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Abstract

Research on Stackelberg Security Games (SSG)
has recently shifted to green security domains, for
example, protecting wildlife from illegal poaching.
Previous research on this topic has advocated the
use of behavioral (bounded rationality) models of
adversaries in SSG. As its first contribution, this
paper, for the first time, provides validation of these
behavioral models based on real-world data from a
wildlife park. The paper’s next contribution is the
first algorithm to handle payoff uncertainty – an im-
portant concern in green security domains – in the
presence of such adversarial behavioral models.

1 Introduction
Given the successful deployments of Stackelberg Security
Games (SSG) for infrastructure protection [Shieh et al., 2012;
Basilico et al., 2009; Letchford and Vorobeychik, 2011], re-
search on SSG has shifted to green security domains. This
research focuses on optimally allocating limited security re-
sources in a vast geographical area against environmental
crime, for example, improving the effectiveness of protection
of wildlife or fisheries [Yang et al., 2014; Brown et al., 2014].

These green security domains exhibit at least two unique
challenges. First, adversaries attack without spending as
much time/effort on each attack as in terrorist attacks on in-
frastructure; it thus becomes more important to model the
adversaries’ bounded rationality in these domains. Second,
there is a significant need to handle uncertainty in both play-
ers’ payoffs since key domain features like animal density,
that contribute to the payoffs are difficult to precisely esti-
mate. Unfortunately, previous work has failed to address
these challenges and leverage these opportunities. First, al-
though there are a number of behavioral models proposed to
handle adversaries’ bounded rationality, none of these have
yet been evaluated based on real-world data. Second, previ-
ous work applied several robust optimization methods to han-
dle payoff uncertainty; but they have failed to address such
uncertainty in the context of aforementioned behavioral mod-
els [Kiekintveld et al., 2013].
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In this paper, as our first contribution, we provide the first
results on the usefulness of behavioral models using real-
world data in a wildlife protection domain. Our second con-
tribution is CONQUER (COnstraint geNeration for comput-
ing QUantal Response based minimax rEgRet), the first se-
curity game algorithm that can solve the behavioral minimax
regret problem. MiniMax Regret (MMR), to minimize maxi-
mum regret from a solution [French, 1986], is a robust solu-
tion approach to handle payoff uncertainty; a key advantage
of using MMR is that it is less conservative than the stan-
dard maximin approach [Nguyen et al., 2014]. CONQUER
is the first algorithm to compute MMR in the presence of a
behavioral (bounded rationality) model, rather than assum-
ing a perfectly rational adversary; it is also the first to handle
payoff uncertainty in both the adversary and the defenders’
payoffs in SSG. However, handling of adversary bounded
rationality and uncertainty in both players’ payoffs creates
the challenge of solving a non-convex optimization problem;
CONQUER provides an efficient solution to such problems.
Lastly, we conduct extensive experiments to evaluate CON-
QUER on both artificial and real-world data.

2 Background & Related Work
Stackelberg Security Games: In SSG, the defender attempts
to protect a set of T targets from an attack by an adversary by
optimally allocating a set of R resources (R < T ) [Korzhyk
et al., 2010; Tambe, 2011]. The key assumption in SSG is
that the defender commits to a (mixed) strategy first and the
adversary can observe that strategy and attack a target. De-
note by x={xt} the defender’s strategy where xt is the cov-
erage probability at target t, the set of feasible strategies is
X = {x : 0 ≤ xt ≤ 1,

∑
t xt ≤ R}. If the adversary attacks

t when the defender is not protecting it, he receives a reward
Ra

t , otherwise, he gets a penalty P a
t . Conversely, the defender

receives a penalty P d
t in the former case and a reward Rd

t in
the latter case. Let (Ra,Pa) and (Rd,Pd) be the payoff vec-
tors. The defender (Ud

t ) and adversary’s (Ua
t ) expected utili-

ties at t is computed as Ud
t (x,R

d,Pd) = xtR
d
t +(1−xt)P d

t
and Ua

t (x,R
a,Pa) = xtP

a
t + (1− xt)Ra

t .
Boundedly rational attacker: In SSG, attacker bounded ra-
tionality is often modeled via behavior models such Quan-
tal Response (QR) [McFadden, 1972; McKelvey and Palfrey,
1995]. The recent SUQR model (Subjective Utility Quantal
Response) builds on QR by integrating the subjective utility



function Ûa
t (x,R

a,Pa) = w1xt + w2R
a
t + w3P

a
t into QR

(w1, w2 and w3 are parameters indicating the importance of
corresponding features for the adversary), and it was shown
to provide a better prediction accuracy than QR [Nguyen et
al., 2013]. SUQR predicts the adversary’s probability of at-
tacking t, qt(x,Ra,Pa), as:

qt(x,R
a,Pa) =

eÛ
a
t (x,Ra,Pa)∑

t′ e
Ûa

t′ (x,R
a,Pa)

(1)

One key advantage of these behavioral models is that they can
be used to predict attack frequency for multiple attacks by the
adversary, wherein the attacking probability is considered as
a normalization of attacking frequency.
Payoff uncertainty: One key approach to modeling pay-
off uncertainty is to express the adversary’s payoffs as lying
within specific intervals [Kiekintveld et al., 2013]: for each
t, Ra

t ∈ [Ra
min(t), R

a
max(t)] and P a

t ∈ [P a
min(t), P

a
max(t)].

Let I denote the set of payoff intervals at all targets. MMR-
based solution was introduced in previous work to address
payoff uncertainty in SSG while assuming a perfectly ratio-
nal adversary [Nguyen et al., 2014]. Unfortunately, they only
address uncertainty in the adversary’s payoff.
Green security domains: These domains include challenges
such as protecting wildlife from poaching or protecting fish-
eries from illegal fishing. We focus on wildlife protection,
which is an international problem — many species such
as rhinos are in danger of extinction from illegal poach-
ing [Montesh, 2013]. In previous work, game-theoretic ap-
proaches have been advocated to generate rangers’ patrols
[Yang et al., 2014] wherein the forest area is divided into a
grid where each cell represents a target. These ranger patrols
are designed to counter poachers (whose behaviors are mod-
eled using SUQR) that attempt to capture animals by setting
traps such as wire snares. A similar game-theoretic system
has also been developed for protecting fisheries from illegal
fishing [Brown et al., 2014].

Unfortunately, this previous work in green security do-
mains has two weaknesses [Yang et al., 2014]. First, mod-
els like SUQR/QR have not been compared on available
real world data such as poaching signs observed by rangers
[Stokes, 2010]. Second, this work addresses adversary
bounded rationality but fails to simultaneously address pay-
off uncertainty — an important issue because of the difficulty
of precisely estimating payoffs in green security domains (for
example, animal densities are hard to estimate within the na-
tional park).

3 Behavioral Modeling Validation
Our first contribution is to use World Wildlife Fund’s (WWF)
real-world patrol/poaching data from a wildlife reserve in In-
donesia (name of the park is withheld intentionally) to ana-
lyze the effectiveness of SUQR/QR in predicting attacks by
real-world poachers. Our dataset consisted of information
about patrols conducted over a period of 5 months in Indone-
sia. For creating this dataset, rangers at WWF divided the en-
tire wildlife park area into 244 2x2 km grid cells (total park
area ∼1000 km2). For each patrol, they collected informa-
tion about which grid cells the patrollers covered, along with

various features of those cells that they observed (e.g., animal
density). We also had information about how many poaching
signs (e.g., snares) were observed in each cell.
Description of raw dataset: In this section, we describe de-
tails about the raw dataset that we got from WWF in Indone-
sia. As mentioned before, the park rangers discretize the en-
tire park area into 244 2× 2 km grid cells. Further, each grid
cell was subdivided into several segments. Each segment rep-
resents a significant area that the park rangers need to spend
some time at, while on patrol. Whenever the rangers visit
a segment for patrol, they note down observations about all
kinds of activities going in that area. For example, they note
down the segment ID, the date when the segment was visited,
number of rangers assigned to this particular patrol, etc. More
importantly, they qualitatively measured features of the seg-
ment such as amount of overhead tree cover (canopy), amount
of underlying vegetation (understory), amount of rain in that
segment, amount of hunting signs observed in that area, etc.
They do this qualitative measurement by assigning a number
ranging from 0 to 5 which indicates the abundance of that
feature in that segment. So, a hunting measure of 5 would in-
dicate severe hunting, whereas a hunting measure of 0 would
indicate no observed hunting at all.

Our raw dataset consisted of many such segment records
made by the patrolling rangers. Each record corresponds to
an observation made by the rangers at a particular segment. In
order to prepare this data for our learning algorithms (for pre-
dicting the poachers’ attack locations), we first preprocessed
the dataset, which we describe next.
Dataset preprocessing. The raw dataset consisted of 6 fea-
tures with qualitative entries (range=1-5). These include an-
imal density, area canopy, area understory, area litter, area
habitat and area slope. Our first aim is to aggregate informa-
tion from the segment based records to get qualitative mea-
sures for the 6 feature values for each grid cell (as opposed
to raw qualitative measures for each segment). To that end,
we average the 6 qualitative feature values across various seg-
ments in a grid cell. We also average the qualitative values for
the hunting frequency across segments in a grid cell. Also, in
order to evaluate the patrol frequency in a grid cell (approxi-
mately), we add the number of segment records in our dataset
which have segment IDs lying within that grid cell. These
quantities are then normalized over all grid cells to get an ap-
proximate patrol frequency for each grid cell.

After this averaging process, our processed dataset consists
of 244 records (one for each grid cell). Each record contains 7
feature values: patrol frequency, animal density, area canopy,
area understory, area litter, area habitat and area slope. More-
over, each record has a label that gives the average hunting
frequency in that grid cell. We are merely interested in pre-
dicting whether each target gets attacked or not, as opposed
to predicting number of attacks by poachers on each grid cell.
Therefore, we convert our dataset’s label (average number
of poaching signs observed in that cell) into a binary label
(whether that cell was attacked or not). In order to do that,
we use a threshold β which can take values ranging from 0 to
5. As long as the hunting frequency observed in a grid cell is
greater than β, we considered that cell to be attacked (label
1), and otherwise, we consider the cell unattacked (label 0).



Each value of β gives us a different set of labels, and there-
fore, we have a different dataset for each value of the thresh-
old β. Thus, we get 4 different datasets by using β = 1 − 4.
Note that β = 0 corresponds to the case when every target
gets attacked and β = 5 corresponds to the case when no tar-
get is attacked. As a deterministic prediction strategy would
yield 100% prediction accuracy for these β values, we don’t
consider them in our experiments.
Gaussian Smoothing: Most of the features that were col-
lected by the patrollers are unlikely to change abruptly in
between grid cells. This is because most features (such as
animal density, area slope etc.) are dependent on geographi-
cal features and terrain which changes gradually. In order to
ensure that our dataset reflects this gradual gradation of fea-
ture values across grid cells, we use a gaussian kernel of size
3 × 3 (σ = 4) to smooth out all feature values (except patrol
and attack frequencies).
Attack Frequency Correction: Some grid cells in our
dataset are patrolled with greater frequency and some grid
cells with lesser frequency. A key insight is that the more time
the rangers spend in patrolling a grid cell, the more attack
signs they will observe in that grid cell. This leads us to con-
clude that the our attack labels are skewed for grid cells with
low patrol frequencies. Essentially, there would be less num-
ber of attacks on targets with less patrol frequency because
we did not patrol it well enough to observe more attacks, not
because the poachers did not attack there [Lemieux, 2014].
Therefore, in order to resolve this issue, we correct the attack
frequencies in two different ways. Linear Normalization
corresponds to a linearly proportional increase in the num-
ber of attacked cells. We also try Log normalization which
corresponds to a log proportional increase in the number of
attacked cells.
Behavioral Models: To use models like SUQR/QR to model
the poacher’s behavior, we make the general Stackelberg as-
sumption that the poachers were able to observe our entire
dataset before planning their attacks. Thus, for each grid
cell, they observed all the 7 features in our dataset. Armed
with this knowledge, the adversary chooses which targets to
attack using their behavioral models. We also assume that
the poachers pay a constant penalty on all grid cells, if the
rangers catch them (this assumption is reasonable since any
ranger goes to jail when they get caught). We tested 5 dif-
ferent behavioral models in our experiments: QR (expected
utility is calculated using the constant penalty term and ani-
mal density as reward), SUQR-3 (subjective utility is calcu-
lated by a weighted combination of patrol frequency, animal
density and the constant penalty term), SUQR-7 (subjective
utility is calculated by weighted combination of all 7 features
present in our dataset), Cognitive Hierarchy Level-0 or COG-
0 (subjective utility is calculated by a weighted combination
of all features except patrol frequency, thus implying that the
poacher does not reason about the rangers’ patrol patterns),
and Perfect Rational Model (poacher only attacks the grid
cell with highest utility).
Learning Method: We use Maximum Likelihood Estimation
(MLE) to learn the parameters of the 3 different models that
we test in our experiments. Thus, for QR model, we learn
the λ parameter, while for SUQR-3 and SUQR-7, we learn

the ωi parameters (i = 1..3 for SUQR-3 and i = 1..7 for
SUQR-7). For exposition, we explain the process of learning
SUQR-3 parameters here (a similar process applies for the
other models). Given N datapoints which form our dataset
D, the log-likelihood of (ω1, ω2, ω3) is given by:

logL(ω1, ω2, ω3|D) =

T∑
t=1

Ntlog[qt(ω1, ω2, ω3|D)] (2)

Here, T is the total number of targets that we have,
Nt is the number of times target t has been attacked and
qt(ω1, ω2, ω3|D) is the probability with which adversary
having weights (ω1, ω2, ω3) attacks target t. Ultimately,
our goal is to find values of (ω1, ω2, ω3) which maximizes
logL(ω1, ω2, ω3|D). This log-likelihood function can be
shown to be concave: we can show that the Hessian matrix
of logL(ω1, ω2, ω3|D) is negative semi-definite. Thus, this
function has a unique local maximum point and therefore, we
can use a convex optimization solver (e.g., fmincon in MAT-
LAB) to compute the optimal weights (ω1, ω2, ω3).

For each created dataset (remember that we had 4 different
datasets with different β values), we do random subsampling
validation to create 1000 random 90:10 training/test splits.
For each split, we train our behavioral models using MLE to
learn their parameters. These learnt parameters are then used
to get probabilities of attack on each grid cell in the test set.
Thus, for each grid cell in the test set (generated via 90:10
random split), we get the actual label (whether the target was
attacked or not) along with our predicted probability of attack
on the cell. Thus, for each of the 1000 randomly generated
90:10 splits, we end up with a set of actual test labels and a
corresponding predicted probability of attack. By combining
these 1000 different sets of labels and predicted probabilities,
we plot Receiver Operating Characteristic (ROC) curves to
analyze the performance of the various models.
Learning Results: Figures 1a, 2a, 3a, 4a show ROC curves
with linear attack frequency normalization for β ranging from
1 to 4. Also, Figures 1b, 2b, 3b, 4b show ROC curves
with logarithmic attack frequency normalization for β rang-
ing from 1 to 4. These figures show that Rational Model
is very bad at predicting responses of real world poachers.
Clearly, this shows that poachers in the real world are not
perfectly rational. With linear normalization, SUQR-3 and
SUQR-7 perform extremely well for β = 1 and β = 2 and
COG-0 performs worse comparatively. For higher values of
β, the prediction accuracy goes down in general but is still
much better than a random classifier. We observe similar ef-
fects with logarithmic normalization which shows the robust-
ness of our learning method. These figures also show that QR
model does only slightly better than a random classifier on
most occassions and does even worse rarely (Figure 1b).

These figures show that SUQR-7 and SUQR-3 do ex-
tremely well across different values of β and both kinds of
normalization. Since SUQR-7 contains features specific to
the WWF dataset, we use SUQR-3 as our model of choice
in the rest of the paper (as it is generalizable to standard se-
curity games). This experiment is the first validation of any
behavioral models on real-world data in the context of SSG.



(a) Linear Normalization (b) Log Normalization

Figure 1: β = 1

(a) Linear Normalization (b) Log Normalization

Figure 2: β = 2

(a) Linear Normalization (b) Log Normalization

Figure 3: β = 3

(a) Linear Normalization (b) Log Normalization

Figure 4: β = 4

4 Behavioral Minimax Regret (MMR)

While we can learn a behavioral model from real-world data,
we still face the challenge of significant payoff uncertainty.
Hence, we present our new algorithm, CONQUER. Here,
we primarily focus on zero-sum games as motivated by re-
cent work in green security domains [Haskell et al., 2014;
Brown et al., 2014], and earlier major SSG applications that
use zero-sum games [Shieh et al., 2012]). In addition, we use
SUQR as the adversary’s behavioral model, given its high
prediction accuracy as shown in Section 3. Yet, our meth-
ods can be generalized to non-zero-sum games with a general

Algorithm 1: CONQUER Outline
1 Initialize S =φ, ub =∞, lb = 0 ;
2 Randomly generate (x′,Ra,Pa), S=S∪{x′, (Ra,Pa)};
3 while ub > lb do
4 Call PALMS to compute relaxed MMRb w.r.t S. Let x∗

be its optimal solution with objective value lb;
5 Call REALMS to compute MRb(x

∗, I). Let the optimal
solution be (x′,∗,Ra,∗,Pa,∗) with objective value ub;

6 S = S ∪ {x′,∗,Ra,∗,Pa,∗};
7 return (lb,x∗);

class of QR as described in Online Appendix C.1

4.1 Problem Definition
We now formulate MMR with uncertain payoffs for both
players in zero-sum SSG with a boundedly rational attacker.

Definition 1. Given (Ra,Pa), the defender’s behavioral re-
gret is the loss in her utility for playing a strategy x instead
of the optimal strategy, which is represented as follows:

Rb(x,R
a,Pa)=maxx′∈X F (x′,Ra,Pa)−F (x,Ra,Pa) (3)

where F (x,Ra,Pa) =
∑

t
qt(x,R

a,Pa)Ud
t (x,R

d,Pd) (4)

Here, F (x,Ra,Pa) is the defender’s utility (which is non-
convex fractional in x) for playing x where the payoff of the
adversary, whose response follows SUQR, is (Ra,Pa) and
Rd=−Pa and Pd=−Ra. In addition, the attacking proba-
bility, qt(x,Ra,Pa), is given by Equation 1.

Definition 2. Given a set of payoff intervals I, the behavioral
max regret that the defender receives for playing a strategy x
is the maximum behavioral regret over all payoff instances:

MRb(x, I) = max(Ra,Pa)∈I Rb(x,R
a,Pa) (5)

Definition 3. Given a set of payoff intervals I, the behavioral
minimax regret problem attempts to find the optimal strategy
for the defender that minimizes the MRb she receives:

MMRb(I) = minx∈X MRb(x, I) (6)

As our experiments show later, if the defender uses MMR for
a perfectly rational attacker instead of MMRb, she may suffer
a significant utility loss.

4.2 CONQUER: Algorithm Description
We now present CONQUER (Algorithm 1) to solve MMRb
in (6). CONQUER’s two novelties compared to previous
work [Nguyen et al., 2014] — addressing uncertainty in both
players’ payoffs and a boundedly rational attacker — lead to
two new computational challenges: 1) uncertainy in defender
payoffs makes the defender’s expected utility at every target t
non-convex in x and (Rd,Pd) ; and 2) SUQR represents the
attacker’s bounded rationality in the form of a logit function
which is non-convex. These two non-convex functions are
combined when calculating the defender’s utility (Equation
4) — which is then used in computing MMRb (Equation 6),

1https://www.dropbox.com/s/vrii1mt32is34d1/Appendix.pdf?dl=0



making it computationally expensive. Overall, MMRb can
be reformulated as follows:

min
x∈X,r∈R

r (7)

s.t. r≥F (x′,Ra,Pa)−F (x,Ra,Pa), ∀(Ra,Pa)∈I,x′∈X

Unfortunately, since X and I are continuous, the set of con-
straints is infinite. One practical approach to optimization
with large constraint sets is constraint sampling [De Farias
and Van Roy, 2004], coupled with constraint generation
[Boutilier et al., 2006]. Following this approach, CONQUER
samples a subset of constraints in Problem (7) and gradu-
ally expands this set by adding violated constraints to the re-
laxed problem until convergence to the optimal MMRb so-
lution. Specifically, CONQUER begins by sampling pairs
(Ra,Pa) of the adversary payoffs uniformly from I. The
corresponding optimal strategies for the defender given these
payoff samples, denoted x′, are then computed using the al-
gorithm PASAQ [Yang et al., 2012] to obtain a finite set S of
sampled constraints (Line 2). These sampled constraints are
then used to solve the corresponding relaxed MMRb program
(line 4) using the PALMS algorithm (described in Section
4.3) — we call this problem as relaxed MMRb as it only has
samples of constraints in (7). We thus obtain the optimal so-
lution (lb,x∗) which provides a lower bound (lb) on the true
MMRb. Then constraint generation is applied to determine
violated constraints (if any). This uses the REALMS algo-
rithm (described in Section 4.4) which computes MRb(x

∗, I)
— the optimal regret of x∗ which is an upper bound (ub) on
the true MMRb. If ub>lb, the optimal solution of REALMS,
{x′,∗,Ra,∗,Pa,∗}, provides the maximally violated constraint
(line 5), which is added to S. Otherwise, x∗ is the minimax
optimal strategy and lb=ub=MMRb(I).

4.3 PALMS: Compute Relaxed Behavioral MMR
The first step of CONQUER is to solve the relaxed MMRb
problem using PALMS (Piece-wise linear & binAry search
for reLaxed Minimax against SUQR adversary). As we show
later, this relaxed MMRb problem is non-convex and frac-
tional. Thus, PALMS presents two key ideas to efficiently
solve it: 1) binary search (which iteratively searches the de-
fender’s utility space to find the optimal solution) to remove
the fractional terms in the relaxed MMRb; and 2) it then ap-
plies piecewise-linear approximation to linearize the remain-
ing non-convex terms. Overall, the relaxed MMRb problem
can be represented as follows:

min
x∈X,r∈R

r (8)

s.t. r ≥ F (x′,k,Ra,k,Pa,k)− F (x,Ra,k,Pa,k),∀k = 1,K

where (x′,k,Ra,k,Pa,k) is the kth sample in S where k =
1,K and K is the total number of samples in S and r is
the defender’s max regret for playing x against sample set
S. Finally, F (x′,k,Ra,k,Pa,k) is the defender’s optimal util-
ity for every sample of attacker payoffs (Ra,k,Pa,k) where
x′,k is the corresponding defender’s optimal strategy (which
may be obtained via PASAQ [Yang et al., 2012]. The term
F (x,Ra,k,Pa,k) which is included in relaxed MMRb’s con-
straints is non-convex and fractional in x (Equation 4), mak-
ing (8) non-convex and fractional. We can use any non-
convex solver with multiple starting points, e.g., Fmincon of

MATLAB to solve it; however, these solvers are time con-
suming. We now detail the two key ideas of PALMS.
Binary search. In each binary search step, given a value of r,
PALMS tries to solve the following decision problem (P1):

(P1) : ∃x s.t. r≥F (x′,k,Ra,k,Pa,k)−F (x,Ra,k,Pa,k), ∀k=1,K?

Based on Theorem 1, we can convert (P1) into the following
non-convex and non-fractional optimization problem (P2) of
which optimal solution determines the feasibility of (P1):

(P2): min
x∈X,v∈R

v

s.t. v ≥
∑

t

[
rk−Ud,k

t (x)
]
ew1xt+w2R

a,k
t +w3P

a,k
t ,∀k=1,K

where Ud,k
t (x) = −

[
xtP

a,k
t +(1−xt)Ra,k

t

]
is the defender’s

utility and rk=F (x′,k,Ra,k,Pa,k)−r given the kth sample.
Theorem 1. Suppose that (v∗,x∗) is the optimal solution of
(P2). If v∗ ≤ 0, then x∗ is a feasible solution of the decision
problem (P1). Otherwise, (P1) is infeasible.2

Piecewise linear approximation. We now describe our al-
gorithm for solving (P2). Overall, (P2) is a non-convex opti-
mization problem as its constraints are non-convex. We use a
piecewise linear approximation for the RHS of the constraints
in (P2) which is in the form of

∑
t f

k
t (xt) where the term

fkt (xt) is a non-convex function of xt. The feasible region of
the defender’s coverage xt for all t, [0, 1], is then divided into
M equal segments

{[
0, 1

M

]
,
[

1
M , 2

M

]
, . . . ,

[
M−1
M , 1

]}
where

M is given. The values of fkt (xt) are then approximated
by using the segments connecting pairs of consecutive points(
i−1
M , fkt

(
i−1
M

))
and

(
i
M , fkt

(
i
M

))
for i = 1,M as follows:

fk
t (xt)≈fk

t (0)+
∑M

i=1
αk
t,ixt,i (9)

where αk
t,i is the slope of the ith segment. Also, xt,i refers to

the portion of the defender’s coverage at target t belonging to
the ith segment, i.e., xt=

∑
i xt,i. For example, suppose that

M = 5 and xt = 0.3, as 1
5 < xt <

2
5 , we obtain xt,1 = 1

5 ,
xt,2 = 0.1, and xt,3 = xt,4 = xt,5 = 0. By using the
approximations of fkt (xt) for all k and t, we can reformulate
(P2) as the MILP (P2’) which can be solved by CPLEX:

(P2’): min
xt,i,zt,i,v

v (10)

s.t. v ≥
∑

t
fk
t (0) +

∑
t

∑
i
αk
t,ixt,i, ∀k = 1,K (11)∑

t,i
xt,i ≤ R (12)

zt,i
1

M
≤ xt,i, ∀t, i = 1,M − 1 (13)

xt,i+1 ≤ zt,i, ∀t, i = 1,M − 1 (14)

zt,i ∈ {0, 1}, 0 ≤ xt,i ≤
1

M
,∀t, i = 1,M − 1 (15)

where zt,i is an auxiliary integer variable which ensures that
the portions of xt satisfies xt,i = 1

M if xt ≥ i
M (zt,i = 1)

or xt,i+1 = 0 if xt < i
M (zt,i = 0) (constraints (13 – 15)).

Constraints (11) are equivalent to constraints of (P2) after the
approximation. In addition, constraint (12) guarantees that
the resource allocation condition,

∑
t xt ≤ R, holds true.

2All proofs appear in the Online Appendix.



(a) CONQUER regret (b) Influence of parameters

Figure 5: Solution quality of CONQUER

4.4 REALMS: Compute Behavioral Max Regret
Given the optimal solution x∗ returned by PALMS, the sec-
ond step of CONQUER computes the MRb of x∗ using
REALMS (computing max REgret using locAL search with
Multiple reStarts) (line 5 in Algorithm 1). Overall, comput-
ing MRb can be represented as follows:

max
x′∈X,(Ra,Pa)∈I

F (x′,Ra,Pa)− F (x∗,Ra,Pa) (16)

This optimization problem is also non-convex. It is diffi-
cult to apply binary search and piecewise linear approxi-
mation (like PALMS) in REALMS since it is a subtraction
of two non-convex fractional functions, F (x′,Ra,Pa) and
F (x∗,Ra,Pa). Thus, we use local search with multiple
starting points to solve MRb.

5 Experimental Results
We evaluate solution quality and runtime of CONQUER and
PE heuristics in zero-sum games, assuming an SUQR at-
tacker. This section presents key experimental results (more
results are in Online Appendix D). We use CPLEX for our
algorithms and Fmincon of MATLAB on a 2.3 GHz/4 GB
RAM machine. Key comparison results are statistically sig-
nificant under bootstrap-t (α = 0.05).

5.1 Synthetic Data
We first conduct experiments using synthetic data to simulate
a wildlife protection area. We assume area is divided into a
grid where each cell represents a target, and we create differ-
ent payoff structures using these grid cells. Each data point
in our results is averaged over 40 payoff structures randomly
generated by GAMUT [Nudelman et al., 2004]. The attacker
reward/defender penalty refers to the animal density while the
attacker penalty/defender reward refers to, for example, the
amount of snares that are estimated to be confiscated by the
defender [Yang et al., 2014]. Here, the defender’s regret in-
dicates the animal loss, thus can be used as a measure for the
defender’s patrolling effectiveness. Upper and lower bounds
for payoff intervals are generated randomly from [-14, -1] for
penalties and [1, 14] for rewards with the interval size is 4.0.
Solution Quality of CONQUER. The results are shown in
Figure 5 where the x-axis is the grid size (number of targets)
and the y-axis is the defender’s max regret. First, we demon-
strate the importance of handling the attacker’s bounded ra-
tionality in CONQUER by comparing solution quality of
CONQUER with CONQUER-Perfect (an extension of the
MMR algorithm for a perfectly rational attacker [Nguyen et
al., 2014] that addresses uncertainty in both players’ pay-
offs (described in Online Appendix B)). The defender’s regret

(a) Runtime vs #Targets (b) Runtime vs Regret

Figure 6: Runtime performance of CONQUER

obtained by playing CONQUER and CONQUER-Perfect
against the SUQR attacker is shown in Figure 5(a). The figure
shows that the defender’s regret significantly increases when
playing CONQUER-Perfect’s strategies, which shows the im-
portance of addressing the attacker’s bounded rationality.

Second, we examine how CONQUER’s parameters influ-
ence the MMR solution quality; a factor we show later af-
fects its key runtime-solution quality tradeoff. We examine
whether the defender’s regret significantly increases if (i) the
number of starting points in REALMS decreases (i.e., CON-
QUER with 20 (CONQUER-20), 5 (CONQUER-5) and 1
(CONQUER-1) starting points for REALMS and 40 itera-
tions to iteratively add 40 payoff samples into the set S), or
(ii) when CONQUER only uses PALMS (without REALMS)
to solve relaxed MMRb (i.e., PALMS with 50 (PALMS-
50) and 100(PALMS-100) uniformly random payoff sam-
ples). Figure 5(b) shows that the number of starting points in
REALMS does not have an impact on solution quality. In par-
ticular, CONQUER-1’s solution quality is approximately the
same as CONQUER-20 after 40 iterations. This result shows
that the shortcoming of local search in REALMS (where so-
lution quality depends on the number of starting points) is
compensated by a sufficient number (e.g., 40) of iterations in
CONQUER; hence number of REALMS starting points have
low impact. Further, as PALMS-50 and PALMS-100 only
solve relaxed MMRb, they both lead to much higher regret.
Thus, the presence of REALMS has a great impact in improv-
ing CONQUER’s performance in reducing MRb.
Runtime Performance of CONQUER. Figure 6(a) shows
the runtime of CONQUER with different parameter set-
tings. In all settings, CONQUER’s runtime linearly in-
creases in the number of targets. Further, Figure 5(a) shows
that CONQUER-1 obtains approximately the same solution
quality as CONQUER-20 while running significantly faster
(Figure 6(a)). This result shows that one starting point of
REALMS might be adequate for solving MMRb in consider-
ing the trade-off between runtime performance and solution
quality. Figure 6(b) plots the trade-off between runtime and
the defender’s regret in 40 iterations of CONQUER-20 for
20-40 targets which shows that the defender’s regret reduces
quickly as the runtime of CONQUER increases.

5.2 Real-world Data
Lastly, we use our WWF dataset (Section 3) to analyze the
difference between patrols conducted by rangers (in the In-
donesian wildlife park) and the patrol strategies generated
by CONQUER. Out of 244 grid cells (targets), we pick 25
cells (chosen randomly). Before these wildlife areas were pa-
trolled, there was uncertainty in the features values at those
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Figure 7: Real world max regret comparison

areas. We simulate these conditions faced by real world pa-
trollers by introducing uncertainty intervals in the real-world
rewards and penalties on each target in two cases: a small
and a larger interval of sizes 0.5 and 1 respectively. For both
cases, we compared the max regret achieved by the real world
patrols with the max regret of CONQUER’s patrols. Figures
7(a) and 7(b) compares the max regret achieved by CON-
QUER and real world patrols for 10 different randomly gen-
erated subsets of 25 targets when the uncertainty interval size
is 0.5 and 1 respectively. The x-axis refers to 10 different
subsets and the y-axis is the corresponding max regret. These
figures clearly show that CONQUER generates patrols having
significantly less regret as compared to real-world patrols.

6 Conclusion
In summary, this paper focuses on solving these security
problems while providing the following main contributions:
1) we for the first time test key behavioral models such as
SUQR on real-world wildlife protection data and show their
usefulness in predicting adversary decisions; 2) we propose a
novel algorithm, CONQUER, to solve the behavioral MMR
problem which addresses both the attacker’s bounded ratio-
nality and uncertainty in both players’ payoffs; and 3) we pro-
vide the evaluation based on a real-world wildlife domain.
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