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ABSTRACT

Influence blocking games have been used to model adversarial do-
mains with a social component, such as counterinsurgency. In these
games, a mitigator attempts to minimize the efforts of an influencer
to spread his agenda across a social network which is modeled as a
graph. Previous work has assumed that the influence graph struc-
ture is known with certainty by both players. However, in reality,
there is often significant information asymmetry between the miti-
gator and the influencer. We introduce a model of this information
asymmetry as a two-player zero-sum Bayesian game. Nearly all
past work in influence maximization and social network analysis
suggests that graph structure is fundamental in strategy generation,
leading to an expectation that solving the Bayesian game exactly
would be vastly superior to any technique that does not account
for uncertainty about the network structure. Surprisingly, we show
through extensive experimentation on synthetic and real-world so-
cial networks that many common forms of uncertainty can be ad-
dressed near-optimally by ignoring the vast majority of it and sim-
ply solving an abstracted game with a few randomly chosen types.
This suggests that optimal strategies of games that do not model
the full range of uncertainty in influence blocking games are in
many cases robust to uncertainty about the structure of the influ-
ence graph.

1. INTRODUCTION

Social contagion has long been of great interest in the literature
on marketing, the spread of rumors, and, recently, in the context
of Arab Spring [11, 13, 19]. Our specific focus is on counterin-
surgency, which we view as a competition for the support of local
leaders. Counterinsurgency can be modeled as a game with two
strategic players, the insurgents and the peacekeepers, in which the
insurgents aim to spread their views, unrest, etc. among the local
population, while the peacekeepers wish to minimize the resulting
contagion by engaging in their own influence campaign [8, 7, 20].
The key computational question we address is: given limited re-
sources, how to select which of the local leaders to influence to
minimize the global impact of the insurgency.

These ‘influence blocking’ games have received recent attention
in the security games literature [20], where they have been modeled
using graphs with nodes representing the tribal leaders and edges
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representing possible transmission of influence. However, this line
of work has assumed that full information about network structure
is available to both players and that accurate network knowledge
is crucial to generating high-quality strategies. In practice, infor-
mational challenges abound in counterinsurgency, where the insur-
gents are typically an indigenous group that has an informational
advantage, and the mitigators often have uncertainty about their
knowledge of the social network [8].

In this work, we model counterinsurgency as an influence block-
ing game with asymmetric information. Specifically, we assume
that the influencer (an insurgent group) has perfect knowledge of
the graph structure, while the mitigator is uncertain about the in-
fluence network. In the resulting Bayesian game, a type of the in-
fluencer corresponds to a particular instantiation of the influence
graph, and the mitigator must reason over the distribution over
these graphs (i.e., influencer types) in order to compute an optimal
strategy.

Past work in influence maximization and social network analysis
highlight the importance of graph structure in strategy generation
[11, 3, 6]. In addition, previous work on Bayesian security games
has shown that not accounting for even small degrees of payoff un-
certainty can lead to large drops in solution quality [12]. Thus,
we expect strategies generated without modeling most of the un-
certainty about graph structure to do far worse than the optimal
solution to the Bayesian game. Supporting this intuition, we show
that there are cases where a mitigator who has incorrect information
about a single edge can suffer unbounded loss and that quantifying
the impact of changing a single edge in a given graph is #P-Hard.
We also show empirically that, indeed, under our models of uncer-
tainty, optimal mitigator strategies for different influencer types are
vastly different.

However, while past work has focused on sophisticated algo-
rithms for Bayesian security games [9, 12, 22], we showcase the
opposite approach that runs directly counter to what intuition and
our initial experiments suggest: ignoring the vast majority of un-
certainty has minimal impact. Specifically, we show through ex-
tensive experiments that computing a mitigation strategy based on
a game with only a few randomly sampled influencer types yields
near-optimal rewards for widely varied models of uncertainty. We
experiment on 3 different synthetic graph models with and with-
out resource imbalances on both sides, 5 models of uncertainty,
weighted/unweighted counting of nodes, varied edge weight dis-
tributions, varied graph sizes, varied degrees of uncertainty, and
varied degrees of sampling. We also conduct experiments on two
real-world social networks using two different models graph con-
struction. In all, we studied over 200 experimental settings and
consistently observe the same result: simple sampling techniques



perform near-optimally. This suggests that even in domains as chal-
lenging as ours, models which ignore uncertainty may nevertheless
be robust to it.

2. MODEL

2.1 Asymmetric Information Game

We model counterinsurgency as a two-player Bayesian zero-sum
game situated on a graph in which two players, the influencer (de-
noted by I) and the mitigator (denoted by M) compete to maximize
influence over the nodes. Formally, let G = (V, E) be a graph with
weighted nodes V' and edges F, and for each edge (4,7) € F, let
pij be the probability that node ¢’s opinion will influence node j.
Suppose that the influencer initially attempts to influence a subset
of nodes S; C V to his cause, and the mitigator’s initial influ-
ence is aimed at a subset of nodes Spy C V. We model prop-
agation of influence in the graph as a synchronized independent
cascade process [11, 20] as follows. For nodes v € SN .Sar which
both players initially try to influence, initial “activation” (e.g., ac-
tual opinion adoption) happens in either player’s favor with equal
probability, while all the remaining nodes adopt the view of (are
activated by) the player who directly targets them. Next, we ac-
tivate all edges (7, j) in the graph with the corresponding proba-
bility of influence, p;;, yielding a subgraph upon which influence
can spread. At that point, the influence process proceeds through
a sequence of iterations. In each iteration, if a node j has not yet
adopted an opinion but has active edges to neighbors who have, j
either adopts the opinion of these neighbors when it is unanimous,
or adopts each opinion with equal probability if j’s active neighbors
disagree. Viewing now the initial target nodes Sy and Sys as the
strategies of the players I and M respectively, let o(Sr, Sar) be the
expected value of nodes that adopt the influencer’s opinion follow-
ing the independent cascade process described above. We define
the utility of the influencer to be U;(Sr, Sv) = o(S1, Swm).

We now depart from the model of Tsai et al. [20] by relaxing
the complete/symmetric information assumption. Specifically, we
assume that the influencer knows the actual influence graph G ex-
actly, while the mitigator is uncertain about its true structure, and
only knows the probability distribution over possible graphs. Let
A be an index identifying a particular graph G5, and let us make
explicit the dependence of the expected influence on the graph,
denoting it by (S, S, A). Finally, we denote by P the prob-
ability distribution over A, with Py being the probability that the
true graph is the one identified by A. From the mitigator’s perspec-
tive, the influencer’s decision will depend on his type; that is, on
the true graph which the influencer observes. Thus, we view the
influencer’s strategy S as a function of X, with S7 denoting the
influencer’s strategy when his type is A. The mitigator’s utility is
then U]V[(S[7 S]\/[) = *EANP[O'(SIA, S]u, )\)]

2.2 Models of Networks and Uncertainty

Numerous stochastic generative models for graphs have been
proposed to generate synthetic instances of graphs that resemble
real social networks [14]; some of the best known examples are the
preferential attachment process, which generates scale-free graphs
[2], and the process of generating small-world networks pioneered
by Watts and Strogatz [21]. Recently, a new generative model,
BTER, has been developed, and the authors convincingly demon-
strated that this model matches the important properties of real-
world networks, such as the distribution of degrees and cluster-
ing coefficients, far better than previously proposed methods [17].
BTER graphs feature a scale-free collection of densely clustered
community structures (dense Erdos-Rényi subgraphs), which are

sparsely interconnected by ‘inter-community’ edges. We conducted
experiments on BTER graphs (including variations in community

density and interconnectedness), small-world graphs (Watts-Strogatz),

preferential attachment graphs, and real-world networks from two
villages in India. Due to space limitations, we show results for
BTER graphs and two of the Indian villages here and post the re-
mainder in an online appendix: http://main2013.webs.com.

We consider several ways to model the mitigator’s uncertainty
about the graph. Influential Node uncertainty models uncertainty
about which nodes are most connected, motivated by the fact the
identity of the most socially connected and influential individu-
als is a function of the local culture which is more familiar to the
influencer than the mitigator. Specifically, we start with a base-
line graph, then, for each type, choose a set of 57 nodes and add
k new randomly chosen edges from each of these nodes to oth-
ers. It is important to note that in BTER graph, these j nodes are
the only nodes that can potentially have inter-community edges un-
der this uncertainty. These inter-community edges are particularly
important in contagion games because they enable the spread of
influence across groups. The second model, Random Edge uncer-
tainty, is the simplest: the mitigator has perfect information about
the nodes in the graph, and is uncertain about which edges out of
a given set exist. The third model of uncertainty, Inter-community
Edge uncertainty, models the mitigator’s uncertainty about a subset
of the inter-community edges (i.e., which edges out of a given set
of inter-community edges exist). The fourth model of uncertainty,
Inter/Intra-Community Edge uncertainty, models uncertainty about
a combination of inter-community and intra-community edges and
addresses the concern that Inter-community Edge Uncertainty may
provide additional information by being restricted to the critical

inter-community edges. Note that in Inter-community Edge, Inter/Intra-

Community Edge, and Random Edge uncertainty, we have a type
A for each possible subset of uncertain edges in the graph so the
number of types could be as large as 2!/Z!. The fifth model of uncer-
tainty, Inter-community Edge Set uncertainty, models uncertainty
over which ser of inter-community edges exists (i.e., which set of
8 edges exists). The final three uncertainties, which highlight inter-
community edges, apply only to BTER graphs. Here we only show
results for Influential Node and Inter-community Edge uncertainty
and post the rest on the online appendix. The results omitted are
extremely similar to those for Inter-community Edge uncertainty.

The counterinsurgency literature [8] makes clear that military in-
telligence explicitly performs ‘intelligence preparation of the bat-
tlefield (IPB)’ to ascertain the structure and dynamics of a local
population with high fidelity. Therefore, we are not interested in
cases in which the entire social network is largely unknown or mis-
understood. Instead, we focus on situations with a generally correct
social network in which uncertainty is about the details of the net-
work structure.

3. THE CHALLENGES OF UNCERTAINTY

The first question to ask is whether we can bound the impact of
a small amount of uncertainty, because that may help us bound the
total loss of solution quality given some uncertainty. We show that,
in general, ignoring uncertainty can yield a solution that is arbitrar-
ily poor for the mitigator. Consider the graph shown in Figure 1
in which the edge from A to B is uncertain, N > M, and both
players have a single resource. Suppose that the influencer chooses
to influence node A with probability 1. If the mitigator mistakenly
assumes the edge does not exist, then his best response is to influ-
ence node C with probability 1, but his actual loss amounts to % as
compared to the true best-response of playing B (%). A similar sit-
uation arises when the mitigator assumes the opposite. Thus, since
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Figure 1: Unbounded loss

M is arbitrary, by ignoring the uncertainty of just a single edge the
mitigator can suffer unbounded loss.

The network in the above example is rather artificial, so it is
natural to wonder what happens under a more realistic model of a
network and uncertainty. To this end, we investigate the following
empirical question: under our models of uncertainty, if we were
to compute an optimal strategy assuming a single influencer type,
how much would that strategy vary for different types? To answer
this, we take a Bayesian game with 40 types and compute an op-
timal mitigation strategy for each possible influencer type A under
the assumption of complete information. This yields a mixed strat-
egy, S, for each possible influencer type. Next, we select a type
b uniformly at random and measure the fraction of pure strategies
in the support of S%, that is different from the pure strategies in the
support of each S3; for A # b. In Figure 2 we report the aver-
age fractional difference over 20 independent instances of 40-type
Bayesian games on 40-node BTER graphs (edges vary from 130 to
200) with Influential Node uncertainty (more details on our stan-
dard setup will be presented shortly). Note that 1 in this case indi-
cates that the mixed strategy for a randomly chosen type does not
share a single pure strategy with the mixed strategy computed for
any other type. As can be seen here for this instance, and is gener-
ally true under this uncertainty, nearly all instances show minimal
overlap in the pure strategies used by each of the type-specific op-
timal strategies.
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Figure 2: Comparison of mixed strategies

Finally, we turn to the question of complexity, where the result is
very clear and very negative. At a high level, the challenge of effi-
ciently reducing the runtime of computing equilibria in our setting
lies in quantifying the impact of even small changes in the graph
structure. If this could quickly and accurately be determined, then
types could be efficiently clustered and bounds could be placed on
the quality loss. The fact that computing the expected influence is
#P-Hard [4] should already give us pause. Indeed, a simple corol-
lary of this result reveals that such quantification is intractable in
general.

PROPOSITION 1. Computing the difference in expected influ-
ence for a given seed set even when a single edge is added to a
graph is #P-Hard. (Proof available in appendix)

4. DOUBLE ORACLE ALGORITHM

Even though we formulated influence blocking as a zero-sum
game, which can in principle be solved using linear programming,
computing an equilibrium of this game in our case is challenging
for three reasons. First, payoff estimation requires determining the
value of o(S7, Sas, A), which has been shown to be #P-Hard [4].
Therefore, even constructing the payoff matrix for this linear pro-
gram is non-trivial. Second, the strategy sets for both players are
exponentially large, making it impractical to store the entire pay-
off matrix even if we could compute payoffs efficiently for a pair
of player strategies. Third, because we model uncertainty over
graph instances, the number of influencer types can be exponen-
tially large.

The first problem was addressed in prior research [20] by intro-
ducing the LSMI heuristic for faster estimation of o(+), which we
also use here. The Bayesian double-oracle algorithm introduced by
Halvorson et al. [5] provides a possible solution to the second prob-
lem. This algorithm begins with a small subset of pure strategies
for each player and iteratively adds best-response strategies to the
existing subgame. The algorithm ends when no new best-responses
need to be added, at which point it has provably converged to the
equilibrium of the full game. In the context of Bayesian games,
Halvorson et al. propose computing the best response for every
player type, which in our case means that we compute the influ-
encer’s best response for each type (graph), and add all of these
pure strategies in each iteration. This approach runs into our third
and final problem: the exponential number of types. Since com-
puting a best response for a given type requires a non-negligible
amount of computation, having to do this for every type will sim-
ply not scale. To address this, we now show empirically that simple
heuristics actually produce near-optimal solutions.

S. THE POWER OF SIMPLE

The results presented thus far, as well as the intuition from the
vast literature on influence maximization [13, 4, 3], suggest that
carefully accounting for our uncertainty about graph structure is
crucial to obtaining high quality solutions. Next, we present a
small, representative subset of an extensive collection of experi-
ments, all showing precisely the opposite: we need only to ran-
domly sample a few types from the type distribution and solve the
resulting game as if no other types exist, to obtain solutions that are
nearly optimal. This is quite surprising, particularly since we have
already shown, via the example in Figure 1, that ignoring even a
single influencer type can yield arbitrarily poor solutions even with
only two types.

All the results below are an average of 20 game instances and
were run on machines with CPLEX 12.2, 2.8 GHz CPU, and 4GB
of RAM. Unless otherwise stated, experiments were run on 40-
node graphs (130 to 200 edges), contagion probabilities on edges
drawn from a N(0.4,0.2) distribution, node values varying uni-
formly from 1-10, each player having two seed nodes (|S;| =
|Sam| = 2), and payoffs estimated using the LSMI heuristic in-
troduced by Tsai et al. [20]. Monte Carlo payoff estimations pro-
duced similar results but could not be meaningfully scaled. Since
an optimal benchmark is necessary, the best-response oracles it-
eratively evaluate each available action to determine the best re-
sponse, rather than using greedy hill-climbing common in the influ-
ence maximization literature. Unless otherwise stated, Influential
Node uncertainty selects 3 nodes and gives each 4 additional edges.
Moreover, only these 12 edges could potentially connect commu-
nities, making the chosen nodes not only more connected (average
degree, excluding uncertain edges, varies from 3-5 with maximums



of 9), but also incident to the more consequential edges. For Inter-
Community Edge uncertainty we varied the number of uncertain
edges between 1 and 6 (the optimal technique could not scale to
more edges). We focus throughout on the mitigator strategy ob-
tained by drawing a random subset of the influencer’s types and
solving the game assuming no other types exist (referred to as Ran-
dom Sampling).

5.1 Experiments
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Figure 3: Reward comparison, BTER graphs

In our first set of results, shown in Figure 3, we consider the
impact of the number of randomly sampled types on solution qual-
ity (only a combination of BTER and two models of uncertainty
are shown here, as these results exhibit the greatest approximation
error from random sampling; extensive other studies, included in
the online appendix, offer even more dramatic support of our argu-
ment). These experiments use the same 40-node games that were
featured in Figure 2 that showed pure strategies used by individual
types have minimal overlap. The x-axis shows the number of sam-
pled types, while the mitigator utility is plotted on the y-axis. The
key point is that with only about 2-5 randomly sampled types we
obtain a solution that is very nearly optimal, despite the fact that
only using a single influencer type yields a relatively poor mitiga-
tor reward (Figure 3b). While results in the optimization literature
such as sample average approximation theory [18] show that ran-
dom sampling can converge exponentially fast to optimal solutions,
our “convergence” is uncannily quick.
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Figure 4: Inter-community Edge uncertainty

Next, we fix the number of randomly sampled types used to gen-
erate a solution at 2, and increase the number of actual types (in-
creasing the degree of uncertainty). The graph sizes were fixed
to 40 nodes. Intuitively, we would expect that the performance of
Random Sampling should degrade significantly as we increase un-
certainty by adding types. In addition, we compare the random
sampling strategy to an even simpler heuristic which uses only a
single type with the highest probability; we call this Max Prob. Fig-
ures 4 and 5 are representative of a broad array of experiments we
ran in this space (see online appendix). In addition to considering
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Figure 5: Influential Node uncertainty

several types of uncertainty, we also varied the density of connec-
tions among communities (low density uses p = 0.5 as the proba-
bility of inter-community edges, while high density uses p = 0.9).
Perhaps the most surprising finding in these experiments is that the
quality of Random Sampling relative to optimal degrades very little
as we increase the number of types. While we could not com-
pute optimal solutions for games involving more types, this finding
suggests that we may need to sample a decreasing (rather than a
constant) fraction of all possible types as the number of total types
increases.

In our final set of results using synthetic graphs, we study the
impact of the size of the underlying network. The number of edges
varied from 28 (20 nodes) to 188 (40 nodes) with up to 6 edges
differing between types for Inter-community Edge uncertainty and
up to 24 edges for Influential Node uncertainty (12 new edges per
type). Here, we keep the number of nodes/edges about which we
are uncertain fixed, and increase the network size. Consequently,
our expectation is that smaller networks would exhibit significantly
greater difference between random sampling and optimal, since un-
certainty involves a greater fraction of the graph. Figure 6 shows
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Figure 6: Scale-up of graph size

little evidence of this: the quality of simple heuristics relative to
optimal is little affected by the fraction of the graph that is uncer-
tain.

In all, we studied variations involving BTER, preferential attach-
ment, and small-world generative models of networks, all five mod-
els of uncertainty described above, and, moreover, considered nu-
merous variations in the parameter space of all the generative mod-
els of graphs and uncertainty about them, the number of resources
that players had, etc. For example, we studied games in which the
mitigator was allowed to initially impact 3 or 4 nodes, while the
influencer was restricted to 2, and vice versa; we varied the distri-
bution of contagion probabilities between 0.4 and 0.7; for BTER
we additionally examined different degree distributions. All these
results (see online appendix) exhibit essentially the same trends that
we showed here.

Finally, we conducted a set of experiments on a real-world social
network dataset released in 2012 that was obtained via survey data



in 75 Indian villages.! The survey asked the inhabitants of the vil-
lages a series of questions to ascertain their relationship with other
people in the village (e.g., would you invite him in for tea, do you
go to temple with him, would you loan him money, etc.). From
this data, a social network can be constructed by beginning with
a complete graph with edge weights of 0.0, increasing the weight
of an edge corresponding to a positive answer to a survey question
by 0.1, and then normalizing all weights. For our experiments, we
use the household-level data for two of the smaller villages (8 and
10), because even the double-oracle optimization does not scale to
larger networks. The results in Figure 7 use Influential Node uncer-
tainty, and each type now chooses 8 random nodes and gives each
10 new edges to maintain the same fraction of uncertainty, since
the India data sets have 77 or 94 nodes and an average degree of
7.7 or 7.4. As the figure testifies, our results are not an artifact
of synthetic graph models that we generate, but can be observed
on graphs based on actual social network data as well. Moreover,
we studied others variations, such as changing the way we weigh
the edges (increasing the relative weight of stronger relationships),
with the results virtually identical to what we show here (see ap-
pendix: http://main2013.webs.com).
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Figure 7: Influential Node uncertainty, 0.1-Weight-Scheme

5.2 Initial Analysis

The results shown are surprising in their extremity, especially
in light of the result presented previously demonstrating minimal
overlap of pure strategies in optimal strategies for individual types.
We now explore why this might be occurring in these games. We
begin by again comparing the type-by-type overlap in mixed strate-
gies, but this time we focus on the nodes used instead of the actions
(i.e., sets of nodes) used as a more granular metric. In addition to
comparing against a randomly chosen base type as before, we also
compare each type’s individual optimal strategy against the optimal
strategy for the full Bayesian game.

Figure 8 shows the results for 20 trials where each bar represents
the average percentage of node overlap for a single trial (averaged
over all types). We see in Figure 8a that there is a 60-80% differ-
ence (average of 74%) in the nodes used by individual types when
compared against a randomly chosen type’s optimal strategy. Thus,
while each type’s strategy may differ, they may all contain a set of
core nodes that overlap more with the optimal strategy, which may
cause the type-specific strategies to perform well overall. In Fig-
ure 8b we show the results when comparing the overlap in nodes
used between the optimal strategy and each type’s individual opti-
mal strategy. The difference drops to the 40-70% range (average
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of 62%), suggesting that each individual type’s optimal strategy
uses nearly half of the nodes used by the optimal Bayesian strategy.
The existence of such a core of nodes that are part of the optimal
strategy for many types can partially explain the success of simple
sampling techniques.
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Digging deeper, we examine the type-by-type reward obtained
by the sampling strategy versus the reward obtained by the optimal
Bayesian strategy under Influential Node uncertainty. These exper-
iments were examined instance by instance, and we show a typi-
cal example to illustrate the trends. In Figure 9a, we show results
for the optimal strategy’s performance on each type, where each
bar shows the mitigator’s reward on the y-axis for a particular type.
Note that there is one extremely high reward type and the others are
all in the -80 to -100 range. In Figure 9b, we show the results for
a randomly chosen single type’s optimal strategy. Here the major-
ity of rewards range from -100 to -120, suggesting that the overlap
in nodes showed previously may stem some of the losses (maxi-
mum loss is -200 in expectation), but does not explain the whole
story. An additional clue, however, is that the single type’s strategy
actually performed extremely well for two types here, leading to a
comparable average reward despite the poorer performance in most
cases. While this was not universally true, in most cases a similar
phenomenon occurred. This suggests that within the forms of un-
certainty explored here, an optimal strategy for one type tends to
be near-optimal for a handful of other types (despite minimal over-
lap in optimal support sets). Under what formal circumstances this
reliably occurs, however, remains an open question.

6. DISCUSSION

The phenomenon of simple techniques providing highly effec-
tive solutions has also been observed elsewhere [18, 10, 16, 1]. In
addition to novelty of our influence-driven, network-based model,
our work differs from these in other important ways. As noted
earlier, our results differ from previous work using sampling tech-
niques in their extremity (i.e., only one or two samples needed),



and unlike research in heuristic techniques for equilibrium compu-
tation, our work focuses on the power of extremely few samples
instead of general heuristics.

A closer examination of previous literature in security games
that addresses uncertainty reveals that similar phenomena may have
been true elsewhere but went unexplored. In Yin et al. [22], the au-
thors provide a novel algorithm (HUNTER) for optimally handling
Bayesian Stackelberg games with many types. While the algorithm
is orders of magnitude faster than previously proposed optimal al-
gorithms, the authors report that BRASS, a far less complex solu-
tion method [15], achieves an average loss of 0.7 in a game where
the range of rewards for optimal solutions ranged from -26 to 17
compared against their algorithm. One again wonders whether a
sampling approach would have worked extremely well here too.

Our work does not dispute the fact that extremely large Bayesian
zero-sum games remain very challenging to solve well in general
and there are certainly problem classes that are not amenable to
simple heuristics. In Kiekintveld et al. [12], for example, the au-
thors introduce several techniques for handling large numbers of
Bayesian types to address payoft uncertainty and they show that
simple techniques do not perform near-optimally. Our work stresses
the need to verify whether or not simple techniques work before
embarking on extensive algorithmic gymnastics to achieve minimal
gains in solution quality. Although we have provided some analy-
sis of why this occurs in our domain, this is only the beginning
of research in this direction and clearly more work is needed. Fi-
nally, our findings give hope that many very challenging problems
in computational game theory may actually be very effectively ad-
dressed by simple techniques: the power of simple.
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