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ABSTRACT
Counterinsurgency, which is the effort to mitigate support for an
opposing organization, is one such domain that has been studied
recently and past work has modeled the problem as an influence
blocking maximization that features an influencer and a mitigator.
While past work has introduced scalable heuristic techniques for
generating effective strategies using a double oracle algorithm, it
has not addressed the issue of uncertainty and asymmetric infor-
mation, which is the topic of this paper.
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1. INTRODUCTION
The spread of information and social behaviors has been studied ex-
tensively in many disciplines in the context of phenomena such as
viral marketing, rumor spreading and the Arab Spring [9, 12, 13].
Counterinsurgency, the competition for the support of local leader-
ship, has also been studied as a game with two strategic players [6,
5, 14]. Although many aspects of this problem are highly active ar-
eas of research, the key computational question is to decide which
local leaders to influence to achieve each player’s primary goal:
maximize influence for one player, and mitigate the first player’s
influence for the other player.

These ’counter-contagion’ games have received recent attention
in the security games literature [14] and has been modeled as a
graph where nodes represent leaders and edges between the nodes
representing the probability of influence. This line of research,
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however, has not yet examined the impact of asymmetric informa-
tion. Informational challenges abound in counterinsurgency, where
the insurgents are typically an indigenous group that has an infor-
mational advantage and the mitigators often have uncertainty about
their knowledge of the social network [6]. Figure 1, for example,
shows a realistic social network for the leadership of a set of lo-
cal villages in Afghanistan [6]. Given real-world information con-
straints, the counterinsurgency team may not have perfect informa-
tion of the graph and be uncertain about some set of edges.

In our work, the mitigator’s uncertainty about the graph structure
is modeled as a Bayesian game with each Bayesian type represent-
ing a separate instantiation of the graph. The mitigator’s strategy
must now reason over the distribution of types. The influencer’s
(insurgent’s) perfect knowledge of the graph structure allows him
to specify a behaviorial strategy which conditions the strategy used
on the specific type. This results in Bayesian games with an ex-
ponential number of types where each game is already extremely
challenging to solve efficiently. We aim to address this class of
problems efficiently and effectively.

Figure 1: Example Afghani leadership network

2. RELATED WORK
Recent work in game-theoretic security allocation have also dealt

with domains that were modeled as graphs [1, 7, 4], however their
actions were all deterministically defined and did not feature a prob-
abilistic contagion component. The work in uncertainty in security
games is also relevant [8, 10, 15], but once again do not feature the
contagion component found in our domain.

This contagion process has been studied outside of the security



games literature and is known as influence maximization, in which
a player attempts to optimize a selection of beginning ‘seed’ nodes
from which to spread his influence in a known graph. This class of
problems were first introduced as a discrete maximization problem
by Kempe et al. (2003) who showed submodularity of the max-
imization problem, enabling a greedy approximation. This work
has been followed-up by numerous proposed speed-up techniques
[3, 11, 12].

Two-player variants of influence maximization have been stud-
ied as well, one of which is known as influence blocking maximiza-
tion problems and are equivalent to the counter-contagion games
we study. These models have been explored with both independent
cascade and linear threshold models of propagation [2, ?], how-
ever, work in this area has generally focused only on the defender’s
best-response problem. The exception is Tsai et al. [14] which
addresses the algorithmic challenge of finding equilibria strategies.
Finally, Hung et al. (2011) and Howard (2010) also model coun-
terinsurgency and attempt to optimize against a strategic adversary.
However, none of these works model the uncertainty that is critical
in domains such as counterinsurgency.

3. ASYMMETRIC INFORMATION GAME
We model counterinsurgency as a two-player Bayesian zero-sum

game situated on a graph in which two players, the influencer (de-
noted by I) and the mitigator (denoted byM ) compete to maximize
influence over the nodes. Formally, letG = (V,E) be a graph with
weighted nodes V and edges E, and for each edge (i, j) ∈ E, let
pij be the probability that node i’s opinion will influence node j.
We model propagation of influence in the graph as a synchronized
independent cascade process [9] as follows. Suppose that the influ-
encer initially attempts to influence a subset of nodes SI ⊆ V to
his cause, and the mitigator’s initial influence is aimed at a subset
of nodes SM ⊆ V . For nodes v ∈ SI ∩ SM which both play-
ers initially try to influence, initial “activation” (e.g., actual opinion
adoption) happens in either player’s favor with equal probability,
while all the remaining nodes adopt the view of (are activated by)
the player who directly targets them. Next, we activate all edges
(i, j) in the graph with the corresponding probability of influence,
pij . At that point, the influence process proceeds through a se-
quence of iterations. In each iteration, if a node j has not yet
adopted an opinion but has active edges to neighbors who have, j
either adopts the opinion of these neighbors when it is unanimous,
or adopts each opinion with equal probability if j’s active neighbors
disagree. Viewing now the initial target nodes SI and SM as the
strategies of the players I andM respectively, let σ(SI , SM ) be the
expected value of nodes that adopt the influencer’s opinion follow-
ing the independent cascade process described above. We define
the utility of the influencer to be UI(SI , SM ) = σ(SI , SM ).

Our model differs from those in past works (e.g., Tsai et al.
2012) by relaxing the complete/symmetric information assumption.
Specifically, we assume that the influencer knows the actual influ-
ence graphG exactly, while the mitigator is uncertain about its true
structure, and only knows the probability distribution over possible
graphs. Let λ be an index identifying a particular graph Gλ, and
let us make explicit the dependence of the expected influence on
the graph, denoting it by σ(SI , SM , λ). Finally, we denote by P
the probability distribution over λ, with Pλ the probability that the
true graph is the one identified by λ. From the mitigator’s perspec-
tive, the influencer’s decision will depend on his type, that is, on
the true graph which the influencer observes. Thus, we view the
influencer’s strategy SI as a function of λ, with SλI denoting the
influencer’s strategy when his type is λ. The mitigator’s utility is
then UM (SI , SM ) = −Eλ∼P [σ(SλI , SM , λ)].

4. CHALLENGE
Though these Bayesian counter-contagion games are zero-sum

and, therefore, amenable to linear programming solutions, the asym-
metric information component adds a major dimension of diffi-
culty. Specifically, because the uncertainty occurs over graph in-
stances, the number of influencer types can be exponentially large.
Since each individual game is already very challenging to solve as
per Tsai et al. 2012, exponentially many of them exacerbates this
challenge. Handling this uncertainty efficiently and effectively re-
mains a major open challenge to real-world application of these
techniques.
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