
Human Adversaries in Security Games:
Integrating Models of Bounded Rationality and Fast Algorithms

by

Rong Yang

A Dissertation Presented to the
FACULTY OF THE USC GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the
Requirements for the Degree

DOCTOR OF PHILOSOPHY
(Computer Science)

April 2014

Copyright 2014 Rong Yang

Acknowledgments

Five years ago, I decided to join USC pursing a PhD degree. This was one of the most important

decisions I have made in my life. Finishing the PhD wasn’t easy, but I have really enjoyed the

past five years with the privilege to have worked with a number of extraordinary people, who

have given me invaluable advices on both research and life.

First of all, I would like to give my special thanks to my PhD advisor Milind Tambe, without

whom I would not been anywhere near where I am now. When I first joined the TEAMCORE

research group, little did I know about what it means to do research. Milind, with his endless

patience, guided me through each step to do meaning research. He taught me the importance of

conducting research that has real-world impact. His dedication for his students has encouraged

us to not only do better research but also be a better person. His unbounded passion for research

and unbeatable working attitude has been and will always be the inspiration to me. I will always

remember the days when he worked with me until the last minute on the paper deadlines! I

am also grateful for his support as I started my family during the course of pursing my PhD.

His understanding and consideration has made the toughest time of my life so much smoother.

Milind, thanks for always being there when I needed a discussion regarding research, a break to

take care of my baby, and a heartfelt advice for future career path.

ii

Next, I would like to thank other members of my thesis committee: Fernando Ordóñez,

Jonathan Gratch, Rajiv Maheswaran, Richard John, and Vincent Conitzer, for providing valuable

feedback to my research and pushing me to think deeper. As my research being at the intersection

of many disciplines, I would never be able to push my research to the height I have achieved with-

out having an interdisciplinary committee to help shaping my idea. A special thanks to Fernando,

for his tremendous guidance to me and ceaseless confidence in me, without what my research

would have suffered greatly. You introduced me to the world of large-scale optimization tech-

niques. I will always remember the days when I could just walk into your office to ask questions

whenever I encountered problems in my research. Thanks for flying over all the way from Chili to

support my research. Richard, thanks for opening up the door to human subject research for me.

Without your guidance, I would never be able to reach the achievement in my research. I really

appreciate your always bringing a different perspective to my research. As a computer scientist,

I enjoy interacting with human subjects in my experiment as much as I do with my codes, thanks

to your help.

I would also like to thank the many excellent researchers that I have had the privilege to work

with over the years. This list includes Christopher Kiekintveld, Matthew Taylor, Bo An, Albert

Xin Jiang. James Pita, Jun-young Kwak, Sarit Kraus, Thanh Nguyen, Fei Fang, Benjamin Ford

and Debrun Kar. I thank all the students who helped develop the games for my experiment:

Mayuresh Janorkar, Mohit Goenka, Karthik Rajagopal and Noah Olsman. I am also grateful for

the support from the Army Research Office, the US Coast Guard and IBM on my research over

the years. They have provided me not only the opportunity to work on real-world problems of

research interest, but also the possibility to develop my own research interest. I would like to

iii

particularly thank Janusz Marecki for his help in applying for the IBM fellowship and for being

the best academic brother I could ever ask for.

During my time at USC, I enjoyed myself very much as a member of the large TEAMCORE

family. I appreciate the time shared with those during my PhD career: Matthew Brown, Leandro

Marcolino, Chao Zhang, Yundi Qian, Kumar Amulya Yadav, Haifeng Xu, Francesco Delle Fave

and William Haskell. Special thanks to Manish Jain for all the advices you have given me over

the years; Jason Tsai for being a great officemate with the patience to listen to my stories from

shopping for shoes to taking care of my baby boy; Eric Shieh for the delicious food you have

brought to the office; Zhengyu Yin for the many afternoons that you have spend discussing with

me about research; Jun-young Kwak for always having the good recommendations for Korean

restaurants.

Finally, I would like to thank my family for their support over the years. In particular, thanks

to my parents for always believing in me, for supporting my decision of flying aboard to pursue

my career, and for coming over to the US to help take care of Dylan. I would also like to thank

my in-laws for the support during the toughest time of my PhD career. Lastly, I would like to

thank my dear husband Qing for always being there for me through happiness and toughness,

for being the best friend of my life, for supporting me to pursue my own career and for bringing

Dylan, the most precious gift ever, to my life, .

iv

Table of Contents

Acknowledgments ii

List of Figures ix

Abstract xi

Chapter 1: Introduction 1
1.1 Problem Addressed . 2
1.2 Contributions . 4

1.2.1 Stochastic Models of Adversary Decision Making 4
1.2.2 Algorithms for Optimizing Defender Strategy 5
1.2.3 Adaptive Resource Allocation and Application for Protecting Wildlife . . 7

1.3 Overview of Thesis . 8

Chapter 2: Background 10
2.1 Stackelberg Games . 10

2.1.1 Bayeisan Stackelberg Games . 12
2.1.2 Strong Stackelberg Equilibrium . 13
2.1.3 Stackelberg Security Games . 14

2.2 Los Angeles International Airport . 16
2.3 Baseline Solvers . 18

2.3.1 Defender Optimal Strategy against a perfectly rational adversary 19
2.3.2 Defender Optimal Strategy against the ε−optimal adversary response . . 20

2.4 Human Subject Experiments . 21

Chapter 3: Related Work 24
3.1 Behavioral Game Theory . 24
3.2 Efficient Computation of Defender Optimal Strategy 26
3.3 Robust Defender Strategies . 28
3.4 Learning Adversary Behavioral in Repeated Games 29

Chapter 4: Modeling Adversary Decision Making 30
4.1 Models for Predicting Attacker Behaviors . 31

4.1.1 Prospect Theory . 32
4.1.2 Quantal Response . 33

v

4.1.3 Quantal Response with Rank-related Expected Utility 35
4.2 Computing Optimal Defender Strategy . 36

4.2.1 Computing against a PT-adversary . 36
4.2.1.1 BRPT . 36
4.2.1.2 RPT . 41

4.2.2 Computing against a QR-adversary . 42
4.2.3 Computing against a QRRU-adversary 43

4.3 Parameter Estimation . 45
4.3.1 Selecting Payoff Structures . 46
4.3.2 Parameter Estimation for Prospect Theory 49
4.3.3 Parameter Estimation for the QR Model 51
4.3.4 Parameter Estimation for the QRRU Model 52

4.4 Experimental Results and Discussion . 54
4.4.1 A Simulated Online SSG . 54
4.4.2 Experimental Settings . 55
4.4.3 Algorithm Parameters . 57
4.4.4 Quality Comparison . 59

4.4.4.1 Average Performance . 60
4.4.4.2 Performance Distribution . 66

4.4.5 Model Prediction Accuracy . 69

Chapter 5: Quantal Response Model with Subjective Utility 74
5.1 The SUQR Model . 75

5.1.1 Learning SUQR Parameters . 76
5.1.2 Prediction Accuracy of SUQR model 77

5.2 Improving MATCH . 78
5.2.1 Selecting β for MATCH: . 80

5.3 Experimental Results . 80
5.3.1 Results with AMT Workers, 8-target Games 81
5.3.2 SU-BRQR vs MATCH . 82
5.3.3 SU-BRQR vs Improved MATCH . 83
5.3.4 Results with New Experimental Scenarios 84

5.3.4.1 Security Intelligence Experts, 8-target games 85
5.3.4.2 SU-BRQR vs DOBSS . 85
5.3.4.3 SU-BRQR vs MATCH . 85

5.3.5 Bounded Rationality of Human Adversaries 86
5.3.6 AMT Workers, 24-target Games . 87

5.3.6.1 SU-BRQR vs MATCH with Parameters Learned from the 8-
target Games . 87

5.3.6.2 SU-BRQR vs DOBSS with Re-estimated Parameters 88
5.3.6.3 SU-BRQR vs MATCH with Re-estimated Parameters 88

vi

Chapter 6: Modeling Human Adversaries in Network Security Games 90
6.1 Problem Definition . 91
6.2 Adversary Model . 94

6.2.1 Basic Quantal Response Model . 95
6.2.2 Quantal Response with Heuristics . 95

6.3 Model Parameter Estimation . 96
6.3.1 Data Collection . 96
6.3.2 Training the QR Model . 99
6.3.3 Training the QRH Model . 100

6.4 Computing Defender Resource Allocation Strategy 102
6.4.1 Best Response to QR model . 103
6.4.2 Best Response to QRH model . 104

6.5 Experiment Results . 105
6.5.1 Experiment Settings . 105
6.5.2 Experiment Results . 107

Chapter 7: Computing Defender Optimal Strategy 111
7.1 Problem Definition . 112

7.1.1 Resource Assignment Constraint . 113
7.2 Binary Search Method . 113
7.3 GOSAQ . 116

7.3.1 GOSAQ with No Assignment Constraint 117
7.3.2 GOSAQ with Assignment Constraints 119

7.4 PASAQ . 120
7.4.1 PASAQ with No Assignment Constraint 122
7.4.2 PASAQ With Assignment Constraints 125

7.5 Experiments . 126
7.5.1 No Assignment Constraints . 127
7.5.2 With Assignment Constraints . 129

Chapter 8: Scaling-up 133
8.1 Generalized PASAQ . 134
8.2 COCOMO– A Branch-and-Price Algorithm . 137
8.3 BLADE– A Cutting-Plane Algorithm . 140

8.3.1 Master . 141
8.3.2 Separation Oracle . 142
8.3.3 WBLADE . 146
8.3.4 Quality and Runtime Trade-off . 148

8.4 Experimental results . 149

Chapter 9: Adaptive Resource Allocation and its Application to Wildlife Protection 153
9.1 Domain . 153
9.2 Model in PAWS . 156

9.2.1 Stackelberg Game Formulation . 156
9.2.2 Behavioral Heterogeneity . 159
9.2.3 Adapting Patrolling Strategy using Historical Crime Data 161

vii

9.3 Research Advances in PAWS . 162
9.3.1 Learn the Behavioral Model . 162

9.3.1.1 Learning with the Identified Data 163
9.3.1.2 Learning with the Anonymous Data 164
9.3.1.3 Combining the Two Kinds of Data 165

9.3.2 Adapting Patrolling Strategy . 167
9.4 Evaluation . 168

9.4.1 General Game Settings . 168
9.4.2 Results for the Deployment Area . 170

Chapter 10: Conclusion 174
10.1 Contributions . 175
10.2 Future Work . 178

Bibliography 181

Appendix A: Error Bound of PASAQ 188

viii

List of Figures

1.1 US Coast Guard at the port of Boston . 6

1.2 QENP: The intended site of deployment. Ranger photo taken by Andrew Lemieux. 8

2.1 LAX Security . 17

4.1 Prospect Theory empirical function forms . 32

4.2 Piecewise approximation of the weighting function 40

4.3 Payoff Structure Clusters (color) . 47

4.4 Game interface for our simulated online SSG 54

4.5 Defender average expected utility achieved by different strategies 59

4.6 Defender average expected utility (normalized between 0 and 1) achieved by dif-
ferent strategies . 61

4.7 Defender average expected utility achieved by QR model based strategies 64

4.8 Distribution of defender’s expected utility against each individual subject 67

4.9 Distribution of defender’s expected utility against each individual subject 68

6.1 Game Interface (colored) . 97

6.2 Graphs Tested in Data Collection . 98

6.3 Graphs Tested in Evaluation Experiments . 106

6.4 Average Defender Expected Utility . 109

6.5 Average Defender Expected Utility . 110

ix

7.1 Piecewise Linear Approximation . 120

7.2 Solution Quality and Runtime Comparison, without assignment constraints (bet-
ter in color) . 131

7.3 Solution Quality and Runtime Comparison, with assignment constraint (better in
color) . 132

8.1 Branching Tree . 137

8.2 Minimizing weighted 1-norm distance . 147

8.3 Runtime Comparison of the BLADE family . 150

8.4 Comparing COCOMO and BLADE, QR Model 151

8.5 Runtime Comparison, QR-Sigmoid model . 152

9.1 Lioness photo courtesy of John Coppinger, Remote Africa Safaris Ltd. Poacher
snare photo taken by Andrew Lemieux. 155

9.2 Empirical Marginal PDF of the SUQR parameter among all the 760 subjects . . . 160

9.3 Simulation results over round . 168

9.4 Slow Capture v.s. Fast Capture . 169

9.5 Comparing cumulative EU at round 20 . 170

9.6 The QENP area of interest for our simulation 172

9.7 Simulation results over round for the 64 sq. km grid area in QENP 173

9.8 Patrolling coverage density in the park . 173

x

Abstract

Security is a world-wide concern in a diverse set of settings, such as protecting ports, airport and

other critical infrastructures, interdicting the illegal flow of drugs, weapons and money, prevent-

ing illegal poaching/hunting of endangered species and fish, suppressing crime in urban areas and

securing cyberspace. Unfortunately, with limited security resources, not all the potential targets

can be protected at all times. Game-theoretic approaches — in the form of ”security games”

— have recently gained significant interest from researchers as a tool for analyzing real-world

security resource allocation problems leading to multiple deployed systems in day-to-day use to

enhance security of US ports, airports and transportation infrastructure. One of the key challenges

that remains open in enhancing current security game applications and enabling new ones orig-

inates from the perfect rationality assumption of the adversaries — an assumption may not hold

in the real world due to the bounded rationality of human adversaries and hence could potentially

reduce the effectiveness of solutions offered.

My thesis focuses on addressing the human decision-making in security games. It seeks to

bridge the gap between two important subfields in game theory: algorithmic game theory and

behavioral game theory. The former focuses on efficient computation of equilibrium solution

concepts, and the latter develops models to predict the behaviors of human players in various

xi

game settings. More specifically, I provide: (i) the answer to the question of which of the exist-

ing models best represents the salient features of the security problems, by empirically exploring

different human behavioral models from the literature; (ii) algorithms to efficiently compute the

resource allocation strategies for the security agencies considering these new models of the ad-

versaries; (iii) real-world deployed systems that range from security of ports to wildlife security.

xii

Chapter 1: Introduction

Security is a world-wide concern in a variety of different settings, including protecting critical

infrastructures such as port, airports and flights, interdicting illegal flow of drugs, weapons and

money, preventing illegal poaching/hunting of endangered species and fish, suppressing crime

in urban areas and securing cyberspace. The key challenge in these various security settings

is that there are only limited amount of resources, therefore not all the potential targets can be

protected at any time. At the same time, the adversaries are conducting surveillance, hence any

deterministic allocation of the resource may be exploited by these intelligent adversaries. The

security agencies often prefer to allocate their resources in a randomized fashion.

Game-theoretic approaches have recently gained significant interest from researchers as a

tool for analyzing real-world security resource allocation problems [Gatti, 2008a; Agmon et al.,

2008; Basiloco et al., 2009]. These models provide a sophisticated approach for generating un-

predictable, randomized strategies that mitigate the ability of attackers to find weaknesses using

surveillance. The ARMOR [Pita et al., 2008], IRIS [Tsai et al., 2009] and GUARDS [Pita et al.,

2011] are notable examples of real-world applications. At the heart of these applications is the

1

leader-follower Stackelberg game model, where the leader (security forces) acts first by com-

mitting to a mixed-strategy; the follower (attacker/adversary) observes the leader’s strategy and

responds to it.

1.1 Problem Addressed

One of the key assumptions in the existing real-world security systems is about how attackers

choose strategies based on their knowledge of the security strategy. Typically, such systems apply

the standard game-theoretic assumption that attackers are perfectly rational and strictly maximize

their expected utilities. This is a reasonable starting point for the first generation of deployed sys-

tems. However, in real-world security problems, the security forces are facing human adversaries

whose decisions may be governed by their bounded rationality [Simon, 1956], which may lead

them to deviate from the optimal choice. Hence, defense strategies based on the perfect ratio-

nality assumption may not be robust against attackers using different decision procedures. Such

assumptions also fail to exploit known weaknesses in the decision-making of human attackers.

Indeed, it is widely accepted that standard game-theoretic assumptions of perfect rationality are

not ideal for predicting the behavior of humans in multi-agent decision problems [Camerer et al.,

2004; Wright and Leyton-Brown, 2010]. Thus, it is critical to integrate more realistic models of

human decision-making for solving real-world security problems.

There are several open questions we need to address in moving beyond perfect rationality

assumptions. First, a large variety of alternative models have been studied in behavioral game

theory and cognitive psychology [Camerer et al., 2004; Costa-Gomes et al., 2001] that capture

2

some of the deviations of human decisions from perfect rationality. However, there is an impor-

tant empirical question of which model best represents the salient features of human behavior in

applied security contexts. Given that many of these models are descriptive, integrating any of the

proposed models into a decision-support system (even for the purpose of empirically evaluation)

requires developing computational efficient representation of them.

Furthermore, many of these models imply mathematically complex representations of the

adversary’s decision-making procedure (e.g., nonlinear and non-convex function forms), which

in general leads to an NP-hard problem of computing the defender’s optimal strategy. Therefore,

developing efficient algorithms to solve such a computationally complex problem is critical for

real-world security problems due to their massiveness.

The third open question originated from domains where actual adversary events occur of-

ten and generate significant amounts of collectible crime event data, such as preventing illegal

poaching of wildlife. As a result, learning behavioral models from collected adversary data and

addressing the heterogeneity among large populations of adversaries becomes the new challenges

in these domains. In particular, crime data can be anonymous, or it can be linked to confessed ad-

versaries (i.e., identified). While the latter type of data provides rich information about individual

adversaries, that type of data is sparse and hard to collect. The majority of collected data is evi-

dence on crimes committed by anonymous adversaries. Compared to identified data, anonymous

data provides no information about the identity of the adversary that committed the crime and

therefore cannot be used to build accurate behavioral models on the individual level. The open

question here is how to utilize both types of data to build and learn a better model of the large

population of criminals. Moreover, how does the learned model help better predict future crime

events and thus help law enforcement officials to improve their resource allocation strategies?

3

1.2 Contributions

My thesis will address these open questions to improve the security resource allocation strategies

against human adversaries in real-world security problems.

1.2.1 Stochastic Models of Adversary Decision Making

I first investigate different theories in the behavioral literature to develop models of human

decision-making for predicting adversary behavior. More specifically, I have explored two fun-

damental theories, i.e., Prospect Theory [Kahneman and Tvesky, 1979] and Quantal Response

(QR) Model [McKelvey and Palfrey, 1995], to model the decision-making process of human ad-

versaries [Yang et al., 2011, 2013b] through experiment with human subjects using a simulated

security game that I developed. Prospect Theory is an important theory in the literature which

has led Kahneman win the Nobel Prize in Economic Sciences. It provides a descriptive model

of human decision making. Quantal Response Model originates from the literature of discrete

choice models [Train, 2003; McFadden, 1984], which models the player’s behavior as a stochas-

tic choice making. In experiments with human subjects, the defender strategy computed using

quantal response model to predict the human adversary significantly outperformed its competi-

tors, including the previous leading contender COBRA [Pita et al., 2010].

I then further extend the QR model from three different perspectives. I first modified the QR

model by replacing the expected utility with a more generalized utility function – rank-dependent

utility [Yang et al., 2013b]. The rank-dependent utility function incorporates the fact that indi-

viduals overweight the low-probability event into the model. It improves the performance of the

4

original quantal response model in cases where the defender has potential large damage on tar-

gets covered with very few resources. I also apply the QR model to the network security games.

In a network security games, the computation of actual expected utility of each action becomes

very complicated for the adversary. I have discovered that extending the expected utility function

with a set of easy-to-compute features would improve the performance of the model significantly

[Yang et al., 2012a]. Finally, I integrate the QR model with a novel subjective utility function,

which is learned from the data collected from experiments with human subjects [Nguyen et al.,

2013]1. The subjective utility function captures the fact that humans put more weight on the prob-

ability of a success attack in their decision making process. Compared with the classic Quantal

Response model, the new model is shown to provide better predictions on the behavior of human

adversaries. Through extensive experiments with 547 human subjects playing 11102 games in

total, I emphatically answer the question of “Is there then any value in using data-driven method

to model human behavior in solving SSGs?” in the affirmative.

1.2.2 Algorithms for Optimizing Defender Strategy

Given the non-convexity of mathematical model for predicting adversary behavioral, the prob-

lem for computing defender optimal strategies is also non-convex which is in general an NP-

hard problem [Vavasis, 1995]. To that end, I have provided two novel algorithms (GOSAQ and

PASAQ) to solve the problem [Yang et al., 2012b]. These two novel algorithms are based on three

key ideas: (i) use of a binary search method to solve the fractional optimization problem effi-

ciently, (ii) construction of a convex optimization problem through a non-linear transformation,
1This is a work that I co-authored with Thanh Nguyen, who is the first author.

5

Figure 1.1: US Coast Guard at the port of Boston

(iii) building a piecewise linear approximation of the non-linear terms in the problem. I also pro-

vided proofs of approximation bounds, detailed experimental results showing the advantages of

GOSAQ and PASAQ in solution quality over the benchmark algorithm (BRQR) and the efficiency

of PASAQ. Given these results, PASAQ is at the heart of the first version PROTECT [Shieh et al.,

2012] system used by the US Coast Guard in the port of Boston for generating optimal patrolling

strategies2.

Given that many real-world security problems are massive, such as for Federal Air Mar-

shals [Kiekintveld et al., 2009], further scaling-up for computing defender strategy incorporating

models of adversary bounded rationality is needed. Unfortunately, previously proposed branch-

and-price approaches fail to scale-up given the non-convexity of such models, as we show with a

realization called COCOMO. Therefore, I present a novel cutting-plane algorithm called BLADE

[Yang et al., 2013a] to scale-up SSGs with complex adversary models, with three novelties: (i)
2Since then, newer algorithms have been developed as will be discussed below

6

an efficient scalable separation oracle to generate deep cuts; (ii) a heuristic that uses gradient to

further improve the cuts; (iii) techniques for quality-efficiency tradeoff

1.2.3 Adaptive Resource Allocation and Application for Protecting Wildlife

To address the challenges of learning adversary behavioral models from history crime data, I

present the Protection Assistant for Wildlife Security (PAWS) application - a joint deployment

effort done with researchers at Ugandas Queen Elizabeth National Park (QENP) with the goal

of improving wildlife ranger patrols [Yang et al., 2014]. First, we propose a stochastic behav-

ioral model which extends the current state-of-the-art to capture the heterogeneity in the decision

making process of a population of poachers. Second, we demonstrate how to learn the behavioral

pattern of the poacher population from both the identified data and the anonymous data. Third,

in order to overcome the sparseness of the identified data, we provide a novel algorithm, PAWS-

Learn, to improve the predicating accuracy of the estimated behavioral model by combining the

two types of data. Fourth, we develop a new algorithm, PAWS-Adapt, which adapts the rangers’

patrolling strategy against the poacher population’s behavioral model. Fifth, we show the ef-

fectiveness of PAWS in a general setting, but our main drive is to deploy PAWS in QENP; we

also demonstrate PAW’s effectiveness when applied to an area of QENP. Our experiment results

and corresponding discussion illustrate the capabilities of PAWS and its potential to improve

the efforts of wildlife law enforcement officials in managing and executing their anti-poaching

patrols.

7

(a) Outline of QENP (b) QENP rangers on patrol.

Figure 1.2: QENP: The intended site of deployment. Ranger photo taken by Andrew Lemieux.

1.3 Overview of Thesis

This thesis is organized as follows. Chapter 2 introduces the necessary background materials for

the research presented in this thesis. Chapter 3 provides an overview of the related work. Chap-

ter 4 discusses how the models for predicting the adversary decision making are developed from

applying existing literature on general human behavior to security games. Chapter 5 presents an

extension of the existing quantal response model to further improve its performance in predicting

adversary behavior in security games. Chapter 6 investigates the performance quantal response

model in the network security games. Chapter 7 explains the algorithms for efficiently computing

the optimal defender strategy incorporating the behavioral model of the adversary. Chapter 8 pro-

vides further scaling-up of the computation of defender strategy for massive real-world security

8

problems. Chapter 9 describes the real-world application for preventing wildlife crimes. Finally,

Chapter 10 concludes the thesis and presents possible future directions.

9

Chapter 2: Background

The work in this thesis is based on using Stackelberg game to model the security scenarios.

As such, I will first outline the relevant background in Section 2.1 by introducing the general

Stackelberg game model (Section 2.1.1), the Bayesian extension (Section 2.1.2), the standard

solution concept knows as Strong Stackelberg Equilibrium (Section 2.1.3), and a restricted class

of Stackelberg game referred to as security games (Section 2.1.4). In Section 2.2, I will describe

a real-world security problem at the Los Angeles International Airport (LAX) which motives

the experiment setup in this thesis. Section 2.3 overviews previous algorithms of relevance to

this thesis. Finally, Section 2.4 provides the justification of conducting experiment with human

subjects as an approach for evaluating the models and algorithms for this thesis.

2.1 Stackelberg Games

There are two types of players in a Stackelberg game, the leader and the follower. The leader

commits to a strategy first; and then the follower responds after observing the leader’s action by

maximizing his utility [von Stackelberg, 2011]. For the reminder of this thesis, I will refer to the

leader as ‘her’ and the follower as ‘he’ for explanatory purpose. In order to show the advantage

of being the leader in a Stakelberg game, let’s look at an example which was first presented by

10

[Conitzer and Sandholm, 2006]. Table 2.1 shows the payoff matrix of the game, where the leader

is the row player and the follower is the column player. If the players move simultaneously, the

only pure-strategy Nash Equilibrium for this game is when the leader plays la and the follower

plays fa, which gives the leader a payoff of 2. In fact, playing lb is strictly dominated by playing

la for the leader. However, if the row player moves first, she can commit to playing lb, which will

give her a payoff of 3 since the column player will play fb to ensure a higher payoff. Furthermore,

if the leader commits to a mixed strategy of playing la and lb with equal probability (0.5), then

the follower will play fb, leading to a payoff of 3.5 for the leader.

fa fb
la 2,1 4,0
lb 1,0 3,1

Table 2.1: Example of a Stackelberg game

Let Θ denote the leader and Ψ denote the follower in a Stackelberg game. Each player has

a set of pure strategies they can play, denoted as σΘ ∈ ΣΘ and σΨ ∈ ΣΨ. A mixed strategy

allows the player to play probabilistically over a subset of the pure strategies. We denote the

mixed strategy of the leader by x. In a general Stackelberg game, x is a N -dimensional vector,

where N is the number of pure strategies for the leader. The ith element of x, xi, represents the

probability that the leader will play pure strategy i. For the purpose of computing the equilibria, it

is sufficient to consider only pure strategy response of the follower takes a pure strategy, as show

in [Conitzer and Sandholm, 2006]

The payoffs for each player are defined over all possible joint pure-strategy outcomes. More

formally, we define the payoff matrix for both players:

U = (µ1 . . .µJ) , V = (ν1 . . .νJ) .

11

The vector µj presents the payoffs for the defender when the follower plays pure strategy j.

Similarly, the vector νj represents the follower’s payoffs by playing pure strategy j. Given a

leader’s mixed strategy x, the follower maximizes his expected utility by choosing one of his

pure strategies. For each pure strategy j chosen by the follower, the expected utility for the leader

by taking the mixed strategy x is a linear function of x: µTj x. At the same time, the follower

gets an expected utility of νTj x.

2.1.1 Bayeisan Stackelberg Games

In a Bayesian Stackelberg game, both players are extended to have multiple types. In this thesis,

we consider only one type of the defender (leader) who is trying to allocating her resources.

However, there can be multiple types of attackers (followers). For example, a security force may

be interested in both protecting against potential terrorist attacks and catching drug smugglers.

Each type of the follower has his own payoff matrix as well as the payoff matrix for the leader.

Formerly, let 1 ≤ λ ≤ Λ denote the types of the followers. The defender faces attacker type λ

with a priori probability of pλ. The associated payoff matrix for the leader and type λ attacker is

represented by (Uλ, V λ) respectively.

Given the payoff matrix for each type, the leader commits to a mixed strategy x knowing the

priori probability distribution of all different follower types but not the exact type of the follower

she faces. The follower, on the other hand, knows his own type λ and plays his best response by

maximizing his expected utility according to his payoff matrix V λ, after observing the leader’s

mixed strategy.

The leader’s goal is to maximizing her expected utility, given the priori probability distri-

bution of all follower types and the payoff matrix. Let vector j = 〈j1, ..., jΛ〉 denote the pure

12

strategies played by all types of the followers, with jλ representing the pure strategy played by

follower type λ. The leader’s expected utility by playing mixed-strategy x is then defined as

µ(x, j) =
∑Λ

λ=1 p
λµλµ(x, jλ), where µ(x, jλ) = µT

jλ
x is the leader’s expected utility when

facing the follower of type λ.

2.1.2 Strong Stackelberg Equilibrium

The most common solution concept in game theory is a Nash equilibrium, which is a profile of

strategies for each player in which no player can gain by changing only their only strategy. In

other words, each player plays his/her best-response assuming that the other players also best

respond by maximizing his/her expected utility. In a Stackelberg game, the solution concept that

is mostly adopted is the Strong Stackelberg Equilibrium (SSE). Besides the mutual best-response

feature that is entailed by Nash equilibrium, SSE also assumes that the adversary will break ties

in favor of the defender. Most of the existing algorithms for solving Stackelberg security games

adopt the concept of SSE [Paruchuri et al., 2008; Kiekintveld et al., 2009]. This is because that

a SSE always exists in all Stackelberg games [Breton et al., 1988]. Furthermore, when ties exist,

the leader can always induce the desired outcome by selecting a strategy arbitrarily close to the

SSE strategy, against which the follower strictly prefers the desired strategy [von Stengel and

Zamir, 2004]. Formally a Strong Stackelberg Equilibrium is defined below:

Definition 1. For a given Bayesian Stackelberg game with utility matrices (U1, V 1), . . . , (UΛ, V Λ)

and type distribution p, a pair of strategies (x, j) forms a Strong Stackelberg Equilibrium if and

only if:

1. The leader plays a best response:

u(x, j(x)) ≥ u(x′, j(x′)), ∀x′.

13

2. The follower plays a best response:

vλ(x, jλ(x)) ≥ vλ(x, j),∀1 ≤ λ ≤ Λ, ∀1 ≤ j ≤ J.

3. The follower breaks ties in favor of the leader:

uλ(x, jλ(x)) ≥ uλ(x, j),∀1 ≤ λ ≤ Λ,∀j that is a best response to x as above.

In general, finding the equilibrium of a Bayesian Stackelberg game is NP-hard [Conitzer and

Sandholm, 2006].

2.1.3 Stackelberg Security Games

I now introduce a restricted version of the Stackelberg game knows as a security game. We con-

sider a Stackelberg Security Games (SSG) [Yin et al., 2010] with a single leader (defender) and

at least one follower (attacker). The defender has to protect a set of targets T = {t1, t2, ..., t|T |}

from being attacked by the attacker, using a set of γ resources. In a security game, a pure strategy

of an attacker is defined as attacking a single target; and a pure strategy of a defender is defined

as an assignment of all the security resources to the set of targets. An assignment of a security

resource to a target is also referred to as covering a target. The defender strategy set includes all

the possible assignments of all the resources.

The payoffs for both the defender and the attacker depend on which target is attacked, and

whether that target is protected (covered) by the defender. Formally, let d and a still denote

the defender and the attacker respectively. We then use Rdi to represent the defender’s payoff

(reward) of covering a target ti that is attacked by the attacker, and P di as the payoff (penalty) of

not covering that attacked target. Similarly for the attacker, we use P ai (penalty) and Rai (reward)

to represent his payoff of attacking a target ti when it is covered or uncovered by the defender.

14

An important feature of the security game is that Rdi ≥ P di , and that P ai ≤ Rai . In other words,

add resources to cover a target benefits the defender and hurts the attacker.

In many real world security problems, there are constraints on assigning the resources. For

example, in the FAMS problem [Jain et al., 2010b], an air marshal is scheduled to protect 2

flights (targets) out of M total flights. The total number of possible schedule is
(
M
2

)
. However,

not all of the schedules are feasible, since the flights scheduled for an air marshal have to be

connected, e.g. an air marshal cannot be on a flight from A to B and then on a flight C to D.

A resource assignment constraint implies that the feasible assignment set A is restricted; not all

combinatorial assignment of resources to targets are allowed.

A compact representation of the defender strategy, introduced in [Kiekintveld et al., 2009],

uses the probability that each target will be covered by a security resource. The defender’s mixed-

strategy can then be denoted by a vector x = 〈x1, . . . , x|T |〉, where ci denote the probability

that target ti will be covered by a security resource. This compact representation of the defender

strategies is proved to be equivalent to the distribution over the original pure strategies when there

is no constraints on assigning the resources [Korzhyk et al., 2010]. In the presence of assignment

constraints, such equivalence usually can be maintained by adding a set of linear constraints on

x (Ax � b).

Definition 2. We consider a marginal coverage x to be feasible if and only if there exists aj ≥

0, Aj ∈ A such that
∑

Aj∈A aj = 1 and for all i ∈ T , xi =
∑

Aj∈A ajAij .

In fact, 〈aj〉 is the mixed strategy over all the feasible assignments of the resources.

With this compact representation, efficient algorithms were able to be developed to compute

defender optimal strategies [Kiekintveld et al., 2009; Tsai et al., 2010]. I will show more details

15

in Chapter 7 on the benefit of using this compact representation. Given the coverage vector x, the

defender’s expected utility when the attacker attacks target ti is calculated using Equation 2.1;

and the attacker’s expected utility of attacking target ti is calculated in Equation 2.2.

Udi (x) = (1− xi)P di + xiR
d
i (2.1)

Uai (x) = xiP
a
i + (1− xi)Rai (2.2)

2.2 Los Angeles International Airport

While there are a number of security problems where game theory is potentially applicable, I will

focus on introducing the security scenario at the Los Angeles International Airport in this section.

It is also the base of my experiment setup, due to its simplicity in constraints which is ideal for

an initial investigation against human subjects. Los Angeles International Airport (LAX) is the

fifth busiest airport in the United State, and the largest destination airport in the United State

[Stevens et al., 2006]. It serves 60-70 million passengers each year [Stevens et al., 2006]. LAX

is unfortunately one of the prime terrorist target on the west coast of the United State, given its

importance and the record of the multiple attempting attacks by the arrested plotters [Stevens

et al., 2006]. The Los Angeles World Airport (LAWA) police have designed a security system

to protect the airport, which includes vehicular checkpoints, police units patrolling the roads

to the terminals and inside the terminals (with canines), and security screening and bag checks

for passengers. Unfortunately, there are not enough resources to protect the entire airport all the

time, given the size of the airport and the number of passengers. Setting up available checkpoints,

canine units or other patrols on deterministic schedules allows adversaries to learn the schedules

16

(a) LAX Checkpoint (b) Canine Patrol

Figure 2.1: LAX Security

and plot an attack that avoids the police checkpoints and patrols, which makes deterministic

schedules ineffective.

Game-theoretic approach provides a solution to randomize the allocation of the limited re-

sources for LAWA. In particular, the ARMOR [Pita et al., 2008] system is developed based on

using the security game framework to assist LAWA. Figure 2.1(a) shows a vehicular checkpoint

set up on a road inbound towards LAX. Police officers examine cars that drive by, and if any car

appears suspicious, they do a more detailed inspection of that car. ARMOR provides a random-

ized schedule for the LAWA police to set up these checkpoints for a particular time frame. At the

same time, ARMOR also generates an random assignment of canines to patrol routes through the

terminals inside LAX. Figure 2.1(b) illustrates a canine unit on patrol at LAX.

17

2.3 Baseline Solvers

The leader’s goal in a SSG is to maximize her expected utility, given how the adversary responds

to the defender’s strategy. The behavioral modeling is done only on the attacker, who faces a

decision theory problem given the leader’s commitment. Mathematically, the defender’s optimal

strategy can be computed by solving the following optimization problem:

x∗ = argmax
x

∑
i

qi(x)Udi (x) (2.3)

where, Udi (x) is the defender’s expected utility if the attacker chooses to attack target ti as shown

in Equation 2.1, and qi(x) represents the attacker’s response given defender’s strategy x.

One leading family of algorithms to compute such mixed strategies are DOBSS and its suc-

cessors [Pita et al., 2008; Kiekintveld et al., 2009], which are used in the deployed ARMOR

and IRIS applications. These algorithms follows the perfect rationality assumption for the ad-

versary decision-making. However, in many real world domains, agents face human adversaries

whose behavior may deviate from such assumption. COBRA [Pita et al., 2010] represents the best

available benchmark for how to determine defender strategies in security games against human

adversaries with ε−optimal response. In this section, we describe the computation of the defender

optimal strategies against two baseline models of the adversary: a perfectly rational adversary;

and a ε−optimal adversary response.

18

2.3.1 Defender Optimal Strategy against a perfectly rational adversary

The Strong Stackelberg Equilibrium assumes the adversary is perfectly rational, i.e. he will

strictly maximizes his expected utility. The computation of the defender’s optimal strategy can

then be formulated as the following:

max
x,q

∑
i

qiU
d
i (x) (2.4)

s.t.
n∑
i=1

xi ≤ Υ (2.5)

0 ≤ xi ≤ 1, ∀i (2.6)

qi = 1, if Uai (x) ≥ Uai′(x), ∀i′ 6= i (2.7)∑
i

qi = 1, (2.8)

qi ∈ {0, 1}, ∀i (2.9)

The objective is to maximize the defender’s expected utility, as shown in Equation (2.17). The

constrains in Equations (2.7)-(2.9) enforce that the adversary selects the target which maximizes

19

his expected utility. By introducing some auxiliary variables, the above optimization problem can

be formulated as a Mixed-Integer Linear Program (MILP), as shown below:

max
x,a,d,q

d (2.10)

s.t.
n∑
i=1

xi ≤ Υ (2.11)

0 ≤ xi ≤ 1, ∀i (2.12)

0 ≤ a− Uai (xi) ≤M(1− qi), ∀i (2.13)∑
i

qi = 1 (2.14)

qi ∈ {0, 1},∀i (2.15)

M(1− qi) + Udi (xi) ≥ d,∀i (2.16)

The variable a in Equation 2.13 represents the attacker’s expected utility. M is a very large

constant, which enforces qi to be set to 1 for the target that leads to the maximum expected utility

for the attacker. Similarly, the variable d in the objective function and Equation (2.16) represents

the defender’s expected utility.

The defender’s optimal strategy against a perfect rational adversary can then be computed by

solving the above MILP.

2.3.2 Defender Optimal Strategy against the ε−optimal adversary response

The ε−optimal response addresses the bounded rationality of the adversary. It assumes that,

instead of strictly maximizing the expected utility, the adversary could deviate to any target with

20

an expected utility within ε of the maximum. The computation of the defender’s optimal strategy

against ε−optimal response can then be formulated as the following:

max
x,a,d,q,h

d (2.17)

s.t.
n∑
i=1

xi ≤ Υ (2.18)

0 ≤ xi ≤ 1, ∀i (2.19)

0 ≤ a− Uai (xi) ≤M(1− qi),∀i (2.20)∑
i

qi = 1 (2.21)

qi ∈ {0, 1}, ∀i (2.22)

ε(1− hi) ≤ a− Uai (xi) ≤M(1− qi) + ε,∀i (2.23)

hi ∈ {0, 1},∀i (2.24)

qi ≤ hi, ∀i (2.25)

M(1− hi) + Udi (xi) ≥ d,∀i (2.26)

Note that the above MILP modifies the MILP in Equation (2.17)-(2.16). The variable h in Equa-

tion (2.23)-(2.25) represents the ε−optimal response of the adversary. hi is set to 1 if the expected

utility of attacking target ti is within ε of a, which is the maximum expected utility the attacker

can achieve.

2.4 Human Subject Experiments

Since my research is focused on addressing the boundedly rational behavior of human adver-

saries, conducting experiments with human subjects is necessary to evaluate the effectiveness

21

of the proposed approaches. To that end, I conduct my experiment with human subjects using

an online labor market, i.e. Amazon Mechanical Turk (AMT). AMT has been widely used for

behavioral research as a tool to collect data [Mason and Suri, 2012]. The are many advantages

of conducting experiment on AMT, including subject pool access, subject pool diversity and low

cost [Reips, 2002; Mason and Suri, 2012]. While conducting experiments with real terrorists is

often infeasible in reality, experimental analysis with general population still points to the right

direction and allows me to show how my approaches are expected to perform compared to alter-

native approaches.

One might argue that the psychiatric profile of the terrorists might significantly differ from

the general population. Therefore, the terrorists are completely irrationally and not making any

strategic decisions in planning the attack. However, studies show that the normalcy is indeed

the primary shared characteristic of the psychiatric profile of the terrorists [Richardson, 2007;

Abrahms, 2008; Gill and Young, 2011]. In fact, they are highly rational and carefully conducting

the attacking plan [Richardson, 2007; Rosoff and John, 2009; Keeney and von Winterfeldt, 2010].

It then follows the question whether the perfect rationality assumption is sufficient for mod-

eling the decision-making of the terrorists. First of all, many studies in economic behavior and

cognitive science show that human decision makers suffer from bounded rationality and cognitive

limitation. The bounded rationality of human decision makers may be caused by both external

and internal reasons[Simon, 1956, 1969; Hastie and Dawes, 2001]. On the one hand, the environ-

ment may be complicated. The human decision makers might only have limited information of

the environment. On the other hand, humans have limited memory and other cognitive limitation

which prevent them from making optimal choice. Indeed, many studies in the literature [Rubin-

stein, 1998; Camerer, 2003] have shown that human decision makers rely on heuristics in making

22

decisions rather than strictly maximize the expected utility. Furthermore, terrorists sometimes

face competing objectives and noisy information [Allison and Zelikow, 1999; Abrahms, 2008],

which may lead them to deviate from the optimal strategy.

Additionally, the approaches developed in this thesis based on using human-subject experi-

ments with general populations may be of use beyond the counter-terrorism domain. In many

other domains, the criminals are more close to the general population, such as the ticket-less trav-

elers in the metro train system, or the villagers illegally hunting animals or extracting plants. In

general, criminal activities can be broadly broken down into six categories: (i) Property crimes,

(ii) violent crimes, (iii) sex crimes, (iv) gangs and crime, (v) white-collar occupational crime, and

(vi) drugs and crime [Pogrebin, 2012]. The responsibility of different security agencies is to pre-

vent these crime activities. The approaches presented in this thesis can be potentially helpful to

many of these agencies. Given the large range of crime activities, the human criminals will also

span a wide variety. Therefore, the use of general population in the human subject experiment

can be of great value for providing insights of how the proposed approach might be applicable to

these different domains.

In the future, we could further refine the approach for a specific type of criminal. More

specifically, by defining the personality and demographic profile of the criminals in a specific

type of crimes, we can evaluate the approach in experimental with human subjects of that profile.

However, the difficulty of obtain the correct population that needs to be examined is general in

behavioral studies and might not be complete tackled.

23

Chapter 3: Related Work

Motivated by real-world security problems, there have been many algorithms developed to com-

pute optimal defender strategies in Stackelberg games [Paruchuri et al., 2008; Kiekintveld et al.,

2009; Tsai et al., 2010]. The first such algorithm to be used in a real application is DOBSS (De-

composed Optimal Bayesian Stackelberg Solver) [Paruchuri et al., 2008], which is the central to

the ARMOR system [Pita et al., 2008] at LAX airport and the GUARDS system [Pita et al., 2011]

built for the Transportation Security Administration. Other works related to Stackelberg security

games include those of Agmon et al. [Agmon et al., 2008, 2009] and those of Gatti et al. [Gatti,

2008b; Basiloco et al., 2009] on multi-robot patrolling. However, an important limitation of all

of this work is the assumption of a perfectly rational adversary, which may not hold in many real

world domains.

3.1 Behavioral Game Theory

Behavioral Game Theory aims at developing models of human decision-making in strategic set-

tings. Many models have been proposed to capture human bounded rationality in their decision

making in the literature of psychology and cognitive science [Train, 2003; McFadden, 1989;

Starmer, 2000; Rubinstein, 1998]. A key challenge of applying these models to game-theoretical

24

framework to help design better strategy is the transition from a (sometimes descriptive) model

to a computational model. On the other hand, there has been a growing interests in the game the-

ory literature in developing more realistic computational models incorporating human decision

making in games [Camerer et al., 2004; Ficici and Pfeffer, 2008; Stahl and Wilson, 1994]. Most

of these models find empirical support from the data of human playing games. However, few

research efforts have being made to identify which of these models capture the salient features of

human decision-making in the important area of SSGs. To that end, my work focus on extending

the existing models from literature to apply to SSGs as well as designing experiments to evaluate

the effectiveness of these models with human subjects.

The most related work to this thesis is that by Pita et al.[Pita et al., 2010]. Pita et al. develop a

new algorithm COBRA, which provids a solution for designing better defender strategies against

human adversaries by considering two factors in human behavior (i) human deviation from the

utility maximizing strategy and (ii) human anchoring bias when given limited observation of

defender mixed strategy. COBRA significantly outperforms the baseline algorithm DOBSS, which

assumes perfect rationality of the adversaries, in the experiments against human subjects, and is

considered the leading contender in addressing human bounded rationality in SSG. However,

COBRA only exploits two aspects for human bounded rationality. There are many other models

proposed in the literature of behavior game theory and cognitive psychology which could be

potentially used to model adversary decision-making in Stackelberg security games. Thus, it

remains an open question whether there are other approaches that allow for fast solutions and

outperform COBRA in addressing human behavior in security games.

25

Outside the area of Stackelberg security games, there have been several recent investigations

of human subjects interacting with agents. For example, Melo et al [de Melo et al., 2011] in-

vestigate the impact of expression of an automated agent’s anger or happiness in how a human

participant may play the game. In repeated prisoner’s dilemma games, agents’ expressions are

shown to significantly affect human subjects’ cooperation or defection. Similarly, Azaria et al.

[Azaria et al., 2011] focus on road selection games, and advice an automated system may provide

to human subjects; Peled et al. [Peled et al., 2011] focus on bilateral bargaining games, designing

agents that negotiate proficiently with people. Aside from the obvious difference that our focus

is on SSGs, another key is our focus on efficiently computing optimal mixed strategies for the

defender.

3.2 Efficient Computation of Defender Optimal Strategy

There have been a number of algorithms developed to compute the optimal defender strategy

for massive real-world security problems [Paruchuri et al., 2008; Kiekintveld et al., 2009; Jain

et al., 2010a]. In order to scale-up the computation for SSG with combinatorial number of de-

fender strategies, Kiekintveld et al. [Kiekintveld et al., 2009] exploit the underlying structure of

security games and developed efficient algorithms based on using a compact representation of

the defender strategy. More specifically, ORIGAMI computes the optimal defender strategy in

polynomial time when there is no constraints on assigning the security resources; ERASER-C

provides scales-up over ORIGAMI by computing the security coverage per schedule instead of

computing the mixed-strategy over a joint assignment for all security resources. However, Kiek-

intveld et al. [Kiekintveld et al., 2009] show that ERASER-C only addresses certain types of

26

constraints on assigning the resources [Korzhyk et al., 2010] and may fail to produce a correct

solution when facing arbitrary constraints. Jain et al. [Jain et al., 2010a] then develop a novel

algorithm ASPEN based on using the branch-and-price approach. ASPEN further advanced the

state of art and is able to handle arbitrary resource allocation constraint. In essential, ASPEN

avoids representing the full space of defender pure strategies by starting with a small subset of it

and iteratively expanding it until reaches the optimal solution.

At the same time, many algorithms have been developed to solve Bayesian Stackelberg

games. DOBSS [Paruchuri et al., 2008] is the first algorithm develop for computing defender

optimal strategy in a Bayesian Stackelberg game. Jain [Jain et al., 2011b] then proposed a hi-

erarchical methodology of decomposing large Bayesian Stackelberg games into many smaller

Bayesian Stackelberg games, and provided a framework to use the solutions to these smaller

games to efficiently apply branch-and-bound on the original large Bayesian Stackelberg game.

Yin et al. [Yin and Tambe, 2012] further improved the state-of-art by combining techniques in

artificial intelligence such as best-first search and operation research such as Bender’s decompo-

sition.

Unfortunately, all the previous work assumes a perfectly rational adversary. Given that most

of the behavioral models imply mathematically complex presentations of the adversary decision

making, it is unclear whether similar techniques can be applied for computing defender optimal

strategy incorporating these models. Therefore, new efficient algorithms need to be developed to

address this new computational challenge.

27

3.3 Robust Defender Strategies

Another line of related work in Stackelberg security games has been trying to design more robust

strategies to deal with different kinds of uncertainties [Aghassi and Bertsimas, 2006; Yin et al.,

2011; Kiekintveld et al., 2011]. Yin et al. [Yin et al., 2011] proposed a unified efficient algo-

rithm that addresses both execution uncertainties of the defender and observation uncertainties of

adversaries in SSGs. Kiekintveld et al. [Kiekintveld et al., 2011] address payoff uncertainty by

introducing a general model of infinite Bayesian Stackelberg security games which allows pay-

offs to be represented using continuous payoff distributions. An et al. [An et al., 2012] considers

the cases where the adversaries don’t have perfect surveillance of the defender’s strategy. They

provided a model for the adversary’s belief update of the defender’s strategy as well as the for-

mulation for computing the defender’s optimal strategy considering such imperfect surveillance

of the adversary. A key difference of this line of work from this thesis is that this work consid-

ers robustness against perfectly rational adversaries. Although the simulation based experiment

showed promising result of these studies, the performances of these models against real human

subjects are left unaddressed.

In order to address adversary bounded rationality, Pita et al. [Pita et al., 2012] introduce a

new algorithm MATCH which computes a robust strategy for the defender with a linear correlated

cost of the defender to that of the adversary. More specifically, MATCH guarantees that if the

adversary deviates from his optimal action, the cost of such deviation to the defender is linearly

correlated to that to the adversary. MATCH is designed to intentionally avoid explicitly modeling

the decision making of the human adversary. It is unclear how such approach compares to that

based on building an explicit model to predict the adversary’s decision making.

28

3.4 Learning Adversary Behavioral in Repeated Games

There is a significant body of literature in game theory on learning with incomplete information

[Brown, 1951; Sastry et al., 1994; Aumann and Maschler, 1995]. These studies focus on address-

ing the uncertainty of payoff information of the game in repeated game settings via learning. The

players are often assumed to be perfectly rational in these studies. In the scope of security games,

there has been work on learning attacker payoffs in repeated security games [Letchford et al.,

2009; Marecki et al., 2012]. Letchford et al. [Letchford et al., 2009] develop an algorithm to

uncover the attacker type in as few rounds as possible. Marecki et al. [Marecki et al., 2012] use

Monte-Carlo Tree Search to maximize the defenders utility in the first few rounds. Either work

provides a guidance for the defender in the later round.

In a most recent work [Qian et al., 2014], Qian et al propose an algorithm combining Gibbs

sampling with Monte Carlo tree search for online planning for the defender. In comparison, the

work presented in this thesis focuses on learning the behavioral model of the adversaries from

past crime data, and also providing guidance for defender to adapt their resource allocation strat-

egy based on the updated belief of the model. Furthermore, this thesis addresses the interesting

problem of learning the behavioral model from both labeled and unlabeled crime data, similar to

that concerned by semi-supervised learning problems[Chapelle et al., 2006].

29

Chapter 4: Modeling Adversary Decision Making

This chapter introduces my contribution towards moving beyond perfect rationality assumptions

of human adversaries in security games. In order to integrate more realistic models of human

decision-making in real-world security systems, several key challenges need to be addressed.

First, the literature has introduced a multitude of potential models on human decision making

[Kahneman and Tvesky, 1979; Camerer et al., 2004; McKelvey and Palfrey, 1995; Costa-Gomes

et al., 2001], but each of these models has its own set of assumptions and there is little consensus

on which model is best for different types of domains. Therefore, there is an important empirical

question of which model best represents the salient features of human behavior in the important

class of applied security games. Second, integrating any of the proposed models into a decision-

support system (even for the purpose of empirically evaluating the model) requires developing

new algorithms for computing solutions to Stackelberg security games, since most existing algo-

rithms are based on mathematically optimal attackers [Paruchuri et al., 2008; Kiekintveld et al.,

2009]. One notable exception is COBRA developed by Pita et al. [Pita et al., 2010]. COBRA is

one example of modeling bounded rationality of human adversaries by taking into account (i) the

anchoring bias of humans while interpreting the probabilities of several events; (ii) the limited

computational ability of humans which may lead to deviation from their best response. To the

30

best of our knowledge, COBRA is the best performing strategy for Stackelberg security games in

experiments with human subjects. Thus, the open question is whether there are other approaches

that allow for fast solutions and outperform COBRA in addressing human behavior in security

games.

This chapter significantly expands the previous work on modeling human behavior in Stack-

elberg security games. Section 4.1 presents the new models of adversary decision-making based

on Prospect Theory and Quantal Response. Following that, Section 4.2 describes the algorithms

we developed to compute optimal defender strategy against these new adversary models. In Sec-

tion 4.3, we explain the methods we used to decide the parameters of different models. Section

4.4 presents our experimental setup and results.

4.1 Models for Predicting Attacker Behaviors

Existing models of adversary behavior in SSGs have poor performance in predicting the behavior

of human adversaries [Pita et al., 2010]. In order to design better defender strategy, better models

of adversary decision-making need to be developed. In this section, we present three models of

adversary’s behavior in SSGs, based on using Prospect Theory and Quantal Response Equilib-

rium. All of the models have key parameters. We describe in the next section our methodology

for setting these parameters in each case.

31

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

π
(x

)

π(x) = xγ

(xγ+(1−x)γ)
1
γ

(a) weighting function

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

C

V
(C

)

V (C) = Cα, C ≥ 0

V (C) = −θ · (−C)β , C < 0

(b) value function

Figure 4.1: Prospect Theory empirical function forms

4.1.1 Prospect Theory

Prospect Theory provides a descriptive model of how humans make decision among alternatives

with risk, which is a process of maximizing the ‘prospect’, which will be defined soon, rather

than the expected utility. More formally, the prospect of a certain alternative is defined as

∑
l

π(xl)V (Cl) (4.1)

In Equation (4.1), xl denotes the probability of receiving Cl as the outcome. The weighting

function π(·) describes how probability xl is perceived by individuals. An empirical function

form of π(·) (Equation (4.2)) is shown in Fig. 4.1(a) [Kahneman and Tvesky, 1992].

π(x) =
xγ

(xγ + (1− x)γ)
1
γ

(4.2)

The key concepts of a weighting function are that individuals overestimate low probability and

underestimate high probability [Kahneman and Tvesky, 1979, 1992]. Also, π() is not consistent

with the definition of probability, i.e. π(x) + π(1− x) ≤ 1 in general.

The value function V (Cl) in Equation (4.1) reflects the value of the outcome Cl. PT pre-

dicts that individuals are risk averse regarding gain but risk seeking regarding loss, implying an

32

S-shaped value function [Kahneman and Tvesky, 1979, 1992]. A key component of Prospect

Theory is the reference point. Outcomes lower than the reference point are considered as loss and

higher as gain.

V (C) =

Cα, C ≥ 0

− θ(−C)β, C < 0

(4.3)

Equation (4.3) is a general form for the value function where C is the relative outcome to the

reference. In Equation (4.3), we assume the reference point to be at 0. α and β determine the

extent of non-linearity in the curves. If the parameters α = 1.0 and β = 1.0, the function would

be linear; typical values for both α and β are 0.88 [Kahneman and Tvesky, 1992]. θ captures

the idea that the loss curve is usually steeper than the gains curve, a typical value of θ is 2.25

[Kahneman and Tvesky, 1992], which reflects a finding that losses are a little more than twice

as painful as gains are pleasurable. The function is also displayed in Fig. 4.1(b) [Kahneman and

Tvesky, 1992]. Given these parameters, we will henceforth denote this value function with Vα,β,θ

In a SSG, the prospect of attacking target ti for the adversary is computed as

prospect(ti) = π(xi)Vα,β,θ(P
a
i) + π(1− xi)Vα,β,θ(Rai) (4.4)

According to Prospect Theory, subjects will choose the target with the highest prospect. Thus,

qi =

1, if prospect(ti) ≥ prospect(ti′), ∀ti′ ∈ T

0, otherwise

(4.5)

4.1.2 Quantal Response

Quantal Response is an important solution concept in behavioral game theory [McKelvey and

Palfrey, 1995]. It is based on a long history of work in single-agent problems and brings that

work into a game-theoretic setting [Stahl and Wilson, 1994; Wright and Leyton-Brown, 2010]. It

33

assumes that instead of strictly maximizing utility, individuals respond stochastically in games:

the chance of selecting a non-optimal strategy increases as the cost of such an error decreases.

Given the strategy profile of all the other players, the response of a player is modeled as a quantal

response (QR model): he/she selects action i with a probability given by

qi(x) =
eλU

a
i (x)∑

tk∈T e
λUak (x)

(4.6)

where, Uai (x) is the expected utility for the attacker for selecting pure strategy i. Here, λ ∈ [0,∞]

is the parameter that captures the rational level of player p: one extreme case is λ=0, when player

p plays uniformly random; the other extreme case is λ → ∞, when the quantal response is

identical to the best response. Combining Equation(4.6) and (2.2),

qi(x) =
eλR

a
i e−λ(Rai−Pai)xi∑

tk∈T e
λRake−λ(Rak−P

a
k)xk

(4.7)

In applying the QR model to the security game domain, we only consider noise in the response

of the adversary. The defender uses a computer decision support system to choose her strategy

hence is able to compute optimal strategy. On the other hand, since the attacker observes the

defender’s strategy first to decides his response, it can only hurt the defender to add noise in

her response. Recent work [Wright and Leyton-Brown, 2010] shows Quantal Level-k [Stahl and

Wilson, 1994] to be best suited for predicting human behavior in simultaneous move games. The

key idea of level-k is that humans can perform only a bounded number of iterations of strategic

reasoning: a level-0 player plays randomly, a level-k (k > 1) player best response to the level-

(k − 1) player. We applied QR instead of Quantal Level-k to model the attacker’s response

because in Stackelberg security games the attacker observes the defender’s strategy, so level-k

reasoning is not applicable.

34

4.1.3 Quantal Response with Rank-related Expected Utility

We modify the Quantal Response Model by taking into consideration the fact that individuals are

attracted to extreme events, such as the less uncertain and highest payoff. This idea is inspired by

the rank-dependent Expected Utility Model [Diecidue and Wakker, 2001], in which the utilities

of choosing different alternatives are based on the their ranks. We adapt this idea to security

games, but we only consider such effect on the target covered with minimum resources. That is

the adversary would prefer the target covered with minimum resources since he is most likely to

be successful attacking that target. This could significantly reduce the defender’s reward in the

case when this target with fewest resources also gives a large penalty to the defender.

We modify the QR model by adding extra weight to the target covered with minimum re-

sources. We refer this modified model as Quantal Response with Rank-related expected Utility

(QRRU) model, where the probability that the attacker attacks target ti is computed as

qi(x) =
eλuU

a
i (xi)eλsSi(x)∑

tk∈T e
λuUak (xk)eλsSk(x)

(4.8)

where Si(x) ∈ {0, 1} indicating whether ti is covered with least resource.

Si(x) =

1, if xi ≤ x′i, ∀ti′ ∈ T

0, otherwise

(4.9)

The denominator in Equation (4.8) is only for normalizing the probability distribution so all the

qi sum up to 1. In the numerator, we have two terms deciding the probability that target ti will be

chosen by the adversary. The first term eλuU
a
i (xi) relates to the expected utility for the adversary

to choose target ti. Uai (xi) is computed as in Equation (2.2). The parameter λu ≥ 0 represents

the level of error in adversary’s computation of the expected utility, which is equivalent to λ

in Equation (4.6). The second term eλsSi(x) relates to the adversary’s preference for the least

35

covered target. Note that if ti is not covered with the minimum resource, this term equals to

1 so there is no extra weight added to the non-minimum covered targets; if ti is covered with

minimum resource, this term will be ≥ 1, adding extra weight to the probability that adversary

will choose ti. The parameter λs ≥ 0 represents the level of the adversary’s preference to the

minimum covered target. λs = 0 indicates no preference to the minimum covered target. As λs

increase, this preference becomes stronger.

4.2 Computing Optimal Defender Strategy

Given the new models of adversary behavior in SSG, new algorithms need to be developed to

compute the optimal defender strategy since the existing algorithms are based on the assumption

of a perfectly rational adversary. We now describe efficient computation of the optimal defender

mixed strategy assuming a human adversary whose response follows one of the three models

we proposed: Prospect Theory (PT-Adversary), Quantal Response (QR-Adversary) or Quantal

Response with Rank-related Utility (QRRU-Adversary).

4.2.1 Computing against a PT-adversary

Assuming that the adversary’s response follows Prospect Theory (PT-adversary), we developed

two methods to compute the optimal defender strategy.

4.2.1.1 BRPT

Best Response to Prospect Theory (BRPT) is a mixed integer programming formulation for com-

puting the optimal leader strategy against players whose responses follow a PT model. We first

present an abstract version of our formulation of BRPT in Equations (4.10)-(4.14), and then

36

present a more detailed operational version in Equations (4.15)-(4.27) that uses piecewise lin-

ear approximation to provide the BRPT MILP (Mixed Integer Linear Program).

max
x,q,a,d,z

d (4.10)

s.t.
n∑
i=1

xi ≤M (4.11)

n∑
i=1

qi = 1, qi ∈ {0, 1} (4.12)

0 ≤ a− (π(xi)V (P ai) + π(1− xi)V (Rai)) ≤ K(1− qi), ∀i (4.13)

K(1− qi) + (xiR
d
i + (1− xi)P di) ≥ d,∀i (4.14)

The objective is to maximize d, the defender’s expected utility. Equation (4.11) enforces that

the constraint on the total amount of resources is met. In Equation (4.12), the integer variables

qi represent the attacker’s pure strategy. In BRPT, qi is constrained to be binary variable, since,

as justified and explained in [Paruchuri et al., 2008], we assume the adversary has a pure strategy

best response: qi = 1 if ti is attacked and 0 otherwise. Equation (4.13) is the key to decide the

attacker’s strategy, given a defender’s mixed strategy x =< xi >. The variable a represents the

attacker’s ‘benefit’ of choosing a pure strategy< qi >. Since we are modeling attacker’s decision

making using Prospect Theory, the benefit perceived by the adversary for attacking target ti is the

attacker’s ‘prospect’, which is calculated as (π(xi)V (P ai)+π(1−xi)V (Rai)) following Equation

(4.1). The attacker tries to maximize a by choosing the target with the highest ‘prospect’, as

enforced by Equation (4.13). In particular, the inequality on the left side of Equation (4.13)

enforces that a is greater or equal to the ‘prospect’ of attacking any target. On the right hand of

Equation (4.13), we have a constant parameter K with a very large positive value. For targets

37

with qi = 0, the upper bound of the difference between a and the ‘prospect’ is K, therefore, the

bounds is not operational. For target with qi = 1 (i.e. the target chosen by the attacker), the value

of a is forced to be equal to the actual ‘prospect’ of attacking that target. In Equation (4.14),

the constant parameter K enforces that d is only constrained by the target that is attacked by the

adversary (i.e. qi = 1).

We now present the BRPT MILP based on our piecewise linear approximation of the weight-

ing function as discussed earlier. We use the empirical functions introduced in Section 4.1.1 for

the weighting function π(·) and value function V (·). Let (P ai)′ = V (P ai) and (Rai)
′ = V (Rai)

denote the adversary’s value of penalty P ai and reward Rai , which are both given as input to the

optimization formula in Equations (4.11)-(4.14). The key challenge to solve that optimization

problem is that the π(·) function is non-linear and non-convex. If we apply the function directly,

we have to solve a nonlinear and non-convex mixed-integer optimization problem, which is diffi-

cult. Therefore, we approximately solve the problem by representing the non-linear π(·) function

as a piecewise linear function. This transforms the problem into a MILP, which is shown in

Equations (4.15)-(4.27).

38

max
x,q,a,d,z

d (4.15)

s.t.
n∑
i=1

5∑
k=1

xik ≤M (4.16)

5∑
k=1

(xik + x̄ik) = 1, ∀i (4.17)

0 ≤ xik, x̄ik ≤ ck − ck−1, ∀i, k = 1..5 (4.18)

zik · (ck − ck−1) ≤ xik,∀i, k = 1..4 (4.19)

z̄ik · (ck − ck−1) ≤ x̄ik,∀i, k = 1..4 (4.20)

xi(k+1) ≤ zik, ∀i, k = 1..4 (4.21)

x̄i(k+1) ≤ z̄ik, ∀i, k = 1..4 (4.22)

zik, z̄ik ∈ {0, 1}, ∀i, k = 1..4 (4.23)

x′i =
5∑

k=1

bkxik, x̄
′
i =

5∑
k=1

bkx̄ik, ∀i (4.24)

n∑
i=1

qi = 1, qi ∈ {0, 1} (4.25)

0 ≤ a− (x′i(P
a
i)′ + x̄′i(R

a
i)
′) ≤M(1− qi), ∀i (4.26)

M(1− qi) +
5∑

k=1

(xikR
d
i + x̄ikP

d
i) ≥ d,∀i (4.27)

Let π̃(·) denote the use of a piecewise linear approximation of the weighting function π(·),

as shown in Figure 4.2. We empirically set 5 segments1 for π̃(·). This function is defined by

{ck|c0 = 0, c5 = 1, ck < ck+1, k = 0, ..., 5} that represent the endpoints of the linear segments

and {bk|k = 1, . . . , 5} that represent the slope of each linear segment. In order to represent the

1This piecewise linear representation of π(·) achieves a small approximation error: supz∈[0,1] ‖π(z) − π̃(z)‖ ≤
0.03.

39

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
i

Π
(
x
)

Piecewise Linear Approximation
Π() function

x
i3

x
i4

x
i5

x
i1

x
i2

Figure 4.2: Piecewise approximation of the weighting function

piecewise linear approximation, i.e. π̃(xi) (and simultaneously π̃(1 − xi)), we partition xi (and

1− xi) into five segments, denoted by variables xik (and x̄ik). Therefore, x′i which equals π̃(xi)

can be calculated as the sum of the linear function in each segment

x′i = π̃(xi) =
5∑

k=1

bk · xik

which is shown in Equation (4.24). At the same time, we can enforce the correctness of parti-

tioning xi (and 1 − xi) by ensuring that segment xik (and x̄ik) is positive only if the previous

segment is used completely. This is enforced in Equations (4.17)∼(4.23) by using the auxiliary

integer variable zik (and z̄ik). zik = 0 indicates that the kth segment of xi (i.e. xik) has not been

completely used, therefore, the following segments can only be set to 0, and vice versa. Equation

(4.24) defines x′i=π̃(xi) as the value of the piecewise linear approximation of xi, and x̄′i=π̃(1−xi)

as the value of the piecewise linear approximation of 1− xi .

40

4.2.1.2 RPT

Robust-PT (RPT) modifies the base BRPT method to account for the possible uncertainty in adver-

sary’s choice caused (for example) by imprecise computations [Simon, 1956]. Similar to COBRA,

RPT assumes that the adversary may choose any strategy within ε of the best choice, defined here

by the prospect of each action. It optimizes the worst-case outcome for the defender among the

set of strategies that have the prospect for the attacker within ε of the optimal prospect.

max
x,h,q,a,d,z

d (4.28)

s.t. Constraints (4.16)∼(4.26)

n∑
i=1

hi ≥ 1 (4.29)

hi ∈ {0, 1}, qi ≤ hi, ∀i (4.30)

ε(1− hi) ≤ a− (x′i(P
a
i)′ + x̄′i(R

a
i)
′) ≤M(1− hi) + ε,∀i (4.31)

M(1− hi) +
5∑

k=1

(xikR
d
i + x̄ikP

d
i) ≥ d,∀i (4.32)

We modify the BRPT optimization problem as follows: the first 11 constraints are equivalent

to those in BRPT (Equation (4.16)-(4.26)); in Equation (4.29), the binary variable hi indicates the

ε-optimal strategy for the adversary; the ε-optimal assumption is embedded in Equation (4.31),

which forces hi = 1 for any target ti that leads to a prospect within ε of the optimal prospect,

i.e. a; Equation (4.32) enforces d to be the minimum expected utility for defender on the targets

that lead to ε-optimal prospect for the attacker. RPT attempts to maximize the minimum for the

defender over the ε-optimal targets for the attacker, thus providing robustness against attacker

(human) deviations within that ε-optimal set of targets.

41

4.2.2 Computing against a QR-adversary

Assuming the adversary follows a quantal response (QR-adversary), we now present the algo-

rithm to compute the defender’s optimal strategy against a QR-adversary. Given the quantal

response of the adversary, which is described in Equation (4.7), the best response of defender is

to maximize her expected utility:

max
x

Ud(x) =

n∑
i=1

qi(x)Udi (x)

Combined with Equation (4.7) and (2.1), the problem of finding the optimal mixed strategy for

the defender can be formulated as

max
x

∑
ti∈T e

λRai e−λ(Rai−Pai)xi((Rdi − P di)xi + P di)∑
tk∈T e

λRake−λ(Rak−P
a
k)xk

(4.33)

s.t.
n∑
i=1

xi ≤M (4.34)

0 ≤ xi ≤ 1, ∀i, j (4.35)

Algorithm 1: BRQR

1 optg ← −∞;
2 for it← 1, ..., IterN do
3 x(0) ← randomly generate a feasible starting point;
4 (optl, x

∗)← Find-Local-Minimum(x(0));
5 if optg > optl then
6 optg ← optl, xopt ← x∗;
7 end
8 end
9 return optg, xopt;

Unfortunately, since the objective function in Equation (4.33) is non-linear and non-convex,

finding the global optimum is extremely difficult. Therefore, we focus on methods to find local

optima. To compute an approximately optimal strategy against a QR-adversary efficiently, we

42

develop the Best Response to Quantal Response (BRQR) heuristic described in Algorithm 1. We

first take the negative of Equation (4.33), converting the maximization problem to a minimization

problem. In each iteration, we find the local minimum using the fmincon() function in Matlab

with the Interior Point Algorithm with a given starting point. If there are multiple local minima,

by randomly setting the starting point in each iteration, the algorithm will reach different local

minima with a non-zero probability. By increasing the iteration number, IterN , the probability

of reaching the global minimum increases. We empirically set IterN to 300 in our experiments.

4.2.3 Computing against a QRRU-adversary

We now present the algorithm to compute defender optimal strategy assuming the adversary’s

behavior follows the QRRU model. The adversary’s response given this model is computed as in

Equation (4.8). The optimal defender strategy against a QRRU-adversary is computed by solving

the following optimization problem:

max
x,s,xmin

∑
ti∈T e

λuRai e−λu(Rai−Pai)xieλssi((Rdi − P di)xi + P di)∑
tk∈T e

λuRake−λu(Rak−P
a
k)xkeλssk

(4.36)

s.t. Constraint (4.34), (4.35)

xi − (1− si)K ≤ xmin ≤ xi, ∀ti ∈ T (4.37)∑
ti∈T

si = 1 (4.38)

si ∈ {0, 1}, ∀ti ∈ T (4.39)

where the integer variables si are introduced to represent the function Si(x) as shown in Equation

(4.9). In constraint (4.37), K is a constant with a very large value. Constraints (4.37) and (4.38)

enforces xmin to be the minimum value among all the xi. Simultaneously, si is set to 1 if target ti

43

has the minimum coverage probability assigned; and is set to 0 otherwise. The above optimization

problem is a non-linear and non-convex mixed integer programming problem, which is difficult

to solve directly. Therefore, we developed Best Response to a QRRU-Adversary (BRQRRU),

an algorithm that iteratively computes the defender’s optimal strategy. The iterative approach

breaks down the mixed-integer non-linear programming problem into sub-problems without in-

teger variables. For each sub-problem, one of the target is assumed to be the least covered target.

Then, under this constraint, the maximum defender expected utility and the associated defender

mixed strategy are computed by solving a non-linear programming problem (similar to BRQR).

Finally, the sub-problem generating the highest maximum defender expected utility is found as

the ‘actual’ optimal solution, and the associated defender mixed-strategy is the optimal defender

strategy assuming a QRRU-adversary.

Algorithm 2 shows the pseudo code of the algorithm. Algorithm 2 describes BRQRRU. In

Algorithm 2: BRQRRU

1 optg ← −∞;
2 for ti′ ∈ T do
3 (optl, x

∗)← Find-Optimal-Defender-Strategy(si′ = 1);
4 if optg > optl then
5 optg ← optl, xopt ← x∗;
6 end
7 end
8 Return optg, xopt;

44

each iteration, one target ti′ is conditioned to be covered with minimum resource, therefore si∗ =

1. This reduces the optimization problem to the following

max
x

∑
ti∈T e

λuRai e−λu(Rai−Pai)xieλssi((Rdi − P di)xi + P di)∑
tk∈T e

λuRake−λu(Rak−P
a
k)xkeλssk

(4.40)

s.t. Constraint (4.34), (4.35)

xi∗ ≤ xi, ∀ti ∈ T (4.41)

where there are no integer variables involved since si, ∀ti ∈ T are all pre-defined parameters of

the optimization problem. Therefore, we could solve it using the same method of local search

with random restart as that in BRQR. Find-Optimal-Defender-Strategy(si′ = 1) on

Line (3) in Algorithm 2 calls Algorithm 1 to solve the optimization problem in Equation (4.40)-

(4.41).

4.3 Parameter Estimation

In this section, we describe our methodology for setting the values of the parameters for the

different models of human behavior introduced in the previous section. We set the parameters for

our later experiments using data collected in a preliminary set of experiments with human subjects

playing the online game which will be introduced in Section 4.4.1. We posted the game on

Amazon Mechanical Turk as a Human Intelligent Task (HIT) and asked subjects to play the game.

Subjects played the role of the adversary and were able to observe the defender’s mixed strategy

(i.e., randomized allocation of security resources). In order to avoid non-compliant participants,

we only allowed workers whose HIT approval rates were greater than 95% and who had more

than 100 approved HITs to participate in the experiment.

45

LetG denote a game instance, which is a combination of a payoff structure {(Rai , P ai , Rdi , P di), ti ∈

T}, and a defender’s strategy x. Given a game instanceG, we denote the choice of the jth subject

as τGj ∈ T . We include seven payoff structures in the experiments: four of which are selected

based on using a classification method we explain in detail in Section 4.3.1; the other three are

taken directly from Pita et al.[Pita et al., 2010]. For each payoff structure we tested five different

defender strategies. This results in 7 ∗ 5 = 35 different game instances. Each of the subjects

played all 35 games. In total, 80 subjects participated in the preliminary experiment.

4.3.1 Selecting Payoff Structures

Even for a restricted class of games such as security games, there are an infinite number of

possible game instances depending on the specific values of the payoffs for each of the targets.

Since we cannot conduct experiments on every possible game instance we need a method to

select a set of payoffs structures to use in our experiments. Our main criteria for selecting payoffs

structures are (1) to select a diverse set of payoff structures that cover different regions in the

space of possible security games and (2) to select payoff structures that will differentiate between

the different behavioral models (in other words, the models should make different predictions

in different test conditions). In the first round our goal was to select game instance that would

distinguish between the three key families of prediction methods (BRPT, RPT, BRQR). In the

second round of selection we need to further differentiate within the families. Since there is

not yet a well-understood method to select such game instances in the literature, we introduce a

procedure for making such selections below.

We first sample randomly 1000 different payoff structures, each with 8 targets. Rai and Rdi

are integers drawn from Z+[1, 10]; P ai and P di are integers drawn from Z−[−10,−1]. This scale

46

Table 4.1: A-priori defined features
Feature 1 Feature 2 Feature 3 Feature 4

mean(|R
a
i

Pai
|) std(|R

a
i

Pai
|) mean(|R

d
i

P di
|) std(|R

d
i

P di
|)

Feature 5 Feature 6 Feature 7 Feature 8

mean(|R
a
i

P di
|) std(|R

a
i

P di
|) mean(|R

d
i

Pai
|) std(|R

d
i

Pai
|)

−4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

1st PCA Component

2nd
 P

C
A

 C
om

po
ne

nt

cluster 1
cluster 2
cluster 3
cluster 4
Payoff 1
Payoff 2
Payoff 3
Payoff 4
Payoff 5,6,7

Figure 4.3: Payoff Structure Clusters (color)

is similar to the payoff structures used in [Pita et al., 2010]. We then use k-means clustering to

group the 1000 payoff structures into four clusters based on eight features, which are defined in

Table 4.1. Intuitively, features 1 and 2 describe how good the game is for the adversary, features

3 and 4 describe how good the game is for the defender, and features 5∼8 reflect the level of

conflict between the two players in the sense that they measure the ratio of one player’s gain over

the other player’s loss.

In Fig. 4.3, all 1000 payoff structures are projected onto the first two Principal Component

Analysis (PCA) dimensions for visualization. The three payoff structures (5–7) that were first

47

used in Pita et al.[Pita et al., 2010] are marked in Fig. 4.3. All three of these payoff structures

belong to cluster 3, indicating that the game instances used in the previous experiments we all

similar in terms of the features we used for classification2.

To select specific payoff structures from these clusters we first generated five defender strate-

gies based on the following families of algorithms: DOBSS, COBRA, BRPT, RPT and BRQR.

Here we select only one algorithm from each family (e.g., only one version of BRQR). At this

point we did not have preliminary data to set the parameters of the algorithms, since we are de-

ciding which payoff structures to test on. Instead, we set the parameters as follows: DOBSS has

no parameters; for COBRA we use parameters drawn from [Pita et al., 2010]; BRPT and RPT use

the empirical parameter settings for Prospect Theory [Kahneman and Tvesky, 1992]; BRQR uses

a value of λ = 0.76 which we set using the data reported in [Pita et al., 2010] (using the method

to be described in Section 4.3.3).

We use the following the criteria to select payoff structures that differentiate among the dif-

ferent families of algorithms:

• We define the distance between two mixed strategies, xk and xl, using the Kullback-

Leibler divergence: D(xk, xl) = DKL(xk|xl) + DKL(xl|xk), where DKL(xk|xl) =∑n
i=1 x

k
i log(xki /x

l
i).

• For each payoff structure, D(xk, xl) is measured for every pair of strategies. With five

strategies, we have 10 such measurements.
2In [Pita et al., 2010], there were four payoff structures used, but we only use three of those here. The fourth

payoff structure is a zero-sum game, and the deployed Stackelberg security games have not been zero sum [Pita et al.,
2008; Tsai et al., 2009]. Furthermore, in zero-sum games, defender’s strategies computed from DOBSS, COBRA and
MAXIMIN collapse into one – they turn out to be identical.

48

• We remove payoff structures that have a mean or minimum of these 10 quantities below a

given threshold. This results in a subset of about 250 payoff structures in total for all four

clusters. We then select one payoff structure closest to the cluster center from each of these

subsets.

The four payoff structures (1–4) we selected from different clusters and are marked in Fig. 4.3.

4.3.2 Parameter Estimation for Prospect Theory

An empirical setting of parameter values is suggested in the literature [Kahneman and Tvesky,

1992] based on various experiments conducted with human subjects. We also include this setting

of parameter values in our experiments to evaluate the benchmark performance of the prospect

theory. At the same time, we provide a method to estimate the parameter values for the PT model

using a set of empirical response data collected for the SSG domain. In this section, we describe

our method of estimating the parameter values based on using grid search.

The empirical functions we used in the PT model for the adversary have four parameters that

must be specified: α, β, θ, γ, as shown in Equations (4.2) and (4.3). Varying the values for these

four parameters will change the responses predicted by the PT-model. We denote the weighting

and value function as πγ(·) and Vα,β,θ(·), for a given a set of parameter values. We then define

the fit of a parameter setting to a given data set of subjects’ choices as the percentage of subjects

who choose the target predicted by the model. The fit can be computed as

Fit(α, β, θ, γ | G) =
1

N

∑
j=1..N

qτGj
(α, β, θ, γ | G) =

∑
ti∈T

Ni

N
qi(α, β, θ, γ | G)

49

where qi(·) ∈ {0, 1} indicates whether the PT model predicts target ti to be chosen by the subjects

and is computed using Equation (4.5),Ni is the number of subjects who choose target ti, and

N =
∑

ti∈T Ni is the total number of subjects.

We estimate the parameter setting with the best fit for PT model by maximizing the fit function

over all 35 game instances

max
α,β,θ,γ

∑
G

Fit(α, β, θ, γ | G) (4.42)

s.t. 0 < α, β < 1, θ ≥ 1, 0 < γ < 1 (4.43)

The constraints in (4.43) restrict the feasible range of all the four parameters, as defined in the

prospect theory model. The objective function in Equation (4.42) cannot be expressed as a closed-

form expression of α, β, θ and γ. Without a closed form it is difficult to apply gradient descent or

any other analytical search algorithm to find the optimal solution. Therefore, we use grid search

[Sen and Stoffa, 1995; Becsey et al., 1968] to solve the problem as follows:

(1) We first uniformly sample a set of values for each parameter across the feasible ranges, with

the following grid intervals: ∆α = 0.05, ∆β = 0.05, ∆γ = 0.05, and ∆θ = 0.1. This gives

a set of different values for each of the four parameters. For simplicity, we represents the four

sets of sampled values as the following: {αk1 = αl + k1 ·∆α}, where αl is the lower bound

of the region; similarly {βk2 = βl+k2 ·∆β}; {θk3 = θl+k3 ·∆θ}; and {γk4 = γl+k4 ·∆γ}.

The feasible region of θ does not have upper bound, so we set it to 5 which is twice as the

suggested empirical value [Kahneman and Tvesky, 1992].

50

(2) In total, we have 20 · 20 · 20 · 40 = 320k different combinations of the four parameter values.

We then evaluate the objective function on each of the combinations (αk1 , βk2 , θk3 , γk4) and

take the parameter combination with the best aggregate fit as the solution:

(α∗, β∗, θ∗, γ∗) = arg max
k1,k2,k3,k4

∑
G

Fit(αk1 , βk2 , θk3 , γk4 | G)

The parameter settings estimated using the method described above are:

(α∗, β∗, θ∗, γ∗) = (1.0, 0.6, 2.2, 0.6)

4.3.3 Parameter Estimation for the QR Model

We now explain how we estimate the parameter for the Quantal Response Model (QR Model).

The parameter λ in the QR model represents the level of noise in the adversary’s response func-

tion. We employ Maximum Likelihood Estimation (MLE) to fit λ using data we collected. Given

a game instance G and N samples of the subjects’ choices {τj(G), j = 1..N}, the likelihood of

λ is

L(λ | G) =
∏

j=1..N

qτGj
(λ | G)

where, τGj ∈ T denotes the target attacked by the jth player and qτGj (λ | G) can be computed

by Equation (4.7). For example, if player j attacks target t3 in game G, we would have qτGj (λ |

G) = q3(λ | G). Furthermore, the log-likelihood of λ is

logL(λ | G) =

N∑
j=1

log qτj(G)(λ | G) =
∑
ti∈T

Ni log qi(λ)

Combining with Equation (4.6),

logL(λ | G) = λ
∑
ti∈T

NiU
a
i (xi)−N log(

∑
ti∈T

eλU
a
i (x))

51

We learn the optimal parameter setting for λ by maximizing the total log-likelihood over all

35 game instances:

max
λ

∑
G

logL(λ | G) (4.44)

s.t. λ ≥ 0 (4.45)

The objective function in Equation (4.44) is concave, since for eachG, a logL(λ | x) is a concave

function. This can be demonstrated by showing that the second order derivative of logL(λ | G)

is non-positive ∀G:

d2 logL

dλ2
=

∑
i<j −(Uai (xi)− Uaj (xj))

2eλ(Uai (xi)+U
a
j (xj))

(
∑

i e
λUai (xi))2

≤ 0

Therefore, logL(λ | x) only has one local maximum. We use gradient descent solve the above

optimization problem. The MLE of λ is

λ∗ = 0.55

.

4.3.4 Parameter Estimation for the QRRU Model

For the QRRU Model, we need to estimate two parameters: λu and λs as defined in Equa-

tion (4.8). We again apply Maximum Likelihood Estimation, similar to the method for the QR

model. Given a game instance G, and the responses of N subjects {τj(G), j = 1..N}, the log-

likelihood of a parameter setting (λu, λs) is

logL(λu, λs | G) =
N∑
j=1

log qτj(G)(λu, λs | G) =
∑
ti∈T

Ni log qi(λu, λs)

52

Combining with Equation (4.8),

logL(λu, λs | G) = λu
∑
ti∈T

NiU
a
i (xi) + λs

∑
ti∈T

NiSi(x)−N log(
∑
ti∈T

eλuU
a
i (xi)+λsSi(x))

We learn the optimal parameter settings for the QRRU Model by maximizing the total log-

likelihood over all 35 game instances:

max
λu,λs

∑
G

logL(λu, λs | G) (4.46)

s.t. λu ≥ 0, λs ≥ 0 (4.47)

The objective function in Equation (4.46) is a concave function, since ∀G the Hessian matrix of

logL(λu, λs | G) is negative semi-definite. We include the details of proof in the appendix and

only show here that ∀〈λu, λs〉

〈λu, λs〉 ·H(λu, λs | G) · 〈λu, λs〉T ≤ 0

where H(λu, λs | G) is the Hessian matrix of logL(λu, λs | G) computed as the following

H(λu, λs | G) = −N

∑
i<j(U

a
i −Uaj)2eAi+Aj

(
∑
ti∈T

eAi)2

∑
i<j(U

a
i −Uaj)(Si−Sj)eAi+Aj

(
∑
ti∈T

eAi)2∑
i<j(U

a
i −Uaj)(Si−Sj)eAi+Aj

(
∑
ti∈T

eAi)2

∑
i<j(Si−Sj)2e

Ai+Aj

(
∑
ti∈T

eAi)2

where, Ai = λuU

a
i (xi) + λsSi(x). Therefore, we can use gradient descent to solve the opti-

mization problem in Equation (4.46) and (4.47). The MLE parameters based on our data set

are:

(λ∗u, λ
∗
s) = (0.6, 0.77)

.

53

Figure 4.4: Game interface for our simulated online SSG

4.4 Experimental Results and Discussion

We evaluated the performances of defender strategies as well as the the accuracy of different

adversary models with human subjects using an online game “The Guard and The Treasure” that

will be introduced soon. We conducted two set of evaluations: the first set includes the same

7 payoff structures used in the experiments in the previous section; the second set focuses on

comparison between the QR model and the QRRU model.

4.4.1 A Simulated Online SSG

We develop a game, called “The Guards and The Treasure”, to simulate the security model at

the LAX airport, which has eight terminals that can be targeted in an attack [Pita et al., 2008].

Fig. 6.1 shows the interface of the game. Players are introduced to the game through a series

of explanatory screens describing how the game is played. In each game instance a subject is

54

asked to choose one of the eight gates to open (attack). They are told that guards are protecting

three of the eight gates, but not which ones. The defender’s mixed strategy, represented as the

marginal probability of covering each target, < xi >, is given to the subjects. At the same time,

the subjects are also told the reward on successfully attacking each target as well as the penalty

of getting caught at each target. The three gates protected by the guards are drawn randomly

from the probability shown on the game interface. If subjects select a gate protected by the

guards, they receive a penalty; otherwise, they receive a reward. Subjects are rewarded based

on the reward/penalty shown for each gate. For example, in the game shown in Figure 6.1, the

probability that gate 1 (target 1) will be protected by a guard is 0.59. Assuming the subjects

choose gate 1, he/she gets reward of 8 if gate 1 is not protected by the guard; or get a penalty of

-3 if gate 1 is protected by a guard.

4.4.2 Experimental Settings

The design of the simulated game was already provided in Section 4.4.1. We now present a

detailed description of the experimental settings. In total, we included 70 game instances (com-

prising 7 payoff structures and 10 strategies for each payoff structure) in the first set and 12 game

instances (comprising 4 new payoff structures and 3 strategies for each payoff structure) in the

second set. To avoid confusion between these two sets of payoff structures, we will number the

first seven payoff structures as 1.1-1.7, and the next four as 2.1-2.4.

Each game instance is played by at least 80 different participants (the actual number of sub-

jects for each game instance ranges between 80 to 91). Each subject is asked to play 40 out of

the 70 games. For the purpose of a within-subject comparison, we want a subject to play the

10 different strategies for the same payoff structure. Therefore, the 40 games is composed of 4

55

payoff structures and 10 defender strategies for each. Furthermore, in order to mitigate the or-

dering effect on subject responses, we randomize the order of the game instances played by each

subject. We generated 40 different orderings of the games using latin square design. The order

played by each subject was drawn uniformly randomly from the 40 possible orderings. To further

mitigate ordering effect, no feedback on success or failure is given to the subjects until the end of

the experiment. As motivation to the subjects, they earn or lose money based on whether or not

they succeed in attacking a gate; if the subject opens a gate not protected by the guards, they win;

otherwise, they lose.

The participants were recruited on Amazon Mechanical Turk. Note that these participants

differ from those who played the game to provide data for estimating the parameter, as discussed

in the previous section. In order to avoid non-compliant participants, we only allowed workers

whose HIT approval rates were greater than 95% and who had more than 100 approved HITs to

participate in the experiment. They were first given a detailed instruction of the game explaining

to them how the game is played. Then two practical rounds of games were provided to help them

get familiar with the game. After all the learning and practising, they were given enough time to

finish all the games.

Each participant first received 50 cents for participating in the game. Then they gain bonus

based on the outcomes of the games they played, with each point worth 1 cent. On average,

the subjects who participated in the first set of experiment (i.e. payoff 1.1-1.7) received $1.45

as bonus based on their total scores across 40 game instances they played; the subjects who

participated in the second set of experiment (i.e. payoff 2.1-2.4) received $0.44 as bonus based

on their total scores across 12 game instances they played. Participants were given 5 hours in

total to finish the experiment which was shown to be sufficiently long given that the average time

56

Payoff 1.1 1.2 1.3 1.4 1.5 1.6 1.7
COBRA-α 0.15 0.15 0.15 0.15 0.37 0 0.25
COBRA-ε 2.5 2.9 2.0 2.75 2.5 2.5 2.5
BRPT-E (α, β, θ, γ) = (0.88, 0.88, 2.25, 0.64)

RPT-E (α, β, θ, γ) = (0.88, 0.88, 2.25, 0.64), ε = 2.5

BRPT-L (α, β, θ, γ) = (1, 0.6, 2.2, 0.6)

RPT-L (α, β, θ, γ) = (1, 0.6, 2.2, 0.6), ε = 2.5

BRQR-76 λ = 0.76

BRQR-55 λ = 0.55

BRQRRU (λu, λs) = (0.6, 0.77)

Table 4.2: Parameter settings for different algorithms

they spent was 28 minutes for the first set of 40 games and 8 minutes for the second set of 12

games.

In the following part of this section, we first describe the parameter settings for the different

leader strategies. We then provide our experimental results, and follow that up with analysis. We

compare both the quality of different defender strategies against the human participants and the

accuracy of different adversary models in the sense that how well the human participants follow

the assumption of these models.

4.4.3 Algorithm Parameters

For the seven payoff structures (1.1-1.7) introduced in Section 4.3, we tested ten different mixed

strategies generated from seven different algorithms: MAXIMIN, DOBSS [Paruchuri et al., 2008],

COBRA [Pita et al., 2010], BRPT, RPT, BRQR, BRQRRU. We include MAXIMIN as a benchmark

algorithm. MAXIMIN assumes that adversary always selects the target that is worst to the de-

fender. Table 4.2 lists the parameter settings of these ten strategies for each of the seven payoff

structures.

• DOBSS and MAXIMIN have no parameters.

57

• For COBRA, we set the parameters following the methodology presented in [Pita et al.,

2010] as closely as possible for payoff structures 1.1∼1.4,. In particular, the values we set

for α meet the entropy heuristic discussed in that work. For payoff structures 1.5∼1.7 that

are identical to payoff structures first used by Pita et al., we use the same parameter settings

as in their work.

• For both BRPT-E and RPT-E, the parameters for Prospect Theory are empirical values

suggested by literatures [Kahneman and Tvesky, 1992]. For RPT-E, we empirically set ε to

25% of the maximum potential reward for the adversary, which is 10 in our experimental

settings.

• We tried another set of parameters for Prospect Theory, which are learned from our first set

of experiment as described in Section 4.3.2. We denote these two algorithms as BRPT-L

and RPT-L.

• For BRQR, we tried two different values for the parameter λ, λ = 0.76 is the values learned

from the data reported by Pita et al.[Pita et al., 2010]; λ = 0.55 is the value learned from

data collected in our first set of experiments with participants from Amazon Mechanical

Turk. We will refer to the strategies resulting from these two parameter settings of the

BRQR algorithm as BRQR-76 and BRQR-55 respectively.

• For BRQRRU, the parameters are learned from the data collected our first set of experi-

ments.

58

-2.2

-1.7

-1.2

-0.7

-0.2

0.3

0.8

1.3

payoff 1.1 payoff 1.2 payoff 1.3 payoff 1.4

D
ef

e
n

d
e

r
A

ve
ra

ge
 E

U

DOBSS

MAXIMIN

COBRA

BRPT-E

BRPT-L

RPT-E

RPT-L

BRQR-76

BRQR-55

BRQRRU

-2.2

-1.7

-1.2

-0.7

-0.2

payoff 1.5 payoff 1.6 payoff 1.7

D
ef

e
n

d
e

r
A

ve
ra

ge
 E

U

DOBSS

MAXIMIN

COBRA

BRPT-E

BRPT-L

RPT-E

RPT-L

BRQR-76

BRQR-55

BRQRRU

Figure 4.5: Defender average expected utility achieved by different strategies

4.4.4 Quality Comparison

We evaluated the performance of different defender strategies using the defender’s expected util-

ity and the statistical significance of our results using the bootstrap-t method [Wilcox, 2003].

59

4.4.4.1 Average Performance

We first evaluated the average defender expected utility, Udavg(x), of different defender strategies

based on the subjects’ choices:

Udavg(x) =
1

N

N∑
j=1

Udτj (x) =
1

N

∑
ti∈T

NiU
d
i (xi)

where τj is the target selected by the jth subject, Ni is the number of subjects that chose target

ti and N is the total number of subjects. Fig. 4.5 displays Udavg(x) for the different strategies

in each payoff structure. We also displayed the normalized defender average expected utility of

different strategies within each payoff structure in Figure 4.6. After normalization, Udavg(x) for

each defender strategy varies between 0 and 1, with the highest Udavg(x) in each payoff structure

scaled to 1 and the lowest Udavg(x) scaled to 0.

Overall, BRQR-76, BRQR-55 and BRQRRU performed better than other algorithms. We com-

pare the performance of three algorithms with each of the other seven algorithms and report the

level of statistical significance in Table 4.3, 4.4 and 4.5. We summarize the results below:

• MAXIMIN is outperformed by all three algorithms with statistical significance in all seven

payoff structures. DOBSS is also outperformed by all three algorithms with statistical sig-

nificance except for payoff structure 1.6.

• In five of the seven payoff structures, COBRA is outperformed by all three algorithms with

statistical significance. In payoff structure 1.3, the performance of COBRA is very close

to the three algorithms, but there is no statistical significance either way. In payoff struc-

ture 1.5, COBRA is outperformed by all three algorithms but no statistical significance is

achieved.

60

0.00

0.20

0.40

0.60

0.80

1.00

payoff 1.1 payoff 1.2 payoff 1.3 payoff 1.4

D
e

fe
n

d
e

r
A

ve
ra

ge
 E

U

DOBSS

MAXIMIN

COBRA

BRPT-E

BRPT-L

RPT-E

RPT-L

BRQR-76

BRQR-55

BRQRRU

0.00

0.20

0.40

0.60

0.80

1.00

payoff 1.5 payoff 1.6 payoff 1.7

D
e

fe
n

d
e

r
A

ve
ra

ge
 E

U

DOBSS

MAXIMIN

COBRA

BRPT-E

BRPT-L

RPT-E

RPT-L

BRQR-76

BRQR-55

BRQRRU

Figure 4.6: Defender average expected utility (normalized between 0 and 1) achieved by different
strategies

61

v.s. DOBSS MAXIMIN COBRA BRPT-E RPT-E BRPT-L RPT-L
payoff 1.1 *** *** *** *** ** *** ***
payoff 1.2 *** *** *** *** *** *** 0.15
payoff 1.3 *** *** 0.96 *** 0.21 *** **
payoff 1.4 *** *** * *** 0.25 *** ***
payoff 1.5 *** *** 0.26 *** 0.99 *** ***
payoff 1.6 0.20 *** *** * *** 0.13 ***
payoff 1.7 *** *** ** *** ** *** ***

Table 4.3: level of statistical significance of comparing BRQR-76 to other algorithms: ***(p ≤
0.01), **(p ≤ 0.05), *(p ≤ 0.1)

• The three algorithms outperform BRPT-E with statistical significance in all seven payoff

structures. Furthermore, BRPT-L is outperformed by the three algorithms in all seven pay-

off structures with statistical significance in six cases except for in payoff structure 1.6.

• In four of the seven payoff structures, RPT-E is outperformed by the three algorithms with

statistical significance. In payoff 1.3, RPT-E is outperformed by all three algorithms but

the result is not statistical significant. In payoff structure 1.4, RPT-E achieves very similar

performance to BRQR-55 and is outperformed by BRQR-76 and BRQRRU. In payoff 1.5,

RPT-E achieves very similar performance as BRQR-76 and is outperformed by BRQR-55

and BRQRRU. Furthermore, RPT-L is outperformed by all three algorithms with statis-

tical significance in almost all seven payoff structures, except for in payoff structure 1.2

where the result of comparing BRQR-76 and BRQRRU with RPT-L doesn’t have statistical

significance.

Overall, any of the three quantal response (BRQR-76,BRQR-55 and BRQRRU) strategies

would be preferred over the other strategies. However, the performance of the three strategies are

close to each other in this set of experiments. In order to further differentiate the three strategies

as well as prove the effectiveness of QRRU model, we conducted a separate set of experiments.

62

v.s. DOBSS MAXIMIN COBRA BRPT-E RPT-E BRPT-L RPT-L
payoff 1.1 *** *** ** *** * *** ***
payoff 1.2 *** *** ** *** *** *** *
payoff 1.3 *** *** 0.86 *** 0.16 *** **
payoff 1.4 *** *** ** *** 0.95 *** **
payoff 1.5 *** *** 0.37 *** 0.12 *** **
payoff 1.6 0.16 *** *** ** *** 0.11 ***
payoff 1.7 *** *** *** *** *** *** ***

Table 4.4: level of statistical significance of comparing BRQR-55 to other algorithms: ***(p ≤
0.01), **(p ≤ 0.05), *(p ≤ 0.1)

v.s. DOBSS MAXIMIN COBRA BRPT-E RPT-E BRPT-L RPT-L
payoff 1.1 *** *** ** *** * *** ***
payoff 1.2 *** *** ** *** *** *** 0.27
payoff 1.3 *** *** 0.99 *** 0.27 *** **
payoff 1.4 *** *** ** *** 0.18 *** ***
payoff 1.5 *** *** 0.40 *** 0.33 *** *
payoff 1.6 0.15 *** *** ** *** 0.11 ***
payoff 1.7 *** *** *** *** *** *** ***

Table 4.5: level of statistical significance of comparing BRQRRU to other algorithms: ***(p ≤
0.01), **(p ≤ 0.05), *(p ≤ 0.1)

We first select four new payoff structures from the 1000 random samples using the following

rules::

• We first measure the distance between the BRQRRU strategy and each of the other two

BRQR strategies using Kullback-Leibler (KL) divergence: D(xk, xl) = DKL(xk|xl) +

DKL(xl|xk), where DKL(xk|xl) =
∑n

i=1 x
k
i log(xki /x

l
i).

• For each payoff structure, we measure this KL distance for the pair (BRQRRU,BRQR-76)

and the pair (BRQRRU,BRQR-55). So we have two such measurements for each payoff

structure.

• We sort the payoff structures in a descending order of the mean of these two distance.

63

• In the top 10 payoff structures, we select two payoff structures where the targets assigned

with minimum coverage probability by BRQR-76 or BRQR-55 have large penalty for the

defender; and two payoff structures where the penalty for the defender on such target is

small.

The details of these four payoff structures and the defender strategies are included in the appendix.

We conducted a new set of experiments with human subjects using these four payoff structures

and the three QR model based strategies for each payoff structure. In total, we have 4*3 = 12

game instances included in these experiments. Each subject is asked to play against all these 12

game instances. 80 subjects are involved in these experiments.

-1.2

-0.7

-0.2

0.3

0.8

1.3

1.8

payoff 2.1 payoff 2.2 payoff 2.3 payoff 2.4

D
e

fe
n

d
e

r
A

ve
ra

ge
 E

U

BRQRRU

BRQR-76

BRQR-55

Figure 4.7: Defender average expected utility achieved by QR model based strategies

Figure 4.7 displays the defender average expected utility achieved by the three strategies. We

report the statistical significance results in Table 4.6. In payoff structures 2.1 and 2.2, BRQRRU

outperforms both BRQR-76 and BRQR-55 with statistical significance. In payoff structures 2.3

and 2.4, the three strategies have very close performance. No statistical significance is found in

the results, as reported in Table 4.6.

64

payoff 2.1
BRQRRU v.s. BRQR-76 ***
BRQRRU v.s. BRQR-55 **

payoff 2.2
BRQRRU v.s. BRQR-76 **
BRQRRU v.s. BRQR-55 **

payoff 2.3
BRQR-76 v.s. BRQRRU 0.87
BRQR-55 v.s. BRQRRU 0.40

payoff 2.4
BRQRRU v.s. BRQR-76 0.97
BRQR-55 v.s. BRQRRU 0.35

Table 4.6: statistical significance (**: p ≤ 0.05; ***: p ≤ 0.01)

As noted earlier, a very important feature of payoff structures 2.1 and 2.2, compared to payoff

structures 2.3 and 2.4, is that the target covered with minimum resource by BRQR-76 and BRQR-

55 (target 3 in payoff structure 2.1 and target 3 in payoff structure 2.2) has a large penalty (≤ −6)

for the defender. In the experiments with payoff structures 2.1 and 2.2, more than 10% of subjects

selected these targets (target 3 in payoff structure 2.1 and 2.2) while playing against BRQR-76 or

BRQR-55, while no subjects chose this target while playing against BRQRRU— BRQRRU covers

these targets with more resources. This is the main reason why BRQRRU significantly outper-

forms BRQR in payoff 2.1 and payoff 2.2. In payoff 2.3 and 2.4, similar observation is obtained

in subjects’ choice: the targets covered with minimum resources by BRQR-76 and BRQR-55 are

selected more frequently compared to the case when BRQRRU is played. However, these targets

(i.e. target 1 in payoff 2.3 and target 2 in payoff 2.4) have very small penalty for the defender

(-1). Therefore we do not see significant differences in performance among the different BRQR

strategies.

Based on the result in both sets of experiments, we conclude that the stochastic model based

strategies are superior to their competitors, and BRQRRU is the preferred strategy within the

stochastic model based strategies.. In particular, BRQRRU achieves significantly better perfor-

mance than BRQR when the target covered with minimum resource by BRQR has potentially a

65

large penalty for the defender; and has a performance similar to the other stochastic model based

strategies otherwise.

4.4.4.2 Performance Distribution

We now analyze the distribution of the performance of each defender strategy while playing

against different adversaries (subjects). Given a game instance G, the defender expected utility

achieved by playing strategy x against a subject j is denoted as Ud
τGj

(x). Figures 4.8 and 4.9

display the distribution of Ud
τGj

(x) for different defender strategies against individual subjects in

each payoff structure. The y-axis shows the range of the defender’s expected utility against all

different subjects. Each box with the extended dash line in the figure shows the distribution of

this defender expected utility for each of the ten defender strategies: the dashed line specifies the

range of Ud
τGj

(x) with the bottom band showing the minimum value and the top band showing the

maximum value; the box specified the 25th to 75th percentiles ofUd
τGj

(x) with the bottom showing

the 25th percentile value and the top showing the 75th value; the band inside the box specifies the

median (50th percentile) of Ud
τGj

(x). We compare the distributions of different defender strategies

from two perspectives:

Range: As presented in Figure 4.8 and Figure 4.9, in general, the defender expected utility

has the smallest range when MAXIMIN strategy is played (except that in payoff structure 1.7,

the range of the defender expected utility when RPT-L is played is slightly smaller than that

when MAXIMIN is played). COBRA, RPT, BRQR and BRQRRU lead to larger range of defender

expected utility than MAXIMIN. Defender expected utility has the largest range when DOBSS or

BRPT is played.

66

Worst Case: The lower band of the dashed line indicates the worst-case defender expected

utility when different strategies are played. MAXIMIN has the highest worst-case defender ex-

pected utility in general (except that in payoff 1.5, the worst-case defender expected utility by

playing BRQR-76 is better than that by playing MAXIMIN). DOBSS and BRPT lead to lowest

worst-case defender expected utility. The worst-case defender expected utility from playing CO-

BRA, RPT, BRQR and BRQRRU are in between the two extreme cases. Furthermore, BRQR and

BRQRRU lead to higher worst-case defender expected utility than COBRA and RPT.

−4

−3

−2

−1

0

1

2

3

4

DOBSS

MAXIM
IN

COBRA

BRPT−E

RPT−E

BRPT−L

RPT−L

BRQR−76

BRQR−55

BRQRH

D
ef

en
de

r
E

xp
ec

te
d

U
til

ity

Payoff 1.1

−6

−4

−2

0

2

4

6

DOBSS

MAXIM
IN

COBRA

BRPT−E

RPT−E

BRPT−L

RPT−L

BRQR−76

BRQR−55

BRQRH

D
ef

en
de

r
E

xp
ec

te
d

U
til

ity

Payoff 1.2

−4

−3

−2

−1

0

1

2

3

4

DOBSS

MAXIM
IN

COBRA

BRPT−E

RPT−E

BRPT−L

RPT−L

BRQR−76

BRQR−55

BRQRH

D
ef

en
de

r
E

xp
ec

te
d

U
til

ity

Payoff 1.3

−10

−8

−6

−4

−2

0

2

4

6

DOBSS

MAXIM
IN

COBRA

BRPT−E

RPT−E

BRPT−L

RPT−L

BRQR−76

BRQR−55

BRQRH

D
ef

en
de

r
E

xp
ec

te
d

U
til

ity

Payoff 1.4

Figure 4.8: Distribution of defender’s expected utility against each individual subject

67

−5

−4

−3

−2

−1

0

1

DOBSS

MAXIM
IN

COBRA

BRPT−E

RPT−E

BRPT−L

RPT−L

BRQR−76

BRQR−55

BRQRH

D
ef

en
de

r
E

xp
ec

te
d

U
til

ity

Payoff 1.5

−4

−3

−2

−1

0

1

DOBSS

MAXIM
IN

COBRA

BRPT−E

RPT−E

BRPT−L

RPT−L

BRQR−76

BRQR−55

BRQRH

D
ef

en
de

r
E

xp
ec

te
d

U
til

ity

Payoff 1.6

−5

−4

−3

−2

−1

0

DOBSS

MAXIM
IN

COBRA

BRPT−E

RPT−E

BRPT−L

RPT−L

BRQR−76

BRQR−55

BRQRH

D
ef

en
de

r
E

xp
ec

te
d

U
til

ity

Payoff 1.7

Figure 4.9: Distribution of defender’s expected utility against each individual subject

In general, by playing MAXIMIN, the defender expected utility against each individual ad-

versary achieves the smallest variance, hence it is most robust to the uncertainty in adversary’s

choice. However, it does so by assuming that the adversary could select any target hence making

the expected utility on each target equal. MAXIMIN does not exploit the different preferences

adversary may have among different targets. BRPT and DOBSS assume the subjects select the

target that maximizes their expected utility and do not consider the possibility of deviations from

the optimal choice by the adversary. This leads to arbitrarily lower defender expected utility when

the adversary deviates from the predicted choice.

68

COBRA, RPT, BRQR and BRQRRU all try to be robust against such deviations. BRQR and

BRQRRU consider some (possibly very small) probability of adversary attacking any target us-

ing a soft-max function. In contrast, COBRA and RPT separate the targets into two groups, the

ε-optimal set and the non-ε-optimal set, using a hard threshold. They then try to maximize the

worst case for the defender assuming the response will be in the ε-optimal set, but assign less

resources to the non-ε-optimal targets. When the non-ε-optimal targets have high defender penal-

ties, COBRA and RPT become vulnerable to adversary’s deviation. For example, target 6 in payoff

structure 1.2 has a small reward (= 1) and a large penalty (= −10) for the attacker. Both COBRA

and RPT consider this target to be in the non-ε-optimal set and assign very small probability to

cover this target (≤ 0.05). However, approximately 10% of the subjects have chosen this target.

Since this target has a high defender penalty (−6), COBRA and RPT lose reward on this target.

Similar examples include target 5 in payoff structure 1.4 and target 8 in payoff structure 1.1.

4.4.5 Model Prediction Accuracy

In this section, we evaluate how well each model predicts the actual responses of human partici-

pants using three different metrics [Feltovich, 2000]: mean square deviation (MSD), a proportion

of inaccuracy (POI), and Euclidean distance (ED).

We first extend the definition of MSD from that in [Feltovich, 2000] which is designed for

a 2-action game, in order to suit our domain where the player has 8 actions to take. Given the

choices of the N subjects, the MSD of a model is computed as

MSD = { 1

N

N∑
n=1

(pτ(n) − 1)2}1/2 (4.48)

69

where, τ(n) represents the index of the target chosen by subject n, pi is the predicted probability

by a model that target i will be chosen.

The POI score is meant to put models with deterministic prediction on the same footing as

those with stochastic prediction. It treats the target with the highest predicted probability as the

predicted target, and computes the proportion of the subjects who didn’t choose the predicted

target. The POI score is computed as

POI =
1

N

N∑
n=1

(1− p̃τ(n)) (4.49)

where, τ(n) is the index of the target chosen by subject n. p̃τ(n) = 1 if τ(n) is the predicted

target; and p̃τ(n) = 0 otherwise. Note that for models with deterministic prediction, the POI

score is exactly equal to the square of MSD value.

The Euclidean distance measures the difference between the actual distribution of the sub-

jects’ choices and the prediction of the model. It is computed as

ED =

√∑
i∈T

(pi − pacti)2 (4.50)

where pi is the probability predicted by the model that target i will be chosen, and pacti is the

actually percentage of subjects who have chosen target i.

Table 4.7 presents the ability of different models to predict the attacker decision measured

with the three different criteria3. The measurements for both the out-of-sample data (70 rounds

of games) and in-sample data (35 rounds of games) are displayed in the table. Better predictive

power is indicated by lower MSD value and POI score and lower ED value. The top four models

all have deterministic prediction and the three quantal response related models have stochastic

prediction. The last three models (COBRA, RPT-E and RPT-L) don’t have a strict definition of the
3MAXIMIN doesn’t have a prediction of adversary behavior, so we exclude it from the analysis.

70

Table 4.7: Ability of behavioral models to predict attacker decision
Out of sample In sample

Model MSD POI ED MSD POI ED
DOBSS 0.81 0.67 0.76 0.85 0.73 0.80
PT-E 0.84 0.71 0.81 0.87 0.75 0.84
PT-L 0.84 0.71 0.81 0.86 0.74 0.83
QR-76 0.79 0.67 0.23 0.83 0.73 0.22
QR-55 0.81 0.67 0.22 0.84 0.73 0.21
QRRU 0.80 0.65 0.21 0.83 0.70 0.18
COBRA 0.91 0.83(0.35) 0.94 0.91 0.83(0.42) 0.93
RPT-E 0.93 0.87(0.52) 0.99 0.94 0.88(0.56) 0.99
RPT-L 0.93 0.86(0.49) 0.98 0.93 0.86(0.54) 0.96

prediction of the attacker’s behavior. They are modifications of the base models for robustness.

For example, COBRA modifies DOBSS by assuming that attacker will deviate from choosing the

target with the highest expected utility to any other targets whose expected utilities are within ε

of the highest value. However, within this subset of possibly chosen targets, the model doesn’t

explicitly predict the behavior of the attacker but rather plays a maximin strategy (i.e. maximizing

the lowest expected utility). RPT-E and RPT-L modify PT-E and PT-L in similar ways. Given the

above property of these three models, we compute the POI score in two different ways by using

two different definitions of the model prediction.

• The first definition predicts a single target with the lowest expected utility for the defender

within the subset of possible deviations. Therefore the POI score counts the proportion of

subjects who have chosen any other targets.

• The second definition predicts all the targets within the subsect of the possible deviations.

Therefore, the POI score only counts for the targets outside this subset.

The POI score computed with the first definition should be equal to or higher than the value

computed with the second definition. Note that the second definition doesn’t satisfy the property

71

of prediction since the sum of the predictions on all targets might be larger than 1. We use this

definition to mainly show the importance of accounting for deviation of attackers’ decision. The

POI values computed with the second definition are shown in parentheses in Table 4.7. The

observations from the table are summarized blow,

1. For the out-of-sample data, less than 30% of the subjects have selected the target predicted

by PT-E or PT-L; in the other words, more than 70% of the subjects have deviated from the

prediction. For DOBSS, on average 67% of the subjects deviated from the predicted response.

Similar patterns can be observed for the in-sample data.

2. Both RPT and COBRA take into consideration the deviation of the subjects’ responses from

their optimal action. The percentage of subjects deviate from the model prediction decreased

significantly: for the out-of-sample data, the POI score of COBRA is 0.35 compared to 0.67 of

DOBSS; the POI score of RPT-E decreased by 0.19 compared to PT-E; the POI score of RPT-L

decreased by 0.22 compared to PT-L. Similar patterns are observed for the in-sample data.

3. The POI score of QR-76 and QR-55 is the same as DOBSS. This is expected since the

target predicted by the QR model to be chosen with the highest probability is the target with the

highest expected utility for the attacker, which is the also prediction of DOBSS. In other words,

QR-76 and QR-55 have the same predicted target as DOBSS. At the same time, QRRU has the

lowest POI score among all the models in both the out-of-sample data and in-sample data. The

MSD scores of the three QR-related models are better (lower) than other models (except that in

the out-of-sample data QR-55 has the same score as DOBSS).

4. The advantage of the the three QR related models is most significant under the ED score,

which represents the error of the model in predicting the distribution of subjects’ choices. As

shown in Table 4.7, the three QR-related models have significantly lower ED scores than the

72

other models. This is essentially the reason why the three models achieved significantly better

defender expected utility than the other models.

73

Chapter 5: Quantal Response Model with Subjective Utility

In this chapter, I compare the quantal response model to an alternative approach for addressing

human bounded rationalitym: a robust optimization approach, which intentionally avoids mod-

eling human decision making. The leading contender here is an algorithm called MATCH ([Pita

et al., 2012]). Instead of modeling the particular probabilities of the adversarys deviations from

the optimal choice, MATCH only guarantees a bound for the loss to the defender if the adver-

sary deviates from selecting optimally (maximum-expected value choice). It has been shown (in

[Pita et al., 2012]) that MATCH significantly outperforms BRQR (Section 4.2) even when signifi-

cant amounts of human subject data were used to tune the key parameter of the quantal response

model. It hence become unclear whether there is still any value in using human behavior models

in solving SSG.

In this chapter, using a large number of human subject experiments, I illustrate the importance

of integrating human behavior models (and in particular the QR model) within algorithms to solve

SSGs. Section 5.1 introduces an extended version of the quantal response model by integrating

it with an novel subjective utility function. Section 5.2 provides an improved version of the

MATCH algorithm by integrating it with the same subjective utility function learned from the data.

Then in section 5.3, I conduct experiments comparing the extended quantal resonse model with

74

the MATCH algorithm under different settings with human subjects, including both the Amazon

Mechanical Turk workers and a group of security intelligence experts.

5.1 The SUQR Model

The key idea in subjective expected utility (SEU) as proposed in behavioral decision-making

[Savage, 1972; Fischhoff et al., 1981] is that individuals have their own evaluations of each alter-

native during decision-making1. Recall that in an SSG, the information presented to the human

subject for each choice includes: the marginal coverage on target t (xt); the subject’s reward and

penalty (Rat ,P at); the defender’s reward and penalty (Rdt , P dt). Inspired by the idea of SEU, we

propose a subjective utility function of the adversary for SSG as the following:

Ûat = w1xt + w2R
a
t + w3P

a
t (5.1)

The novelty of our subjective utility function is the linear combination of the values (re-

wards/penalty) and probabilities. (Note that we are modeling the decision-making of the general

population not of each individual as we do not have sufficient data for each specific subject).

While unconventional at first glance, as shown later, this model actually leads to higher predic-

tion accuracy than the classic expected value function. A possible explanation for that is that

humans might be driven by simple heuristics in their decision making. Other alternatives to this

subjective utility function are feasible, e.g., including all the information presented to the subjects

(Ûat = w1xt + w2R
a
t + w3P

a
t + w4R

d
t + w5P

d
t), which we discuss later.

1Similar approach with subjective utility function has been shown to predict human behavior well in previous work
[Azaria et al., 2012]

75

We modify the QR model by replacing the classic expected value function with the SU func-

tion, leading to the SUQR model. In the SUQR model, the probability that the adversary chooses

target t, qt, is given by:

qt =
eλÛ

a
t∑

t′ e
λÛa

t′
=

eλ(w1xt+w2Rat+w3Pat)∑
t′ e

λ(w1xt′+w2Rat′+w3Pat′)
(5.2)

The problem of finding the optimal strategy for the defender can therefore be formulated as:

max
x

T∑
t=1

eλ(w1xt+w2Rat+w3Pat)∑
t′ e

λ(w1xt′+w2Rat′+w3Pat′)
(xtR

d
t + (1− xt)P dt)

s.t.

T∑
t=1

xt ≤ K, 0 ≤ xt ≤ 1 (5.3)

Here, the objective is to maximize the defender’s expected value given that the adversary

chooses to attack each target with a probability according to the SUQR model. Constraint (5.3)

ensures that the coverage probabilities on all the targets satisfy the resource constraint. Given

that this optimization problem is similar to BRQR we use the same approach as BRQR to solve

it. We refer the resulting algorithm as SU-BRQR.

5.1.1 Learning SUQR Parameters

Without loss of generality, we set λ = 1. We employ Maximum Likelihood Estimation (MLE) to

learn the parameters (w1, w2, w3). Given the defender strategy x and N samples of the players’

choices, the log-likelihood of (w1, w2, w3) is given by:

logL(w1, w2, w3|x) =
∑N

j=1 log[qtj (w1, w2, w3)]

where tj is the target that is chosen in sample j and qtj (w1, w2, w3) is the probability that the

adversary chooses the target tj given the parameters (w1, w2, w3). Let Nt be the number of

subjects attacking target t. Then we have:

76

logL(w1, w2, w3|x) =
∑T

t=1Ntlog[qt(w1, w2, w3)]

Combining with equation (2),

logL(w1, w2, w3|x) = w1(
∑T

t=1Ntxt) + w2(
∑T

t=1NtR
a
t)

+w3(
∑T

t=1NtP
a
t)−Nlog(

∑T
t=1 e

w1xt+w2Rat+w3Pat)

logL(w1, w2, w3|x) can be shown to be a concave function: we can show that the Hessian

matrix of logL(w1, w2, w3|x) is negative semi-definite. Thus, this function has an unique local

maximum point and we can hence use a convex optimization solver to compute the optimal

weights (w1, w2, w3), e.g., fmincon in Matlab.

5.1.2 Prediction Accuracy of SUQR model

As in some real-world security environments, we would want to learn parameters of our SUQR

model based on limited data. To that end, we used the data of 5 payoff structures and 2 algorithms

MATCH and BRQR (10 games in total) from [Pita et al., 2012] to learn the parameters of the new

SU function and the alternatives. In total, 33 human subjects played these 10 games using the

setting of 8-targets and 3-guards from our on-line game. The parameters that we learnt are:

(w1, w2, w3)=(−9.85, 0.37, 0.15) for the 3-parameter SU function; and (w1, w2, w3, w4, w5) =

(−8.23, 0.28, 0.12, 0.07, 0.09) for the 5-parameter function.

Table 5.1: Prediction Accuracy
QR 3-parameter SUQR 5-parameter SUQR
8% 51% 44%

We ran a Pearson’s chi-squared goodness of fit test [Greenwood and Nikulin, 1996] in all the

100 payoff structures in [Pita et al., 2012] to evaluate the prediction accuracy of the two proposed

models as well as the classic QR model. The test examines whether the predicted distribution of

77

the players’ choices fits the observation. We set λ = .76 for QR model, the same as what was

learned in [Yang et al., 2011]. The percentages of the payoff structures that fit the predictions

of the three models (with statistical significance level of α = 0.05) are displayed in Table 5.1.

The table clearly shows that the new SUQR model (with the SU function in Equation (5.1))

predicts the human behavior more accurately than the classic QR model. In addition, even with

more parameters, the prediction accuracy of the 5-parameter SUQR model does not improve.

Given this result, and our 3-parameter model demonstrated superiority (as we will show in the

Experiments section), we leave efforts to further improve the SUQR model for future work.

5.2 Improving MATCH

Since SUQR better predicts the distribution of the subject’s choices than the classic QR, and

as shown later, SU-BRQR outperforms MATCH, it is natural to investigate the integration of

the subjective utility function into MATCH. In particular, we replace the expected value of the

78

adversary with subjective utility function. Therefore, the adversary’s loss caused by his deviation

from the optimal solution is measured with regard to the subjective utility function.

max
x,h,η,γ

γ (5.4)

s.t.
∑
t∈T

xt ≤ K, 0 ≤ xt ≤ 1, ∀t (5.5)

∑
t∈T

ht = 1, ht ∈ {0, 1} , ∀t (5.6)

0 ≤ η − (w1xt + w2R
a
t + w3P

a
t) ≤M(1− ht) (5.7)

γ − (xtR
d
t + (1− xt)P dt) ≤M(1− ht) (5.8)

γ − (xtR
d
t + (1− xt)P dt) ≤

β · (η − (w1xt + w2R
a
t + w3P

a
t)), ∀t (5.9)

We refer to this modified version as SU-MATCH, which is shown in Equation (5.4)-(5.9)

where ht represents the adversary’s target choice, η represents the maximum subjective utility for

the adversary, γ represents the expected value for the defender if the adversary responds optimally

and M is a large constant.

Constraint (5.7) finds the optimal strategy (target) for the adversary. In constraint (5.8), the

defender’s expected value is computed when the attacker chooses his optimal strategy. The key

idea of SU-MATCH is in constraint (5.9). It guarantees that the loss of the defender’s expected

value caused by adversary’s deviation is no more than a factor of β times the loss of the adver-

sary’s subjective utility.

79

5.2.1 Selecting β for MATCH:

In MATCH, the parameter β is the key that decides how much the defender is willing to lose if

the adversary deviates from his optimal strategy. Pita et al. set β to 1.0, leaving its optimization

for future work. In this section, we propose a method to estimate β based on the SUQR model.

1 Initialize γ∗ ← −∞;
2 for i = 1 to N do
3 β ← Sample([0,MaxBeta], i), x← MATCH(β);
4 γ ←∑

t qtU
d
t ;

5 if γ ≥ γ∗ then
6 γ∗ ← γ, β∗ ← β;
7 end
8 end
9 return (β∗, γ∗);

In this method,N values of β are uniformly sampled within the range (0, MaxBeta). For each

sampled value of β, the optimal strategy x for the defender is computed using MATCH. Given

this mixed strategy x, the defender’s expected value, γ, is computed assuming that the adversary

will respond stochastically according to the SUQR model. The β leading to the highest defender

expected value is chosen. In practice, we set MaxBeta to 5, to provide an effective bound on

the defender loss, given that penalties/rewards of both players range from -10 to 10; and N to

100, which gives a grid size of 0.05 for β for the range of (0, 5). We refer to the algorithm with

carefully selected β as MATCHBeta.

5.3 Experimental Results

In this section, I present the experiment results on comparing the MATCH algorithm (and its

extended versions) with the SU-BRQR algorithm. We leave the comparison between SUQR

model and QRRU model 4.1.3 for future work.

80

5.3.1 Results with AMT Workers, 8-target Games

Our first experiment compares SU-BRQR against MATCH and its improvements, in the setting

where we learned the parameters of the SUQR model, i.e., the 8-target and 3-guard game with the

AMT workers. In this 8-target game setting, for each game, our reported average is over at least 45

human subjects. The experiments were conducted on the AMT system. When two algorithms are

compared, we ensured that identical human subjects played both on the same payoff structures.

Participants were paid a base amount of US $1.00. In addition, each participant was given a

bonus based on their performance in the games to motivate them. Similar to [Pita et al., 2012]’s

work, we ensured that players were not choosing targets arbitrarily by having each participant

play two extra trivial games (i.e., games in which there is a target with the highest adversary

reward and lowest adversary penalty and lowest defender coverage probability). Players’ results

were removed if they did not choose that target.

We generated the payoff structures based on covariance games in GAMUT [Nudelman et al.,

2004]. In covariance games, we can adjust the covariance value r ∈ [−1, 1] to control the correla-

tion between rewards of players. We first generate 1000 payoff structures with r ranging from -1

to 0 by 0.1 increments (100 payoff structures per value of r). Then, for each of the 11 r values, we

select 2 payoff structures ensuring that the strategies generated by each candidate algorithm (e.g.,

SU-BRQR and versions of MATCH) are not similar to each. One of these two has the maximum

and the other has the median sum of 1-norm distances between defender strategies generated by

each pair of the algorithms. This leads to a total of 22 payoff structures. By selecting the payoffs

in this way, we explore payoff structures with different levels of the 1-norm distance between

generated strategies so as to obtain accurate evaluations with regard to performance of the tested

81

SU-BRQR Draw MATCH
α = .05 13 8 1

Table 5.2: SU-BRQR vs MATCH, AMT workers, 8 targets
algorithms. We evaluate the statistical significance of our results using the bootstrap-t method

[Wilcox, 2003].

5.3.2 SU-BRQR vs MATCH

This section evaluates the impact of the new subjective utility function via a head-to-head com-

parison between SU-BRQR and MATCH. In this initial test, the β parameter of MATCH was

set to 1.0 as in [Pita et al., 2012]. Figure 5.3.2a shows all available comparison results for com-

pleteness. More specifically, we show the histogram of the difference between SU-BRQR and

MATCH in the average defender expected reward over all the choices of the participants. The

x-axis shows the range of this difference in each bin and the y-axis displays the number of payoff

structures (out of 22) that belong to each bin. For example, in the third bin from the left, the

average defender expected value achieved by SU-BRQR is larger than that achieved by MATCH,

and the difference ranges from 0 to 0.4. There are 8 payoffs that fall into this category. Overall,

SU-BRQR achieves a higher average expected defender reward than MATCH in the 16 out of the

22 payoff structures.

82

In Figure 5.3.2b, the second column shows the number of payoffs where SU-BRQR outper-

forms MATCH with statistical significance (α = .05). The number of payoff structures where

MATCH is better than SU-BRQR with statistical significance is shown in the fourth column. In

the 22 payoff structures, SU-BRQR outperforms MATCH 13 times with statistical significance

while MATCH defeats SU-BRQR only once; in the remaining 8 cases, no statistical significance

is obtained either way. This result stands in stark contrast to [Pita et al., 2012]’s result and directly

answers the question we posed at the beginning of this paper: there is indeed value to integrating

models of human decision making in computing defender strategies in SSGs, but use of SUQR

rather than traditional QR models is crucial. Furthermore, we ran the Person’s chi-square good-

ness of fit test to evaluate the predication accuracy of the SUQR model and the traditional QR

model, similar to that in Section 5.1. In all the 44 games (22 payoffs with 2 strategies for each),

20 games fit the predication of the SUQR model while only 7 games fit the prediction of the QR

model.

5.3.3 SU-BRQR vs Improved MATCH

In Table 5.3, we compare MATCH and SU-BRQR against the three improved versions of MATCH:

SU-MATCH, MATCHBeta, and SU-MATCHBeta (i.e., MATCH with both the subjective utility

function and the selected β) when playing our 22 selected payoff structures. We report the results

that hold with statistical significance (α = .05). The first number in each cell in Table 5.3 shows

the number of payoffs (out of 22) where the row algorithm obtains a higher average defender

expected reward than the column algorithm; the second number shows where the column algo-

rithm outperforms the row algorithm. For example, the second row and second column shows

83

Table 5.3: Performance comparison, α = .05
SU-MATCH MATCHBeta SU-MATCHBeta

MATCH 3, 11 1, 6 1, 8
SU-BRQR 8, 2 8, 2 5, 3

that MATCH outperforms SU-MATCH in 3 payoff structures with statistical significance while

SU-MATCH defeats MATCH in 11.

Table 5.3 shows that the newer versions of MATCH achieve a significant improvement over

MATCH. Additionally, SU-BRQR retains a significant advantage over both SU-MATCH and

MATCHBeta. For example, SU-BRQR defeats SU-MATCH in 8 out of the 22 payoff structures

with statistical significance, as shown in Table 5.3; in contrast, SU-MATCH is better than SU-

BRQR only twice.

Although SU-BRQR in this case does not outperform SU-MATCHBeta to the extent it does

against MATCH (i.e., SU-BRQR performs better than SU-MATCHBeta only 5 times with statis-

tical significance while SU-MATCHBeta is better than SU-BRQR thrice (Table 5.3)), SU-BRQR

remains the algorithm of choice for the following reasons: (a) SU-BRQR does perform better

than SU-MATCHBeta in more cases with statistical significance; (b) selecting the β parameters

in SU-MATCHBeta can be a significant computational overhead for large games given that it

requires testing many values of β. Thus, we could just prefer SU-BRQR .

5.3.4 Results with New Experimental Scenarios

All previous experiments are based on the 8-target and 3-guards game, which were motivated by

the LAX security scenario. In addition, the games have been played by AMT workers or college

students. To evaluate the performance of the SUQR model in new scenarios, we introduce two

new experimental settings: in one the experiments are conducted against a new type of human

84

SU-BRQR Draw MATCH
α = .05 6 13 3

Table 5.4: SU-BRQR vs MATCH, security experts

adversary, i.e., security intelligence experts; and in the other, we change the game to 24 targets

and 9 guards.

5.3.4.1 Security Intelligence Experts, 8-target games

In this section, we evaluate our algorithm with security intelligence experts who serve in the best

Israeli Intelligence Corps unit or are alumna of that unit. Our purpose is to examine whether

SU-BRQR will work when we so radically change the subject population to security experts.

We use the same 22 payoff structures and the same subjective utility function as in the previous

experiment with AMT workers. Each result below is averaged over decisions of 27 experts.

5.3.4.2 SU-BRQR vs DOBSS

DOBSS performed poorly in 8-target games against AMT workers, as shown in Chapter 4. How-

ever, would DOBSS perform better in comparison to SU-BRQR against security experts? Our

results show that SU-BRQR is better than DOBSS in all 22 tested payoff structures; 19 times

with statistical significance. Thus, even these experts did not respond optimally (as anticipated

by DOBSS) against the defender’s strategies.

5.3.4.3 SU-BRQR vs MATCH

Figure 5.3.4.3a shows that SU-BRQR obtains a higher expected defender reward than MATCH in

11 payoff structures against our experts. Furthermore, SU-BRQR performs better than MATCH

in 6 payoff structures with statistical significance while MATCH is better than SU-BRQR only

85

in 3 payoff structures with statistical significance (Figure 5.3.4.3b). These results still favor SU-

BRQR over MATCH, although not as much as when playing against AMT workers (as in Figure

5.3.2).

Nonetheless, what is crucially shown in this section is that changing the subject population to

security experts does not undermine SU-BRQR completely; in fact, despite using the data from

AMT workers, SU-BRQR is still able to perform better than MATCH. We re-estimate the param-

eters (w1, w2, w3) of the SU function using the data of experts. The result is: w1 = −11.0, w2 =

0.54, and w3 = 0.35. This result shows that while the experts evaluated all the criteria differently

from the AMT workers they gave the same importance level to the three parameters. Because of

limited access to experts, we could not conduct experiments with these re-estimated parameters;

we will show the impact of such re-estimation in our next experimental setting.

5.3.5 Bounded Rationality of Human Adversaries

We now compare the AMT workers and security experts using the traditional metric of “ratio-

nality level” of the QR model. To that end, we revert to the QR-model with the expected value

function to measure how close these players are to perfect rationality. In particular, we use QR’s

λ parameter as a criterion to measure their rationality. We use all the data from AMT workers

86

as well as experts on the chosen 22 games in previous experiments to learn the λ parameter. We

get λ = 0.77 with AMT workers and λ = 0.91 with experts. This result implies that security

intelligence experts tend to be more rational than AMT workers (the higher the λ, the closer the

players are to perfect rationality). Indeed, in 34 of 44 games, experts obtains a higher expected

value than AMT workers. Out of these, their expected value is higher than AMT workers 9 times

while AMT workers’ is higher only once with statistical significance (α = .05). Nonetheless, the

lambda for experts of 0.91 suggests that the experts do not play with perfect rationality (perfect

rational λ =∞).

5.3.6 AMT Workers, 24-target Games

In this section, we focus on examining the performance of the algorithms in large games, i.e.,

24 targets and 9 defender resources. We expect that the human adversaries may change their

behaviors because of tedious evaluation of risk and benefit for each target. Three algorithms

were tested: SU-BRQR, MATCH, and DOBSS. We first run experiments with the new subjective

utility function learned previously using the data of the 8-target game.

5.3.6.1 SU-BRQR vs MATCH with Parameters Learned from the 8-target Games

Figure 5.3.6.1a shows that SU-BRQR obtains a higher average defender expected value than

MATCH in 14 out of 22 payoff structures while MATCH is better than SU-BRQR in 8 payoff

structures. These averages are reported over 45 subjects. In addition, as can be seen in Fig-

ure 5.3.6.1b, SU-BRQR performs better than MATCH with statistical significance 8 times while

MATCH outperforms SU-BRQR 3 times. While SU-BRQR does perform better than MATCH,

its superiority over MATCH is not as much as it was in previous 8-target games.

87

SU-BRQR Draw MATCH
α = .05 8 11 3

Table 5.5: SU-BRQR vs MATCH, 24 targets, original

We can hypothesize based on these results that the learned parameters of the 8-target games do

not predict human behaviors as well in the 24-target games. Therefore, we re-estimate the values

of the parameters of the subjective utility function using the data of the previous experiment in

the 24-target games. The training data contains 388 data points. This re-estimating results in

w1 = −15.29, w2 = .53, w3 = .34. Similar to the experts case, the weights in 24-target games

are different from the ones in 8-target games but their order of importance is the same.

5.3.6.2 SU-BRQR vs DOBSS with Re-estimated Parameters

Since DOBSS has not been tested in the 24-target setting, we test it as a baseline. SU-BRQR

outperforms DOBSS with statistical significance in all 22 tested payoff structures illustrating the

superiority of SU-BRQR over a perfectly rational baseline.

5.3.6.3 SU-BRQR vs MATCH with Re-estimated Parameters

In this experiment, we evaluate the impact of the new subjective utility function with the re-

estimated parameters on the performance of SU-BRQR in comparison with MATCH.

88

SU-BRQR Draw MATCH
α = .05 11 10 1

Table 5.6: SU-BRQR vs MATCH, 24 targets, re-estimated

Figure 5.3.6.3a shows that SU-BRQR outperforms MATCH in 18 payoff structures while

MATCH wins SU-BRQR in only 4 payoff structures. Moreover, it can be seen in Figure 5.3.6.3b

that SU-BRQR defeats MATCH with statistic significance 11 times while MATCH defeats SU-

BRQR only once with statistical significance. In other words, the new weights of the subjective

utility function indeed help improve the performance of SU-BRQR . This result demonstrates that

a more accurate SU function can help improve SU-BRQR’s performance.

89

Chapter 6: Modeling Human Adversaries in Network Security

Games

In this chapter, I initiate the study of human behavior models of adversaries in network security

games, as well as the problem of designing defender strategies against such human adversaries.

Many real-world security domains have structure that is naturally modeled as graphs. For ex-

ample, in response to the devastating terrorist attacks in 2008 [Chandran and Beitchman, 2008],

Mumbai police deployed randomized checkpoints as one countermeasure to prevent future attacks

([Ali, 2009]). This can be modeled as a network security game ([Washburn and Wood, 1995; Tsai

et al., 2010; Jain et al., 2011a]), a Stackelberg game on a graph with intersections as nodes and

roads as edges, where certain nodes are targets for attacks. The defender (as the leader) can

schedule randomized checkpoints on edges of the graph. The attacker (as the follower) chooses

a path on the graph ending at one of the targets.

A common assumption of these previous studies is that the attacker is perfectly rational (i.e.

chooses a strategy that maximizes their expected utility). This is a reasonable proxy for the worst

case of a highly intelligent attacker, but it can lead to a defense strategy that is not robust against

attackers using different decision procedures, and it fails to exploit known weaknesses in the

decision-making of human attackers. In previous chapters, we have considered security domains

90

where the human adversaries choose from a set of given targets, in a network security game the

human attacker faces a more complex decision: that of choosing a path in a graph. On one hand,

the rationality assumption is even more problematic here; on the other hand, the existing behavior

models do not explicitly consider the specific graphical structure of this domain. For modeling

human path planning in continuous terrains, Burgess and Darken ([Burgess and Darken, 2004])

proposed a fluid-simulation based model; however, their model is less applicable to our domain

in which the choices are discrete.

In this chapter, I present the first systematic study of human behavior models applied to

network security games. After formerly defining the problem in Section 6.1, I consider two

behavior models for attackers in Section 6.2. First, I adapt the quantal response model to network

security games. The second model, which I call quantal response with heuristics , is motivated

by studies showing that humans rely on heuristics to address complex decision problems (e.g.,

[Gigerenzer et al., 1999]). Then in Section 6.3, I describe how the model parameters are estimated

using data collected through a web-based game that I develop to simulate the decision tasks faced

by the attacker. It then follows by Section 6.4, where I explain how to compute defender strategies

that optimize defender utility against each of these behavior models of the attackers. Finally, in

Section 6.3, I compare the performance of these strategies in a subsequent set of experiments on

Amazon Mechanical Turk.

6.1 Problem Definition

We model a network security domain, similar to that introduced by Tsai et al [Tsai et al., 2010].

We use the following notation to describe the game, which are also listed in Table 9.1. The game

91

is played on a graph G = (V,E). The attacker starts at one of the source nodes s ∈ S ⊂ V

and travels along a path chosen by him to get to one of the target nodes t ∈ T ⊂ V . The

attacker’s set of pure strategiesA then consists of all the possible paths from some s ∈ S to some

t ∈ T , which we denote A1, . . . , A|A| ⊂ E. Meanwhile, the defender tries to catch the attacker

by setting up check points on the passing edges before the attacker reaches the target. Let M

be the total number of security resources, meaning the defender could then set up at most M

simultaneous check points in the network. Thus the set of defender’s pure strategies D consists

of all subsets of E with at most M elements, which we denote D1, . . . , D|D|. If the attacker

chooses a path which has at leat one edge covered by the defender, then the attacker gets caught

and receives a penalty, and the defender receives a reward for catching the attacker; otherwise,

the attacker receives a reward for successfully attacking the target and the defender receives a

penalty. Formally, assuming the defender plays an allocation Di, and the attacker chooses a path

Aj , the attacker succeeds if and only if Di ∩Aj = ∅.

The game was assumed to be zero-sum in earlier work [Tsai et al., 2010; Jain et al., 2011a].

In this paper, we relax this assumption to consider a more general class of games. Specifically,

successful attacks might lead to different rewards to the attackers since different targets might

be of different values to the attackers. Meanwhile, catching the attacker on different paths might

give different rewards to the defender. We use Raj to denote the rewards received by attacker for

a successful attack through path Aj , and P dj to denote the penalty received by the defender. If

the attacker gets caught on path Aj , we denote his penalty by P aj and the reward received by the

defender by Rdj . Furthermore, we make the natural assumption that Rai > P ai and Rdi > P di ,

∀i ∈ {1, . . . , |A|}. Taking everything together, we define a network security game Γ as the tuple

(G,S, T,M, {Rdi }, {P di }, {Rai }, {P ai }).

92

Table 6.1: Notations used in this paper
(V,E) Network game graph
M Total number of defender resources
A Set of attacker paths, A = {Ai}
Ai ith attacker path
Rai Reward for attacker for a successful attack through path Ai

P ai Penalty for attacker if he gets caught on path Ai

Rdi Reward for defender for catching attacker on path Ai

P di Penalty for defender for a successful attack through path Ai

D Set of defender allocations (strategies), D = {Dj}
Dj jth defender allocation
Γ A network security game
xe Probability that edge e will be covered by a resource

The attacker conducts surveillance to learn about the defender’s strategy, so it is important for

the defender to randomize her strategy to avoid exploitable patterns. In other words, the defender

has to commit to a distribution over her pure strategies. We use xe to denote the probability that

an edge e ∈ E will be covered by the defender and x = 〈xe, ∀e ∈ E〉 to denote the vector

of marginal probabilities of covering each of the edges in the graph. In general, if the attacker

chooses path Ai the probability that he will be captured (denoted pi) is the probability that at

least one edge on the path Ai is covered by the defender, which is not completely specified by

the marginals x. Tsai et al [Tsai et al., 2010] showed that given x, the sum of marginals on the

edges of the path
∑

e∈Ai xe is an upper bound of pi, and this upper bound can be reached if the

defender can ensure that in each pure strategy Dj played with positive probability, only one edge

on the path Ai is covered. Tsai et al [Tsai et al., 2010] proposed algorithms that sample defender

pure strategies from x, however such techniques are not guaranteed to reach this upper bound in

all cases. In this paper, we make the simplifying assumption that the total amount of defender

resources M is equal to 1, which is consistent with our focus on small graphs. Then since at most

93

one edge of the graph will be covered in any pure strategy Dj , we have pi ≡ pi(x) =
∑

e∈Ai xe

for all i. Then we can write the expected utility of the defender if attacker chooses path Ai as

Udi (x; Γ) = pi(x)Rdi + (1− pi(x))P di (6.1)

and the expected utility for the attacker if he chooses Ai as

Uai (x; Γ) = (1− pi(x))Rai + pi(x)P ai (6.2)

Let qi(x; Γ) denote the probability that attacker chooses pathAi, given the defender’s marginal

coverage on all the edges x. The optimal strategy for the defender is to maximize the average ex-

pected utility:

max
x

∑
Ai∈A

qi(x; Γ)Udi (x; Γ) (6.3)

It is thus important for the defender to accurately model the attacker’s response to her strategy,

i.e., qi(x; Γ) for all i.

We assume that the attacker can observeM (which is equal to 1), as well as the the defender’s

marginal coverage on all the edges x. A fully rational attacker would be able to deduce that pi =∑
e∈Ai xe for all i and choose a path that maximizes his expected utility: i∗ = arg maxi U

a
i (x; Γ).

However in real-world security problems, we are facing human attackers who may not respond

optimally. The goal of this paper is to explore models that can better predict the behavior of

human attackers.

6.2 Adversary Model

In this section, we propose several models of how a human attacker responds to the defender’s

strategy.

94

6.2.1 Basic Quantal Response Model

In our first model the attacker’s mixed strategy is a quantal response (QR) to the defender’s

strategy. Under this QR model, given a graph game Γ and a defender’s strategy x, the probability

that the adversary is going to choose path Ai is

QR : qi(λ | x; Γ) =
eλU

a
i (x;Γ)∑

Ak∈A e
λUak (x;Γ)

(6.4)

where λ > 0 is the parameter of the quantal response model, which represents the error level

of adversary’s quantal response. When λ = 0, the adversary chooses each path with equal

probability; when λ =∞, the adversary becomes fully rational and only selects the paths which

give him the maximum expected utility. It is shown in many empirical studies that λ usually takes

a positive finite value.

6.2.2 Quantal Response with Heuristics

In a network security game Γ, in order to evaluate the expected utility of a path Ai, Uai (x; Γ),

the attacker has to compute pi, which requires reasoning about a sequence of random events,

i.e., whether or not each edge on the path will be covered by the defender. Even in our sim-

plified games in which M = 1 and thus a perfectly-rational attacker can compute pi as the sum∑
e∈Ai xe, Computing this probability can be more difficult for bounded-rational human attackers

who might not know this formula. Instead, the adversary might use simple heuristics to evaluate

the “utility” of each path.

We propose the following model of the attacker’s behavior which we call Quantal Response

with Heuristics (QRH):

QRH : hi(µ | x; Γ) =
eµ·fi(x)∑

Ak∈A e
µ·fk(x)

(6.5)

95

Table 6.2: Lists of Path Features
fi1(x) :=

∑
e∈E Aie Number of edges

fi2(x) := maxe∈Ai xe Minimum edge coverage
fi3(x) := mine∈Ai xe Maximum edge coverage
fi4(x) :=

∑
e∈Ai xe Summation of edge coverage

fi5(x) := fi4(x)/fi1((x)) Average edge coverage

where µ = 〈µ1, ..., µm〉 is a vector of coefficients of the model and given x, fi(x) = 〈fi1(x), .., fim(x)〉

is a vector of m features for path Ai that influences the attacker’s decision making.

We observe that under both QR and QRH models the attacker’s mixed strategy belongs to the

exponential family of distributions widely used in statistical learning. The form of the QRH model

is more general than QR: it allows linear combinations of multiple features, and furthermore

fij(x) can be any function, including the attacker’s expected utility Uai (x; Γ) used in the QR

model. On the other hand, since our focus for the QRH model is on simple heuristics, we use

a set of five features that are easy to compute for humans and thus could be used as basis for

heuristics. These features are listed in Table 6.2.

6.3 Model Parameter Estimation

6.3.1 Data Collection

In order to estimate the values of the parameters of our models, we first need data on how humans

behave when faced with the kind of decision tasks the attacker faces. We developed a web-based

game which simulates the decision tasks faced by the attacker in network security games, and

collected data on how human subjects play the game by posting the game as a Human Intelligent

Task (HIT) on Amazon Mechanical Turk (AMT).1

1https://www.mturk.com

96

Figure 6.1: Game Interface (colored)

Figure 6.1 displays the interface of the game. Players were introduced to the game through a

series of explanatory screens describing how the game is played. In the game, the web interface

presents a graph to the subjects and specifies the source(starting) nodes and the target nodes in

the graph. The subjects are asked to select a path from one of the source nodes to one of the target

nodes. They are also told that the defender is trying to catch them by setting up checkpoints on

the edges. The probability that there will be a check point on each edge is given to the subjects,

as well as the reward for successfully getting through the path and the penalty for being caught by

the defender. Thus each instance of this game can be specified by a network security game and a

defender strategy. Formally, we define a game sample as g = (Γ, x), where Γ is a network security

game and x is a defender strategy. Each human subject plays multiple rounds in sequence, each

corresponding to a different game sample. In each game round, after a subject selects a path in the

97

Graph 1 Graph 2 Graph 3

Figure 6.2: Graphs Tested in Data Collection

network, the edges that will be covered by the defender is sampled according to the probability

shown in the figure. Subjects get a positive score if they successfully get through the path and a

negative score if they select a path which has edges covered by the defender. In order to mitigate

learning effects, subjects were not told of the result of each game round until they finish all game

rounds. Each subject receives 0.5$ for participating in the experiments, and is paid 0.01$ bonus

for each point they earn. In our experiments subjects earned 1.1$ bonus on average.

We conducted a first set of experiments on three simple graphs, shown in Figure 6.2. Since

the purpose of this set of experiments is to collect data to train our models, we want to use a wide

variety of defender strategies. We first randomly generated 1000 different defender strategies

for each graph. We then used k-means clustering to classify these random strategies into K

clusters. The centers of the clusters are selected as the representative strategies and used in the

experiments. We selected 10 strategies for Graph 1, 10 strategies for Graph 2 and 20 strategies

for Graph 3; details on the strategies can be found at an online appendix.2 In total, we tested 40

different game samples, each of which are played by 40 different subjects.
2http://anon-aamas2012-paper826.webs.com/

98

6.3.2 Training the QR Model

We first train the basic quantal response model, QR, using the data collected in the experiment

described in Section 6.3.1. We use Maximum Likelihood Estimation (MLE) to tune the parameter

λ.

Given the choices of N subjects, with τ(n) denoting the path chosen by player n, the log-

likelihood of λ on game sample g is

logLQR(λ | g) =
∑

n=1..N

log qτ(n)(λ | x; Γ)

Let Ni be the number of subjects attacking target i. Then,

logLQR(λ | g) =
∑
Ai∈A

Ni log qi(λ | x; Γ)

Combining with Equation (6.4),

logLQR(λ | g) = λ
∑
Ai∈A

NiU
a
i (x)−N log(

∑
Ai∈A

eλU
a
i (x)) (6.6)

We train the model by maximizing the total log-likelihood of all the 40 game samples

max
λ

∑
g∈S

logLQR(λ | g) (6.7)

where S denotes the set of all 40 game samples. It is relatively straightforward to verify that

the second order derivative of logLQR(λ | g) is always nonpositive. Thus logLQR(λ | g) is a

concave function in λ for all g. Therefore, the total log-likelihood of Equation 6.7 is concave and

we can apply any local optimization solver (we used Matlab’s fmincon solver). The maximum-

likelihood estimate of λ based on the data is 0.34.

99

6.3.3 Training the QRH Model

In training the QRH model, we need to first decide which subset of the 5 features from Table 6.2 to

use in the model, and then train the model for the selected features. Although in general the more

features we select the better the fit will be, taking the set of all features can result in over-fitting.

This feature selection problem is well-studied in statistics and machine learning, and techniques

such as L1-regularized regression methods were proposed to introduce bias towards smaller sets

of features. In this paper we apply a simple form of bias: we consider only subsets of features of

sizes 1 and 2. We then select the top-performing subsets of size 1 and the top-performing subsets

of size 2. Specifically, for each L ∈ {1, 2}, we do the following:

1. For each of the
(

5
L

)
possible subsets of size L, we train a QRH model using this subset of

features using MLE;

2. We compare the models using 2-fold cross validation, and pick the top two feature combi-

nations.

Since we are only selecting from 5 features, we only have to evaluate a small number of models.

In future work we plan to explore more sophisticated feature-selection techniques, which would

allow us to select from a large set of possible features.

In order to apply 2-fold cross validation, we first randomly divided all the 40 game samples

into two equal-sized sets, S1 and S2. We conducted two rounds of training, one using S1 and

the other using S2. In each round of training, the model is trained by maximizing the total log-

likelihood of the game samples in the training set:

max
µ

∑
g∈Strain

logLQRH(µ | g), (6.8)

100

where Strain ∈ {S1,S2} is the training set, and logLQRH(µ | g) is the log-likelihood of QRH

model of game sample g, derived similarly as logLQR(λ | g):

logLQRH(µ | g) = µ · (
∑
Ai∈A

Nifi(x))−N log(
∑
Ai∈A

eµ·fi(x)). (6.9)

We can show that logLQRH(µ | g) is a concave function in µ, since the Hessian matrix is negative

definite. Therefore, it can be solved use any local optimization solver.

features Train on S1 Train on S2 Total
training testing training testing testing

1 -707.2 -672 -636.8 -744.4 -1416.4
2 -693.6 -666 -658 -702 -1368
3 -636 -580.4 -573.6 -642.8 -1223.2
4 -677.2 -723.6 -710 -690.8 -1414.4
5 -667.6 -618.4 -606.4 -680.4 -1298.8
Uai -645.6 -689.6 -682.8 -652.4 -1342

Table 6.3: Fit (logL) of model QRH using single feature

features Train on S1 Train on S2 Total
training testing training testing testing

(1,2) -693.2 -672 -635.2 -734.4 -1406.4
(1,3) -630.4 -594.4 -570 -657.2 -1251.6
(1,4) -603.6 -602 -573.6 -636 -1238
(1,5) -648.8 -638.4 -606 -684.4 -1322.8
(2,3) -636 -582.8 -572.4 -656.8 -1239.6
(2,4) -631.6 -655.2 -638 -649.6 -1304.8
(2,5) -643.6 -581.2 -566.4 -660.8 -1242
(3,4) -616 -601.6 -573.6 -644 -1245.6
(3,5) -636 -581.2 -571.2 -646.8 -1228
(4,5) -610.4 -615.6 -592.4 -635.6 -1251.2

Table 6.4: Fit of model QRH using two features

Given a combination of the features fi, let µ1 and µ2 be the training results on S1 and S2,

respectively. We measure the model fit of fi as the sum of the log-likelihoods of S2 under the

model for µ1 and S1 under the model for µ2:

Fit(fi) =
∑
g∈S2

logLQRH(µ1 | g) +
∑
g∈S2

logLQRH(µ2 | g) (6.10)

101

Table 6.3 displays the fit results for single features. For comparison, we also conduct the MLE

training with 2-fold cross validation for the QR model and list the fitting result on the last row

in Table 6.3. Over all, feature 3 (maximum edge coverage) achieves the best fitting performance,

which is also better than the QR model. Additionally, feature 5 (average edge coverage) also

achieves better fitting performance than the QR model. Table 6.4 displays the fit result with two

features. The best two combinations are (1, 4) and (3, 4).

features parameter value
3 -9.95
5 -6.26
(1,4) (1.04, -10.60)
(3,4) (-9.67, -1.95)

Table 6.5: Number of strategies tested

Based on the 2-fold cross validation results, we selected four candidate feature combinations

for the QRH model: feature 3, feature 5, feature 1 + feature 4, feature 3 + feature 4. We then

tuned the model parameters for these candidates by training on the whole data set S. The final

values for the parameters are listed in Table 6.5.

6.4 Computing Defender Resource Allocation Strategy

In this section, we describe how we compute optimal defender strategies against different models

of attackers.

102

6.4.1 Best Response to QR model

Given a QR model of the adversary, the defender’s expected utility by playing strategy x in a

network security game Γ is: ∑
Ai∈A

qi(λ | x; Γ)Udi (x; Γ). (6.11)

Combining with Equation (6.1) we have the following optimization problem to compute the de-

fender’s optimal strategy against a QR model of the adversary:

max
x,p

∑
Ai∈A e

λRai e−λ(Rai−Pai)pi((Rdi − P di)pi + P di)∑
Ai∈A e

λRai e−λ(Rai−Pai)pi
(6.12)

s.t.
∑
e∈E

xe ≤M (6.13)

pi =
∑
e∈Ai

xe, ∀Ai ∈ A (6.14)

0 ≤ xe ≤ 1, ∀e ∈ E (6.15)

where λ = 0.34 as learned from the data. Since the defender is assumed to have only one

resource, Constraint (6.14) ensures that pi is the probability that path Ai will be covered by the

defender. The objective function, Equation (6.12), is a nonlinear fractional function, thus is not

guaranteed to be concave. We use a heuristic algorithm based on local optimization with random

restarts, described in Algorithm 4. The algorithm generates a new starting point in each iteration

and (at Line 5) calls FindLocalMaximum to find a locally optimal solution of (6.12). The best

local optimal solution is returned in the end. We used Matlab’s fmincon as the local optimizer.

103

Algorithm 3: Local Search with Random Multi-Restart

1 Input: IterN ;
2 optg ← −∞;
3 for i← 1, ..., IterN do
4 x0 ← randomly generated feasible starting point;
5 (optl, x

∗)← FindLocalMaximum(x0);
6 if optl > optg then
7 optg ← optl, xopt ← x∗

8 end
9 end

10 return optg, xopt;

6.4.2 Best Response to QRH model

In this section, we explain our approach for computing an optimal defender strategy against a

QRH model given any combination of features fi(x) and the corresponding feature coefficients

µ.

Given a network security game Γ and the defender’s strategy x, the probability that the at-

tacker will select pathAi is hi(µ | x; Γ) as: defined by Equation 6.5. Then the defender’s expected

utility can be written as ∑
AiıA

hi(µ | x; Γ)Udi (x; Γ).

Therefore we can formulate the defender’s optimal strategy as the solution of the following opti-

mization problem:

max
x,p

∑
Ai∈A e

µ·fi(x)((Rdi − P di)pi + P di)∑
Ai∈A e

µ·fi(x)
(6.16)

s.t.
∑
e∈E

xe ≤M (6.17)

pi =
∑
e∈Ai

xe, ∀Ai ∈ A (6.18)

0 ≤ xe ≤ 1, ∀e ∈ E (6.19)

104

where fi(x) is a subset of the features described in Table 6.2. Again, the objective function (6.16)

is a nonlinear fractional function, so is not guaranteed to be concave. Nevertheless we can apply

Algorithm 4, with FindLocalMaximum to find a locally optimal solution of (6.16).

6.5 Experiment Results

In this section, we evaluate the performance of different models in network security games. We

use the same web-based game that we introduced in Section 6.3.1 to set up the experiments with

human subjects. Different from the first set of experiments, where we intended to collect data on

how humans play the game in order to train the model, the goal of this new set of experiments is

to use the defender strategies computed from the different models to play against human subjects

in order to compare the performance of these models.

6.5.1 Experiment Settings

Fig. 6.1 shows the interface of the web-based game we developed. We have provided details on

the game rules in Section 6.3.1. We now focus on describing the game instances that are included

in these experiments.

We tested eight different graph types, including the three graphs used in data collection that

are displayed in Figure 6.2. The other five graphs are displayed in Figure 6.3. Among the eight

graphs, we have four graphs with a single target (graph 1-4) and four graphs with multiple targets

(graph 5-8). The models are trained using the data from single-target graphs, we are interested

to see how they perform in multi-target graphs. For each graph type, we designed two different

105

Uniform Defender covers each edge with equal probability
Maximin Attacker always chooses the worst path for the defender
Rational Attacker maximizes his expected utility
QR quantal response (λ = 0.34)
QRH-1 QRH with maximum edge coverage (µ = −9.95)
QRH-2 QRH with average edge coverage (µ = −6.26)
QRH-3 QRH with number of edges and sum of edge coverage

(µ = 〈1.04,−10.60〉)
QRH-4 QRH with maximum edge coverage and sum of edge cov-

erage (µ = 〈−9.67,−1.95〉)

Table 6.6: Attacker Models Tested Evaluated

sets of payoffs (i.e. the reward/penalty for the attacker and the defender on each path)3. There-

fore, we have a total of 8 ∗ 2 = 16 security games in the experiments. For each of these games,

we computed the defender strategies from eight different models. Table 6.6 lists the eight mod-

els. Therefore, for each game instance, we have eight different defender strategies. In total, we

have 8 ∗ 16 = 128 different game samples (i.e., combinations of security games and defender

strategies). Each of the game samples is played by 40 different subjects.

Graph 4 Graph 5

Graph 6 Graph 7 Graph 8

Figure 6.3: Graphs Tested in Evaluation Experiments

3The details of the payoffs can be found on the online appendix: http://anon-aamas2012-paper826.webs.com/

106

6.5.2 Experiment Results

We evaluate the performance of different defender strategies using the defender’s expected utility.

Given that a subject selects path Ai, the defender’s expected utility is computed with Equation

(6.1).

Average Performance: We first evaluated the average defender expected utility, Udexp(x), of

different defender strategies based on all 40 subjects choices:

Udexp(x) =
1

40

∑
Ai∈A

NiU
d
i (x)

where Ni is the number of subjects that chose path Ai.

Figure 6.4 displays the average performance of the different models in all the single-target

games on the left group of bars, and the average model performances in all the multi-target graphs

on the right group of bars. In both cases, the QR model outperforms the three baseline models

(Uniform, Maximin and Rational). Among the four QRH models, QRH-2 (i.e. using average

edge coverage) and QRH-3 (i.e. using number of edges and sum of edge coverage) outperforms

the three baseline models in both single-target graphs and multi-target graphs. There are two

interesting observations from the figure.

• Between the QR model and the QRH models, we see that in the single-target graphs, none

of the QRH models achieves better performance than the QR model; while in the mutli-

target graphs, all four QRH models outperform QR. This is an unexpected result since the

QRH models are trained on the single-target graph data and do not use features that come

up in the multi-target graphs.

• The rational model did worse in the multi-target graphs than it did in the single-target

graphs, as compared to the QR and QRH models. For the single-target graphs the average

107

defender expected utility achieved by the rational model was closer to that of the QR and

QRH models, and it even outperformed two of the QRH models (QRH-1 and QRH-4).

While in the multi-target graphs, the rational model was significantly outperformed by

both QR and QRH models. This is also an surprising result, since the QR and QRH models

are trained on the single-target graphs and are thus expected to perform better in the singe-

target graphs.

A possible reason for the above two interesting observations is that as the graph becomes more

complex (i.e. more targets and more paths), it becomes more difficult for humans to compute the

actual expected utility of each path so they are more likely to rely on heuristics.

We also show the performance of different models in each graph type: Figures 6.5(a) shows

the average defender expected utility achieved by the eight models in the four single-target graphs;

and 6.5(b) displays the results in the four multi-target graphs. We can see from Figure 6.5(a) that

the rational model was outperformed by the QRH-3 model in all of the four graphs; it was also

outperformed by the QR model in 3 of the 4 graphs except for in graph 2 where the two models

have roughly the same performance. In the multi-target graphs, Figure 6.5(b) shows that the

rational model was outperformed by both the QR and QRH models in three of the four graphs,

except for in graph 7 where all of the models have very similar performances.

Model Fitting Performance: We also evaluated the fitting performance of the five trained

models. Table 6.7 reports the total log-likelihood of different models in the multi-target games

and the single-target games.4 It is clear that the four QRH models achieve much better fitting

performance (i.e. higher log-likelihood) than the QR model. An interesting finding here is that

better fit performance does not necessarily lead to higher defender expected utility. In particular,
4Detailed model fitting results can be found at the online appendix: http://anon-aamas2012-paper826.webs.com.

108

SingleTarget MultiTargets
−2.5

−2

−1.5

−1

−0.5

0

D
ef

en
de

r
E

xp
ec

te
d

U
til

ity

Uniform
Maxmin
Rational
QR
QRH−1
QRH−2
QRH−3
QRH−4

Figure 6.4: Average Defender Expected Utility

Multi-Target Single-Target
(8 game instance) (8 game instance) Total

QR -397.09 -232.04 -629.13
QRH-1 -297.51 -208.27 -505.78
QRH-2 -349.60 -193.31 -542.90
QRH-3 -283.74 -168.43 -452.18
QRH-4 -279.43 -168.03 -447.46

Table 6.7: Fitting Performance: log-likelihood of different models

QRH-4 has the best fitting performance in single-target graphs, but the average defender expected

utility achieved by QRH-4 was much worse than other models except for QRH-1, as shown in

Figure 6.4.

109

Graph1 Graph2 Graph3 Graph4
−5

−4

−3

−2

−1

0

1

D
ef

en
de

r
E

xp
ec

te
d

U
til

ity

Uniform
Maxmin
Rational
QR
QRH−1
QRH−2
QRH−3
QRH−4

(a) Single Target Graphs

Graph5 Graph6 Graph7 Graph8
−5

−4

−3

−2

−1

0

1

D
ef

en
de

r
E

xp
ec

te
d

U
til

ity

Uniform
Maxmin
Rational
QR
QRH−1
QRH−2
QRH−3
QRH−4

(b) Multiple Target Graphs

Figure 6.5: Average Defender Expected Utility

110

Chapter 7: Computing Defender Optimal Strategy

In this chapter, I address the problem of computing optimal defender strategies in real-world se-

curity games against a quantal response model of attackers. The difficulties faced here include (1)

solving a non-convex optimization problem efficiently for massive real-world security games; and

(2) addressing constraints on assigning security resources, which adds to the complexity of com-

puting the optimal defender strategy. I have introduced BRQR in Section 4.2 to compute defender

optimal strategy against a quantal response. BRQR however was not guaranteed to converge to

the optimal solution, as it used a nonlinear solver with multi-starts to obtain an efficient solution

to a non-convex optimization problem. Furthermore, it does not consider resource assignment

constraints that might be involved in my real-world security domains.

This chapter presents two new algorithms to address these difficulties. After formerly defin-

ing the problem in Section 7.1, Section 7.2 introduces the basic idea of using binary search to

iteratively compute the defender optimal strategy against a quantal response model of the adver-

sary. Section 7.3 then presents the GOSAQ algorithm which can compute the globally optimal

defender strategy against a QR model of attackers when there are no resource constraints and

gives an efficient heuristic otherwise. It then follows with Section 7.4, which provides an effi-

cient approximation of the optimal defender strategy with or without resource constraints through

111

the algorithm PASAQ. Finally, Section 7.5 presents detailed experimental results showing the ad-

vantages of GOSAQ and PASAQ in solution quality over the benchmark algorithm (BRQR) and

the efficiency of PASAQ.

7.1 Problem Definition

Assuming a QR-adversary, i.e. with a quantal response 〈qi, i ∈ T 〉 to the defender’s mixed

strategy x = 〈xi, i ∈ T 〉. The value qi is the probability that adversary attacks target i, computed

as

qi(x) =
eλU

a
i (xi)∑

k∈T e
λUak (xk)

(7.1)

where λ ≥ 0 is the parameter of the quantal response model, which represents the error level

in adversary’s quantal response. Simultaneously, the defender maximizes her utility (given her

computer-aided decision making tool):

Ud(x) =
∑
i∈T

qi(x)Udi (xi)

Therefore, in domains without constraints on assigning the resources, the problem of computing

the optimal defender strategy against a QR-adversary can be written in terms of marginals as:

P1:

max
x

∑
i∈T e

λRai e−λ(Rai−Pai)xi((Rdi − P di)xi + P di)∑
i∈T e

λRai e−λ(Rai−Pai)xi

s.t.
∑
i∈T

xi ≤M

0 ≤ xi ≤ 1, ∀i ∈ T

Problem P1 has a polyhedral feasible region and is a non-convex fractional objective function.

112

7.1.1 Resource Assignment Constraint

As I have shown in Section 2.1.3, there could be arbitrary constraints on assigning the security

resources in real world security problems. A resource assignment constraint implies that the

feasible assignment set A is restricted; not all combinatorial assignment of resources to targets

are allowed. Hence, the marginals on targets, x, are also restricted.

In order to compute the defender’s optimal strategies against a QR-adversary in the presence

of resource-assignment constraints, we need to solve P2. The constraints in P1 are modified to

enforce feasibility of the marginal coverage.

P2:

max
x,a

∑
i∈T e

λRai e−λ(Rai−Pai)xi((Rdi − P di)xi + P di)∑
i∈T e

λRai e−λ(Rai−Pai)xi

s.t.
∑
i∈T

xi ≤M

xi =
∑
Aj∈A

ajAij , ∀i ∈ T

∑
Aj∈A

aj = 1

0 ≤ aj ≤ 1, ∀Aj ∈ A

7.2 Binary Search Method

We need to solve P1 and P2 to compute the optimal defender strategy, which requires optimally

solving a non-convex problem which is in general an NP-hard problem [Vavasis, 1995]. In this

section, we describe the basic structure of using a binary search method to solve the two prob-

lems. However, further efforts are required to convert this skeleton into actual efficiently runnable

algorithms. We will fill in the additional details in the next two sections.

113

Table 7.1: Symbols for Targets in SSG
θi := eλR

a
i > 0 βi := λ(Rai − P ai) > 0 αi := Rdi − P di > 0

For notational simplicity, we first define the symbols ∀ i ∈ T in Table 7.1. We then denote

the numerator and denominator of the objective function in P1 and P2 by N(x) and D(x):

• N(x) =
∑

i∈T θiαixie
−βixi +

∑
i∈T θiP

d
i e
−βixi

• D(x) =
∑

i∈T θie
−βixi > 0

The key idea of the binary search method is to iteratively estimate the global optimal value

(p∗) of the fractional objective function of P1, instead of searching for it directly. Let Xf be

the feasible region of P1 (or P2). Given a real value r, we can know whether or not r ≤ p∗ by

checking

∃x ∈Xf , s.t. rD(x)−N(x) ≤ 0 (7.2)

We now justify the correctness of the binary search method to solve any generic fractional

programming problem maxx∈Xf N(x)/D(x) for any functions N(x) and D(x) > 0.

Lemma 1. For any real value r ∈ R, one of the following two conditions holds.

(a) r ≤ p∗⇐⇒ ∃x ∈Xf , s.t., rD(x)−N(x) ≤ 0

(b) r > p∗⇐⇒ ∀x ∈Xf , rD(x)−N(x) > 0

Proof. We only prove (a) as (b) is proven similarly.

‘⇐’: since ∃x such that rD(x) ≤ N(x), this means that r ≤ N(x)
D(x) ≤ p∗;

‘⇒’: Since P1 optimizes a continuous objective over a closed convex set, then there exists

an optimal solution x∗ such that p∗ = N(x∗)
D(x∗) ≥ r which rearranging gives the result. 2

114

Algorithm 4: Binary Search

1 Input: ε, PM and numRes;
2 (U0, L0)← EstimateBounds(PM , numRes);
3 (U,L)← (U0, L0);
4 while U − L ≥ ε do
5 r ← U+L

2 ;
6 (feasible, xr)← CheckFeasibility(r);
7 if feasible then
8 L← r
9 end

10 else
11 U ← r
12 end
13 end
14 return L, xL;

Algorithm 5 describes the basic structure of the binary search method. Given the payoff

matrix (PM) and the total number of security resources (numRes), Algorithm 5 first initializes

the upper bound (U0) and lower bound (L0) of the defender expected utility on Line 2. Then, in

each iteration, r is set to be the mean of U and L. Line 6 checks whether the current r satisfies

Equation (7.2). If so, p∗ ≥ r, the lower-bound of the binary search needs to be increased; in this

case, it also returns a valid strategy xr. Otherwise, p∗ < r, the upper-bound of the binary search

should be decreased. The search continues until the upper-bound and lower-bound are sufficiently

close, i.e. U − L < ε. The number of iterations in Algorithm 5 is bounded by O(log(U0−L0
ε)).

Specifically for SSGs we can estimate the upper and lower bounds as follows:

Lower bound: Let su be any feasible defender strategy. The defender utility based on using

su against a adversary’s quantal response is a lower bound of the optimal solution of P1. A

simple example of su is the uniform strategy.

115

Upper bound: Since P di ≤ Udi ≤ Rdi we have Udi ≤ maxi∈T R
d
i . The defender’s utility is

computed as
∑

i∈T qiU
d
i , where Udi is the defender utility on target i and qi is the probability that

the adversary attacks target i. Thus, the maximum Rdi serves as an upper bound of Udi .

We now turn to feasibility checking, which is performed in Step 6 in Algorithm 5. Given a

real number r ∈ R, in order to check whether Equation (7.2) is satisfied, we introduce CF-OPT.

CF-OPT: min
x∈Xf

rD(x)−N(x)

Let δ∗ be the optimal objective function of the above optimization problem. If δ∗ ≤ 0,

Equation (7.2) must be true. Therefore, by solving the new optimization problem and checking

if δ∗ ≤ 0, we can answer if a given r is larger or smaller than the global maximum. However,

the objective function in CF-OPT is still non-convex, therefore, solving it directly is still a hard

problem. We introduce two methods to address this in the next two sections.

7.3 GOSAQ

We now present Global Optimal Strategy Against Quantal response (GOSAQ), which adapts Al-

gorithm 5 to efficiently solve problems P1 and P2. It does so through the following nonlinear

invertible change of variables:

yi = e−βixi ,∀i ∈ T (7.3)

116

7.3.1 GOSAQ with No Assignment Constraint

We first focus on applying GOSAQ to solve P1 for problems with no resource assignment con-

straints. Here, GOSAQ uses Algorithm 1, but with a rewritten CF-OPT as follows given the above

variable substitution:

min
y

r
∑
i∈T

θiyi −
∑
i∈T

θiP
d
i yi +

∑
i∈T

αiθi
βi

yi ln(yi)

s.t.
∑
i∈T

−1

βi
ln(yi) ≤M (7.4)

e−βi ≤ yi ≤ 1, ∀i (7.5)

Let’s refer to the above optimization problem as GOSAQ-CP.

Lemma 2. Let ObjCF (x) and ObjGC(y) be the objective function of CF-OPT and GOSAQ-CP

respectively; Xf and Yf denote the feasible domain of CF-OPT and GOSAQ-CP respectively:

min
x∈Xf

ObjCF (x) = min
y∈Yf

ObjGC(y) (7.6)

The proof, omitted for brevity, follows from the variable substitution in equation 7.6. Lemma

2 indicates that solving GOSAQ-CP is equivalent to solving CF-OPT. We now show that GOSAQ-CP

is actually a convex optimization problem.

Lemma 3. GOSAQ-CP is a convex optimization problem with a unique optimal solution.

Proof. We can show that both the objective function and the nonlinear constraint function (7.4)

in GOSAQ-CP are strictly convex by taking second derivatives and showing that the Hessian

matrices are positive definite. The fact that the objective is strictly convex implies that it can have

only one optimal solution. 2

117

In theory, convex optimization problems like the one above, can be solved in polynomial time

through the ellipsoid method or interior point method with the volumetric barrier function [Boyd

and Vandenberghe, 2004] (in practice there are a number of nonlinear solvers capable of finding

the only KKT point efficiently). Hence, GOSAQ entails running Algorithm 5, performing Step

6 with O(log(U0−L0
ε)) times, and each time solving GOSAQ-CP which is polynomial solvable.

Therefore, GOSAQ is a polynomial time algorithm.

We now show the bound of GOSAQ’s solution quality.

Lemma 4. Let L∗ and U∗ be the lower and upper bounds of GOSAQ when the algorithm stops,

and x∗ is the defender strategy returned by GOSAQ. Then,

L∗ ≤ ObjP1(x∗) ≤ U∗

where ObjP1(x) denotes the objective function of P1.

Proof. Given r, Let δ∗(r) be the minimum value of the objective function in GOSAQ-CP. When

GOSAQ stops, we have δ∗(L∗) ≤ 0, because from Lines 6-8 of Algorithm 5, updating the lower

bound requires it. Hence, from Lemma 2, L∗D(x∗) − N(x∗) ≤ 0 ⇒ L∗ ≤ N(x∗)
D(x∗) . Similarly,

δ∗(U∗) ≥ 0⇒ U∗ > N(x∗)
D(x∗) 2

Theorem 1. Let x∗ be the defender strategy computed by GOSAQ,

0 ≤ p∗ −ObjP1(x∗) ≤ ε (7.7)

Proof. p∗ is the global maximum of P1, so p∗ ≥ ObjP1(x∗). Let L∗ and U∗ be the lower and

upper bound when GOSAQ stops. Based on Lemma 4, L∗ ≤ ObjP1(x∗) ≤ U∗. Simultaneously,

Algorithm 5 indicates that L∗ ≤ p∗ ≤ U∗.

Therefore, 0 ≤ p∗ −ObjP1(x∗) ≤ U∗ − L∗ ≤ ε 2

118

Theorem 1 indicates that the solution obtained by GOSAQ is an ε-optimal solution.

7.3.2 GOSAQ with Assignment Constraints

In order to address the assignment constraints, we need to solve P2. Note that the objective

function of P2 is the same as that of P1. The difference lies in the extra constraints which

enforce the marginal coverage to be feasible. Therefore we once again use Algorithm 5 with

variable substitution given in Equation 7.3, but modify GOSAQ-CP as follows (which is referred

as GOSAQ-CP-C) to incorporate the extra constraints:

min
y,a

r
∑
i∈T

θiyi −
∑
i∈T

θiP
d
i yi +

∑
i∈T

αiθi
βi

yi ln(yi)

s.t. Constraint (7.4), (7.5)

−1

βi
ln(yi) =

∑
Aj∈A

ajAij , ∀i ∈ T (7.8)

∑
Aj∈A

aj = 1 (7.9)

0 ≤ aj ≤ 1, Aj ∈ A (7.10)

Equation (7.8) is a nonlinear equality constraint that makes this optimization problem non-convex.

There are no known polynomial time algorithms for generic non-convex optimization problems,

which can have multiple local minima. We can attempt to solve such non-convex problems using

one of the efficient nonlinear solvers but we would obtain a KKT point which can be only locally

optimal. There are a few research grade global solvers for non-convex programs, however they

are limited to solving specific problems or small instances. Therefore, in the presence of assign-

ment constraints, GOSAQ is no longer guaranteed to return the optimal solution as we might be

left with locally optimal solutions when solving the subproblems GOSAQ-CP-C.

119

7.4 PASAQ

Since GOSAQ may be unable to provide a quality bound in the presence of assignment constraints

(and as shown later, may turn out to be inefficient in such cases), we propose the Piecewise linear

Approximation of optimal Strategy Against Quantal response (PASAQ). PASAQ is an algorithm to

compute the approximate optimal defender strategy. PASAQ has the same structure as Algorithm

5. The key idea in PASAQ is to use a piecewise linear function to approximate the nonlinear objec-

tive function in CF-OPT, and thus convert it into a Mixed-Integer Linear Programming (MILP)

problem. Such a problem can easily include assignment constraints giving an approximate solu-

tion for a SSG against a QR-adversary with assignment constraints.

In order to demonstrate the piecewise approximation in PASAQ, we first rewrite the nonlinear

objective function of CF-OPT as:

∑
i∈T

θi(r − P di)e−βixi −
∑
i∈T

θiαixie
−βixi

The goal is to approximate the two nonlinear function f (1)
i (xi) = e−βixi and f (2)

i (xi) = xie
−βixi

as two piecewise linear functions in the range xi ∈ [0, 1], for each i = 1..|T |. We first uniformly

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x
i

Pieceswise Linear
 Function
Original Function
cut points

x
i2

x
i1

x
i3

L(1)
i

(x
i
)

f(1)
i

(x
i
)

(a) approximation of f (1)
i (xi)

0 0.2 0.4 0.6 0.8 1

−0.05

0

0.05

0.1

0.15

0.2

x
i

Pieceswise Linear
Function
Original Function
cut points

x
i3

x
i1

x
i2

L(2)
i

(x
i
)

f(2)
i

(x
i
)

(b) approximation of f (2)
i (xi)

Figure 7.1: Piecewise Linear Approximation

120

divide the range [0, 1] into K pieces (segments). Simultaneously, we introduce a set of new

variables {xik, k = 1..K} to represent the portion of xi in each of the K pieces, {[k−1
K , kK], k =

1..K}. Therefore, xik ∈ [0, 1
K], ∀k = 1..K and xi =

∑K
k=1 xik. In order to ensure that {xik} is

a valid partition of xi, all xik must satisfy: xik > 0 only if xik′ = 1
K , ∀k′ < k. In other words,

xik can be non-zero only when all the previous pieces are completely filled. Figures 7.1(a) and

7.1(b) display two examples of such a partition.

Thus, we can represent the two nonlinear functions as piecewise linear functions using {xik}.

Let {(kK , f
(1)
i (kK)), k = 0..K} be theK+1 cut-points of the linear segments of function f (1)

i (xi),

and {γik, k = 1..K} be the slopes of each of the linear segments. Starting from f
(1)
i (0), the

piecewise linear approximation of f (1)
i (xi), denoted as L(1)

i (xi):

L
(1)
i (xi) = f

(1)
i (0) +

K∑
k=1

γikxik = 1 +
K∑
k=1

γikxik

Similarly, we can obtain the piecewise linear approximation of f (2)
i (xi), denoted as L(2)

i (xi):

L
(2)
i (xi) = f

(2)
i (0) +

K∑
k=1

µikxik =

K∑
k=1

µikxik

where, {µik, k = 1..K} is the slope of each linear segment.

121

7.4.1 PASAQ with No Assignment Constraint

In domains without assignment constraints, PASAQ consists of Algorithm 5, but with CF-OPT

rewritten as follows:

min
x,z

∑
i∈T

θi(r − P di)(1 +

K∑
k=1

γikxik)−
∑
i∈T

θiαi

K∑
k=1

µikxik

s.t.
∑
i∈T

K∑
k=1

xik ≤M (7.11)

0 ≤ xik ≤
1

K
, ∀i, k = 1 . . .K (7.12)

zik
1

K
≤ xik, ∀i, k = 1 . . .K − 1 (7.13)

xi(k+1) ≤ zik, ∀i, k = 1 . . .K − 1 (7.14)

zik ∈ {0, 1}, ∀i, k = 1 . . .K − 1 (7.15)

Let’s refer to the above MILP formulation as PASAQ-MILP.

Lemma 5. The feasible region for x = 〈xi =
∑K

k=1 xik, i ∈ T 〉 of PASAQ-MILP is equivalent

to that of P1

JUSTIFICATION. The auxiliary integer variable zik indicates whether or not xik = 1
K . Equa-

tion (7.13) enforces that zik = 0 only when xik < 1
K . Simultaneously, Equation (7.14) enforces

that xi(k+1) is positive only if zik = 1. Hence,{xik, k = 1..K} is a valid partition of xi and

xi =
∑K

k=1 xik and that xi ∈ [0, 1]. Thus, the feasible region of PASAQ-MILP is equivalent to

P1 2

Lemma 5 shows that the solution provided by PASAQ is in the feasible region of P1. However,

PASAQ approximates the minimum value of CF-OPT by using PASAQ-MILP, and furthermore

solves P1 approximately using binary search. Hence, we need to show an error bound on the

solution quality of PASAQ.

122

Table 7.2: Notations for Error Bound Proof

θ := min
i∈T

θi Rd := max
i∈T
|Rdi | β := max

i∈T
βi

θ := max
i∈T

θi P d := max
i∈T
|P di | α := max

i∈T
αi

Table 7.3: Game Constant
θ := max

i∈T
θi θ := min

i∈T
θi

Rd := max
i∈T
|Rdi | P d := max

i∈T
|P di |

β := max
i∈T

βi α := max
i∈T

αi

We first show Lemma 7-9 on the way to build the proof for the error bound. Full proofs

are available in the Appendix A. We also define the game constants decided by the payoff in

Table A.1. Further, we define two constants which are decided by the game payoffs: C1 =

(θ/θ)eβ{(Rd + P d)β + α} and C2 = 1 + (θ/θ)eβ . The notation used is defined in Table

A.1. In the following, we are interested in obtaining a bound on the difference between p∗ (the

global optimal obtained from P1) andObjP1(x̃∗), where x̃∗ is the strategy obtained from PASAQ.

However, along the way, we have to obtain a bound for the difference between ObjP1(x̃∗) and its

corresponding piecewise linear approximation ÕbjP1(x̃∗).

Lemma 6. Let L̃∗ and Ũ∗ be the final lower and upper bounds of PASAQ, and x̃∗ is the defender

strategy returned by PASAQ. Then,

L̃∗ ≤ ÕbjP1(x̃∗) ≤ Ũ∗

Lemma 7. Let Ñ(x) =
∑

i∈T θiαiL
(2)
i (xi)+

∑
i∈T θiP

d
i L

(1)
i (xi) and D̃(x) =

∑
i∈T θiL

(1)
i (xi) >

0 be the piecewise linear approximation of N(x) and D(x) respectively. Then, ∀x ∈Xf

|N(x)− Ñ(x)| ≤ (θα+ P dθβ)
|T |
K

|D(x)− D̃(x)| ≤ θβ |T |
K

123

Lemma 8. The difference between the objective funciton of P1, ObjP1(x), and its corresponding

piecewise linear approximation, ÕbjP1(x), is less than C1
1
K

Proof.

|ObjP1(x)− ÕbjP1(x)| = |N(x)

D(x)
− Ñ(x)

D̃(x)
|

= |N(x)

D(x)
− N(x)

D̃(x)
+
N(x)

D̃(x)
− Ñ(x)

D̃(x)
|

≤ 1

D̃(x)
(|ObjP1(x)||D(x)− D̃(x)|+ |N(x)− Ñ(x)|)

Based on Lemma 7, |ObjP1(x)| ≤ Rd, and D̃(x) ≥ |T |θe−β .

|ObjP1(x)− ÕbjP1(x)| ≤ C1
1

K

Lemma 9. Let L̃∗ and L∗ be final lower bound of PASAQ and GOSAQ,

L∗ − L̃∗ ≤ C1
1

K
+ C2ε

Theorem 2. Let x̃∗ be the defender strategy computed by PASAQ, p∗ is the global optimal de-

fender expected utility,

0 ≤ p∗ −ObjP1(x̃∗) ≤ 2C1
1

K
+ (C2 + 1)ε

Proof. The first inequality is implied since x̃∗ is a feasible solution. Furthermore,

p∗ −ObjP1(x̃∗) =(p∗ − L∗) + (L∗ − L̃∗) + (L̃∗ − ÕbjP1(x̃∗))

+ (ÕbjP1(x̃∗)−ObjP1(x̃∗))

124

Algorithm 5 indicates that L∗ ≤ p∗ ≤ U∗, hence p∗ − L∗ ≤ ε. Additionally, Lemma 8, 21 and 6

provide an upper bound on ÕbjP1(x̃∗)−ObjP1(x̃∗), L∗ − L̃∗ and L̃∗ − ÕbjP1(x̃∗), therefore

p∗ −ObjP1(x̃∗) ≤ ε+ C1
1

K
+ C2ε+ C1

1

K
≤ 2C1

1

K
+ (C2 + 1)ε

Theorem 2 suggests that, given a game instance, the solution quality of PASAQ is bounded

linearly by the binary search threshold ε and the piecewise linear accuracy 1
K . Therefore the

PASAQ solution can be made arbitrarily close to the optimal solution with sufficiently small ε and

sufficiently large K.

7.4.2 PASAQ With Assignment Constraints

In order to extend PASAQ to handle the assignment constraints, we need to modify PASAQ-MILP

as the follows, referred to as PASAQ-MILP-C,

min
x,z,a

∑
i∈T

θi(r − P di)(1 +
K∑
k=1

γikxik)−
∑
i∈T

θiαi

K∑
k=1

µikxik

s.t. Constraint (7.11)− (7.15)

K∑
k=1

xik =
∑
Aj∈A

ajAij , ∀i ∈ T (7.16)

∑
Aj∈A

aj = 1 (7.17)

0 ≤ aj ≤ 1, Aj ∈ A (7.18)

PASAQ-MILP-C is an MILP so it can be solved optimally with any MILP solver (e.g. CPLEX).

We can prove, similarly as we did for Lemma 5, that the above MILP formulation has the same

feasible region as P2. Hence, it leads to a feasible solution of P2. Furthermore, the error bound

125

of PASAQ relies on the approximation accuracy of the objective function by the piecewise lin-

ear function and the fact that the subproblem PASAQ-MILP-C can be solved optimally. Both

conditions have not changed from the cases without assignment constraints to the cases with

assignment constraints. Hence, the error bound is the same as that shown in Theorem 2.

7.5 Experiments

We separate our experiments into two sets: the first set focuses on the cases where there is no

constraint on assigning the resources; the second set focuses on cases with assignment constraints.

In both sets, we compare the solution quality and runtime of the two new algorithms, GOSAQ

and PASAQ, with the previous benchmark algorithm BRQR. The results were obtained using

CPLEX to solve the MILP for PASAQ. For both BRQR and GOSAQ, we use the MATLAB

toolbox function fmincon to solve nonlinear optimization problems1. All experiments were

conducted on a standard 2.00GHz machine with 4GB main memory. For each setting of the

experiment parameters (i.e. number of targets, amount of resources and number of assignment

constraints), we tried 50 different game instances. In each game instance, payoffs Rdi and Rai are

chosen uniformly randomly from 1 to 10, while P di and P ai are chosen uniformly randomly from

-10 to -1; feasible assignments Aj are generated by randomly setting each element Aij to 0 or 1.

For the parameter λ of the quantal response in Equation (7.1), we used the same value (λ = 0.76)

as learned in the experiment in Chapter 4.
1We also tried the KNITRO [Byrd et al., 2006] solver. While it gave the same solution quality as fmincon, it was

three-times slower than fmincon; as a result we report results with fmincon

126

7.5.1 No Assignment Constraints

We first present experimental results comparing the solution quality and runtime of the three

algorithms (GOSAQ,PASAQ and BRQR) in cases without assignment constraints.

Solution Quality: For each game instance, GOSAQ provides the ε-optimal defender expected

utility, BRQR presents the best local optimal solution among all the local optimum it finds, and

PASAQ leads to an approximated global optimal solution. We measure the solution quality of

different algorithms using average defender’s expected utility over all the 50 game instances.

Figures 7.2(a), 7.2(c) and 7.2(e) show the solution quality results of different algorithms under

different conditions. In all three figures, the average defender expected utility is displayed on the

y-axis. On the x-axis, Figure 7.2(a) changes the numbers of targets (|T |) keeping the ratio of

resources (M) to targets and ε fixed as shown in the caption; Figure 7.2(c) changes the ratio of

resources to targets fixing targets and ε as shown; and Figure 7.2(e) changes the value of the

binary search threshold ε. Given a setting of the parameters (|T |, M and ε), the solution qualities

of different algorithms are displayed in a group of bars. For example, in Figure 7.2(a), |T | is

set to 50 for the leftmost group of bars, M is 5 and ε = 0.01. From left to right, the bars show

the solution quality of BRQR (with 20 and 100 iterations), PASAQ (with 5,10 and 20 pieces) and

GOSAQ.

Key observations from Figures 7.2(a), 7.2(c) and 7.2(e) include: (i) The solution quality of

BRQR drops quickly as the number of targets increases; increasing the number of iterations in

BRQR improves the solution quality, but the improvement is very small. (ii) The solution quality

of PASAQ improves as the number of pieces increases; and it converges to the GOSAQ solution

as the number of pieces becomes larger than 10. (iii) As the number of resources increases, the

127

defender expected utility also increases; and the resource count does not impact the relationship

of solution quality between different algorithms. (iv) As ε becomes smaller, the solution quality

of both GOSAQ and PASAQ improves. However, after epsilon becomes sufficiently small (≤ 0.1),

no substantial improvement is achieved by further decreasing the value of ε. In other words, the

solution quality of both GOSAQ and PASAQ converges.

In general, BRQR has the worst solution quality; GOSAQ has the best solution quality. PASAQ

achieves almost the same solution quality as GOSAQ when it uses more than 10 pieces.

Runtime: We present the runtime results in Figures 7.2(b), 7.2(d) and 7.2(f). In all three

figures, the y-axis display the runtime, the x-axis displays the variables which we vary to measure

their impact on the runtime of the algorithms. For BRQR run time is the sum of the run-time across

all its iterations.

Figure 7.2(b) shows the change in runtime as the number of targets increases. The number

of resources and the value of ε are shown in the caption. BRQR with 100 iterations is seen to

run significantly slower than GOSAQ and PASAQ. Figure 7.2(d) shows the impact of the ratio of

resource to targets on the runtime. The figure indicates that the runtime of the three algorithms

is independent of the change in the number of resources. Figure 7.2(f) shows how runtime of

GOSAQ and PASAQ is affected by the value of ε. On the x-axis, the value for ε decreases from

left to right. The runtime increases linearly as ε decreases exponentially. In both Figures 7.2(d)

and 7.2(f), the number of targets and resources are displayed in the caption.

Overall, the results suggest that GOSAQ is the algorithm of choice when the domain has no

assignment constraints. Clearly, BRQR has the worst solution quality, and it is the slowest of

the set of algorithms. PASAQ has a solution quality that approaches that of GOSAQ when the

number of pieces is sufficiently large (≥ 10), and GOSAQ and PASAQ also achieve comparable

128

runtime efficiency. Thus, in cases with no assignment constraints, PASAQ offers no advantages

over GOSAQ.

7.5.2 With Assignment Constraints

In the second set, we introduce assignment constraints into the problem. The feasible assignments

are randomly generated. We present experimental results on both solution quality and runtime.

Solution Quality: Figures 7.3(a) and 7.3(b) display the solution quality of the three algo-

rithms with varying number of targets (|T |) and varying number of feasible assignments (|A|).

In both figures, the average defender expected utility is displayed on the y-axis. In Figure 7.3(a)

the number of targets is displayed on the x-axis, and the ratio of |A| to |T | is set to 60. BRQR

is seen to have very poor performance. Furthermore, there is very little gain in solution qual-

ity from increasing its number of iterations. While GOSAQ provides the best solution quality,

PASAQ achieves almost identical solution quality when the number of pieces is sufficiently large

(> 10). Figure 7.3(b) shows how solution quality is impacted by the number of feasible assign-

ments, which is displayed on the x-axis. Specifically, the x-axis shows numbers of assignment

constraintsA to be 20 times, 60 times and 100 times the number of targets. The number of targets

is set to 60. Once again, BRQR has significantly lower solution quality, and it drops as the number

of assignments increases; and PASAQ again achieves almost the same solution quality as GOSAQ,

as the number the number of pieces is larger than 10.

Runtime: We present the runtime results in Figures 7.3(c), 7.3(e), 7.3(d) and 7.3(f). In all

experiments, we set 80 minutes as the cut-off. Figure 7.3(c) displays the runtime on the y-axis

and the number of targets on the x-axis. It is clear that GOSAQ runs significantly slower than

both PASAQ and BRQR, and slows down exponentially as the number of targets increases. Figure

129

7.3(e) shows extended runtime result of BRQR and PASAQ as the number of targets increases.

PASAQ runs in less than 4 minutes with 200 targets and 12000 feasible assignments. BRQR runs

significantly slower with higher number of iterations.

Overall, the results suggest that PASAQ is the algorithm of choice when the domain has as-

signment constraints. Clearly, BRQR has significantly lower solution quality than PASAQ. PASAQ

not only has a solution quality that approaches that of GOSAQ when the number of pieces is

sufficiently large (≥ 10), PASAQ is significantly faster than GOSAQ (which suffers exponential

slowdown with scale-up in the domain).

130

50 100 400 1000

−5

−4

−3

−2

−1

0

of Targets

D
ef

en
de

r
E

xp
ec

te
d

U
til

ity

BRQR−20
BRQR−100
PASAQ−5
PASAQ−10
PASAQ−20
GOSAQ

(a) Solution Quality v.s. |T | (M = 0.1|T |, ε = 0.01)

10
2

10
3

0

1

2

3

4

5

of Targets

R
un

tim
e

(m
in

ut
es

)

BRQR−100
BRQR−20
GOSAQ
PASAQ−20
PASAQ−10
PASAQ−5

(b) Runtime v.s. |T | (M = 0.1|T |, ε = 0.01)

10% 20% 30%

−3

−2

−1

0

Ratio: (# of Resources)/(# of Targets)

D
ef

en
de

r
E

xp
ec

te
d

U
til

ity

BRQR−20
BRQR−100
PASAQ−5
PASAQ−10
PASAQ−20
GOSAQ

(c) Solution Quality v.s. M (|T | = 400, ε = 0.01)

10% 15% 20% 25% 30%
0

1

2

3

Ratio: (# of Resources)/(# of Targets)

R
un

tim
e

(m
in

ut
es

)

BRQR−100
BRQR−20
GOSAQ
PASAQ−20
PASAQ−10
PASAQ−5

(d) Runtime v.s. M (|T | = 400, ε = 0.01)

1 0.1 0.01 0.001

−1.4

−1.2

−1

−0.8

ε

D
ef

en
de

r
E

xp
ec

te
d

U
til

ity

PASAQ−5
PASAQ−10
PASAQ−20
GOSAQ

(e) Solution Quality v.s. ε (|T | = 400, M = 80)

10
−2

10
0

2

4

6

8

10

12

14

ε

R
un

tim
e

(s
ec

on
ds

)

GOSAQ
PASAQ−20
PASAQ−10
PASAQ−5

(f) Runtime v.s. ε (|T | = 400, M = 80)

Figure 7.2: Solution Quality and Runtime Comparison, without assignment constraints (better in
color)

131

20 40 60

−3

−2

−1

0

of Targets

D
ef

en
de

r
E

xp
ec

te
d

U
til

ity

BRQR−20
BRQR−100
PASAQ−5

(a) Solution Quality v.s. |T | (|A| = 60|T |)

20 60 100

−3

−2

−1

0

Ratio: (# of Assignments)/(# of Targets)

D
ef

en
de

r
E

xp
ec

te
d

U
til

ity

PASAQ−10
PASAQ−20
GOSAQ

(b) Solution Quality v.s. |A| (|T | = 60)

20 40 60 80 100
0

20

40

60

80

of Targets

R
un

tim
e

(m
in

ut
es

)

GOSAQ
BRQR−100
BRQR−20
PASAQ−20
PASAQ−10
PASAQ−5

(c) Runtime v.s. |T | (|A| = 60|T |)

20 40 60 80 100
0

20

40

60

80

Ratio: (# of Assignments)/(# of Targets)

R
un

tim
e

(m
in

ut
es

)

GOSAQ
BRQR−100
BRQR−20
PASAQ−20
PASAQ−10
PASAQ−5

(d) Runtime v.s. |A| (|T | = 60)

50 100 150 200
0

10

20

30

40

50

of Targets

R
un

tim
e

(m
in

ut
es

)

BRQR−100
BRQR−20
PASAQ−20
PASAQ−10
PASAQ−5

(e) Runtime v.s. |T | (|A| = 60|T |)

50 100 150 200
0

5

10

15

20

Ratio: (# of Assignments)/(# of Targets)

R
un

tim
e

(m
in

ut
es

)

BRQR−100
BRQR−20
PASAQ−20
PASAQ−10
PASAQ−5

(f) Runtime v.s. |A| (|T | = 60)

Figure 7.3: Solution Quality and Runtime Comparison, with assignment constraint (better in
color)

132

Chapter 8: Scaling-up

This chapter focuses on scaling up SSG algorithms integrated with any of a family of discrete

choice models[Train, 2003; Goeree et al., 2005], an important class of bounded rationality models

of adversary decision making, of which quantal response model is an important representative.

Unfortunately, PASAQ fails to scale-up when faced with massive scale since it requires explicit

enumeration of defender strategies, which is not feasible in massive-scale SSGs such as with

the FAMS or the US Coast Guard in bigger ports. Previous work has provided branch-and-

price (BnP) [Barnhart et al., 1994] as a key technique to avoid explicit enumeration of defender

strategies in SSGs[Jain et al., 2010a]; however, how well BnP would handle bounded rationality

models is an unknown.

In this chapter, I present a novel algorithm called BLADE to scale-up SSGs with complex ad-

versary models. In Section 8.1, I extend the PASAQ algorithm to handle any of the family of the

discrete choice model. Section 8.2 investigates the effectiveness of BnP in SSG algorithms han-

dling bounded rationality via a BnP algorithm called COCOMO. As I will show in more details,

the non-convexity of the objective function given bounded rationality adversary models creates

enormous hurdles in scale-up. In Section 8.3, I provide a new algorithm called BLADE, which

for the first time illustrates an efficient realization of the cutting-plane approach in SSGs[Kelley,

133

1960; Boyd and Vandenberghe, 2008]. The cutting-planes approach iteratively refines the solu-

tion space via cuts. Our key hypothesis is that with these cuts, BLADE can successfully exploit

the structure of the solution space of defender strategies – generated due to the bounded rational-

ity adversary models in SSGs – whereas BnP approaches are blind to this structure. BLADE is

based on three novel ideas. First, i present a separation oracle that can effectively prune the search

space via deep cuts. More importantly I show that to handle massive scale SSGs, not only must

this separation oracle itself use a secondary oracle but that this two-level hierarchy of oracles is

efficient. Second, I provide a novel heuristic to further speed-up BLADE by exploiting the SSG

objective function to improve its cuts. Third, BLADE provides a technique for quality-efficiency

tradeoff. Finally, in section 8.4, I present the experimental results on comparing COCOMO and

BLADE and show that BLADE is significantly more efficient than COCOMO.

8.1 Generalized PASAQ

Before discussing scale-up, we generalize the PASAQ algorithm to solve SSGs integrated with

bounded rationality models, as they are specialized to the QR model. In PASAQ, the objective

function of P1 is

F (x) =
∑
i

qi(x)Udi (xi) =
∑
i

eλU
a
i (xi)∑

j e
λUaj (xj)

Udi (xi)

QR is a representative of a more general form of the discrete choice model [Train, 2003;

Goeree et al., 2005] for adversary response as shown in Equation (8.1). In SSGs, typically

fi(xi) ≥ 0,∀xi ∈ [0, 1] is a monotonically decreasing function of xi, indicating that as the

134

defender’s marginal coverage on target i increases, the probability that the adversary chooses this

target decreases, e.g., in QR, fi(xi) = eλU
a
i (xi) is an exponentially decreasing function of xi.

qi(x) =
fi(xi)∑
i fi(xi)

(8.1)

Furthermore, PASAQ handles the constraints on the defender resource allocation by enumer-

ating all the possible assignments. In general, there are spatio-temporal constraints: the air mar-

shal’s two flights have to be connected, e.g., an air marshal cannot fly from Los Angeles to New

York and then from Chicago to Seattle. Moreover, the second flight cannot depart before the first

flight arrives. Furthermore, there might be user-specified constraints [An et al., 2010]: FAMS

might want to cover 50% of the flights to Chicago; or that at most 30% of the flights departing

from the JFK airport to be covered. Thus, the defender’s optimization problem can be written as

follows:

P1:{max
x

∑
i∈T

Udi (xi)qi(x) | x ∈ Xf ≡ Xf1 ∩ Xf2}

Xf1 :={x | x =
∑
Aj∈A

ajAj ,
∑
j

aj = 1, aj ∈ [0, 1]} (8.2)

Xf2 :={x | Bx ≤ b} (8.3)

We denote the objective function in P1 as F (x). In F (x), Udi (xi) is the defender’s expected

utility if the adversary chooses target i; and qi(x) is the probability that the adversary chooses

target i. qi(x) depends on the model used, e.g., assuming a QR model of the adversary, qi(x) is a

logit function of x. This leads to a nonlinear fractional optimization problem, which in general is

NP-hard [Vavasis, 1995]. Furthermore, Xf represents the feasible region of the marginal cover-

age vector, which is defined by the intersection of Xf1 which emcompasses the spatio-temporal

135

constraints, and Xf2 which emcompasses the user-specified linear constraints on the marginals.

Therefore, Xf = Xf1 ∩ Xf2.

G-PASAQ generalizes PASAQ to solve P1 with the general form of qi(x) in Equation (8.1).

As with PASAQ, G-PASAQ solves this non-linear fractional optimization problem using binary

search. At each step of the binary search it solves a non-convex optimization problem whose

objective is a sum of nonlinear functions of marginal variables xi. Approximating each of these

single-variable nonlinear functions as a piecewise-linear function with K segments, the non-

convex problem is approximated by the MILP shown in Equation (8.4) - (8.9); this MILP solved

in each iteration of the binary search.

min
x,z

∑
i∈T

(r − P di)(fi(0) +

K∑
k=1

γikxik)−
∑
i∈T

αi

K∑
k=1

µikxik (8.4)

s.t. 0 ≤ xik ≤ 1/K, ∀i, k = 1 . . .K (8.5)

zik/K ≤ xik, ∀i, k = 1 . . .K − 1 (8.6)

xi(k+1) ≤ zik, ∀i, k = 1 . . .K − 1 (8.7)

zik ∈ {0, 1}, ∀i, k = 1 . . .K − 1 (8.8)

x ∈ Xf (8.9)

The objective function in Equation (8.4) is a piecewise linear approximation of
∑

i∈T (r −

P di)fi(xi) −
∑

i∈T αixifi(xi) where αi = Rdi − P di is a constant, γik is the slope of fi(xi) in

the kth segments and µik is the corresponding slope of xifi(xi). The range of each xi is divided

into K segments, and xi is replaced by the variables {xik, k = 1 . . . k} such that xi =
∑K

k=1 xik.

{zik, k = 1..K} in Equation (8.6)-(8.8) are integer variables that decide the particular segment

that xi lies in. For example, assuming K = 5, there are 5 possible sets of values for {zik} that

satisfy the constraints in Equation (8.6)-(8.8). If we set {zi,1..3 = 1; zi,4 = 0}, then xi is in the

136

fourth segment, i.e., xi ∈ [0.6, 0.8]. Equation (8.9) defines the feasible regions for x. More details

are in Chapter 7.

8.2 COCOMO– A Branch-and-Price Algorithm

Level 1

(x1)

Level 2

(x2)

x1∈[0, 0.5] x1∈[0.5, 1]

x2∈[0, 0.5]

x2∈[0.5, 1] x2∈[0, 0.5]

x2∈[0.5,1]

{ xi ∈[0,1]}

Figure 8.1: Branching Tree

G-PASAQ assumes that the set of defender pure strategies (A) can be explicitly enumerated.

In massive SSGs, A cannot be enumerated; COCOMO (COlumn generation for COmplex adver-

sary MOdels) attempts in such cases to use the branch-and-price approach to scale-up G-PASAQ.

COCOMO exploits the fact that the integer variables in G-PASAQ represent the particular piece-

wise linear segments each marginal xi belongs to and defines a branching tree shown in Figure

8.1. Initially at the root node, all the integer variables are relaxed to be continuous, indicating that

none of the xi are set to any fixed ranges. The ith level in the tree is associated with marginal xi.

If each marginal is divided into K segments, each node has K children. For example, in Figure

8.1, the two nodes at level 1 are associated with the two possible ranges of marginal x1: the left

node sets x1 ∈ [0, 0.5], realized by setting z11 = 0; the right node sets x1 ∈ [0.5, 1], realized by

137

setting z11 = 1. As we move deeper, more integer variable values are set. The tree has a depth of

|T | and K |T | nodes in total.

COCOMO starts from the root node in the branching queue and iterates until the queue is

empty. In each iteration, the top node in the branching queue is first branched into a set of

children. For each child node, the upper bound (UB’) and the lower bound (LB’) are estimated.

If the two bounds are not close enough, the node is added to the branching queue. COCOMO

keeps a record of the best lower bound solution (L̃B) found so far, and uses that to prune all the

unvisited nodes in the branching queue. In the end, the defender strategy associated with this best

lower bound is returned as the solution.

Upper Bound Estimation: To generate tighter upper bounds, we run G-PASAQ at each

node of COCOMO, where the values of some variables zik are set to either 0 or 1 (see Figure

8.1). We obtain the upper bound by relaxing the rest of the integer variables to be continuous,

resulting in an LP called UpperBound-LP. UpperBound-LP cannot escape the large number

of variables aj and Aj ; hence we apply the standard column generation technique: we start by

solving UpperBound-LP with a subset of columns, i.e., defender strategies Aj , and iteratively

add more columns with negative reduced cost. Let’s first rewrite Equation (8.9) based on the

definition of Xf from Equation (8.2) and (8.3).

∑
k=1..K

xik −
∑
Aj∈A

ajAij = 0, ∀i ∈ T (8.10)

∑
Aj∈A

aj = 1, aj ≥ 0, Aj ∈ A (8.11)

∑
i∈T

Bmi
∑

k=1..K

xik ≤ bm, ∀m (8.12)

138

The reduced cost of column Aj is ωTAj − ρ, where ω and ρ are the duals of Equation (8.10)

and (8.11) respectively. Given the optimal duals of the current iteration of UpperBound-LP,

a separate Slave process provides a new column with the minimum reduced cost; the process

iterates until convergence.

Slave: Given the spatio-temporal constraints, the Slave can often be formulated as a minimum-

cost integer flow problem on a polynomial-sized network, e.g., [Jain et al., 2010a] provide such

a Slave formulation with application to the FAMS domain. A good example of such formulation

can be found in [Jain et al., 2010a] for the FAMS domain: a target is a flight and is represented

by a vertex in the network. If two flights can be covered by the same air marshal on the same

schedule, there is an edge between the two corresponding vertices. A feasible flow in the network

represents a feasible pure strategy of the defender. Similarly here, ωTAj − ρ is assigned as the

cost to the vertex representing target i in the network.

More generally, if the setA of pure strategy vectors Aj that satisfies the spatio-temporal con-

straints can be formulated as the feasible set of a polynomial number of integer linear constraints:

Aj ∈ A = {s ∈ {0, 1}|T | : Cs ≤ c}, the slave amounts to solving the following integer linear

program.

{min
s

sT y− sTBT g + u | si ∈ {0, 1},∀i ∈ T ;Cs ≤ c}

Lower Bound Estimation: A subset of the columns will be generated while solving the

UpperBound-LP. The lower bound of the same node is computed by running G-PASAQ with

this subset of columns.

Pruning: COCOMO keeps a record of the best lower bound solution, L̃B, that has been

found so far. After branching the current node, pruning is applied to all the unvisited nodes in the

139

branching queue. The nodes whose upper bound is lower than L̃B are pruned from the branching

queue.

The exponential size of COCOMO’s branching tree (K |T |) and the need to run G-PASAQ for

each of branching nodes, ultimately leads to its inefficiency.

8.3 BLADE– A Cutting-Plane Algorithm

Despite our effort for efficiency in COCOMO, the need to run column generation at each of the

K |T | nodes ultimately leads to its inefficiency. BLADE (Boosted piecewise Linear Approximation

of DEfender strategy with arbitrary constraints) uses the cutting-plane approach to scale-up G-

PASAQ, and avoids running column generation at each node. Algorithm 6 presents BLADE. The

Master is a modified version of P1 with a relaxed defender strategy space, defined by the set of

boundaries H̃x ≤ h̃. In Line (2), (H̃, h̃) is initialized with the user-specified constraints, (B, b).

The solution found by the Master, i.e., x̃, provides an upper bound (UB) of the solution for P1.

In each iteration, the Separation Oracle checks whether or not x̃ ∈ Xf . If so, the optimal solution

of P1 has been found; otherwise, a new cutting plane Hlx ≤ hl is returned to further restrict the

search space in the Master. The Separation Oracle also returns a feasible solution xf ‘closest’

to the infeasible solution x̃, which provides a lower bound (LB = F (xf)) of the solution for

P1. In Line (9), we improve our lower bound estimation to further speed up the algorithm. The

algorithm terminates when UB and LB are close enough, i.e., UB− LB ≤ ε.

140

Algorithm 5: BLADE

1 Input: {Rdi , P di , Rai , P ai }, (B, b), ε;
2 (H̃, h̃)← (B, b), feasible← false;
3 UB←M,LB← −M ;
4 while UB− LB > ε do
5 (UB, x̃)← Master(H̃ , h̃);
6 (feasible, Hl, hl, xf)← SeparationOracle(x̃);
7 H̃ ← H̃ ∪Hl, h̃← h̃ ∪ hl;
8 if feasible 6= true then
9 (LB, xl)← LowerBoundEstimator(H̃, h̃) ;

10 end
11 end
12 return xl;

8.3.1 Master

We first reformulate P1 by representing its feasible region using the set of bouandries instead of

the extreme points:

P1.1:{max
x
F (x) | Hx ≤ h;Bx ≤ b; 0 ≤ xi ≤ 1, ∀i ∈ T }

H is a N -by-|T | matrix, where N is the number of linear boundaries of the convex hull. Each

row, Hlx ≤ hl, represents a linear boundary of Xf1. In the presence of user-specified constraints,

Bx ≤ b is added to the boundary set of Xf , as defined in Equation (8.3). However, we cannot

directly solve P1.1 because H and h are not initially given.

In BLADE, the Master solves P1.1 using G-PASAQ with a subset of the boundaries of Xf .

More specifically, Equation (8.9) is rewritten as Equation (8.12) and (8.13):

∑
i∈T

H̃li

∑
k=1..K

xik ≤ h̃l, ∀l (8.13)

(H̃, h̃) in Equation (8.13) represents the subset of the boundaries for Xf . The solution of Master,

denoted as x̃, then provides an upper bound on the solution of P1.1: F (x̃) ≥ F (x∗), where

141

x∗ denote the optimal solution of P1.1. As the algorithm keeps refining the feasible region by

adding new boundaries to the Master, this upper bound gets tighter.

Given x̃ as the relaxed solution from the Master, we check whether it belongs to Xf . If so,

we have found the optimal solution of P1.1. Otherwise, we further restrict the feasible region in

the Master via a cut to separate the current infeasible solution and the original feasible region.

8.3.2 Separation Oracle

One standard approach for checking feasibility and generating cutting planes is to apply Farkas’

Lemma, as in [Papadimitriou and Roughgarden, 2008]. However, the resulting cutting planes are

not guaranteed to be deep cuts that touch the feasible region and therefore eliminate as much of

the infeasible region as possible. Instead, we use a norm-minimization approach for the Separa-

tion Oracle in BLADE, which efficiently checks the feasibility of x̃, and generates a deep cut to

separate Xf from an infeasible x̃. Additionally, our approach finds a feasible point that is closest

to x̃, allowing us to compute a lower bound on the optimal objective.

Check Feasibility: The Separation Oracle checks the feasibility of x̃ by minimizing its dis-

tance to the feasible region. If the minimum distance is 0, x̃ is within the feasible region. We

choose 1-norm to measure the distance between x̃ and any feasible point, as 1-norm leads to a

142

Linear Program (LP), which allows the use of column generation to deal with large defender

strategy space. We first show the Min-1-Norm LP in Equation (8.14)-(8.18),

min
a,z

∑
i∈T

zi (8.14)

s.t. z +Aa ≥ x̃ (8.15)

z−Aa ≥ −x̃ (8.16)

−BAa ≥ −b (8.17)∑
Aj∈A

aj = 1, aj ≥ 0, ∀Aj ∈ A (8.18)

In the above LP, a marginal coverage is represented by the set of defender pure strategies: Aa.

Constraint (8.17) and (8.18) enforces that Aa satisfies both the spatio-temporal constraints and

the user-specified constraints. The 1-norm distance between the given marginal x̃ and Aa is

represented by vector z. This is obtained by combining Constraints (8.15) and (8.16): −z ≤

|Aa − x̃| ≤ z. The objective function minimizes the 1-norm of z, therefore the 1-norm distance

between x̃ and any given feasible marginal is minimized.

Lemma 10. Given a marginal x̃, let (z∗, a∗) be the optimal solution of the corresponding Min-1-Norm

LP. x̃ is feasible if and only if
∑

i∈T z
∗
i = 0. Furthermore, Aa∗ provides the feasible marginal

with the minimum 1-norm distance to x̃.

Generate Cut: If x̃ is infeasible, we need to further restrict the relaxed region in the Master.

Theoretically, any hyperplane that separates x̃ from the feasible region could be used. In practice,

a deep cut is preferred. Let w, v, g and u be the dual variables of Constraints (8.15), (8.16), (8.17)

and (8.18) respectively; and let y = w− v.

143

Lemma 11. Given an infeasible marginal x̃, let (y∗, g∗, u∗) be the dual values at the optimal

solution of the corresponding Min-1-Norm LP. The hyperplane (y∗)T x − (g∗)Tb + u∗ = 0

separates x̃ and Xf :

(y∗)T x̃− (g∗)Tb + u∗ > 0 (8.19)

(y∗)T x− (g∗)Tb + u∗ ≤ 0, ∀x ∈ Xf (8.20)

Proof. The dual of the Min-1-Norm LP is:

max
y,u,g

x̃T y− bT g + u (8.21)

s.t. AT y−ATBT g + u ≤ 0 (8.22)

1 ≥ y ≥ −1, g ≥ 0 (8.23)

Equation (8.19) can be proved using LP duality. Since x̃ is infeasible, the minimum of the

corresponding Min-1-Norm LP is strictly positive. Therefore, the maximum of the dual LP is

also strictly positive.

We now prove the contrapositive of Equation (8.20):

(y∗)T x− (g∗)T b + u∗ > 0⇒ x is not feasible

Given any x′, there is a corresponding LP with the same formulation as that in Equation (8.21)-

(8.23). Let (y′, u′, g′) be the optimal solution of this LP. Note that, (y∗, u∗, g∗) is a feasible

solution of this LP. Therefore,

(y′)T x− (g′)T b + u′ ≥ (y∗)T x− (g∗)T b + u∗ > 0

This indicates that the minimum 1-norm distance between x and Xf is strictly positive. Hence, x

is infeasible.

144

Lemma 12. Equation (8.20) is a deep cut that touches the feasible convex hull Xf .

Proof. For simplicity, we consider the cases without user-specified constraints. The cut in Equa-

tion (8.20) then becomes (y∗)T x + u∗ ≤ 0. Let aj be the dual of the jth constraint in Equation

(8.22) and a∗ = 〈a∗j 〉 be the dual at the optimal solution of LP in Equation (8.21)-(8.23). Ac-

cording to the LP duality, Aa∗ is the optimal solution of the Min-1-Norm LP. Therefore, Aa∗

is the feasible marginal with the minimum 1-Norm distance to x̃. Furthermore, ∀a∗j > 0, the

corresponding constraint in Equation (8.22) is active, i.e. (y∗)TAj + u∗ = 0. Hence, the extreme

point Aj is on the cutting-plane.

Therefore, by solving either the Min-1-Norm LP or its dual LP, the Separation Oracle can

not only check the feasibility of a given marginal, but also generate a deep cut. We choose to

solve the dual LP in Equation (8.21)-(8.23), since it gives the constraint directly as shown in

Equation (8.20). However, since in our case the set of the defender’s pure strategies is too large to

be enumerated, the constraints of the LP cannot be enumerated.We solve the LP using a constraint

generation approach, outlined in Algorithm 7. Specifically, we solve the LP in Equation (8.21)-

Algorithm 6: Separation Oracle

1 Input: {Rdi , P di , Rai , P ai }, (B, b), x̃, A(0);
2 A← A(0), Al ← A1;
3 while Al 6= ∅ do
4 A← A ∪Al;
5 (y∗, u∗, g∗)← Solve-Separation-Oracle-LP(A);
6 Al ←SecondaryOracle(y∗, u∗, g∗);
7 end
8 return (y∗, u∗, g∗);

(8.23) with a subset of constraints first, and use a Secondary Oracle to check whether the relaxed

solution violates any of the other constraints.

145

Secondary Oracle: The secondary oracle is executed at Line (6) in Algorithm 7. If any

constraint in Equation (8.22) is violated, the oracle returns the one that is most violated, i.e., Al

with the most negative value of the LHS of Equation (8.22); otherwise, we have found the optimal

solution of the LP. The secondary oracle is similar to the Slave in COCOMO.

8.3.3 WBLADE

The convergence of BLADE depends on how fast the cuts generated by the Separation Oracle

approximate the feasible set around the optimal solution of P1.1. We propose WBLADE, which

modifies the Separation Oracle by changing the norm used to determine the distance to Xf for

one that takes the objective function into account, to bias the cut generated toward the optimal

solution. Formally, given the solution x̃ from the Master, instead of searching for the feasible

point with the 1-norm distance, which is uniform in all dimensions, we modify the objective

function of the Min-1-Norm LP in Equation (8.14) as:

∑
i∈T

(∇iF (x̃) + ξ)zi (8.24)

where ∇iF (x̃) is the gradient of objective function F (x) at point x̃ with respect to xi; ξ is a

pre-defined constant to ensure that∇iF (x̃)+ ξ > 0,∀i so the objective remains a norm. We refer

to this modified LP as Min-Weighted-Norm LP.

Lemma 13. A marginal x̃ is feasible if and only if the minimum of the corresponding Min-Weighted-Norm

LP is 0.

Proof. We already showed that zi ≥ 0 represents the absolute difference between x̃ and the feasi-

ble point Aa on the ith dimension. Combining with∇iF (x̃) + ξ > 0,∀i, we have
∑

i(∇iF (x̃) +

146

-1

-0.9

-0.8

-0.7

-0.6

-0.5

0.2 0.8 1.5 2.2 2.8 3.5

U
p

p
er

 B
o

u
n

d

Time (mins)

wBLADE

BLADE

(a) Upper bounds over time

x’
∂F(x’)

x1

x2

a

b

(b) Weighted 1-norm

Figure 8.2: Minimizing weighted 1-norm distance

ξ)zi ≥ 0. According to Lemma 14, x̃ is feasible if and only if the minimum of
∑

i zi is 0. Hence,

if there exists (z∗, a∗) such that
∑

i z
∗
i = 0, we have

∑
i(∇iF (x̃)+ξ)z∗i = 0; and vice versa.

To provide some intuition into why tighter bounds can be obtained by solving Min-Weighted-Norm

LP, we consider the case when∇iF (x̃) > 0 and x̃ ≥ Aa. First we note that these are typical situ-

ations in security games, where having more defense resources tends to benefit the defender. This

is the case even if the attacker is boundedly rational, as in the quantal response model. Therefore

for most values of x̃ the gradient ∇iF (x̃) will be positive. As a result, a solution x̃ of the relaxed

problem solved by the master will tend to use more resources than what is feasible, i.e., x̃ ≥ Aa.

These properties are confirmed in our numerical experiments.

Then, if we have ∇iF (x̃) > 0 and x̃ ≥ Aa, the Min-Weighted-Norm LP is equivalent to

minimizing ∇F (x̃) · (x̃−Aa) and hence also to maximizing

F (x̃) +∇F (x̃)(Aa− x̃) (8.25)

Equation (8.25) is the first-order Taylor approximation of F (x), maximizing which should pro-

vide a good lower bound if x̃ is close to the feasible region.

Regarding the cuts generated, since ∇F (x̃) > 0 we can take ξ = 0. In this case the

Min-Weighted-Norm LP is looking for the projection point in Xf on the highest level-set

147

perpendicular to∇F (x̃). The cut generated, therefore, will be this highest level-set perpendicular

to ∇F (x̃). Since the gradient points in the direction of maximum increase of its function, for

sufficiently smooth functions and sufficiently close projection point, points with higher function

values than the projection point would be eliminated by this cut. Figure 8.2(b) demonstrates an

example: the shaded polyhedron represents the feasible region Xf . Given the infeasible point

x′ and its gradient ∇F (x′), the solid line perpendicular to ∇F (x′) approximates the level-set of

F (x). Therefore, the half-space on the direction of∇F (x′) of that line would tend to have points

with higher value of F (x) than the other half-space. This suggests that such a cut would prune

more infeasible points with high objectives, leading to a tighter upper bound. Confirming this

intuition, Figure 8.2(a) shows that over 30 random samples the upper-bound decreases faster in

WBLADE: x-axis marks iterations in time, y-axis plots the upper bound.

8.3.4 Quality and Runtime Trade-off

The feasible point returned by the Separation Oracle provides a lower bound on P1.1. A better

lower bound can be achieved by solving a restricted version of P1.1 (Line 9 in Algorithm 6).

This can be done by replacing Xf1 with the convex hull formed by the subset of defender pure

strategies generated in solving the Separation Oracle. These upper and lower bounds allow us to

trade off between solution quality and runtime by controlling the threshold ε: as soon as UB −

LB ≤ ε the algorithm returns the feasible solution associated with LB, which is guaranteed to be

within ε of the optimal objective.

148

8.4 Experimental results

In this section, we compare COCOMO and BLADE assuming two different bounded rationality

models. We take FAMS as our example domain. For each setup, we tried 30 game instances. In

each game, payoffs Rdi and Rai are random integers from 1 to 10, while P di and P ai are random

integers from -10 to -1; the feasible schedules for each unit of resources are generated by ran-

domly selecting 2 targets for each schedule (we assume that each air marshal can cover 2 flights

on a single trip, similar to [Jain et al., 2010a]). In all experiments, the deployment-to-saturation

(d:s) ratio is set to 0.5, which is shown to be computationally harder than any other d:s ratio [Jain

et al., 2012]. Furthermore, we set the number of piecewise linear segments to be 15 for each

fi(xi), given that 10 segments provide a sufficiently good approximation [Yang et al., 2012b].

The results were obtained using CPLEX v12.2 on a standard 2.8GHz machine with 4GB main

memory.

The BEST BLADE Given the two versions of BLADE, one with the non-weighted Separation

Oracle and another with the weighted Separation Oracle, we investigate whether it would be

more effective to combine them such that two cuts are generated in each iteration. While this

combined version CBLADE could generate more cuts per iteration reducing the total number of

iterations, the runtime of each iteration might be longer. Our first set of experiment investigates

the efficiency of the three BLADE algorithms. Figure 8.3 shows the average runtime of these three

algorithms with different number of targets. WBLADE achieves the shortest runtime, as shown

in Figure 8.3. Furthermore, although on average CBLADE takes less iterations to converge, it

generates more cuts than both BLADE and WBLADE. For example, with 60 targets, CBLADE

takes 17 iterations on average to converge, while WBLADE and BLADE take 23 and 29 iterations

149

0

2

4

6

8

10

12

14

20 40 60 80

R
u

n
ti

m
e

 (
m

in
s)

of Targets

BLADE

cBLADE

wBLADE

Figure 8.3: Runtime Comparison of the BLADE family

respectively. However, the total cuts generated by CBLADE is 34 (2 cuts per iteration) which is

more than WBLADE and BLADE. Given this result, we will use WBLADE as the representative of

the BLADE family in the rest of the experiments.

Quantal Response Model Figure 8.4(a), 8.4(b) and 8.4(c) present the average runtime of

COCOMO and WBLADE assuming a QR model of the adversary with λ parameter set to 0.76. In

the experiment, we set 50 minutes as the runtime limit. The dashed line in the figures indicates

that at that point at least some game instances were not completed within this time limit; and

the absence of any markers afterward implies the trend continues. COCOMO cannot scale to

80 targets, as shown in Figure 8.4(a). In Figure 8.4(b), we vary the amount of user-specified

constraints (i.e. percentage of the number of targets) while fixing the number of targets to be

60. The constraints were randomly generated inequalities of the marginal coverage vector 〈x〉.

Increasing the amount of user-specified constraints doesn’t impact the runtime of WBLADE, but

150

0

10

20

30

40

50

60

20 40 60 80

R
u

n
ti

m
e

(m
in

s)

of Targets

CoCoMo

wBLADE

(a) 20% User Constraints,Threshold=0.02

0

10

20

30

40

50

60

10% 20% 30% 40% 50%

R
u

n
ti

m
e

 (
m

in
s)

User-specefied Constraints

CoCoMo

wBLADE

(b) 60 Targets, Threshold=0.02

0

10

20

30

40

50

60

0.4 0.2 0.1 0.05 0.02 0.01

R
u

n
ti

m
e

 (
m

in
s)

Threshold

CoCoMo

wBLADE

(c) 60 Targets, 20% User Constraints

0

1

2

3

4

00.20.40.6

R
u

nt
im

e
(m

in
s)

Solution Quality (Threshold)

40 targets

50 targets

60 targets

(d) Runtime vs Solution Quality

Figure 8.4: Comparing COCOMO and BLADE, QR Model

significantly slows down COCOMO. We then vary the threshold from 0.4 to 0.01 as shown

in Figure 8.4(c). COCOMO is only able to converge when the threshold is larger than 0.05;in

comparison, the runtime of WBLADE slowly increases as the threshold decreases. Thus, WBLADE

obtain much better solution quality within significantly shorter amount of time than COCOMO.

We further investigate the tradeoff between solution quality and runtime of WBLADE and

show the result in Figure 8.4(d). We gradually increase the solution quality by decreasing the

threshold under different number of targets, illustrating runtime-quality tradeoff.

A More Complex Bounded Rationality Model We now set fi(xi) = 1
1+e−λixi

, a more

complex model than QR.We investigate the impact of model complexity on the runtime of CO-

COMO and WBLADE. Figure 8.5(a) and 8.5(b) display the runtime comparison of COCOMO

and WBLADE. As shown in Figure 8.5(a), while COCOMO could not finish running within 50

151

0

15

30

45

60

20 40 60 80

R
u

nt
im

e
(m

in
s)

of Targets

CoCoMo
wBLADE

(a) 20% User Constraints, Threshold=0.02

0

15

30

45

60

0.4 0.2 0.1 0.05 0.02

R
u

n
ti

m
e

 (
m

in
s)

Threshold

CoCoMo
wBLADE

(b) 60 Targets, 20% User Constraints

Figure 8.5: Runtime Comparison, QR-Sigmoid model

minutes in any of the settings, the runtime of WBLADE was less than 7 seconds for 20 targets. In

Figure 8.5(b), we show that the runtime of BLADE gradually increases as the threshold decreases.

In comparison, COCOMO is only able to finish running when the threshold is sufficiently large

(≥ 0.4) leading to poor solution quality. Thus, as the bounded rationality model becomes more

complex, BLADE’s advantage over COCOMO is further magnified.

152

Chapter 9: Adaptive Resource Allocation and its Application to

Wildlife Protection

In many domains, adversary events occur often and generate significant amounts of collectible

event data. These domains present new research challenges and opportunities related to learning

behavioral models from collected poaching data. One example of such domains is wildlife pro-

tection. Illegal poaching is an international problem that leads to the extinction of species and the

destruction of ecosystems. As evidenced by dangerously dwindling populations of endangered

species, existing anti-poaching mechanisms are insufficient. Compared to the counter-terrorism

domain, wildlife crime is an important domain that promotes a wide range of new deployments.

In this chapter, I introduce the Protection Assistant for Wildlife Security (PAWS) application

- a joint deployment effort done with researchers at Uganda’s Queen Elizabeth National Park

(QENP) with the goal of improving wildlife ranger patrols.

9.1 Domain

The goal of PAWS is to help conservation agencies improve patrol efficiency such that poach-

ers, from fear of being caught, are deterred from poaching in QENP. Wire snaring is one of the

main techniques used by poachers in Africa, including QENP, (as shown in figures 9.1(a),9.1(b));

153

poachers can set and leave snares unattended, and come back when they think an animal has

been captured. In addition, poachers can conduct surveillance on rangers’ activities and patrol

patterns; wildlife rangers are well-aware that some neighboring villagers will inform poachers

of when they leave for patrol and where they are patrolling [Moreto, 2013]. For any number of

reasons, such as changes that impact animal migration habits, rangers may change their patrolling

patterns; poachers, in turn, continually conduct surveillance on the rangers’ changing patrol strat-

egy and adapt their poaching strategies accordingly. As the law enforcement officers of the park,

park rangers’ primary objective is to stop poaching, and their main method of doing so is to patrol

the park. During a patrol, rangers will search for signs of illegal activity inside the park, confis-

cate any poaching equipment found, and apprehend any persons inside the park illegally (e.g.,

poachers).

In addition to their normal patrol duties, rangers will collect data on any observed or suspected

illegal activity. In most cases, if rangers find wire snares, they will not find the poacher that set

them. If the rangers do encounter and apprehend poachers, however, they are sometimes able to

make the poachers confess to where they set their snares. After the rangers return to the outpost,

collected data is uploaded and analyzed. Eventually, enough data will be collected so that the

ranger patrol strategies can be continually updated based on any emerging trends. If snares are

found by a ranger patrol, they are recorded as data points. Since it is unknown who placed the

snares, we refer to these data points as anonymous data points. Identified data points, when a

poacher is captured and divulges where they placed snares, are inherently more useful as they can

be used to obtain a more complete behavioral model that can better predict where future poachers

will place their traps.

154

(a) A lioness caught in a snare. (b) A caught poacher holding up a
snare.

Figure 9.1: Lioness photo courtesy of John Coppinger, Remote Africa Safaris Ltd. Poacher snare
photo taken by Andrew Lemieux.

For this deployment, a poacher placing a snare in an area represents an attack. In order to

have a tractable space for computing defender strategies, we discretize areas into a grid where

each cell represents 1 square kilometer, and every cell in the grid could contain wildlife and is

thus a valid target for attackers. Terrain also has an impact; poachers and rangers can travel

further if they are traversing grasslands instead of a dense forest of varying elevations. In order to

simplify distance calculations in our model, we currently focus on one type of terrain, grasslands.

Future work will focus on incorporating different types of terrain into the model. Areas of high

animal density, such as areas that contain fresh water (e.g., watering holes, lakes), are known to

be high-risk areas for poaching [Wato et al., 2006; Moreto, 2013; Montesh, 2013]. Distance is

also an important factor; a snare density study demonstrated that the density began to decrease

significantly once they began travelling more than 4 kilometers away from the international border

[Wato et al., 2006]. This finding is intuitive as poachers need to carry back any poached animals

or goods, and longer distances will increase the chances of spoilage and apprehension. Even for

Ugandan poachers, distance travelled will still be a factor based on similar concerns. Despite the

available information from these studies, there are still too many areas for rangers to patrol, and it

is a huge cognitive burden to account for these factors (in addition to physical distance constraints

155

and available rangers) while constantly creating new, unpredictable patrols. Based on all of these

factors, PAWS will aid patrol managers and determine an optimal strategy that will enable park

rangers to effectively cover these numerous areas with their limited resources.

9.2 Model in PAWS

9.2.1 Stackelberg Game Formulation

Based on our discussion of the wildlife crime domain and its various parameters of interest, we

apply a game theoretic framework, more specifically Stackelberg Security Games (SSGs), to the

problem and first model the interaction between the rangers and the poachers. In a SSG, there

are two types of players: the defender (leader) commits to a strategy first; the follower then

responds after observing the leader’s strategy. The defender’s goal is to protect a set of targets,

with limited security resources, from being attacked by the adversary. The adversary will first

conduct surveillance to learn about the defender’s strategy, and then he (he by convention) will

select a target to attack.

In the wildlife crime problem, the ranger plays as the leader and the poachers are the follow-

ers. While the rangers are trying to protect animals by patrolling locations where they frequently

appear, the poachers are trying to poach the animals at these areas. As discussed earlier, we dis-

cretize the area into a grid where each cell represents 1 square kilometer. We use T to denote the

set of locations that can be targeted by the poacher, where i ∈ T represents the ith target. If the

poacher selects target i and it is covered by the rangers, he receives a utility of U cp,i. If the se-

lected target is not covered by rangers, he receives a utility of Uup,i. The ranger’s utility is denoted

156

similarly by U cr,i and Uur,i. As a key property of SSG, we assume U cp,i ≤ Uup,i and U cr,i ≥ Uur,i.

Simply put, adding resources to cover a target hurts poachers and helps the rangers.

As discussed in the previous section 9.1, animal density is a key factor in determining poach-

ing risk, and we thus model it as the primary determinant of reward for poachers (i.e., Uup,i) and

penalty for rangers (i.e., Uur,i). Areas with a high density of animals are attractive to poachers

since they are more likely to have a successful hunt. Similarly, rangers will view these areas as

costly if left unprotected. Distance is also a determining factor in poaching reward. Although a

poacher may view an area with a large density of animals as attractive, it may be too far away to

be rewarding. We also need to model the penalty for poachers (i.e., U cp,i) and reward for rangers

(i.e., U cr,i). If the poachers attack a defended area, they will incur a fixed penalty that represents

a fine. The poachers will also incur an additional penalty that increases with the distance that

they travel from their starting point. Rangers will receive a flat (i.e., uniform) reward based on

the poacher’s fixed penalty but not on the distance travelled. This uniform reward represents

the ranger’s lack of preference on where or how poachers are found; as long as poachers are

apprehended, the patrol is considered a success.

In our SSG model for this wildlife crime problem, we assume a single leader (i.e., a single

group of rangers who are executing the same patrolling strategy) and a population of poachers.

We also assume that poachers respond to the rangers’ patrolling strategy independently, and we

defer to future work to consider potential collaboration between poachers. We adopt a compact

representation of the rangers’ patrolling strategy: x = 〈xi〉 where xi denotes the probability that i

will be covered by the rangers. The actual patrol can be derived from this compact representation

using sampling techniques similar to those in previous SSG applications [Shieh et al., 2012; Tsai

et al., 2009]. Given a defender strategy x, we denote the response of a poacher as 〈qi(ω|x)〉,

157

Table 9.1: Notations used in this paper
T Set of targets; i ∈ T denotes target i
xi Probability that target i is covered by a resource
U cr,i Ranger utility for covering i if it’s selected by the

poacher
Uur,i Ranger utility for not covering i if it’s selected
U cp,i Poacher utility for selecting i if it’s covered
Uup,i Poacher utility for selecting i if it’s not covered
ω Parameter of the SUQR model

f(ω) Probability density function of ω
Ur(x|ω) Ranger expected utility by playing strategy x against a

poach with the model parameter ω
Ur(x) Ranger expected utility by playing strategy x against the

whole population of the poachers
qi(ω|G) Probability that poacher with parameter ω selects target

i in game G

where qi(ω|x) represents the probability that the poacher will select target i. The parameter ω is

associated with the poacher’s behavioral model, which we will discuss in more details in Section

9.2.2. Table 9.1 lists key notations used in this paper.

We model the repeated crime activities of the poachers as the following: in each round of the

interaction between the rangers and the poachers, the ranger executes the same mixed strategy

over a period of time (e.g., a month); the poachers will first conduct surveillance on the rangers’

patrolling strategy and then respond. If the ranger switches the patrolling strategy, a new round

starts. We assume that the poachers are myopic (i.e., they make their decision based on their

knowledge of the ranger’s strategy in the current round). In this paper, we also assume the poach-

ers’ surveillance grants them perfect knowledge about the rangers’ strategy; we defer to future

work to consider the noise in poachers’ understanding of the rangers’ strategy due to limited

observations.

158

9.2.2 Behavioral Heterogeneity

The model we use to predict the behavior of the poachers is based on the SUQR model as de-

scribed in Chapter 5 and replaces the assumption of a single parameter setting with a probabilistic

distribution of the model parameter in order to incorporate the heterogeneity among a large popu-

lation of adversaries. SUQR extends the classic quantal response model by replacing the expected

utility function with a subjective utility function:

SUi(ω) = ω1xi + ω2U
u
p,i + ω3U

c
p,i (9.1)

where the parameter ω = 〈ω1, ω2, ω3〉 measures the weight of each factor in the adversary’s

decision making process. In Chapter 5, ω was learned using data collected with human subjects

from Amazon Mechanical Turk and assumed that there was a single parameter ω. We will show

that the parameters learned for individuals in the data set differ from each other. We then show

that the model’s predictive power significantly improves if the parameter is changed from a single

value to a probabilistic distribution.

In the data set collected with the subjects from Amazon Mechanical Turk, each subject played

25-30 games. In total, data was collected on about 760 subjects. We learn the SUQR parameter

for each individual by maximizing the log-likelihood defined in Equation (9.2)

logL(ω) =
∑
k

log(qck(ω|Gk)) (9.2)

where, Gk denotes the kth game played by the subject. ck is the index of the target selected by the

subject in this game. qck represents the probability that target ck will be selected by the subject

predicted by the SUQR model, which is computed as the following:

qck(ω|Gk) =
eSUck (ω|Gk)∑
i e
SUi(ω|Gk)

(9.3)

159

Table 9.2: Log-likelihood
Single Parameter
Setting

Parameter
Learned for each
subject

Training Set -1.62 -1.09
Testing Set -1.68 -1.15

where, SUi(ω|Gk) is the subjective utility function as described in Equation (9.1) given a game

instance Gk. Figure 9.2 displays the empirical PDF of ω. It shows a shape of normal distribution

in all three dimensions. Furthermore, we report in Table 9.2 the average log-likelihood of the

SUQR model with the parameter value learned for each subject. We also include in Table 9.2 the

log-likelihood of the SUQR model with the assumption that the parameter value is the same for all

the subjects. The results are evaluated using cross-validation. Table 9.2 shows that the predictive

power of the model improves by tuning the parameter for each subject, since the log-likelihood of

the prediction by the model is increased. On average, the log-likelihood of the SUQR model with

the parameter learned for each subject is 0.53 higher than that with a uniform parameter across

all subjects. In other words, the prediction of the former model is 1.70 (i.e. e0.53) times more

likely than that of the latter.

−100 −50 0 50
0

0.05

0.1

0.15

0.2

0.25

ω
1

f(
ω

1
)

−2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

ω
2

f(
ω

2
)

−2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

ω
3

f(
ω

3
)

Figure 9.2: Empirical Marginal PDF of the SUQR parameter among all the 760 subjects

Given the results shown in Figure 9.2, we assume a probabilistic, normal distribution of the

SUQR parameter ω in order to incorporate the heterogeneity of the decision-making process

160

of the whole population of poachers. The SUQR model with a specific value of ω essentially

represents one type of poacher. With the continuous distribution of ω, we are indeed facing a

Bayesian Stackelberg game with infinite types. We denote the probability density function of ω

as f(ω).

9.2.3 Adapting Patrolling Strategy using Historical Crime Data

In the domain of wildlife crime, if the behavioral model of the whole adversary population is

given, the optimal patrolling strategy x∗ is the one that maximizes the expected utility of the

rangers.

x∗ = argmax
x

∮
Ur(x|ω)f(ω)dω (9.4)

where, Ur(x|ω) is the rangers’ expected utility by executing strategy x against a poacher that has

a model parameter of ω. Ur(x|ω) is computed as the following,

Ur(x|ω) =
∑
i

Ur,i(x|ω)qi(ω|G) (9.5)

where, Ur,i(x|ω) is the rangers’ expected utility if target i is selected by the poachers. Ur(x|ω) is

a nonlinear fractional function given that qi(ω|G) follows the prediction of the SUQR model.

In reality, the behavioral model of the adversary population is unknown to the rangers. Thus,

a key challenge for obtaining an optimal patrolling strategy is to learn the poachers’ behavioral

models. More specifically, we want to learn the distribution of the SUQR model parameter. In the

wildlife crime problem, data is often available about historical crime activities. Recall that these

data points record the snares found by the rangers, which can be either anonymous or identified.

The identified crime data that is linked to an individual poacher can be used to learn his behavioral

model (i.e., estimate the SUQR model parameter for that poacher). In contrast, it is impossible

161

to directly use anonymous crime data to build a behavioral model for any individuals. In theory,

with enough identified crime data, we could estimate the underlying population distribution of ω

directly. In reality, however, identified crime data is rare compared to anonymous crime data.

9.3 Research Advances in PAWS

Recall that existing techniques in SSG cannot be applied directly to PAWS due to the new chal-

lenges coming from this new domain. In this section, we describe the novel research advances

developed for solving the SSG in PAWS.

9.3.1 Learn the Behavioral Model

At the beginning of the game, rangers only know that the distribution of the poacher population’s

model parameter follows a normal distribution. The goal is to learn the multi-variable normal

distribution (i.e., the mean µ and the covariance matrix Σ) of the 3-dimensional SUQR model

parameter ω as data becomes available.

As previously discussed, identified data, although sparse, can be used to directly learn poach-

ers’ individual behavioral models. Since it is sparse, it takes a much longer time to collect enough

data to learn a reasonable distribution. In contrast, there is much more anonymous crime data col-

lected. As we will show, we can learn the behavioral model of the poacher population using these

two types of data. Furthermore, we combine the use of the sparse identified data to boost the

convergence of the learning.

Let’s first define the format of the data collected in each round of the game. Let N (t)
a be

the number of anonymous crimes observed by the ranger in round t and N (t)
c be the number of

162

captured poachers in round t. Furthermore, let A(t) = {a(t)
j |j = 1, ..., N

(t)
a } denote the set of

targets chosen by the anonymous poachers in round t and Ω(t) = {ω(t)
k |k = 1, ..., N

(t)
c } denote

the set of parameter values associated with the captured poachers in round t. ω(t)
k is the SUQR

parameter of the kth captured poacher in round t. We assume that a captured poacher will confess

his entire crime history in all previous rounds. For the kth captured poacher in round t, we denote

C(t)
k = {c(t)

k,l} as the set of crimes committed by him, where the index l in c(t)
k,l represents the

lth crime committed by him. c(t)
k,l = (α

(t)
k,l, x

(t)
k,l) includes the target chosen by the poacher when

the crime was committed (denoted as α(t)
k,l) and the resource allocation strategy of the rangers at

the time (denoted as x(t)
k,l). To simplify the notation, we denote α(t)

k,l as αl and x(t)
k,l as χl in the

following part of the paper.

9.3.1.1 Learning with the Identified Data

For each captured poacher, the associated SUQR model parameter can be estimated with Maxi-

mum Likelihood Estimation (MLE).

ω
(t)
k = argmax

ω
logL(ω|C(t)

k)

= argmax
ω

∑
l

log(qαl(ω|χl)) (9.6)

where, qαl(ω|χl) is the predicted probability that the kth captured poacher chooses target αl when

he committed the crime after observing χl as the resource allocation strategy of the rangers. It

can be shown that logL(ω|C(t)
k) is a concave function, since the Hessian matrix is negative semi-

definite.

At round t, there are in total
∑t

τ=1N
(τ)
c poachers captured. After learning the model parame-

ter ω for each of these poachers, there are
∑t

τ=1N
(τ)
c data samples collected from the distribution

163

of the poacher population. By applying MLE, the distribution of ω can be learned from these data

samples. Given that ω follows a 3-dimensional normal distribution, the mean and the covariance

matrix learned with MLE is calculated as the following:

µ(t) =
1∑t

τ=1N
(τ)
c

t∑
τ=1

∑
ω∈Ω(τ)

ω (9.7)

Σ(t) =
1∑t

τ=1N
(τ)
c

t∑
τ=1

∑
ω∈Ω(τ)

(ω − µ(t))(ω − µ(t))T (9.8)

9.3.1.2 Learning with the Anonymous Data

Each anonymous data item records the target selected by the poacher. Since no information is

recorded about the individual poacher who committed the crime, it is impossible to estimate

the model parameter like is done with identified data. One potential approach is to treat each

anonymous data point as committed by different independent poachers.

ω
(t)
j = argmax

ω
logL(ω|a(t)

j , x
(t)) (9.9)

where, x(t) is the strategy of the rangers in round t. ω(t)
j denotes the estimated model parameter

of the anonymous poacher who committed the jth crime in round t. Note that in each round, the

log-likelihood of any given value of ω only depends on the target that was selected by the poacher.

Different poachers with different model parameters will be treated the same if they choose the

same target in the same round. Let Ω̃(t) = {ω(t)
j |j = 1, ..., N

(t)
a } represent the set of estimated

model parameters associated with the N (t)
a anonymous crimes recorded in round t. Similar to

164

Algorithm 7: PAWS-Learn

1 Input: t, C(τ),A(τ), x(τ), ∀τ = 1 . . . t− 1;
2 (µ(t),Σ(t))← Learn({C(τ), τ = 1, ..., t− 1});
3 ({ωn})← Sample(µ(t),Σ(t), Ns); ;

4 πon ← f(ωn|µ(t),Σ(t))∑
n′ f(ωn′ |µ(t),Σ(t))

, ∀n;

5 〈πn〉 ← Refine({C(τ), τ = 1, ..., t− 1}, 〈πon〉); ;
6 Return ({ωn}, 〈πn〉);

how the identified data was used, the maximum likelihood estimation of the mean and covariance

matrix of the distribution of the model parameter can be computed as:

µ̃(t) =
1∑t

τ=1N
(τ)
a

t∑
τ=1

∑
ω∈Ω̃(τ)

ω (9.10)

Σ̃(t) =
1∑t

τ=1N
(τ)
a

t∑
τ=1

∑
ω∈Ω̃(τ)

(ω − µ̃(t))(ω − µ̃(t))T (9.11)

9.3.1.3 Combining the Two Kinds of Data

Identified data provides an accurate measurement of an individual poacher’s behavior. However,

it leads to slow learning convergence for the population’s behavioral model due to its sparseness.

While anonymous data provides a noisy estimation of an individual poacher’s behavioral model,

it gives a sufficiently accurate measurement of the crime distribution of the poacher population

due to the large amount of data points. We propose PAWS-Learn, an algorithm to improve the

estimation of the model parameter by combining both the identified data and the anonymous data.

Algorithm 8 shows the outline of PAWS-Learn.

At round t, PAWS-Learn first uses the identified data to learn the mean and the covariance,

as shown in Line (2). It then measures the accuracy of this estimation using the mean square error

(MSE) of the predicted crime distribution recorded by the anonymous data.

MSE(t)(µ(t),Σ(t)) =
∑
i∈T

(q̄i(x(t)|µ(t),Σ(t))− y(t)
i)2 (9.12)

165

where y(t)
i is the proportion of crimes found at target i as recorded by the anonymous data1.

q̄i(x|µ(t),Σ(t)) is the predicted probability that target iwill be selected by the poacher population,

given N (µ(t),Σ(t)). Ideally, q̄i(x|µ(t),Σ(t)) is calculated as

q̄i(x|µ(t),Σ(t)) =

∮
Ω
qi(ω, x(t))f(ω|µ(t),Σ(t))dω

Let π = 〈πn〉 denote the vector of probabilities associated with the sampled parameter values,

where
∑

n πn = 1 due to normalization. The predicted probability that target i will be selected

by the poacher population in round t is approximated as

q̄i(x(t)) =
∑
n

πnqi(ωn, x(t))

The quadratic program formulation for minimizing the MSE of the observed crime distribution is

shown in Equations (9.13)-(9.15).

min
π

∑
i∈T

(
∑
n

πnqi(ωn, x(t))− y(t)
i)2 (9.13)

s.t.
∑
n

πn = 1, πn ∈ [0, 1],∀n (9.14)

|πn − πon| ≤ βπon, ∀n (9.15)

Equation (9.15) is to ensure the smoothness of 〈πn〉 since the values are essentially samples from

the probability density function of a normal distribution. More specifically, it constrains πn to be

within a certain distance of the initial value πon. The parameter β is set to decide the range of πn

proportion to πon. As shown in Line (4),πon is set to the pdf of the current estimated distribution

N (µ(t),Σ(t)): πon = C · f(ωn|µ(t),Σ(t)), where C = 1∑
n f(ωn|µ(t),Σ(t))

is the constant to make

sure that
∑

n πn = 1. As shown in Line (5), PAWS-Learn refines the probabilities of the sampled

parameter values by solving the above quadratic programming problem.
1PAWS-Learn currently assumes that in the anonymous data collected by rangers in each round, the observed

crime distribution is close to the true distribution.

166

Algorithm 8: PAWS-Adapt

1 Input: N (t)
c ,N (t)

a ;
2 x(1) ← MAXIMIN;
3 for τ = 1, ... do
4 (C(τ),A(τ))← CollectData(x(τ)) ;
5 ({ωn}, {πn})← PAWS − Learn(C(τ),A(τ), x(τ));
6 x(τ+1) ← ComputeStrategy({ωn}, {πn})
7 end

9.3.2 Adapting Patrolling Strategy

We propose PAWS-Adapt, a framework to adaptively design the patrolling strategy for the rangers.

Let (Co,Ao, xo) be the initial data set. At round t, PAWS-Adapt first estimates the behavioral

model with all the historical data by calling PAWS-Learn. Let (ω
(t)
n , 〈π(t)

n) be the learning results

of the poacher population’s behaviorial model by PAWS-Learn. PAWS-Adapt then computes

the optimal patrolling strategy, based on the current learning result, to execute in the next round.

In computing the optimal patrolling strategy under the given behavioral model, we need to

solve the optimization problem in Equation (9.4), which is equivalent to a Bayesian Stackelberg

Game with infinite types. With the representation of discretized samples, we approximate the

infinite types with a set of sampled model parameters {ωn}. Given that the objective function in

Equation (9.4) is non-convex, we solve it by finding multiple local optima with random restarts.

Let x(t) be the patrolling strategy computed by PAWS-Adapt for round t. The rangers then update

their strategy in the new round. As shown in Algorithm 9, the rangers will update the poachers’

behavioral models each round after more data is collected. They then switch to a new strategy

that was computed with the new model.

167

9.4 Evaluation

9.4.1 General Game Settings

In the first set of our experiments, we generate a random payoff matrix similar to the experiment

in Chapter 5. The crime data points are simulated as the following: given the true distribution

of ω, we first draw a set of random parameters for ω to represent the whole poacher population.

Let Np be the total number of poachers. In each round, we first draw a subset of ω from these

Np values to represent the subset of poachers who are going to commit crimes in the current

round. Given the patrolling strategy, we then simulated the target choices made by this subset of

poachers. These choices are recorded as the anonymous data. Meanwhile, we randomly select

a given number of poachers from this subset to represent the poachers that are captured by the

rangers in the current round. Once a poacher is captured, the choices he made in the previous

round will be linked and recorded as the identified data points.

5 10 15 20

−30

−25

−20

−15

−10

−5

0

Round #

C
um

ul
at

iv
e

D
ef

en
de

r
E

U

20Targets, 5security resources
3 Captures, 50Crimes

identified data
anonymous data
PAWS−Learn
Upper Bound
Maximin

(a) Cumulative EU

5 10 15 20

0.5

1

1.5

2

2.5

Round #1−
no

rm
 d

is
ta

nc
e

to
 o

pt
im

al
 s

tr
at

eg
y

20Targets, 5security resources
3 Captures, 50Crimes

identified data
anonymous data
PAWS−Learn

(b) Strategy Convergence

Figure 9.3: Simulation results over round

In Figure 9.3(a), we show the cumulative expected utility (EU) of the rangers over the round.

We compare three different approaches: PAWS-Learn, learning from only the identified data, and

learning from only the anonymous data. We also included the maximin strategy as the baseline.

168

0

0.5

1

1.5

2

2.5

1 3 5 7 9 11 13 15 17 19 21
1

-n
o

rm
 d

is
ta

n
ce

 t
o

o

p
ti

m
al

 s
tr

at
e

gy

Round #

1 capture/round
3 captures/round

Figure 9.4: Slow Capture v.s. Fast Capture

The upper bound is computed assuming the rangers know the true distribution of ω. In Figure

9.3(a), we show the average result over 20 random game instances. We set the number of targets

to 20 and the number of security resources to 5. The true distribution of ω is the same as that

learned in Section 9.2.2. In each round, 50 anonymous data points are generated, and 3 poachers

are captured. As can be seen in the figure, PAWS-Learn outperforms the other two learning

approaches that use one type of data. Furthermore, learning indeed helps improve the patrolling

strategy since the three solid lines are much closer to the upper bound compared to the baseline

solution maximin strategy.

In Figure 9.3(b), we show the convergence of the patrolling strategy from the three different

learning methods. The figure shows that PAWS-Learn converges faster than the other two meth-

ods. Thus, combining the two types of data indeed boosts the learning of the poacher population’s

behavioral model.

In order to show how the speed of capturing poachers impacts the performance of PAWS,

we fix the number of anonymous data points to 50 and simulate the captured poachers in each

round at two different paces: 1 poacher vs. 3 poachers. Figure 9.4 shows the convergence of

169

PAWS-Learn in these two cases. It is clear that the strategy converges faster if more poachers are

captured.

We compare the cumulative EU achieved by the three different methods under varying num-

ber of targets and varying amount of resources. In both Figure 9.5(a) and 9.5(b), the y-axis

displays the cumulative EU of the rangers at the end of round 20. In both figures, we simulate

50 crimes and randomly generate 3 captured poachers each round. In Figure 9.5(a), we vary the

number of resources on the x-axis while fixing the number of targets to 20. It shows that the

cumulative EU increases as more resources are added. In addition, PAWS-Learn outperforms the

other two approaches regardless of resource quantity. Similarly, we vary the number of targets on

the x-axis in Figure 9.5(b) while fixing the amount of resources to 5. The better performance of

PAWS-Learn over the other two learning methods can be seen from the figure regardless of the

number of targets.

3 5 7 10
paws-learn

anonymous data

identified data

-40

-30

-20

-10

0

10

20

30

40

3 5 7 10

C
u

m
u

la
ti

ve
 E

U

Resource Unit

PAWS-learn
anonymous data
identified data

(a) 20 Targets, 3 Captures, 50 Crimes

-50

-40

-30

-20

-10

0

10

20

10 20 40

C
u

m
u

la
ti

ve
 E

U

Number of Targets

PAWS-learn
anonymous data
identified data

(b) 5 security resources, 3 Captures, 50 Crimes

Figure 9.5: Comparing cumulative EU at round 20

9.4.2 Results for the Deployment Area

We now show the experiment results of applying PAWS to QENP. We focus on a 64 square

kilometer area in QENP that features flat grasslands, an international trade route that connects

170

nearby Democratic Republic of the Congo, smaller roads, and fresh water. In our simulation area

9.6(b), the series of lakes are modeled as areas of high animal density. Since the roads in this

area provide multiple access points for poachers and rangers, they can leave the closest road at

the closest point to their targeted cells. We calculate travel distances according to that rationale.

These representations of animal density and distance form the primary basis for the payoffs for

both the rangers and the poachers. The poachers’ reward (i.e., if they choose a cell not covered

by rangers) depends on the relative animal density of the cell and the travelling cost to that cell.

The travelling cost depends on the distance from the closest entry point (e.g., a road). Therefore,

a lake close to a road is at high risk for poaching and is thus modelled as an area of high reward to

the poachers. In turn, the poachers’ penalty (i.e., the chosen cell is covered by rangers) is decided

by the travelling cost to a cell and the loss of being captured by the rangers. The rangers’ reward

is considered to be uniform since their goal is to search for snares and capture poachers regardless

of the location. The penalty for the rangers (i.e., fail to find snares at a place) is decided by the

animal density of the cell. Further discussion of the rationale can be found in the domain section

9.1.

We run simulations with a sample game, similar to that in the general setting as explained in

Section 9.4.1. Figure 9.7 displays the simulation results, where the number of resources is set to

16, indicating that a single patrol covers 16 grid areas in the map. The ranger’s cumulative EU is

shown in Figure 9.7(a). It can be seen that PAWS-Learn achieves very close performance to the

optimal strategy. The convergence of the patrolling strategy to the optimal strategy is shown in

Figure 9.7(b).

In order to help visualize the change of ranger’s patrolling strategy, we show the coverage

density in the 8-by-8 area at three different rounds in Figure 9.8. Darker colors indicate less

171

(a) A zoomed out view of the simulation area. (b) The 64 sq. km grid overlayed on the
simulation area.

Figure 9.6: The QENP area of interest for our simulation

coverage in the area. Note that there are three lakes located in the lower-left area, where the

density of animals is higher. It is clear that these areas are covered more by the rangers. The

figure also shows a clear shift of the patrolling coverage over the rounds.

These results are enthusiastically received by our collaborator at QENP. While the existing

framework requires manual analysis of the snare data, PAWS provides a systematic way of gen-

erating patrolling strategies based on automatic analysis of the data. PAWS will start to be tested

in the field in March 2014 with actual deployment planned for the latter portion of 2014.

172

5 10 15 20 25 30
−50

−40

−30

−20

−10

0

Round #

C
um

ul
at

iv
e

D
ef

en
de

r
E

U
64Targets, 16security resources

3 Captures, 50Crimes

identified data
anonymous data
PAWS−Learn
Upper Bound
Maximin

(a) Cumulative EU

5 10 15 20 25 30

1

2

3

4

5

Round #1−
no

rm
 d

is
ta

nc
e

to
 o

pt
im

al
 s

tr
at

eg
y

64Targets, 16security resources
3 Captures, 50Crimes

identified data
anonymous data
PAWS−Learn

(b) Strategy Convergence

Figure 9.7: Simulation results over round for the 64 sq. km grid area in QENP

Round 1 Round 5 Round 20

Figure 9.8: Patrolling coverage density in the park

173

Chapter 10: Conclusion

Game-theoretic approach has become a very important tool for solving real-world security prob-

lems. Its usefulness is proved by a number of real-world deployed applications, including AR-

MOR [Pita et al., 2008] for the Los Angeles International Airport, IRIS [Tsai et al., 2009] for the

Federal Air Marshals, GUARDS [Pita et al., 2011] for the Transportation Security Administra-

tive. These systems have often adopted the standard assumption of a perfectly rational adversary

made by the classic game theory, which make not hold in the real-world against human adver-

saries who may have bounded rationality. While such assumption is a reasonable start for these

first generation of applications, it is critical to address the decision making of human adversary

as the next step.

My thesis aims to address this challenge by closing the gap between two important subfileds

in game theory: Behavioral Game Theory and Algorithmic Game Theory. While the former

provides empirical models for predicting the decision making of human players; the latter fo-

cuses developing efficient computation of the optimal strategy for the players. In addressing the

decision-making of human adversary for real-world security problems, the key is to bridging the

efforts from both sides.

174

To that end, my thesis on the one hand provide novel models for predicting adversary decision

making in security games by first investigating the effectiveness of different existing models and

then further extending the selected model with key insights draw from data. On the other hand,

my thesis develops efficient algorithms for optimizing the defender’s resource allocation strategy

incorporating the behavioral model of the adversary. In particular, my thesis has the following

five key contributions.

10.1 Contributions

• Stochastic model for adversary decision making: This work answers a critical question of

which existing model to use to predict adversary decision making. In particular, it presents:

(i) new efficient algorithms for computing optimal strategic solutions using Prospect The-

ory and Quantal Response Equilibrium; (ii) the most comprehensive experiment to date

studying the effectiveness of different models against human subjects for security games;

and (iii) new techniques for generating representative payoff structures for behavioral ex-

periments in generic classes of games. Our results with human subjects show that our

new techniques outperform the leading contender for modeling human behavior in security

games.

• More sophisticated models: This work analyzes the effectiveness of adversary model in

security games towards addressing the the bounded rationality of adversary. Through ex-

tensive experiments with human subjects, I emphatically answer the question in the affir-

mative, while providing the following key results: (i) our algorithm, SU-BRQR, based on

175

a novel integration of human behavior model with the subjective utility function, signifi-

cantly outperforms an robust optimization approach MATCH; (ii) we are the first to present

experimental results with security intelligence experts, and find that even though the ex-

perts are more rational than the Amazon Turk workers, SU-BRQR still outperforms an

approach assuming perfect rationality (and to a more limited extent MATCH); (iii) we show

the advantage of SU-BRQR in a new, large game setting and demonstrate that sufficient

data enables it to improve its performance over MATCH.

• GOSAQ and PASAQ: I provide two algorithms for efficient computation of the defenders’

optimal strategy incorporating a boundedly rational model of the adversary. They over-

comes the difficulties of solving a nonlinear and non-convex optimization problem and

handling constraints on assigning security resources in designing defender strategies. In

addressing these difficulties, GOSAQ guarantees the global optimal solution in comput-

ing the defender strategy against an adversarys quantal response; PASAQ provides more

efficient computation of the defender strategy with nearly-optimal solution quality. Both

algorithms achieves much better solution quality than the benchmark algorithm BRQR. In

the presence of resource assignment constraint PASAQ is shown to achieves much better

computational efficiency than both GOSAQ and a benchmark algorithm BRQR. In fact, the

approximation error of PASAQ is proven to be linearly bounded by the piecewise linear

accuracy.

• BLADE: I develop the algorithm to further scale-up for computing defender optimal strat-

egy in massive security games with trillions of defender strategies incorporating the bounded

176

rationality of the adversary. BLADE is based on three novel ideas. First, we present a sep-

aration oracle that can effectively prune the search space via deep cuts. More importantly

we show that to handle massive scale SSGs, not only must this separation oracle itself use

a secondary oracle but that this two-level hierarchy of oracles is efficient. Second, we pro-

vide a novel heuristic to further speed-up BLADE by exploiting the SSG objective function

to improve its cuts. Third, BLADE provides a technique for quality-efficiency tradeoff. As

we experimentally demonstrate, BLADE is significantly more efficient than a Branch-and-

Price based algorithm.

• Adaptive resource allocation: In domains with collective data of adversary events, we are

facing new challenges including learning the behavioral model of adversary from the col-

lected data. Using wildlife protection as an example domain, I present PAWS, a novel

application for improving wildlife crime patrols, which is essential to combating wildlife

poaching. As demonstrated in the experimental results, PAWS successfully models the

wildlife crime domain and optimizes wildlife crime patrols while remaining flexible enough

to operate generally and in a specific deployed area. Due to the unique challenges in-

troduced by wildlife crime, we have also made a series of necessary technical contribu-

tions. Specifically, the success of PAWS depend on the following novel contributions:

1. a stochastic behavioral model extension that captures the populations heterogeneity;

2. PAWS-Learn, which combines both anonymous and identified data to improve the

accuracy of the estimated behavioral model; 3. PAWS-Adapt, which adapts the rangers

patrolling strategy against the behavioral model generated by PAWS-Learn.

177

10.2 Future Work

In this thesis, I have shown how game-theoretic approach can be applied for optimizing resource

allocation in security problems, with a focus on two domains: counter-terrorism and preventing

illegal poaching of wildlife. As security remains an important global concern, there are numerous

research opportunities available.

One key area is to translate the results obtained here in controlled experiments on AMT into

specific, real-world security applications. Most of the issues related to making this transition are

not unique to our work, but apply more generally to studies in agent/human interactions. For

example, the specific conditions tested in the lab and the way in which decisions are presented is

not likely to be exactly reflected in real interactions, and neither is the population of adversaries

identical to the population of adversaries in a real-world security setting. However, our methods

are based on fundamental features of human decision-making that are robustly supported in a

large number of behavioral studies and these methods would thus translate into real-world appli-

cations. In addition, the parameters offer some ability to tune the models over time to specific

settings or populations of interest, and our methodology provides techniques for tuning these pa-

rameters. The parameter settings in our work can serve as initial settings in a real deployment

to be adapted over time. Alternatively, the parameters can initially be set conservatively (e.g.,

somewhat close to settings that result in a standard equilibrium), and adapted over time from this

starting point. Another interesting possibility that could be explored in future work is to develop

ways to incorporate different sources of information (such as prior knowledge of the biases of

specific adversaries) into the models in a general way.

178

One other possible direction for future work concerns with further improvements of the model

in PAWS. The current model in PAWS is based on a set of simplifying assumptions about the

domain. For example, the adversaries is now assumed to be myopic and have a static behavioral

model. However, in reality, as the defender gradually improves the behavioral model of the ad-

versaries, the adversaries might also adapt their strategies. Considering such dynamics in PAWS

and other security games with repeated settings will be critical to improve the performance of the

model. In addition, PAWS doesn’t consider the collaboration and competition among the individ-

ual poachers. Instead, it is assumed that individual poachers make independent decisions during

the illegal poaching. Modeling the collaboration and competition among individual poachers will

be a necessary next step to improve the performance of PAWS. Furthermore, the current learning

model assumes that the rangers have perfect knowledge of the location distribution of the past

poaching events. However, given that the rangers only find proof of poaching events in areas

where they go for patrolling, the distribution of the poaching events in the uncovered area is in

fact unknown to the rangers. A necessary next step is to modify the learning model to take into

consideration such noise in the data.

Another possible direction relates to the efficient computation of defender optimal strategy.

My algorithms open the door for optimizing defender resource allocation in massive real-world

security problems with large number of defender pure strategies. With problems similar to

TRUSTS [Yin et al., 2012] with large number of adversary pure strategies, the door remains open

for specialized techniques to further improve the computational efficiency of the algorithms. Fur-

thermore, BLADE assumes a single type of adversary behavioral model. In domains with a large

population of adversaries such as wildlife protection, efficient algorithm is still need to address

the Bayesian types of adversary behavioral model.

179

In the long run, a general framework should be built for applying game-theoretic approach

to any security domains incorporating the behavioral model of human decision-making. First,

a behavioral model will need to be developed for predicting adversary behavioral accounting

for the new features that might be involved in the decision-making process of the adversaries in

these new domains. One possible approach is to use a quantitative model similar to the quantal

response model. The many features that might be involved in the decision making process of the

adversary can be built into the model using machine learning methods if data is available. Once

a model is developed for predicting the adversary behavior, efficient algorithms for optimizing

defender resource allocation will need to be developed. Similar approaches applied in this thesis

for developing PASAQ and BLADE can potentially be applied given that the quantitative model of

adversary decision making usually leads to a non-convex optimization problem.

180

Bibliography

Max Abrahms. What terrorists really want: Terrorist motives and counterterrorism strategy.
International Security, 32(4):78–105, 2008.

Michele Aghassi and Dimitris Bertsimas. Robust game theory. Math. Program., 107:231–273,
2006.

Noa Agmon, Sarit Kraus, and Gal A. Kaminka. Multi-robot perimeter patrol in adversarial set-
tings. In In ICAT, 2008.

Noa Agmon, Sarit Kraus, Gal A. Kaminka, and Vladimir Sadow. Adversarial uncertainty in
multi-robot patrol. In In IJCAI, 2009.

S. A. Ali. Rs 18L seized in nakabandi at Vile Parle. Times of India, August 2009.

Graham Allison and Philip Zelikow. Essence of Decision: Explaining the Cuban Missile Crisis.
Pearson, 1999.

Bo An, Manish Jain, Milind Tambe, and Christopher Kiekintveld. Mixed-initiative optimization
in security games: A preliminary report. In Proceeding of the AAAI Spring Symposium, 2010.

Bo An, David Kempe, Christopher Kiekintveld, Eric Shieh, Satinder Singh, Milind Tambe, and
Yevgeniy Vorobeychik. Security games with limited surveillance. In In AAAI, 2012.

Robert J. Aumann and M. B. Maschler. Repeated Games with Incomplete Information. The MIT
press, 1995.

Amos Azaria, Zinovi Rabinovich, Sarit Kraus, and Claudia V. Goldman. Strategic information
disclosure to people with multiple alternatives. In In AAAI, pages 594–600, 2011.

Amos Azaria, Zinovi Rabinovich, Sarit Kraus, and Claudia V. Goldman. Strategic information
disclosure to people with multiple alternatives. In In AAAI, 2012.

C. Barnhart, E. Johnson, g. Nemhauser, M. Savelsbergh, and P. Vance. Branch and price: Column
generation for solving huge integer programs. Operations Research, 46:316–329, 1994.

Nicola Basiloco, Nicola Gatti, and Francesco Amigoni. Leader-follower strategies for robotic
patrolling in environments with arbitrary topologies. In In AAMAS, 2009.

J. C. Becsey, Laszlo Berke, and James R. Callan. Nonlinear least squares methods: A direct grid
search approach. Journal of Chemical Education, 45(11):728, 1968.

181

S. Boyd and L. Vandenberghe. Localization and cutting-plane methods. Lecture Notes, 2008.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
New York, NY, 2004.

M. Breton, A. Alg, and A. Haurie. Sequential stackelberg equilibria in two-person games. Opti-
mization Theory and Applications, 59(1):71–97, 1988.

George W. Brown. Iterative solution of games by fictitious play. In Activity Analysis of Production
and Allocation. Wiley, 1951.

R. G. Burgess and C. J. Darken. Realistic human path planning using fluid simulation. In Pro-
ceedings of Behavior Representation in Modeling and Simulation (BRIMS), 2004.

Richard H. Byrd, Jorge Nocedal, and Richard A. Waltz. Knitro: An integrated package for
nonlinear optimization. In Large-Scale Nonlinear Optimization, pages 35–59. G. di Pillo and
M. Roma, eds, Springer-Verlag, 2006.

Colin F. Camerer. Behavioral Game Theory: Experiments in Strategic Interaction. Princeton
University Press, Princeton, New Jersey, 2003.

Colin F. Camerer, Teck-Hua Ho, and Juin-Kuan Chongn. A congnitive hierarchy model of games.
QJE, 119(3):861–898, 2004.

R. Chandran and G. Beitchman. Battlefor mumbai ends, death toll rises to 195. Times of India,
November 2008.

Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-Supervised Learning. The MIT
Press, Cambridge, Massachusetts, USA, 2006.

Vincent Conitzer and Thomas Sandholm. Computing the optimal strategy to commit to. In In
Proceedings of the ACM Conference on Electronic Commerce (ACM-EC), pages 82–90, 2006.

Miguel Costa-Gomes, Vicent P. Crawford, and Brimp Broseta. Cognition and behavior in normal-
form games: An experimental studys. Econometrica, 69(5):1193–1235, 2001.

Celso de Melo, Peter Carnevale, and Jonathan Gratch. The effect of expression of anger and
happiness in computer agents on negotiations with humans. In In AAMAS, 2011.

Enrico Diecidue and Peter P. Wakker. On the intuition of rank-dependent utility. The Journal of
Risk and Uncertainty, 23(3):281–289, 2001.

Nick Feltovich. Reinforment-based vs. belief-based learning models in experimental asymmetric-
information games. Econometrica, 68(3):605–641, May 2000.

Sevan G. Ficici and Avi Pfeffer. Simultaneously modeling humans’ preferences and their beliefs
about others’ preferences. In In AAMAS, 2008.

Baruch Fischhoff, Bernard Goitein, and Zur Shapira. Subjective expected utility: A model of
decision-making. Journal of American Society of Information Science, 32(5):391–399, 1981.

182

Nicola Gatti. Game theoretical insights in strategic patrolling: Model and algorithm in normal-
form. In In ECAI-08, pages 403–407, 2008a.

Nicola Gatti. Game theoretical insights in strategic patrolling model and algorithm in normal-
form. In In ECAI, pages 403–407, 2008b.

G. Gigerenzer, Todd P. M., and the ABC Research Group. Simple Heuristics that make us smart.
Oxford University Press, 1999.

Paul Gill and Joseph Young. Comparing role-specific terrorist profiles. In American Society of
Criminology Annual Meeting, 2011.

Jacob K. Goeree, Charles A. Holt, and Thomas R. Palfrey. Regular quantal response equilibrium.
Experimental Economics, 8(4):347–367, December 2005.

Priscilla E. Greenwood and Michael S. Nikulin. A Guide to Chi-squared Testing. John Wiley &
Sons, Inc, 1996.

Reid Hastie and Robyn M. Dawes. Rational Choice in an Uncertain World: the Psychology of
Judgement and Decision Making. Sage Publications, Thounds Oaks, 2001.

Manish Jain, Erim Kardes, Christopher Kiekintveld, Milind Tambe, and Fernando Ordonez. Se-
curity games with arbitrary schedules: A branch and price approach. In In AAAI, 2010a.

Manish Jain, James Pita, Jason Tsai, Christopher Kiekintveld, Shyamsunder Rathi, Fernando
Ordóñez, and Milind Tambe. Software assistants for patrol planning at lax and federal air
marshals service. Interfaces, 40(4):267–290, 2010b.

Manish Jain, Dmytro Korzhyk, Ondrej Vanek, Vincent Conitzer, Michal Pechoucek, and Milind
Tambe. A double oracle algorithm for zero-sum security games on graphs. In AAMAS, 2011a.

Manish Jain, Milind Tambe, and Christopher Kiekintveld. Quality-bounded solutions for finite
bayesian stackelberg games: Scaling up. In In AAMAS, 2011b.

Manish Jain, Kevin Leyton-Brown, and Milind Tambe. The deployment-to-saturation ratio in
security games. In AAAI, 2012.

Daniel Kahneman and Amos Tvesky. Prospect theory: An analysis of decision under risk. Econo-
metrica, 47(2):263–292, 1979.

Daniel Kahneman and Amos Tvesky. Advances in prospect theory: Cumulative representation of
uncertainty. Journal of Risk and Uncertainty, 5:297–322, 1992.

Gregory L. Keeney and Detlof von Winterfeldt. Identifying and structuring the objectives of
terrorists. Risk Analysis, 30(12):1803–1816, 2010.

J. E. Kelley. The cutting-plane method for solving convex programs. The Society for Industrial
and Applied Mathematics, 8(4):703–713, 1960.

Christopher Kiekintveld, Manish Jain, Jason Tsai, James Pita, Fernando Ordóñez, and Milind
Tambe. Computing optimal randomized resource allocations for massive security games. In In
AAMAS, pages 689–696, 2009.

183

Christopher Kiekintveld, Janusz Marecki, and Milind Tambe. Approximation methods for infinite
bayesian stackelberg games: Modeling distributional payoff uncertainty. In In AAMAS, 2011.

Dmytro Korzhyk, Vincent Conitzer, and Ronald Parr. Complexity of computing optimal stackel-
berg strategies in security resource allocation games. In In AAAI, 2010.

Joshua Letchford, Vincent Conitzer, and Kamesh Munagala. Learning and approximating the
optimal strategy to commit to. In In Algorithmic Game Theory. Springer, 2009.

Janusz Marecki, Gerry Tesauro, and Richard Segal. Playing repeated stackelberg games with
unknown opponents. In In AAMAS, 2012.

Winter Mason and Siddharth Suri. Conducting behavioral research on amazons mechanical turk.
Behavior Research Methods, 44(1):1–23, 2012.

Daniel L. McFadden. Econometric analysis of qualitative response models. Handbook of Econo-
metrics, 2:1395–1457, 1984.

Daniel L. McFadden. A method of simulated moments for estimation of discrete choice models
without numerical integration. Econometrica, 57(5):995–1026, 1989.

Richard D. McKelvey and Thomas R. Palfrey. Quantal response equilibria for normal form
games. Games and Economic Behavior, 2:6–38, 1995.

Moses Montesh. Rhino poaching: A new form of organised crime. Technical report, College of
Law Research and Innovation Committee of the University of South Africa, 2013.

William Moreto. To Conserve and Protect: Examining Law Enforcement Ranger Culture and
Operations in Queen Elizabeth National Park, Uganda. Thesis, Rutgers, 2013.

Thanh H. Nguyen, Rong Yang, Amos Azaria, Sarit Kraus, and Milind Tambe. Analyzing the
effectiveness of adversary modeling in security games. In In AAAI, 2013.

E. Nudelman, J. Wortman, Y. Shoham, and K. Leyton-Brown. Run the gamut: A comprehensive
approach to evaluating game-theoretic algorithms. In AAMAS, pages 880–887, 2004.

Christos H. Papadimitriou and Tim Roughgarden. Computing correlated equilibria in multi-
player games. Journal of the ACM, 55(3):14, July 2008.

Praveen Paruchuri, Jonathan P. Pearce, Janusz Marecki, Milind Tambe, Fernando Ordóñez, and
Sarit Kraus. Playing games for security: An efficient exact algorithm for solving bayesian
stackelberg games. In In AAMAS, 2008.

Noam Peled, Ya’akov Gal, and Sarit Kraus. A study of computational and human strategies in
revelation games. In In AAMAS, 2011.

James Pita, Manish Jain, Fernando Ordóñez, Christopher Portway, Milind Tambe, Craig Western,
Praveen Paruchuri, and Sarit Kraus. Deployed armor protection: The application of a game
theoretic model for security at the los angeles international airport. In In AAMAS, 2008.

184

James Pita, Manish Jain, Fernando Ordóñez, Milind Tambe, and Sarit Kraus. Solving stackelberg
games in the real-world: Addressing bounded rationality and limited observations in human
preference models. Artificial Intelligence Journal, 174(15):1142–1171, 2010.

James Pita, Milind Tambe, Chris Kiekintveld, Shane Cullen, and Erin Steigerwald. Guards -
game theoretic security allocation on a national scale. In In AAMAS, 2011.

James Pita, Richard John, Rajiv Maheswaran, Milind Tambe, and Sarit Kraus. A robust approach
to addressing human adversaries in security games. In ECAI, pages 660–665, 2012.

Mark R. Pogrebin. About Criminals: A View of the Offenders World. SAGE, 2012.

Yundi Qian, William B. Haskell, Albert Xin Jiang, and Milind Tambe. Online planning for
optimal protector strategies in resource conservation games. In In AAMAS, 2014.

Ulf-Dietrich Reips. Conducting behavioral research on amazons mechanical turk. Experimental
Psychology, 49(4):243–256, 2002.

Louise Richardson. What Terrorists Want: Understanding the Enemy, Containing the Threat.
Random House Trade Paperbacks, 2007.

Heather Rosoff and Richard John. Decision analysis by proxy for the rational terrorist. In In
QRASA at IJCAI, pages 25–32, 2009.

Ariel Rubinstein. Modeling Bounded Rationality. MIT Press, Cambridge, Massachusetts, 1998.

P. S. Sastry, V. V. Phansalkar, and M. Thathachar. Decentralized learning of nash equilibria
in multi-person stochastic games with incomplete information. IEEE TRANSACTIONS ON
SYSTEMS MAN AND CYBERNETICS, 24(5), 1994.

Leonard J. Savage. The Foundations of Statistics. Dover Publications, 1972.

Mrinal K. Sen and Paul L. Stoffa. Global optimization methods in geophysical inversion. Elsevier,
New York, 1995.

Eric Shieh, Bo An, Rong Yang, Milind Tambe, Craig Baldwin, Joseph DiRenzo, Ben Maule, and
Garrett Meyer. Protect: A deployed game theoretic system to protect the ports of the united
states. In In AAMAS, 2012.

Herbert A. Simon. Rational choice and the structure of the environment. Psychological Review,
63(2):129–138, 1956.

Herbert A. Simon. Science of the Artificial. MIT Press, Cambridge, Massachusetts, 1969.

Dale O. Stahl and Paul W. Wilson. Experimental evidence on players’ models of other players.
JEBO, 25(3):309–327, 1994.

Chris Starmer. Developments in non-expected utility theory: The hunt for a descriptive theory of
choice under risk. Journal of Economic Literature, 38(2):332–382, 2000.

185

Donald Stevens, Thomas Hamilton, Marvin Schaffer, Diana Dunham-Scott, Jamison J. Medby,
Edward W. Chan, John Gibson, Mel Eisman, Richard Mesic, Charles T. Kelly Jr, Julie Kim,
Tom LaTourrette, and J. Jack Riley. Implementing security improvement options at Los Angeles
International Airport. RAND Corporation, 2006. URL http://www.rand.org/pubs/
documentedbriefings/2006/RANDDB499-1.pdf.

Kenneth Train. Discrete Choice Methods with Simulation. Cambridge University Press, Cam-
bridge, UK, 2003.

Jason Tsai, Shyamsunder Rathi, Christopher Kiekintveld, Fernando Ordóñez, and Milind Tambe.
Iris - a tool for strategic security allocation in transportation networks. In In AAMAS, 2009.

Jason Tsai, Zhengyu Yin, Jun young Kwak, David Kempe, Christopher Kiekintveld, and Milind
Tambe. Urban security: Game-theoretic resource allocation in networked physical domains.
In In AAAI, 2010.

Stephen A. Vavasis. Complexity issues in global optimization: a survey. In Handbook of Global
Optimization, pages 27–41. In R. Horst and P.M. Pardalos, editors, Kluwer, 1995.

Heinrich Freiherr von Stackelberg. Market Structure and Equilibrium. Springer, 2011.

Bernhard von Stengel and Shmuel Zamir. Leadership with commitment to mixed strategies. In
Tech. rep. LSE-CDAM-2004-01, CDAM Research Report, 2004.

Alan Washburn and Kevin Wood. Two-person zero-sum games for network interdiction. Opera-
tions Research, 43(2):243–251, 1995.

Yussuf Adan Wato, Geoffrey M. Wahungu, and Moses Makonjio Okello. Correlates of wildlife
snaring patterns in tsavo west national park, kenya. Biological Conservation, 132(4):500–509,
2006. ISSN 0006-3207. doi: http://dx.doi.org/10.1016/j.biocon.2006.05.010. URL http:
//www.sciencedirect.com/science/article/pii/S0006320706002047.

Rand R. Wilcox. Applying contemporary statistical techniques. Academic Press, 2003.

James R. Wright and Kevin Leyton-Brown. Beyond equilibrium: Predicting human behavior in
normal-form games. In In AAAI, 2010.

Rong Yang, Christopher Kiekintveld, Fernando Ordóñez, Milind Tambe, and Richard John. Im-
proving resource allocation strategy against human adversaries in security games. In In IJCAI,
2011.

Rong Yang, Albert Xin Jiang, Fei Fang, Milind Tambe, Rajiv Maheswaran, and Karthik Ra-
jagopal. Designing better strategies against human adversaries in network security games. In
In AAMAS, 2012a.

Rong Yang, Fernando Ordóñez, and Milind Tambe. Computing optimal strategy against quantal
response in security games. In In AAMAS, 2012b.

Rong Yang, Albert Xin Jiang, Milind Tambe, and Fernando Ordonez. Scaling-up security games
with boundedly rational adversaries: A cutting-plane approach. In In IJCAI, 2013a.

186

Rong Yang, Christopher Kiekintveld, Fernando Ordóñez, Milind Tambe, and Richard John. Im-
proving resource allocation strategy against human adversaries in security games: An extended
study. AIJ, 195:440–469, February 2013b.

Rong Yang, Benjamin Ford, Milind Tambe, and Andrew Lemieux. Adaptive resource allocation
for wildlife protection against illegal poachers. In In AAMAS, 2014.

Zhengyu Yin and Milind Tambe. A unified method for handling discrete and continuous uncer-
tainty in bayesian stackelberg games. In In AAMAS, 2012.

Zhengyu Yin, Dmytro Korzhyk, Christopher Kiekintveld, Vincent Conitzer, and Milind Tambe.
Stackelberg vs. nash in security games: Interchangeability, equivalence, and uniqueness. In In
AAMAS, 2010.

Zhengyu Yin, Manish Jain, Milind Tambe, and Fernando Ordóñez. Risk-averse strategies for
security games with execution and observational uncertainty. In In AAAI, 2011.

Zhengyu Yin, Albert Jiang, Matthew Johnson, Milind Tambe, Christopher Kiekintveld, Kevin
Leyton-Brown, Tuomas Sandholm, and John Sullivan. Trusts: Scheduling randomized patrols
for fare inspection in transit systems. In In IAAI, 2012.

187

Appendix A: Error Bound of PASAQ

For simplicity, let’s first define the following notations:

• F (r)(x), the objective function of the CF-OPT problem associated with a given estimation
value r:

F (r)(x) =
∑
i∈T

θi(r − P di)e−βixi −
∑
i∈T

θiαixie
−βixi

• ν(r) = argminx F
(r)(x)

• F̃ (r)(x), the objective function of the PASAQ-MILP problem associated with a given esti-
mation value r:

F̃ (r)(x) =
∑
i∈T

θi(r − P di)(1 +
K∑
k=1

ailxil)−
∑
i∈T

θiαi

K∑
k=1

bilxil

• ν̃(r) = argminx F̃
(r)(x)

Also, we define the game constants decided by the payoff in Table A.1

Lemma 14. For any real value r ∈ R, one of the following two conditions holds.
(a) r ≤ p∗⇐⇒ ∃x ∈Xf , s.t., rD(x)−N(x) ≤ 0;
(b) r > p∗⇐⇒ ∀x ∈Xf , rD(x)−N(x) > 0

Proof. We only prove (a) as (b) is proven similarly.
‘⇐’: since ∃x such that rD(x) ≤ N(x), this means that r ≤ N(x)

D(x) ≤ p∗;
‘⇒’: Since P1 optimizes a continuous objective over a closed convex set, then there exists an

optimal solution x∗ such that p∗ = N(x∗)
D(x∗) ≥ r which rearranging gives the result.

Table A.1: Game Constant
θ := max

i∈T
θi θ := min

i∈T
θi

Rd := max
i∈T
|Rdi | P d := max

i∈T
|P di |

β := max
i∈T

βi α := max
i∈T

αi

188

Lemma 15. The approximation error of the piecewise linear function is bounded as the follow-
ing:

|e−βixi − L(1)
i (xi)| ≤

βi
K
, 0 ≤ xi ≤ 1, ∀i ∈ T (A.1)

|xie−βixi − L(2)
i (xi)| ≤

1

K
, 0 ≤ xi ≤ 1, ∀i ∈ T (A.2)

Proof. Let fi(xi) be the original function, and Li(xi) be the corresponding piecewise linear
approximation function. The following proof holds for both fi(xi) = e−βixi and fi(xi) =
xie
−βixi :

max
0≤xi≤1

|fi(xi)− Li(xi)| =
K

max
k=1

max
k−1
K
≤xi≤ k

K

|fi(xi)− Li(xi)| (A.3)

We now prove the bound on max k−1
K
≤xi≤ k

K
|fi(xi)− Li(xi)| in three steps:

1. Assuming fi(xi) ≥ Li(xi), k−1
K ≤ xi ≤ k

K

max
k−1
K
≤xi≤ k

K

|fi(xi)− Li(xi)| ≤ max
k−1
K
≤xi≤ k

K

fi(xi)− min
k−1
K
≤xi≤ k

K

Li(xi)

= max
k−1
K
≤xi≤ k

K

fi(xi)−min{Li(
k − 1

K
), Li(

k

K
)}

= max
k−1
K
≤xi≤ k

K

fi(xi)−min{fi(
k − 1

K
), fi(

k

K
)}

≤ max
k−1
K
≤xi≤ k

K

fi(xi)− min
k−1
K
≤xi≤ k

K

fi(xi) ≤
1

K
max

0≤xi≤1
|f ′i(xi)|

2. Assuming fi(xi) ≤ Li(xi), k−1
K ≤ xi ≤ k

K

max
k−1
K
≤xi≤ k

K

|fi(xi)− Li(xi)| ≤ max
k−1
K
≤xi≤ k

K

Li(xi)− min
k−1
K
≤xi≤ k

K

fi(xi)

= max{Li(
k − 1

K
), Li(

k

K
)} − min

k−1
K
≤xi≤ k

K

fi(xi)

= max{fi(
k − 1

K
), fi(

k

K
)} − min

k−1
K
≤xi≤ k

K

fi(xi)

≤ max
k−1
K
≤xi≤ k

K

fi(xi)− min
k−1
K
≤xi≤ k

K

fi(xi) ≤
1

K
max

0≤xi≤1
|f ′i(xi)|

3. If fi(xi) and Li(xi) get across in [k−1
K , kK], we could partition the range into small regions

such that within each sub partition, the two functions do not get across. We then can apply
(a) or (b) within each partition.

Combining the above three conditions, we have

max
k−1
K
≤xi≤ k

K

|fi(xi)− Li(xi)| ≤
1

K
max

0≤xi≤1
|f ′i(xi)| (A.4)

189

At the same time, it can be shown with some effort that
where, f ′i(xi) is the first order derivative of function fi(xi). Combining with Equation (A.3),

we have
max

0≤xi≤1
|fi(xi)− Li(xi)| ≤

1

K
max

0≤xi≤1
|f ′i(xi)| (A.5)

Hence, the approximation error bound is decided by the maximum absolute value of the first order
derivative. It can be shown that

max
0≤xi≤1

|d(e−βixi)

dxi
| = |d(e−βixi)

dxi
|xi=0 = βi (A.6)

max
0≤xi≤1

|d(xie
−βixi)

dxi
| = |d(xie

−βixi)

dxi
|xi=0 = 1 (A.7)

Combining Equation (A.5)-(A.7) gives the result.

Lemma 16. Let L∗ and U∗ be the lower and upper bounds of GOSAQ when the algorithm stops,
and x∗ is the defender strategy returned by GOSAQ. Then,

L∗ ≤ ObjP1(x∗) ≤ U∗

Proof. When the algorithm stops, we have F (L∗)(x∗) ≤ 0 ⇒ L∗ ≤ N(x∗)
D(x∗) = ObjP1(x∗) At the

same time, F (U∗)(x∗) > 0,∀x⇒ U∗ > N(x∗)
D(x∗) = ObjP1(x∗)

Lemma 17. Let L̃∗ and Ũ∗ be the lower and upper bounds of PASAQ when the algorithm stops,
and ÕbjP1(x) be the approximation of objective function P1 with the piecewise linear represen-
tation of e−βixi and xie−βixi . Then,

L̃∗ ≤ ÕbjP1(x̃∗) ≤ Ũ∗

where, x̃∗ is the defender strategy returned by PASAQ.

Proof. Same as that for Lemma 16

Lemma 18. Let ObjP1(x) be the objective function of P1 and ÕbjP1(x) be the corresponding
approximation with the piecewise linear representation of e−βixi and xie−βixi . Then, ∀x ∈Xf

|ObjP1(x)− ÕbjP1(x)| ≤ (θ/θ)eββ{Rd + P d}+
α

β
} · 1

K
(A.8)

Proof. Let Ñ(x) =
∑

i∈T θiαiL
(2)
i (xi) +

∑
i∈T θiP

d
i L

(1)
i (xi) and D̃(x) =

∑
i∈T θiL

(1)
i > 0 be

the piecewise linear approximation of the numerator and denominator of ObjP1 respectively.

|ObjP1(x)− ÕbjP1(x)| = |N(x)

D(x)
− Ñ(x)

D̃(x)
|

= |N(x)

D(x)
− N(x)

D̃(x)
+
N(x)

D̃(x)
− Ñ(x)

D̃(x)
|

≤ |N(x)

D(x)

D̃(x)−D(x)

D̃(x)
|+ |N(x)− Ñ(x)

D̃(x)
|

=
1

D̃(x)
(|ObjP1(x)| · |D(x)− D̃(x)|+ |N(x)− Ñ(x)|)

190

Based on Lemma 15,

|N(x)− Ñ(x)| ≤
∑
i∈T

θiαi
1

K
+
∑
i∈T

θi|P di |
βi
K
≤ (θα+ P dθβ)

|T |
K

|D(x)− D̃(x)| ≤
∑
i∈T

θi
βi
K
≤ (θ/θ)β

|T |
K

At the same time, |ObjP1(x)| ≤ Rd and D̃(x) ≥ |T |θe−β . Hence,

|ObjP1(x)− ÕbjP1(x)| ≤ (θ/θ)eββ{Rd + P d +
α

β
} · 1

K

Lemma 19. ∀x ∈Xf , the following condition holds

|F (r)(x)− F̃ (r)(x)| ≤ (|r|+ P d)θ
∑
i∈T

βi
K

+ αθ
T

K
(A.9)

Proof. LetL(1)
i (xi) = 1+

∑K
k=1 ailxil be the piecewise linear approximations of function e−βixi ,

and L(2)
i (xi) =

∑K
k=1 bilxil be that of function xie−βixi . We have

|F (r)(x)− F̃ (r)(x)|
≤ |
∑
i∈T

θi(r − P di)e−βixi −
∑
i∈T

θi(r − P di)L
(1)
i (xi)|+ |

∑
i∈T

θiαixie
−βixi −

∑
i∈T

θiαiL
(2)
i (xi)|

≤
∑
i∈T

θi|r − P di | · |e−βixi − L(1)
i (xi)|+

∑
i∈T

θiαi|xie−βixi − L(2)
i (xi)|

≤ (|r|+ P d)θ
∑
i∈T
|e−βixi − L(1)

i (xi)|+ αθ
∑
i∈T
|xie−βixi − L(2)

i (xi)| (A.10)

Combining Equation (A.1) and (A.2), we have

|F (r)(x)− F̃ (r)(x)| ≤ (|r|+ P d)θ
∑
i∈T

βi
K

+ αθ
|T |
K

Lemma 20. Let L̃∗ be the estimated maximum of ObjP1(x) by running PASAQ, then

F̃ (L̃∗)(x) ≥ −εθ|T |, ∀x ∈Xf (A.11)

Proof. Let U∗ and L∗ be the upper and lower bound when the algorithm stops. According to Line
3 in Algorithm 1, U∗ − L∗ ≤ ε. Furthermore, U∗ > L̃∗ ≥ L∗. Therefore we knowL̃∗ + ε ≥ U∗,
so the result of CheckFeasiblity with given L̃∗+ ε must be infeasible. In other words,

F̃ (L̃∗+ε)(x) > 0, ∀x ∈Xf (A.12)

191

On the other hand,

F̃ (L̃∗+ε)(x)− F̃ (L̃∗)(x) = ε
∑
i∈T

θiL
(1)
i (xi) ≤ εθ|T |,∀x ∈Xf (A.13)

Combining Equation (A.12) and (A.13)

F̃ (L̃∗)(x) ≥ F̃ (L̃∗+ε)(x)− εθ|T | ≥ −εθ|T |

Lemma 21. Let L∗ be the estimated maximum of P1 by GOSAQ

L∗ − L̃∗ ≤ (θ/θ)eβ{ε+
1

K
((Rd + P d)β + α)} (A.14)

Proof. According to Lemma 14, F (L∗)(ν(L∗)) ≤ 0. At the same time,

F (L∗)(ν(L∗)) = F (L̃∗)(ν(L∗)) + (L∗ − L̃∗)
∑
i∈T

θie
−βiν

(L∗)
i

⇒ (L∗ − L̃∗)
∑
i∈T

θie
−βiν

(L∗)
i ≤ −F (L̃∗)(ν(L∗)) (A.15)

Furthermore, Lemma 19 indicates that

− F (L̃∗)(ν(L∗)) ≤ −F̃ (L̃∗)(ν(L∗)) + (|L̃∗|+ P d)θ
∑
i∈T

βi
K

+ +αθ
|T |
K

≤ −F̃ (L̃∗)(ν(L∗)) + θ((Rd + P d)
∑
i∈T

βi
K

+
|T |
K
α)

≤ −F̃ (L̃∗)(ν(L∗)) + θ(
(Rd + P d)β

K
+
α

K
)|T | (A.16)

since |L̃∗| ≤ |Rdi |. Combining Equation (A.11),(A.15) and (A.16)

(L∗ − L̃∗)
∑
i∈T

θie
−βiν

(L∗)
i ≤ εθ|T |+ θ(

(Rd + P d)β

K
+
α

K
)|T |

Furthermore,
∑

i∈T θie
−βiν

(L∗)
i ≥ Tθe−β , so

L∗ − L̃∗ ≤ (θ/θ)eβ{ε+
1

K
((Rd + P d)β + α)}

192

