first need data on
how humans behave when faced with the kind of decision tasks the attacker faces. We
developed a web-based game which simulates the decision tasks faced by the attacker
in network security games, and collected data on how human subjects play the game
by posting the game as a Human Intelligent Task (HIT) on Amazon Mechanical Turk
(AMT).2

Fig. 1. Game Interface (colored)

Figure 1 displays the interface of the game. Players were introduced to the game
through a series of explanatory screens describing how the game is played. In the game,
the web interface presents a graph to the subjects and specifies the source(starting)
nodes and the target nodes in the graph. The subjects are asked to select a path from

2 https://www.mturk.com



one of the source nodes to one of the target nodes. They are also told that the defender is
trying to catch them by setting up checkpoints on the edges. The probability that there
will be a check point on each edge is given to the subjects, as well as the reward for
successfully getting through the path and the penalty for being caught by the defender.
Thus each instance of this game can be specified by a network security game and a de-
fender strategy. Formally, we define a game sample as g = (Γ, x), where Γ is a network
security game and x is a defender strategy. Each human subject plays multiple rounds
in sequence, each corresponding to a different game sample. In each game round, after
a subject selects a path in the network, the edges that will be covered by the defender is
sampled according to the probability shown in the figure. Subjects get a positive score
if they successfully get through the path and a negative score if they select a path which
has edges covered by the defender. In order to mitigate learning effects, subjects were
not told of the result of each game round until they finish all game rounds. Each sub-
ject receives $0.5 for participating in the experiments, and is paid $0.01 bonus for each
point they earn. In our experiments subjects earned $1.1 bonus on average.

Graph 1 Graph 2 Graph 3

Fig. 2. Graphs Tested in Data Collection

We conducted a first set of experiments on three simple graphs, shown in Figure
2. Since the purpose of this set of experiments is to collect data to train our models,
we want to use a wide variety of defender strategies. We first randomly generated 1000
different defender strategies for each graph. We then used k-means clustering to clas-
sify these random strategies into K clusters. The centers of the clusters are selected as
the representative strategies and used in the experiments. We selected 10 strategies for
Graph 1, 10 strategies for Graph 2 and 20 strategies for Graph 3; details on the strate-
gies can be found at an online appendix.3 In total, we tested 40 different game samples,
each of which are played by 40 different subjects.

4.2 Training the QR Model

We first train the basic quantal response model, QR, using the data collected in the
experiment described in Section 4.1. We use Maximum Likelihood Estimation (MLE)
to tune the parameter λ. Our derivation here is similar to that of [12].

3 http://anon-aamas2012-paper826.webs.com/



Given the choices of N subjects, with τ(n) denoting the path chosen by player n,
the likelihood of λ on game sample g is

LQR(λ | g) =
N∏
n=1

qτ(n)(λ | x;Γ )

Then the log-likelihood of λ is

logLQR(λ | g) =
N∑
n=1

log qτ(n)(λ | x;Γ )

Let Ni be the number of subjects attacking target i. Then, we have

logLQR(λ | g) =
∑
Ai∈A

Ni log qi(λ | x;Γ )

Combining with Equation (4),

logLQR(λ | g) = λ
∑
Ai∈A

NiU
a
i (x)−N log(

∑
Ai∈A

eλU
a
i (x)) (6)

We train the model by maximizing the total log-likelihood of all the 40 game sam-
ples

max
λ

∑
g∈S

logLQR(λ | g) (7)

where S denotes the set of all 40 game samples. It is relatively straightforward to ver-
ify that the second order derivative of logLQR(λ | g) is always nonpositive. Thus
logLQR(λ | g) is a concave function in λ for all g. Therefore, the total log-likelihood
of Equation 7 is concave and we can apply any local optimization solver (we used Mat-
lab’s fmincon solver). The maximum-likelihood estimate of λ based on the data is
0.34.

4.3 Training the QRH Model

In training the QRH model, we need to first decide which subset of the 5 features from
Table 2 to use in the model, and then train the model for the selected features. Al-
though in general the more features we select the better the fit will be, taking the set of
all features can result in over-fitting. This feature selection problem is well-studied in
statistics and machine learning, and techniques such as L1-regularized regression meth-
ods were proposed to introduce bias towards smaller sets of features. In this paper we
apply a simple form of bias: we consider only subsets of features of sizes 1 and 2. We
then select the top-performing subsets of size 1 and the top-performing subsets of size
2. Specifically, for each L ∈ {1, 2}, we do the following:

1. For each of the
(

5
L

)
possible subsets of size L, we train a QRH model using this

subset of features using MLE;
2. We compare the models using 2-fold cross validation, and pick the top two feature

combinations.



Since we are only selecting from 5 features, we only have to evaluate a small num-
ber of models. In future work we plan to explore more sophisticated feature-selection
techniques, which would allow us to select from a large set of possible features.

In order to apply 2-fold cross validation, we first randomly divided all the 40 game
samples into two equal-sized sets, S1 and S2. We conducted two rounds of training,
one using S1 and the other using S2. In each round of training, the model is trained by
maximizing the total log-likelihood of the game samples in the training set:

max
µ

∑
g∈Strain

logLQRH(µ | g), (8)

where Strain ∈ {S1,S2} is the training set, and logLQRH(µ | g) is the log-likelihood
of QRH model of game sample g, derived similarly as logLQR(λ | g):

logLQRH(µ | g) = µ · (
∑
Ai∈A

Nifi(x))−N log(
∑
Ai∈A

eµ·fi(x)). (9)

We can show that logLQRH(µ | g) is a concave function in µ, since the Hessian matrix
is negative definite. Therefore, it can be solved use any local optimization solver.

Given a combination of the features fi, let µ1 and µ2 be the training results on S1

and S2, respectively. We measure the model fit of fi as the sum of the log-likelihoods
of S2 under the model for µ1 and S1 under the model for µ2:

Fit(fi) =
∑
g∈S2

logLQRH(µ1 | g) +
∑
g∈S2

logLQRH(µ2 | g) (10)

Table 3. Fit (logL) of model QRH using single feature

features Train on S1 Train on S2 Total
training testing training testing testing

1 -707.2 -672 -636.8 -744.4 -1416.4
2 -693.6 -666 -658 -702 -1368
3 -636 -580.4 -573.6 -642.8 -1223.2
4 -677.2 -723.6 -710 -690.8 -1414.4
5 -667.6 -618.4 -606.4 -680.4 -1298.8
Ua

i -645.6 -689.6 -682.8 -652.4 -1342

Table 3 displays the fit results for single features. For comparison, we also conduct
the MLE training with 2-fold cross validation for the QR model and list the fitting result
on the last row in Table 3. Over all, feature 3 (maximum edge coverage) achieves the
best fitting performance, which is also better than the QR model. Additionally, feature
5 (average edge coverage) also achieves better fitting performance than the QR model.
Table 4 displays the fit result with two features. The best two feature combinations are
(1, 4) and (3, 4).

Based on the 2-fold cross validation results, we selected four candidate feature com-
binations for the QRH model: feature 3, feature 5, feature 1 + feature 4, feature 3 +



Table 4. Fit of model QRH using two features

features Train on S1 Train on S2 Total
training testing training testing testing

(1,2) -693.2 -672 -635.2 -734.4 -1406.4
(1,3) -630.4 -594.4 -570 -657.2 -1251.6
(1,4) -603.6 -602 -573.6 -636 -1238
(1,5) -648.8 -638.4 -606 -684.4 -1322.8
(2,3) -636 -582.8 -572.4 -656.8 -1239.6
(2,4) -631.6 -655.2 -638 -649.6 -1304.8
(2,5) -643.6 -581.2 -566.4 -660.8 -1242
(3,4) -616 -601.6 -573.6 -644 -1245.6
(3,5) -636 -581.2 -571.2 -646.8 -1228
(4,5) -610.4 -615.6 -592.4 -635.6 -1251.2

Table 5. Parameters for selected models

features 3 5 (1,4) (3,5)
parameter value -9.95 -6.26 (1.04, -10.60) (-9.67, -1.95)

feature 5. We then tuned the model parameters for these candidates by training on the
whole data set S. The final values for the parameters are listed in Table 5.

5 Computing Defender Strategy

In this section, we describe how we compute optimal defender strategies against differ-
ent models of attackers.

5.1 Best Response to QR model

Given a QR model of the adversary, the defender’s expected utility by playing strategy
x in a network security game Γ is :∑

Ai∈A
qi(λ | x;Γ )Udi (x;Γ ). (11)

Combining with Equation (1) we have the following optimization problem to com-
pute the defender’s optimal strategy against a QR model of the adversary:

max
x,p

∑
Ai∈A e

λRa
i e−λ(Ra

i−P
a
i )pi((Rdi − P di )pi + P di )∑

Ai∈A e
λRa

i e−λ(Ra
i−Pa

i )pi
(12)

s.t.
∑
e∈E

xe ≤M, 0 ≤ xe ≤ 1, ∀e ∈ E (13)

pi =
∑
e∈Ai

xe, ∀Ai ∈ A (14)



where λ = 0.34 as learned from the data. With only one resource, Constraint (14)
ensures that pi is the probability that path Ai will be covered by the defender. With
more than one resources, it gives an upper bound on the probability that Ai will be
covered. The objective function, Equation (12), is a nonlinear fractional function, thus is
not guaranteed to be concave. We use a heuristic algorithm based on local optimization
with random restarts, described in Algorithm 1. The algorithm generates a new starting
point in each iteration and (at Line 5) calls FindLocalMaximum to find a locally
optimal solution of (12). The best local optimal solution is returned in the end. We used
Matlab’s fmincon as the local optimizer.

Algorithm 1: Local Search with Random Multi-Restart
1 Input: IterN ;
2 optg ← −∞;
3 for i← 1, ..., IterN do
4 x0 ← randomly generated feasible starting point;
5 (optl, x

∗)← FindLocalMaximum(x0);
6 if optl > optg then
7 optg ← optl, xopt ← x∗

8 return optg , xopt;

5.2 Best Response to QRH model

In this section, we explain our approach for computing an optimal defender strategy
against a QRH model given any combination of features fi(x) and the corresponding
feature coefficients µ.

Given a network security game Γ and the defender’s strategy x, the probability that
the attacker will select path Ai is hi(µ | x;Γ ) as: defined by Equation 5. Then the
defender’s expected utility can be written as∑

AiıA
hi(µ | x;Γ )Udi (x;Γ ).

Therefore we can formulate the defender’s optimal strategy as the solution of the fol-
lowing optimization problem:

max
x,p

∑
Ai∈A e

µ·fi(x)((Rdi − P di )pi + P di )∑
Ai∈A e

µ·fi(x)
(15)

s.t.
∑
e∈E

xe ≤M, 0 ≤ xe ≤ 1, ∀e ∈ E (16)

pi =
∑
e∈Ai

xe, ∀Ai ∈ A (17)



Table 6. Attacker Models Tested Evaluated

Uniform Defender covers each edge with equal probability
Maximin Attacker always chooses the worst path for the defender
Rational Attacker maximizes his expected utility
QR quantal response (λ = 0.34)
QRH-1 QRH with maximum edge coverage (µ = −9.95)
QRH-2 QRH with average edge coverage (µ = −6.26)
QRH-3 QRH with number of edges and sum of edge coverage (µ = 〈1.04,−10.60〉)
QRH-4 QRH with maximum edge coverage and average of edge coverage (µ = 〈−9.67,−1.95〉)

where fi(x) is a subset of the features described in Table 2. Again, the objective function
(15) is a nonlinear fractional function, so is not guaranteed to be concave. Nevertheless
we can apply Algorithm 1, with FindLocalMaximum to find a locally optimal solu-
tion of (15).

6 Evaluation

In this section, we evaluate the performance of different models in network security
games. We use the same web-based game that we introduced in Section 4.1 to set up
the experiments with human subjects. Different from the first set of experiments, where
we intended to collect data on how humans play the game in order to train the model, the
goal of this new set of experiments is to use the defender strategies computed from the
different models to play against human subjects in order to compare the performance
of these models.

6.1 Experiment Settings

Fig. 1 shows the interface of the web-based game we developed. We have provided
details on the game rules in Section 4.1. We now focus on describing the game instances
that are included in these experiments.

We tested eight different graph types, including the three graphs used in data col-
lection that are displayed in Figure 2. The other five graphs are displayed in Figure 3.
Among the eight graphs, we have four graphs with a single target (graph 1-4) and four
graphs with multiple targets (graph 5-8). The models are trained using the data from
single-target graphs, we are interested to see how they perform in multi-target graphs.
For each graph type, we designed two different sets of payoffs (i.e. the reward/penalty
for the attacker and the defender on each path)4. Therefore, we have a total of 8∗2 = 16
security games in the experiments. For each of these games, we computed the defender
strategies from eight different models. Table 6 lists the eight models. Therefore, for each
game instance, we have eight different defender strategies. In total, we have 8∗16 = 128
different game samples (i.e., combinations of security games and defender strategies).
Each of the game samples is played by 40 different subjects.

4 The details of the payoffs can be found on the online appendix: http://network-security-
aamas2012.webs.com/



Graph 4 Graph 5 Graph 6

Graph 7 Graph 8

Fig. 3. Graphs Tested in Evaluation Experiments

6.2 Experiment Results

We evaluate the performance of different defender strategies using the defender’s ex-
pected utility. Given that a subject selects path Ai, the defender’s expected utility is
computed with Equation (1).

Average Performance: We first evaluated the average defender expected utility,
Udexp(x), of different defender strategies based on all 40 subjects choices:

Udexp(x) =
1

40

∑
Ai∈A

NiU
d
i (x)

where Ni is the number of subjects that chose path Ai.
Figure 4(a) displays the average performance of the different models in all the

single-target games on the left group of bars, and the average model performances in
all the multi-target graphs on the right group of bars. In both cases, the QR model out-
performs the three baseline models (Uniform, Maximin and Rational). Among the four
QRH models, QRH-2 and QRH-3 outperform the three baseline models in both single-
target graphs and multi-target graphs. There are two interesting observations from the
figure.

– Between the QR model and the QRH models, we see that in the single-target
graphs, none of the QRH models achieves better performance than the QR model;
while in the mutli-target graphs, all four QRH models outperform QR. This is an
unexpected result since the QRH models are trained on the single-target graph data
and do not use features that come up in the multi-target graphs.

– The rational model did worse in the multi-target graphs than it did in the single-
target graphs, as compared to the QR and QRH models. For the single-target graphs
the average defender expected utility achieved by the rational model was closer to
that of the QR and QRH models, and it even outperformed two of the QRH models
(QRH-1 and QRH-4). While in the multi-target graphs, the rational model was
significantly outperformed by both QR and QRH models. This is also a surprising
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Fig. 4. Average Defender Expected Utility

result, since the QR and QRH models are trained on the single-target graphs and
are thus expected to perform better in the singe-target graphs.



Table 7. Fitting Performance: log-likelihood of different models

Multi-Target Single-Target
(8 game instance) (8 game instance) Total

QR -198.53 -370.56 -569.09
QRH-1 -416.76 -359.45 -776.22
QRH-2 -216.89 -381.93 -598.82
QRH-3 -231.35 -340.58 -571.93
QRH-4 -406.94 -365.10 -772.04

A possible reason for the above two interesting observations is that as the graph be-
comes more complex (i.e. more targets and more paths), it becomes more difficult for
humans to compute the actual expected utility of each path so they are more likely to
rely on heuristics.

We also show the performance of different models in each graph type: Figures 4(b)
shows the average defender expected utility achieved by the eight models in the four
single-target graphs; and 4(c) displays the results in the four multi-target graphs. We can
see from Figure 4(b) that the rational model was outperformed by the QRH-3 model in
all of the four graphs; it was also outperformed by the QR model in 3 of the 4 graphs
except for in graph 2 where the two models have roughly the same performance. In
the multi-target graphs, Figure 4(c) shows that the rational model was outperformed by
both the QR and QRH models in three of the four graphs, except for in graph 7 where
all of the models have very similar performances.

Model Fitting Performance: We also evaluated the fitting performance of the five
trained models. Table 7 reports the total log-likelihood of different models in the multi-
target games and the single-target games. In the single target graphs, the QR model
achieved much better fitting performance than the QRH model. At the same time, in the
multiple target graphs, three of the QRH models (QRH-1, QRH-3, QRH-4) achieved
better fitting performance than the QR model. In particular, the QRH-3 model achieved
best fitting performance in the multiple target graphs, it also achieved highest defender
expected utility, as shown in Figure 4(a). This indicates that to be able to more accu-
rately predict human player’s choice will help design better defender strategies.

7 Conclusion

We presented an initial study of human behavior models of adversaries in graph-based
security games. In particular, we considered two behavior models, quantal response
(QR) and quantal response with heuristics (QRH). In order to train our models and to
evaluate their performances, we developed a web-based game that simulates the de-
cision tasks faced by the attacker, posted the game on Amazon Mechanical Turk and
collected data on how humans played the game. Once we trained the models, we then
computed defender strategies that optimize defender utility against each of these mod-
els, and evaluated their performances against human players. Overall, the QR model
and two of the QRH models (QRH-2 and QRH-3) outperformed the baseline models
(Uniform, Maximin and Rational) in almost all the graphs. We also observed some



interesting phenomena in the models’ relative performances going from single-target
graphs to multi-target graphs: while the QR and QRH models are trained on single-
target graphs, the relative performances of these models (especially QRH) are actually
stronger in multi-target graphs. One future direction is to explore more sophisticated
feature-selection models such as L1-regularization techniques, which will allow us to
select from a large set of candidate features. Another future direction is to tackle large
graphs in which it becomes infeasible for the human attacker to list all possible paths.
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