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Abstract
Despite recent successful real-world deployments
of Stackelberg Security Games (SSGs), scale-up re-
mains a fundamental challenge in this field. The
latest techniques do not scale-up to domains where
multiple defenders must coordinate time-dependent
joint activities. To address this challenge, this paper
presents two branch-and-price algorithms for solv-
ing SSGs, SMARTO and SMARTH , with three novel
features: (i) a column-generation approach that
uses an ordered network of nodes (determined by
solving the traveling salesman problem) to gener-
ate individual defender strategies; (ii) exploitation
of iterative reward shaping of multiple coordinating
defender units to generate coordinated strategies;
(iii) generation of tighter upper-bounds for prun-
ing by solving security games that only abide by
key scheduling constraints. We provide extensive
experimental results and formal analyses.

1 Introduction
Stackelberg Security Games (SSGs) have been widely ap-
plied to real-world security domains with these applications
depending on significant advances in fast algorithms for
SSGs [Jain et al., 2010; Tambe, 2011]. Yet, scale-up remains
a significant issue in advancing the scope of SSGs.

A major drawback of the current algorithms [Conitzer and
Sandholm, 2006; Jain et al., 2010; Paruchuri et al., 2008;
Vanek et al., 2011] is their failure to scale-up in solving
games that include joint coordinated activities, which require
coordination in time and/or space, and provide the defender
additional benefits. Yet such coordination is an important as-
pect of real-world security systems. For example, the PRO-
TECT application for the US Coast Guard computes patrol
routes for protecting ports in the US [Shieh et al., 2012]; but
this application only focuses on one-boat patrols. Yet there
are benefits that may accrue from coordination across multi-
ple boats, e.g., if a target is visited by a single patrol boat, it
may only be 50% effective in detecting (and hence stopping)
a potential attack. The arrival of a second boat may increase
the effectiveness to 80% (as the attacker may be forced to re-
act to a second boat). Yet no SSG algorithm today can scale-
up to handle US Coast Guard coordinated patrols for small or

large-scale ports.
To remedy the challenge of scale-up, this paper makes the

following contributions. First, it presents SMART, Security
games with Multiple coordinated Activities and Resources
that are Time-dependent, a model extending the framework
of security games to explicitly represent jointly coordinated
activities. Second, the paper puts forward an optimal algo-
rithm, SMARTO, that computes optimal defender strategies
for SMART problems. Third, the paper discusses a heuristic
iterative procedure, SMARTH , that achieves further speed-up
over SMARTO. Both algorithms use a branch-and-price algo-
rithm [Barnhart et al., 1994] to deal with the large strategy
space of the domain. Furthermore, these algorithms are able
to exploit the structure of the joint activity coordination prob-
lem to gain speed up based on the following key ideas: (i) use
of insights from the Traveling Salesman Problem to order the
search space, especially in SMARTH , while maintaining co-
ordination, (ii) efficient greedy computation of patrols per re-
source via iterative reward shaping to generate a joint patrol,
and (iii) generation of tight upper-bounds exploiting schedul-
ing constraints to allow pruning of the search space based on
the submodular property of joint activities.

2 SMART

A SMART problem instance is defined on a graph Gr =
(T,Er), where the vertices T are the targets and the edges
Er represent connectivity between the targets for resource
r. This allows for heterogeneous resources, e.g., boats or
helicopters, which have the same targets but the connectiv-
ity between nodes can be different. For each e ∈ Er, τ(e)
represents the time it takes one defender resource to tra-
verse the edge e. As usual with SSGs [Yin et al., 2010],
for each target t ∈ T , there is an associated reward U cd(t)
and penalty Uud (t) to the defender if t was protected with
an effectiveness of 100% and 0% respectively. Similarly,
payoffs U ca(t) and Uua (t) are defined for the attacker, with
Uud (t) < U cd(t) and U ca(t) < Uua (t). The defender has a set
ofR resources, and each resource can choose an activity from
the set A = {α1, α2, . . . αK}. The notation used in SMART
is described in Table 1.

The attacker’s pure strategy space is the set of all targets,
T . Each pure strategy of the defender is a route for each re-
source, such that the route starts and ends at a pre-defined
home base tb ∈ T , and the total route length of each individ-



R Number of defender resources,
subscripted by r

Gr = (T,Er) Graph of the input problem instance
T Set of targets
tb Home base

Er : {e(ti, tj)} Set of edges
τ(e(ti, tj)) Time required to traverse the edge e
τ(α) Time required to conduct activity α

eff(α) Effectiveness of activity α
eff(αi, αj) Effectiveness of joint activity 〈αi, αj〉

P Set of pure strategies
ωt(Pi) Effective coverage of t in Pi

Γr Maximum time of a patrol
W Time window for a joint activity

Table 1: Notation Table

ual patrol is upper bounded by Γr. The pure strategy Xi of
one defender resource is a patrol route, which is represented
as an ordered list of 3-tuples Xi = [X1

i , . . . , X
j
i , . . .]. Here,

each 3-tuple Xj
i = (t, α, γ) represents that this defender re-

source conducts and completes activity α at target t at time
γ, where different activities require different amounts of time
and effectiveness. Each pure strategy is restricted to begin
and end at the home base, i.e. X1

i .t = tb and X |Xi|
i .t = tb.

Each route length is upper bounded by Γr, as follows:

traversal time time for activities︷ ︸︸ ︷
|Xi|−1∑
j=1

τ(Xj
i .t,X

j+1
i .t) +

︷ ︸︸ ︷
|Xi|∑
j=1

τ(Xj
i .α) ≤ Γr∀Xi(1)

X r is defined as the set of pure strategies for resource r and
the set of joint pure strategies P is given by the cross-product
of pure strategies for each resource, i.e.,

∏R
r=1{X r}.

SMART is unique in that it explicitly models joint activities,
or activities coordinated in space and time between multiple
defender resources. The defender is said to conduct a joint
activity 〈αi, αj〉 in its pure strategy if there exists at least two
tuples (ti, αi, γi) and (tj , αj , γj) in the defender’s pure strat-
egy such that ti = tj and |γi−γj | ≤W , whereW is the time
window for two activities on the same target.

For each activity αi, eff(αi) represents the effectiveness
of the activity αi. This effectiveness ranges from 0% to
100%, and measures the probability of the defender success-
fully preventing an attack on target t if the attack on t hap-
pened when the defender was conducting activity αi at t. This
is similar to what was done in PROTECT [Shieh et al., 2012].
We define the effectiveness of the joint activity 〈αi, αj〉 as
eff(αi, αj). We assume that a joint activity composed of
two resources receives the maximum effectiveness and any
additional resource visiting target t in the time window will
have no additional benefit 1. eff(S) represents the maxi-
mum effectiveness of an individual or a joint activity over a
set S of activities performed at a target. eff() is submodular

1This formulation be extended to handle n-ary combinations of
defender resources

if for all S1 ⊆ S2:

eff(S1 ∪ αi)− eff(S1) ≥ eff(S2 ∪ αi)− eff(S2) (2)

This means that each additional activity performed has dimin-
ishing gains in effectiveness. As we will see later in the paper,
when this property holds we are able to prove nice theoretical
properties of our algorithms.

The expected utility Ud(Pi, t) of the defender when the
defender is conducting pure strategy Pi, which is a single
pure strategy for multiple defender resources, and the attacker
attacks target t is given as follows:

ωt(Pi) = max
(t,α,γ)∈Pi

{(t,αl,γl),(t,αm,γm)}⊆Pi,|γl−γm|≤W

{eff(α),eff(αl, αm)} (3)

Ud(Pi, t) = ωt(Pi)U
c
d(t) + (1− ωt(Pi))Uud (t) (4)

Ua(Pi, t) = ωt(Pi)U
c
a(t) + (1− ωt(Pi))Uua (t) (5)

Here ωt(Pi) defined in Equation (3) represents the effec-
tive coverage of the defender on target t when executing pure
strategy Pi. This is computed by taking the maximum effec-
tiveness of either a single or joint activity performed at target
t. For the purposes of this paper we assume that the time it
takes to attack is longer than the time required to patrol, thus
the attacker only cares about the maximum effective activity
or joint activity. Once the effectiveness ωt(Pi) is computed
from the pure strategy Pi, the defender and attacker expected
utilities Ud(Pi, t) and Ua(Pi, t) are calculated as defined in
Equation (4) and (5).

Problem Statement: The objective of the defender is to
maximize her expected utility in the SMART problem by com-
puting the optimal mixed strategy given that the attacker will
best respond to the defender’s strategy.

3 SMARTO: Optimal Branch-and-Price Solver

SMARTO computes an optimal solution of the SMART prob-
lem by building upon work that has leveraged the branch-
and-price framework [Jain et al., 2010]. The two major nov-
elties of SMARTO over previous work are the formulation of
the slave component to handle joint activities (in Section 3.1)
and a better bounding component (in Section 3.2).

3.1 Pricing component

The branch-and-price framework constructs a branch-and-
bound tree, where for each leaf of the tree, the attacker’s tar-
get is fixed to a different t′. The objective of the pricing com-
ponent is to find the best defender mixed strategy x at that
leaf, such that the best response of the attacker to x is to at-
tack target t′. Due to the exponential number of defender pure
strategies, the best defender mixed strategy is determined us-
ing column generation, which is composed of a master and
slave procedure, where the slave iteratively adds a new col-
umn (defender strategy) to the master.



min
c,x

−Ud(t′, c) (6)

Ua(t′, c) ≥ Ua(t, c) ∀t 6= t′ (7)

ct −
∑
j∈J

ωt(Pj)xj ≤ 0 ∀t ∈ T (8)

∑
j∈J

xj = 1 (9)

xj ∈ [0, 1] ∀j ∈ J, ct ∈ [0, 1] ∀t ∈ T (10)

Master: The master LP given in Equations (6) to (10)
solves for the optimal defender mixed strategy x over a given
set of pure strategies J , given that the pure strategy of the at-
tacker is set to t′ (determined by the leaf node). This is similar
in formulation to the ERASER algorithm [Kiekintveld et al.,
2009]. Ud(t, c) and Ua(t, c) are the utilities of the defender
and the attacker respectively when the defender’s effective
marginal coverage is c and the attacker attacks t. For each
pure strategy Pj , ωt(Pj) is the effectiveness on t.

Slave: Once the master LP is solved to optimality, the slave
problem receives the values of the duals of the master LP. The
reduced cost cj associated with column Pj is defined to be

cj =
∑
t

yt · ωt(Pj)− z, (11)

where z is the dual variable of Equation (9) and {yt} are the
duals of Equation family (8). The reduced cost of a column
gives the potential change in the master’s objective function
when a candidate pure strategy is added to J .

The objective for the slave problem is to find the column
Pj with the least reduced cost, to add to the current set of
columns. The best column is identified using a mixed-integer
linear program (MILP) formulation over the transition graph
as defined below, which captures all the spatio-temporal con-
straints of the problem in handling joint activities and avoids
having to enumerate all pure strategies.

The transition graph Gr = (N ′r, E
′
r) contains nodes u =

(t, γ) for each target t and time instant γ ∈ [0,Γr] if it is
possible for the defender to be at target t at time instant γ (the
time interval is discretized). The transition graph can have
up to |T | × Γr nodes. Each edge in E′r is associated with an
activity α. An edge e(u,v,α) from node u to node v maps
to a defender patrol that starts from target tu at time γu, goes
to target tv and conducts activity α at target tv. Therefore,
γv = γu+τ(tu, tv)+τ(α) where τ(tu, tv) is the time required
to traverse from target tu to tv and τ(α) is the time required
to conduct activity α. The graph contains a virtual source
and sink node that contain edges to/from the base target tb
to ensure that patrols start and end at tb.

Example: Figure 1 shows a sample transition graph. Here,
tb = t1 and the source has three edges, one for each activity
α1 – α3. Looking at node u = (t1, 0), target t1 is adjacent to
t2 and t5, so for each of these targets, three edges are added to
represent the travel and corresponding activity at that target.
For example, if activity α2 is then performed at target t2, then
the new vertex would be at time γ = 0 + τ(α2) + τ12 =
0 + 1 + 2 = 3, where τ12 = 2, and node v = (t2, 3) as shown
in Figure 1.
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Figure 1: An Example for the Transition Graph

Slave Problem MILP: This novel MILP component of
SMARTO solves for joint activities and generates the optimal
defender pure strategy as given in Equation (12) to (16).

min
∑
t∈T

yt ·max{gt, ht} (12)∑
e∈out(u)

f(er) =
∑

e∈in(u)
f(er) ∀u, r (13)

gt =max
er∈IA(t),∀r

{f(er) · eff(e.α)} (14)

ht = max
ei,ej∈JA(ri,rj ,t),∀i,j∈R

{(f(ei)+ f(ej)− 1) · eff(ei.α, ej .α)} (15)

f(er) ∈ {0, 1} ∀er, gt, ht ∈ [0, 1] ∀t ∈ T (16)

This MILP uses one copy of the transition graph for each
defender resource, where f(er) represents the flow on edge e
for resource r, and gt and ht represent the effectiveness of the
defender’s individual and joint activities on target t. It only
considers the maximum effective activity at target t (Equa-
tions (12), (14), and (15)) in accordance with our assumption
of the attacker’s decision making.

Here, the set IA(d) represents the set of edges in the tran-
sition graph such that they represent one resource performing
an activity α on target d, and can be represented as:

IA(d) = {in(ur)|ur.t = d,∀ur ∈ N ′r,∀r ∈ R}

where in(ur) represents all edges with the target node ur.
Similarly, the set JA(ri, rj , d) contains pairs of edges 〈ei, ej〉
such that both edges lead to the same target d and are sepa-
rated by a time window no larger than W , corresponding to
when resources i and j perform a joint activity on target d.
Formally, JA(ri, rj , d) =

{〈ei = (u,v), ej = (u′,v′)〉|v.t = v′.t = d, |v.γ−v′.γ| ≤W}.

The result from the slave MILP is a set of 0-1 integer flows
for each defender resource r. From the flows, the defender
pure strategy Pj is computed, and the effective coverage
ω(Pj) is then calculated and returned to the master.

3.2 Branch-and-bound component
The objective of the branch and bound component is (i) to
compute upper bounds for each internal node of the tree such
that leaf nodes can be pruned thereby requiring less computa-
tion, and (ii) to determine an efficient ordering of leaves. To
compute tight upper bounds, we present ORIGAMIP, a novel



modification of ORIGAMI [Kiekintveld et al., 2009] specifi-
cally designed to generate tighter upper bounds for SMART
problem instances by exploiting the structure of the domain.

min
c,f(e)

k (17)

0 ≤ k − Ua(t, c) ≤(1− qt) ·M ∀t ∈ T (18)∑
e∈out(source)

f(e) = R,
∑

e∈in(sink)
f(e) = R (19)∑

e∈out(u)
f(e) =

∑
e∈in(u)

f(e) ∀u (20)

ct ≤
∑

e=(u,v)|v.t=t

f(e) · eff(αk) ∀t ∈ T (21)

ct ∈ [0, 1], qt ∈ {0,1}∀t ∈ T, f(e) ∈ [0, R]∀e ∈ E (22)

ORIGAMIP uses the transition graph defined in the slave
formulation (Section 3.1). Equations (17)–(18) minimize
the attacker’s maximum expected utility, with Ua(t, c) rep-
resenting the attacker’s utility given the defender’s effective
marginal coverage is c and the attacker attacks t, and qt rep-
resenting the attacker’s strategy. Equations (19)–(20) define
the flows of the edges and enforce the flow conservation prop-
erty. Equation (21) limits the coverage of the defender based
on the amount of flow and the respective activity.

ORIGAMIP estimates the effectiveness of a defender patrol
on a target as being the sum of the effectiveness of all indi-
vidual activities on a target. This is an over-estimate of the
effectiveness (thereby providing an upper bound on defender
utility) if the effectiveness function eff is sub-additive, i.e.,
eff(αi) + eff(αj) ≥ eff(αi, αj), which follows from the
submodularity property in (2).
Proposition 1. ORIGAMIP computes valid upper bounds if
eff() is submodular.

ORIGAMIP is an LP and therefore solvable in polynomial
time. Once the ORIGAMIP solution has been obtained, the
defender’s expected utility Ud(t, c) is computed for each tar-
get t. The targets are then ordered in decreasing order of
Ud(t, c). This ordering and computation of upper bounds is
then exploited to prune the nodes in the branch-and-price tree.

4 SMARTH : Further scaling up SMART

SMARTO fails to scale beyond 4 targets in our computational
experiments; thus we present SMARTH , a heuristic approach
for SMART that achieves further scale-up. It uses the previ-
ously discussed branch-and-price framework, but the slave is
now solved using a novel heuristic formulation, which is built
on two intuitions related to coordination: (i) Joint patrols can
be computed by considering individual patrols iteratively, by
shaping the reward function between iterations to reflect the
additive benefit of joint activities. (ii) Each defender resource
would like to visit as many targets as possible, and visiting
targets in accordance with an ordering based on a solution
of the Traveling Salesman Problem is likely to extract maxi-
mal benefit out of the resource while still accounting for the
spatio-temporal constraints needed for coordination. As a re-
sult, the SMARTH slave only needs to solve a set of linear
programs (as opposed to solving a MILP in SMARTO’s slave).

4.1 Reward Shaping
The slave in SMARTH computes the joint patrol Pj of the de-
fender by iteratively and greedily building up individual pa-
trols Xr for each defender resource r. The additional benefit
of joint activities is considered by appropriately shaping the
rewards for each resource based on the patrols of other re-
sources. Reward shaping has been used in other reinforce-
ment learning contexts [Sutton and Barto, 1998]; here we
leverage this idea for coordination among multiple resources.

Algorithm 1 SMARTH Greedy Algorithm
1: Input: y, G
2: Initialize Pj , µ
3: for all ri ∈ R do
4: Xi ← SolveSinglePatrol(y,µ,Gr)
5: Pj ← Pj ∪Xi

6: µ← ComputeCostCoef(Pj ,Gr)
7: ω(Pj)← ConvertToColumn(Pj)
8: return Pj ,ω(Pj)

SMARTH uses a greedy algorithm, as outlined in Algo-
rithm 1. This algorithm takes the coefficients yt (refer Equa-
tion (11)) as input and builds Pj iteratively in Lines 3–5.
Line 4 computes the best individual patrol Xr for the de-
fender resource r (described in Section 4.2). Xr is then
merged with the rest of the defender’s pure strategy Pj (in
Line 5). Line 6 computes µ, the potential effectiveness con-
tribution from one resource to another given the current pure
strategy Pj . This is computed over each edge e(u,v,α) in
the transition graph, and measures the added benefit to the
defender if the defender resource was to travel from u.t to
v.t at time u.γ performing activity e.α at target v.t. These
values of µ are used in the next iteration when computing an
individual patrol for the next defender resource.

How close to optimal is the solution of the greedy algo-
rithm? [Nemhauser et al., 1978] states that greedy maxi-
mization of a non-negative submodular function achieves a
constant-factor approximation. Recall that the objective of
the slave problem is to find a pure strategy Pj that minimizes
the reduced cost cj . This is equivalent to maximizing:

F (Pj) = −
∑
t∈T

ωt(Pj) · yt (23)

The duals y from the master are always negative in this for-
mulation making F (Pj) non-negative. ωt(Pj) is the effec-
tiveness of pure strategy Pj at target t as defined in (3).

If F (Pj) is submodular, and if P∗ is the optimal defender
pure strategy, then the solution Pj of the greedy algorithm
satisfies

F (Pj) ≥ (1− 1/e)F (P∗) (24)

For the relaxed constraint where the time window, W , is
greater than or equal to the maximum patrol time, Γ,2 we
show that F (Pj) is submodular. F (Pj) is submodular if
P1 and P2 are two pure strategies where P1 ⊆ P2 and

2W ≥ Γ implies that two resources present at the same target at
anytime during the patrol are considered to conduct a joint activity.



F (P1 ∪ {X})− F (P1) ≥ F (P2 ∪ {X})− F (P2). We show
F (Pj) is submodular by showing that ωt(Pj) is submodular
since F (Pj) is defined by a non-negative linear combination
of ωt(Pj).
Theorem 1. F (Pj) is submodular in Pj if W ≥ Γ and
eff() is submodular.

Proof Sketch. Because W ≥ Γ, ωt(Pj) = eff(SPj
), where

SPj is the set of activities of Pj on target t. Together with (2),
this directly implies that ωt(P1 ∪ X) − ωt(P1) ≥ ωt(P2 ∪
X)− ωt(P2), P1 ⊆ P2.

In real life situations, W may be less than Γ. We show that
even in this situation, F (Pj) is submodular for 2 resources.
Theorem 2. F (Pj) is submodular in Pj for two resources if
eff() is submodular.

Proof Sketch. We prove thatF (P1∪{X})−F (P1) ≥ F (P2∪
{X}) − F (P2) where P1 = {∅} and P2 contains a single
patrol {X2}. For each target t, we show that ωt({X}) ≥
ωt({X2, X})− ωt({X2}) based on the submodularity prop-
erty of eff() in (2).

Qualifying this result for W < Γ for 2 resources is im-
portant since this setup is used most frequently in the real-
world, e.g., US Coast Guard. For three or more resources,
we can artificially construct counter-examples that break sub-
modularity. However, given actual domain geometries, time
windows and operational rules, submodularity may hold even
for larger number of resources – e.g., Theorem 1 shows that
relaxing the time window may lead to such submodularity.
Characterizing these spaces is a topic left for future work.

4.2 TSP Ordering with Transition Graph
To achieve the approximation bound (24), we need to opti-
mally compute an individual patrol Xr for the defender re-
source r in Line 4 of Algorithm 1. This can be solved by
an MILP of similar form to the slave MILP (Equations (12)-
(16)), but for a single patrol. The resulting MILP for a single
patrol has less variables than the MILP for all patrols, how-
ever this still fails to scale up beyond 6 targets (Section 5).

Instead, we present a heuristic approach that achieves bet-
ter scale-up by exploiting the spatial structure of the domain,
and is provably optimal in certain cases. Our approach is
based on the following restricted version of the problem: we
define an ordering of the targets and restrict the patrols’ se-
quence of target visits to be increasing in this order. We con-
struct the ordered transition graph in the same way as de-
scribed in Section 3.1; however, now, an edge from node u to
v is added only if target u.t appears before target v.t in the
ordering. If there does not exist a direct edge from u to v, an
edge is added between these nodes where the distance is that
of the shortest path. Traversing along this edge does not im-
pact the effectiveness of the intermediate targets. Instead of
computing the maximum effectiveness of the multiple edges
per target, each target is only visited once per patrol in the or-
dered transition graph. The resulting problem is equivalent to
a min-cost flow, which has integer extreme points that allow
us to drop the integrality constraint (16), since a feasible so-
lution of the resulting LP is guaranteed to be an integer flow.

These LPs are easier to solve than the above MILPs, both in
theory as well as in our experiments.

Fixing an ordering will exclude certain patrols. There-
fore, we would like an ordering such that the resulting patrol,
which corresponds to a subsequence of the ordering, will still
be a sensible way to visit targets compared to patrols with
alternative orderings. To that end, SMARTH uses an order-
ing based on the solution of the traveling salesman problem
(TSP) for the input graph with all targets G = (T,E). We
show that under certain conditions, using the TSP ordering
results in an optimal solution of the single-patrol problem.
We look at a tree structure because various domains in the
real-world, e.g., ports, contain an graph similar to a tree.

Theorem 3. Suppose the input graphG is a tree, and the time
window for joint effectiveness is greater than or equal to the
maximum patrol time. Then SMARTH computes a patrol for
a single unit that optimizes the slave objective.

Proof Sketch. SMARTH outputs a patrol P on a subset of tar-
gets TP , corresponding to a subsequence of the TSP ordering.
We define GP to be the subgraph of G containing the targets
TP . It can be shown that P is a TSP tour of GP given that
GP is a tree; we omit the details for brevity. Consider a patrol
P ′ on TP that does not follow the TSP ordering. Since P is
a TSP tour of GP , if P ′ finishes within the time limit then P
also does. Since the time window is large, joint activities in
P ′ will also be joint activities in P , and thus P achieves the
same slave objective as P ′. Therefore we never lose optimal-
ity by considering only patrols that follow the TSP order.

When the graph is a tree but the time window is smaller
than the patrol time limit, the algorithm is not guaranteed
to be optimal. However, as we show in our experiments,
SMARTH generates optimal or near-optimal solutions for
SMART problem instances.

5 Experimental Results
We cannot compare with previous algorithms [Conitzer and
Sandholm, 2006; Jain et al., 2010; Paruchuri et al., 2008;
Vanek et al., 2011] due to the inability of these algorithms
to scale-up to the combinatorics unleashed by joint activities.
This problem is so complex that even human schedulers are
unable to generate schedules. Therefore, we are limited to
comparing different versions of SMARTH and SMARTO.

The experiments were run on 100 game instances gener-
ated with random payoffs in the range [-10,10] and two de-
fender resources unless otherwise noted. All experiments
were run on graphs resembling ports: the graphs were con-
structed beginning with a tree that spans the targets and then
adding 10 random edges between nodes. The time window
was 30 minutes with 3 possible activities for the defender,
taking 0, 5, or 15 minutes. The time discretization was 5
minutes, with the exception of the tests comparing SMARTO
to SMARTH , where the time discretization was 15 minutes.
All experiments were run on a machine with a Dual core 2.0
GHz processor and 4 GB of RAM.

Figure 2(a) shows the runtime of SMARTH versus
SMARTO. The x-axis is the number of targets and the y-axis
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Figure 2: Evaluating runtime and solution quality compared to previous algorithms and heterogeneous resources

is the runtime. SMARTO was only able to run for 4 or less tar-
gets. For 20 targets, SMARTH takes less than a minute to run.
This shows the difficulty of solving SMART instances and the
importance of finding efficient solution techniques.

Table 2 shows the solution quality, or defender expected
utility, of SMARTH versus SMARTO. For 3 targets, SMARTH
provided the same exact solution quality as SMARTO for all
game instances. For 4 targets, the average solution quality for
SMARTH was 0.0205 lower than SMARTO with there being
only one game instance where SMARTH computed a lower
defender expected utility than SMARTO (difference of 0.679).
This shows that on average SMARTH computes a final result
that is very close to SMARTO. However, SMARTO is unable
to run on bigger game instances.

SMARTH SMARTO

3 targets 1.298 1.298
4 targets -0.7135 -0.6930

Table 2: Solution Quality of
SMARTH vs. SMARTO

Figure 2(b) shows
that as we increase
the importance of the
coordinated joint ac-
tivity, as measured
by the ratio of effec-
tiveness of joint ac-
tivities, the defender
achieves a higher expected reward. The y-axis shows the
solution quality and the x-axis denotes the maximum patrol
time. This ratio is computed as shown with αmax equivalent
to the highest quality activity: eff(αmax,αmax)−eff(αmax)

eff(αmax)
. As

the patrol time is increased, a simple strategy with no de-
fender coordination (no benefit to joint activities) provides
very little benefit to the solution quality while the improve-
ment due to the coordination of multiple defender resources
can almost double the solution quality.

Figure 2(c) shows that SMARTH can handle heterogeneous
defender resources (a boat and an aerial type) for 10 targets.
The aerial resource is different than the boat in the follow-
ing ways: (1) shorter transit times; (2) shorter patrol time;
(3) lower effectiveness values. The x-axis is the maximum
patrol time for a boat resource and the y-axis is the solution
quality. In this experiment, the aerial resource has a patrol
time and effectiveness value that is 25% of the boat resource’s
time/value. SMARTH was able to run these instances.

The SMARTH algorithm can handle in general n-ary com-
binations of resources efficiently by simply modifying the un-
derlying utility function. SMARTH ’s reward shaping then ef-
ficiently computes µ based on this new utility function based
on the n-ary interaction (line 5 of Algorithm 1). Figure 3
demonstrates the ability of SMARTH to handle coordination
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Figure 3: Runtime with multiple defender coordination

among multiple defender resources. In this figure, the x-axis
is the number of defender resources and arity of joint actions
(e.g., 3 resources with ternary interactions) and the y-axis is
the runtime, where we assumed an additive joint action func-
tion. This also shows that SMARTH can efficiently handle
n-ary interactions: runtime grows linearly with the number of
resources and arity of interactions.

For a comparison of the impact of the different components
of SMARTH , please refer to [Shieh et al., 2013].

6 Conclusion and Related Work
Addressing joint coordinated activities is the next frontier of
the SSG research area. Such coordination is critical for real-
world applications, and yet beyond the capabilities of both
today’s best algorithms to solve SSGs and human schedulers.
To address this challenge, this paper presented two novel al-
gorithms, SMARTO and SMARTH , that leveraged the prop-
erties and structure of joint activities to provide significant
speed-ups to solve SMART problem instances.

In terms of related work within SSGs, we have discussed
limitations of related algorithms throughout this paper. Stud-
ies on multiagent patrols beyond SSGs have focused on
frequency-based patrols and adversarial environments [Ag-
mon et al., 2008; Machado et al., 2003; Vanek et al., 2010],
including patrols in marine environments that take into ac-
count uncertain environmental conditions [Agmon et al.,
2011]. These studies aim to minimize the time lag between
visits and do not consider targets of varying importance nor
the impact of joint activities.
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