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Abstract

Stackelberg security games have been widely deployed to
protect real-world assets. The main solution concept there
is the Strong Stackelberg Equilibrium (SSE), which opti-
mizes the defender’s random allocation of limited security
resources. However, solely deploying the SSE mixed strat-
egy has limitations. In the extreme case, there are security
games in which the defender is able to defend all the assets
“almost perfectly” at the SSE, but she still sustains significant
loss. In this paper, we propose an approach for improving the
defender’s utility in such scenarios. Perhaps surprisingly, our
approach is to strategically reveal to the attacker information
about the sampled pure strategy.
Specifically, we propose a two-stage security game model,
where in the first stage the defender allocates resources and
the attacker selects a target to attack, and in the second stage
the defender strategically reveals local information about that
target, potentially deterring the attacker’s attack plan. We then
study how the defender can play optimally in both stages.
We show, theoretically and experimentally, that the two-stage
security game model allows the defender to achieve strictly
better utility than SSE.

Introduction
Security games continue to gain popularity within the re-
search community, and have led to numerous practical appli-
cations (Tambe 2011). The basic model is a Security Stack-
elberg Game (SSG) played between a defender (leader) and
an attacker (follower). In the past decade, most research on
security games has focused on computing or approximat-
ing the Strong Stackelberg Equilibrium (SSE), which opti-
mizes the defender’s random allocation of limited resources.
A few examples include (Basilico, Gatti, and Amigoni 2009;
Jain 2012; An et al. 2012; Vorobeychik and Letchford 2014;
Blum, Haghtalab, and Procaccia 2014). However, solely de-
ploying the SSE mixed strategy is insufficient for a good
defense in many games. As we will show later, in the ex-
treme case there are security games in which the defender is
able to defend all the assets “almost perfectly” at the SSE,
but she still sustains significant loss. This raises a natural
question: can the defender do better than simply deploying
the SSE mixed strategy, and if so can his optimal strategy
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be computed efficiently? As our main contribution, we an-
swer both questions in the affirmative in a natural two-stage
game model. Our main technique is to exploit the informa-
tion asymmetry between the defender and attacker — the de-
fender has more information. Specifically, we note that the
attacker only observes the deployed mixed strategy by long-
term surveillance, but the defender further knows its real-
ization in each deployment. We show that the defender can
strictly benefit by revealing such information to the attacker
strategically.

Optimal information structures have been studied in many
contexts, including auctions (Milgrom and Weber 1982;
Milgrom 2008; Levin and Milgrom 2010), persuasion (Ka-
menica and Gentzkow 2009), voting (Alonso and Câmara
2014), and general games (Bergemann and Morris 2013). In
security domains, researchers have realized the importance
of the information asymmetry between the defender and at-
tacker, however they have focused mainly on whether and
how to hide private information by secrecy and deception
(Brown et al. 2005; Powell 2007; Zhuang and Bier 2010). A
common argument is that more defense is not always ben-
eficial, since it may lead the attacker to suspect the impor-
tance of a target. This departs from the Stackelberg security
game framework. For example, (Yin et al. 2013) consider
optimal allocation of deceptive resources (e.g., hidden cam-
eras), which introduces asymmetric information regarding
deployments of resources between the defender and attacker.
However, they do not consider strategically revealing such
information. Rather, they model the failure of deceptive re-
sources by a probability and feed it to a resource allocation
formulation.

In this paper, we initiate the study of strategic informa-
tion revelation in security games. One particular model rel-
evant to our work is the Bayesian Persuasion (BP) model
introduced in (Kamenica and Gentzkow 2009). The basic
BP model describes a two-person game between a sender
and a receiver with random payoff matrices. The sender can
observe the realization of the payoff matrices, while the re-
ceiver only knows the prior distribution. The BP model stud-
ies how the sender (defender in our case) can design a sig-
naling scheme to strategically reveal this information and
convince a rational receiver (attacker in our case) to take
a desired action. Back to security games, we observe that
there is usually a timing gap between the attacker’s choice



of target and attack execution, and show how the defender
can make use of such a timing gap to “persuade” a rational
attacker and deter potential attacks. We formalize this as a
novel two-stage security game model, which combines re-
source allocation (the first stage) and strategic information
revelation (the second stage).

An Example

To convey the basic idea, let us consider a simple Federal Air
Marshal (Tsai et al. 2009) scheduling problem. A defender,
against an attacker, aims to schedule n − 1 air marshals
to protect 2n identical (w.r.t. importance) flights, namely
t1, ...t2n. The defender’s pure strategies are simply arbitrary
subsets of [2n] of size at most n− 1. The defender gets util-
ity −2 (1) if any uncovered (covered) target is attacked (i.e.,
Uud (ti) = −2, U cd(ti) = 1); while the attacker gets util-
ity 1 (−1) if he attacks an uncovered (covered) target (i.e.,
Uua (ti) = 1, U ca(ti) = −1), for i = 1, ..., 2n. Assume the
attacker has an additional option – choose to not attack, in
which case both players get utility 0. As easily observed,
the optimal defender strategy is to protect each flight with
probability n−1

2n = 0.5− 1
2n . The attacker has expected util-

ity n+1
2n × 1 + n−1

2n × (−1) = 1
n (> 0) by attacking any

target. So he attacks a target, resulting in defender utility
n+1
2n × (−2) + n−1

2n × 1 = −0.5− 3
2n .

We have just computed the Strong Stackelberg Equilib-
rium (SSE) — traditionally we would be done. However, re-
examining this game, one might realize the following phe-
nomenon: the defender has done a great job, “almost” stop-
ping the attack at every target. Unfortunately, she lacks just
one additional air marshal. Consequently, the defender has
to lose at least a constant factor 0.5, watching the attacker
attacking a target and gaining only a tiny payoff of 1

n . Can
we do better? The answer turns out to be YES. Our ap-
proach exploits the asymmetric knowledge of the defensive
strategy between the defender and attacker — the defender
knows more. We show that, surprisingly, the defender can
gain arbitrarily better utility (in the multiplicative sense)
than −0.5− 3

2n by revealing such information.
For any target ti, let Xc (Xu) denote the event that ti is

covered (uncovered). The defender’s mixed strategy results
in P(Xc) = 0.5 − 1

2n and P(Xu) = 0.5 + 1
2n . W.l.o.g,

imagine the attacker boards t1 in order to commit an attack.
The attacker only knows that t1 is protected with 0.5 − 1

2n
probability, while the defender knows the realization of the
current deployment. We design a policy for the defender to
reveal this information to the attacker. Specifically, let σc
and σu be two signals that the defender will ask the captain
in flight t1 to announce. The meaning of signals will be clear
later, but for now, one may think of them as two messages
telling the attacker target t1 is covered (σc) or uncovered
(σu)1. Now, let the defender commit to the following public

1Physically, σc could be a sentence like “We are proud to an-
nounce air marshal Robinson is on board flying with us today.”,
while σu could be just keeping silent.

(thus known by the attacker) signaling scheme:

P(σc|Xc) = 1 P(σu|Xc) = 0;

P(σc|Xu) =
0.5− 1

2n

0.5 + 1
2n

P(σu|Xu) =
1
n

0.5 + 1
2n

.

In other words, if t1 is protected, the defender will always
announce σc; if t1 is not protected, the defender will an-
nounce σc with 0.5− 1

2n

0.5+ 1
2n

probability and σu with
1
n

0.5+ 1
2n

probability.
Let us analyze this from the attacker’s perspective. If he

receives signal σc, occurring with probability

P(σc) = P(σc|Xc)P(Xc) + P(σc|Xu)P(Xu) = 1− 1

n
,

the attacker infers the following posterior, by Bayes’ rule:
P(Xc|σc) = P(σc|Xc)P(Xc)

P(σc)
= 1

2 and P(Xu|σc) = 1
2 . If he

attacks, the attacker’s expected utility given σc is 1
2×(−1)+

1
2 × 1 = 0, while the defender gains 1× 1

2 − 2× 1
2 = −0.5.

Assume the attacker breaks ties in favor of the defender and
chooses to not attack, then both players get utility 0. On the
other hand, if the attacker receives signal σu (with probabil-
ity 1

n ), he infers a utility of 1 and attacks the target, resulting
in defender utility −2. As a result, in expectation the de-
fender derives utility − 2

n on target t1. Multiplicatively, − 2
n

is arbitrarily better than−0.5− 3
2n as n→∞. Interestingly,

the attacker’s expected utility of 1
n equals his SSE utility. We

will show later that this is actually not a coincidence.
Recalling the concept of a signal, we notice that, signals

σc, σu have no intrinsic meaning besides the posterior dis-
tributions inferred by the attacker based on the signaling
scheme and prior information. Intuitively, by designing sig-
nals, the defender identifies a “part” of the prior distribution
that is “bad” for both players, i.e., the posterior distribution
of σc (the attacker is indifferent at optimality in this exam-
ple), and signals as much to the attacker, so that the two
players can cooperate to avoid it. This is why the defender
can do strictly better while the attacker is not worse off.

Model of Two-Stage Security Games
As observed before, the fact that the defender provides con-
trolled access to information on the realized deployment of
security resources can help her gain better utility than just
deploying SSE. In this section, we formally model this phe-
nomenon.

At a high level, we propose a two-stage security game
model. The first stage is similar to regular security games, in
which the defender (randomly) allocates security resources.
In the second stage, the defender reveals information about
the realized deployment of security resources, using a sig-
naling scheme.

Consider a security game with a defender and an attacker.
The defender has K resources and needs to protect T tar-
gets. Let S denote the set of all pure strategies and each pure
strategy s ∈ S is a map s: [K] → 2[T ] that assigns each re-
source k ∈ [K] to protect a subset of [T ]. A mixed strategy
is a distribution over S, which results in a marginal proba-
bilistic coverage over target set [T ]. From this perspective,



a marginal coverage vector can also be viewed as a mixed
strategy, if it is implementable by a distribution over S. So,
instead, we will use z = (z1, ..., zT ) ∈ RT to denote a
mixed strategy, where target t is protected with probabil-
ity zt. Let U c/ud/a (t) be the utility of defender(d)/attacker(a)
when target t, if attacked, is covered(c)/uncovered(u). We
assume the attacker has the option to not attack, in which
case both players get utility 0. 2 Clearly, this is a best re-
sponse for the attacker if his utility on every target is non-
positive. As a standard assumption, we assume U cd(t) >
Uud (t) and U ca(t) < 0 < Uua (t) for any t.

The first stage is similar to regular security games, in
which the defender commits to a mixed strategy. We now
model the second stage – the signaling procedure. This stage
could be viewed as a persuasion procedure (Kamenica and
Gentzkow 2009), during which the defender tries to per-
suade a rational attacker to behave in a desired way. So we
call it the persuasion phase. Specifically, for any t ∈ [T ]
covered with probability zt, let X = {Xc, Xu} be the set of
events describing whether t is covered (Xc) or not (Xu) and
Σ be the set of all possible signals. A signaling scheme, with
respect to (w.r.t) target t, is a random map

fc : X
rnd−→ Σ.

The set of probabilities

{p(x, σ) : x ∈ X, σ ∈ Σ}
completely describes the random map f , in which p(x, σ)
is the probability that event x ∈ X happens and signal
σ ∈ Σ is sent. Therefore,

∑
σ p(x, σ) = P(x), ∀x ∈ X .

On the other hand, upon receiving a signal σ, the attacker in-
fers a posterior distribution P(Xc|σ) = p(Xc,σ)

p(Xc,σ)+p(Xu,σ)
and

P(Xu|σ) = p(Xu,σ)
p(Xc,σ)+p(Xu,σ)

, and makes a decision among
two actions: attack or not attack. For every target t, the de-
fender seeks a signaling scheme w.r.t. t to maximize her ex-
pected utility on t.

Mathematically, a signal denotes a posterior distribution
on X . Thus a signaling scheme splits the prior distribution
(zt, 1− zt) into a number |Σ| of posteriors to maximize the
defender’s utility on t. However, how many signals are suf-
ficient to design an optimal signaling scheme w.r.t. t? It fol-
lows from (Kamenica and Gentzkow 2009) that

Lemma 1. Two signals suffice for the defender to design
an optimal signaling scheme, w.r.t. target t, with one signal
recommending the attacker to attack and another one rec-
ommending him to not attack.

Intuitively, this is because we can always combine any
two signals that result in the same consequence. In par-
ticular, if the attacker has the same best response on sig-
nal σ1 and σ2, then instead of sending σ1 and σ2, the de-
fender could have just sent a new signal σ with probabil-
ity p(x, σ) = p(x, σ1) + p(x, σ2), ∀x ∈ X . As a result of
Lemma 1, a signaling scheme w.r.t. t could be characterized

2Most security game papers incorporate this extra action by
adding a fake target with payoff 0 to both players.

by

p(Xc, σc) = p p(Xc, σu) = zt − p;
p(Xu, σc) = q p(Xu, σu) = 1− zt − q,

in which, p ∈ [0, zt], q ∈ [0, 1− zt] are variables. So the at-
tacker infers the following expected utility: E(utility|σc) =
1
p+q (pU ca + qUua ) and E(utility|σu) = 1

1−p−q ((z−p)U ca +

(1− z− q)Uua ), where, for ease of notation, we drop the “t”
in zt and U c/ud/a (t) when it is clear from context. W.l.o.g, let
σc be a signal recommending the attacker to not attack, i.e.,
constraining E(utility|σc) ≤ 0, in which case both play-
ers get 0. Then the following LP parametrized by coverage
probability z, denoted as peLPt(z) (Persuasion Linear Pro-
gram), computes the optimal signaling scheme w.r.t. t:

max (z − p)U cd + (1− z − q)Uud (1)
s.t. pU ca + qUua ≤ 0

(z − p)U ca + (1− z − q)Uua ≥ 0

0 ≤ p ≤ z
0 ≤ q ≤ 1− z.

This yields the attacker utility P(σu)E(utility|σu)+P(σc)×
0 = (z − p)U ca + (1 − z − q)Uua and defender utility (z −
p)U cd + (1− z − q)Uud , w.r.t. t.

We propose the following two-stage Stackelberg security
game model:
• Phase 1 (Scheduling Phase): the defender (randomly)

schedules the resources by playing a mixed strategy z ∈
[0, 1]T , and samples one pure strategy each round.

• Phase 2 (Persuasion Phase): ∀t ∈ [T ], the defender com-
mits to an optimal signaling scheme w.r.t. t computed by
peLPt(zt) before the game starts, and then in each round,
sends a signal on each target t according to the commit-
ment.
During the play, the attacker first observes z by surveil-

lance. Then he chooses a target t0 to approach or board at
some round, where the attacker receives a signal and decides
whether to attack t0 or not. Note that, the model makes the
following three assumptions. First, the defender is able to
commit to a signaling scheme, and crucially will also fol-
low the commitment. She is incentivized to do so because
otherwise the attacker will not trust the signaling scheme,
thus may ignore signals. Then the game becomes a standard
Stackelberg game. Second, the attacker breaks ties in favor
of the defender. Similar to the definition of SSE, this is with-
out loss of generality since if there is a tie among different
choices, we can always make a tiny shift of the probability
mass to make the choice, preferred by the defender, ε bet-
ter than other choices. Third, we assume the attacker cannot
distinguish whether a target is protected or not when he ap-
proaches it.

With the persuasion phase, both of the defender and the
attacker’s payoff structures might be changed. Specifically,
the defender’s utility on any target t is the optimal objective
value of the linear program peLPt(z), which is non-linear
in z. Can the defender always strictly benefit by adding the
persuasion phase? How can we compute the optimal mixed



strategy in this new model? We answer these questions in
the next two sections.

When to Persuade
In this section, fixing a marginal coverage z on a target t, we
compare the defender’s and attacker’s utilities w.r.t. t in the
following two different models:

• Model 1: the regular security game model, without per-
suasion (but the attacker can choose to not attack);

• Model 2: the two-stage security game model, in which the
persuasion w.r.t. t is optimal.

The following notation will be used frequently in our
comparisons and proofs (index t is omitted when it is clear):

DefU1/2(t) : defender’s expected utility in Model 1/2;

AttU1/2(t) : attacker’s expected utility in Model 1/2;

Udef/att(t) : = zU cd/a + (1− z)Uud/a, expected utility of

defense/attack, if attacker attacks t.

Note that AttU1 = max(Uatt, 0) may not equal to Uatt
since the attacker chooses to not attack if Uatt < 0. Simi-
larly, DefU1 may not equal to Udef .

Defender’s Utility
First, we observe that the defender will never be worse off
in Model 2 than Model 1 w.r.t. t.

Proposition 1. For any t ∈ [T ], DefU2 ≥ DefU1.

Proof. If Uatt ≥ 0, then p, q = 0 is a feasible solution to
peLPt(z) in formula 1, which achieves a defender utility
zU cd + (1− z)Uud = DefU1. So DefU2 ≥ DefU1.

If Uatt < 0, the attacker will choose to not attack in
Model 1, so DefU1 = 0. In this case, p = z, q = 1 − z is
a feasible solution to peLPt(z), which achieves a defender
utility 0. So DefU2 ≥ 0 = DefU1.

However, the question is, will the defender always strictly
benefit w.r.t. t from the persuasion phase? The following the-
orem gives a succinct characterization.

Theorem 1. For any t ∈ [T ] with marginal coverage z ∈
[0, 1], DefU2 > DefU1, if and only if:

Uatt(U
c
dU

u
a − U caUud ) < 0. (2)

Proof. The inequality Condition 2 corresponds to the fol-
lowing four cases:

1. Uatt > 0, Uud ≥ 0, U cdU
u
a − U caUud < 0;

2. Uatt > 0, Uud < 0, U cdU
u
a − U caUud < 0;

3. Uatt < 0, Uud ≥ 0, U cdU
u
a − U caUud > 0;

4. Uatt < 0, Uud < 0, U cdU
u
a − U caUud > 0.

Case 1 obviously does not happen, since U cdU
u
a −U caUud > 0

when U cd > Uud ≥ 0 and Uua > 0 > U ca . Interestingly,

z1
0 u

a
c
a qUpU

u
d

c
d qUpUobj 

q

u
d

c
d qUpUobj 

z p

z1

u
d

c
d qUpUobj 

q

att
u
a

c
a UqUpU 

z p

Figure 1: Feasible regions (gray areas) and an objective
function gaining strictly better defender utility than SSE for
the case Uatt > 0 (Left) and Uatt < 0 (Right).

cases 2–4 correspond exactly to all the three possible condi-
tions that make DefU2 > DefU1. We now give a geomet-
ric proof. Instead of peLPt(z), we consider the following
equivalent LP:

min pU cd + qUud
s.t. pU ca + qUua ≤ 0

pU ca + qUua ≤ Uatt
0 ≤ p ≤ z
0 ≤ q ≤ 1− z,

so thatDefU2 = Udef −Opt. Figure 1 plots the feasible re-
gion for the case Uatt > 0 and Uatt < 0, respectively. Note
that, the vertex (z, 0) can never be an optimal solution in ei-
ther case, since the feasible point (z − ε, ε) for tiny enough
ε > 0 always achieves strictly smaller objective value, as-
suming U cd > Uud . When Uatt > 0, the attacker chooses to
attack, resulting in DefU1 = Udef . So to strictly increase
the defender’s utility is equivalent to making Opt < 0 for
the above LP. That is, we only need to guarantee the opti-
mal solution is not the origin (0, 0) (a vertex of the feasible
polytope). This happens when Uud < 0, and the slope of
obj = pU cd + qUud is less than the slope of 0 = pU ca + qUua ,
that is U cd/U

u
d − U ca/Uua > 0. These conditions correspond

to the case 2. In this case, the defender gains extra utility
−Opt = − z

Uu
a

(UuaU
c
d − U caUud ) > 0 by adding persuasion.

When Uatt < 0, the attacker chooses to not attack, re-
sulting in DefU1 = 0. To increase the defender’s utility, we
have to guaranteeOpt < Udef . Note that the vertex (z, 1−z)
yields exactly an objective Udef , so we only need to guaran-
tee the optimal solution is the vertex (Uatt

Uc
a
, 0). This happens

either when Uud ≥ 0 (corresponding to case 3 in which case
U cdU

u
a − U caUud > 0 holds naturally) or when Uud < 0 and

the slope of obj = pU cd + qUud is greater than the slope of
0 = pU ca + qUua . That is, −U cd/Uud > −U ca/Uua . This cor-
responds to case 4 above. In such cases, the defender gains
extra utility Udef − Opt = − 1−z

Uc
a

(UuaU
c
d − U caUud ) > 0 by

adding persuasion.
When Uatt = 0, the possible optimal vertices are (0, 0)

and (z, 1 − z), which corresponds to the defender utility 0
and Udef , respectively. So DefU2 = max{0, Udef} at opti-
mality, which equals toDefU1 assuming the attacker breaks
ties in favor of the defender.



Interpreting the Condition in Theorem 1
Inequality 2 immediately yields that the defender does not
benefit by persuasion in zero-sum security games, since
U cdU

u
a − U caUud = 0 for any target in zero-sum games. In-

tuitively, this is because there are no posterior distributions,
thus signals, where the defender and attacker can cooperate
due to the strictly competitive nature of zero-sum games.

One case of the Inequality 2 is Uatt > 0 and U cdU
u
a −

U caU
u
d < 0. To interpret the latter, let us start from a

zero-sum game, which assumes −Uud = Uua > 0 and
U cd = −U ca > 0. Then the condition U cdU

u
a − U caU

u
d =

U cdU
u
a − (−U ca)(−Uud ) < 0 could be achieved by making

−Uud > Uua or U cd < −U ca . That is, the defender values a
target more than the attacker (−Uud > Uua ), e.g., the damage
to a flight causes more utility loss to the defender than the
utility gained by the attacker, or the defender values catching
the attacker less than the cost to the attacker (U cd < −U ca),
e.g., the defender does not gain much benefit by placing a
violator in jail but the violator loses a lot. In such games,
if the attacker has incentives to attack (i.e., Uatt > 0), the
defender can “persuade” him to not attack.

Another case of Condition 2 is Uatt < 0 and U cdU
u
a −

U caU
u
d > 0. In contrast to the situation above, this is when

the defender values a target less than the attacker (e.g., a fake
target or honey pot) but cares more about catching the at-
tacker. Interestingly, the defender benefits when the attacker
does not want to attack (i.e., Uatt < 0), but the defender
“entices” him to commit an attack in order to catch him.

Attacker’s Utility
Now we compare the attacker’s utilities w.r.t. t in Model 1
and Model 2. Recall that Proposition 1 shows the defender
will never be worse off. A natural question is, whether the
attacker can be strictly better off? The attacker will never be
worse off under any signaling scheme. Intuitively, this is be-
cause the attacker gets more information about the resource
deployment, so he cannot be worse off, otherwise he could
just ignore those signals. Mathematically, this holds simply
by observing the constraints in peLPt(z) Formulation 1:

1. when Uatt ≥ 0, AttU1 = Uatt = zU ca + (1 − z)Uua and
AttU2 = (z−p)U ca+(1−z−q)Uua , soAttU1−AttU2 =
pU ca + qUua ≤ 0;

2. when Uatt < 0, AttU2 = (z − p)U ca + (1− z − q)Uua ≥
0 = AttU1.

Note that the above conclusion holds without requiring the
signaling scheme to be optimal, since the derivation only
uses feasibility constraints. Interestingly, if the defender
does persuade optimally, then equality holds.

Theorem 2. Given any target t ∈ [T ] with marginal cov-
erage z ∈ [0, 1], we have AttU1 = AttU2 = max(0, Uatt).

Proof. From peLPt(z) we know that AttU2 = Uatt −
(pU ca + qUua ). The proof is divided into three cases. When
Uatt > 0 (left panel in Figure 1), we have AttU1 = Uatt.
As argued in the proof of Theorem 1, the optimal solution
can never be the vertex (z, 0). So the only possible opti-
mal vertices are (0, 0) and (z,−z U

c
a

Uu
a

), both of which satisfy

pU ca + qUua = 0. So AttU2 = Uatt − (pU ca + qUua ) =
Uatt = DefU1. When Uatt < 0 (right panel in Fig-
ure 1),we have AttU1 = 0. The only possible optimal ver-
tices are (z, 1 − z) or (−Uatt

Uc
a
, 0), both of which satisfies

pU ca + qUua = Uatt. So AttU2 = 0 = AttU1. For the case
Uatt = 0, similar argument holds. To sum up, we always
have AttU1 = AttU2.

How to Persuade
As we have seen so far, the defender can strictly benefit
by persuasion in the two-stage security game model. Here
comes the natural question for computer scientists: how can
we compute the optimal mixed strategy? We answer the
question in this section, starting with a lemma stating that the
defender’s optimal mixed strategy in the two-stage model is
different from the SSE in its standard security game version.

Lemma 2. There exist security games in which the op-
timal mixed strategy in Model 2 is different from the SSE
mixed strategy in the corresponding Model 1.

A proof can be found in the online version. We now define
the following solution concept.

Definition 1. The optimal defender mixed strategy and
signaling scheme in the two-stage Stackelberg security
game, together with the attacker’s best response, form an
equilibrium called the Strong Stackelberg Equilibrium with
Persuasion (peSSE).

Proposition 1 yields that, by adding the persuasion phase,
the defender’s utility will not be worse off under any mixed
strategy, specifically, under the SSE mixed strategy. This
yields the following performance guarantee of peSSE.

Proposition 2. Given any security game, defender’s util-
ity in peSSE ≥ defender’s utility in SSE.

Now we consider the computation of peSSE. Note that the
optimal signaling scheme can be computed by LP 1 for any
target t with given coverage probability zt. The main chal-
lenge is about how to compute the optimal mixed strategy
in Phase 1. Assume the defender’s (leader) mixed strategy,
represented as a marginal coverage vector over target set [T ],
lies in a polytope Pd. 3 With a bit of abuse of notation, let us
use peLPt(zt) to denote also the optimal objective value of
the persuasion LP, as a function of zt. Let

Uatt(t, z) = zU ca(t) + (1− z)Uua (t)

be the attacker’s expected utility, if he attacks, as a linear
function of z.

Recall that, given a mixed strategy z ∈ [0, 1]T , the de-
fender’s utility w.r.t. t is peLPt(zt) and the attacker’s util-
ity w.r.t. t is max(Uatt(t, zt), 0) (Theorem 2). Similar to the

3Note that a polytope can always be represented by linear con-
straints (though may need exponentially many). For example, a
simple case is the games in which pure strategies are arbitrary sub-
sets A ⊆ [T ] with cardinality |A| ≤ k, Pd can be represented by
2T + 1 linear inequalities:

∑
i zi ≤ k and 0 ≤ z ≤ 1. However,

Pd can be complicated in security games, such that it is NP-hard to
optimize a linear objective over Pd (Xu et al. 2014). Finding suc-
cinct representations of Pd plays a key role in the computation of
SSE, but this is not our focus in this paper.



framework in (Conitzer and Sandholm 2006), we define the
following optimization problem for every target t, denoted
as OPTt:

max peLPt(zt) (3)
s.t. max(Uatt(t, zt), 0) ≥ max(Uatt(t

′, zt′), 0)∀t′
z ∈ Pd,

which computes a defender mixed strategy maximizing the
defender’s utility on t, subject to: 1. the mixed strategy is
achievable; 2. attacking t is the attacker’s best response. No-
tice that some of these optimization problems may be in-
feasible. Nevertheless, at least one of them is feasible. The
peSSE is obtained by solving these T optimization problems
and picking the best solution among those OPTt’s.

To solve optimization problem 3, we have to deal with
non-linear constraints and the specific objective peLPt(zt),
which is the optimal objective value of another LP. We first
simplify the constraints to make them linear. In particular,
the following constraints

max(Uatt(t, zt), 0) ≥ max(Uatt(t
′, zt′), 0),∀t′ ∈ [T ]

can be split into two cases, corresponding to Uatt(t, zt) ≥ 0
and Uatt(t, zt) ≤ 0 respectively, as follows,

CASE 1 CASE 2

Uatt(t, zt) ≥ 0 Uatt(t
′, zt′) ≤ 0,∀t′

Uatt(t, zt) ≥ Uatt(t′, zt′),∀t′

Now, the only problem is to deal with the objective func-
tion in Formulation 3. Here comes the crux.

Lemma 3. For any t ∈ [T ], peLPt(z) is increasing on z
for any z ∈ (0, 1).

Proof. For notation simplicity, let f(z) = peLPt(z). We
show that for any sufficiently small ε > 0 (so that z + ε <
1), f(z + ε) ≥ f(z). Fixing z, if the optimal solution for
peLPt(z), say p∗, q∗, satisfies q∗ = 0, then we observe that
p∗, q∗ is also feasible for peLPt(z+ε). As a result, plugging
p∗, q∗ in peLPt(z+ε), we have f(z+ε) ≥ (z−p∗)U cd+(1−
z − q∗)Uud + ε(U cd − U cd) ≥ f(z) since ε(U cd − U cd) ≥ 0.
On the other hand, if q∗ > 0, then for any small ε > 0
(specifically, ε < q∗), p∗+ε, q∗−ε is feasible for peLPt(z+
ε). Here the only need is to check the feasibility constraint
(p∗+ε)U ca+(q∗−ε)Uua = p∗U ca+q∗Uua +ε(U ca−Uua ) ≤ 0,
which holds since ε(U ca − Uua ) ≤ 0. This feasible solution
achieves an objective value equaling to f(z). Therefore, we
must have f(z + ε) ≥ f(z).

The intuition behind Lemma 3 is straightforward – the de-
fender should always get more utility by protecting a target
more. However, this actually does not hold in standard secu-
rity games. Simply consider a target with U cd = 2, Uud = −1
and U ca = −1, Uua = 1. If the target is covered with proba-
bility 0.4, then in expectation both the attacker and defender
get 0.2; however, if the target is covered with probability 0.6,
the attacker will not attack and both of them get 0. Therefore,

the monotonicity in Lemma 3 is really due to the signaling
scheme.

Back to the optimization problem 3, here comes our last
key observation – the monotonicity property in Lemma 3
reduces the problem to an LP. Specifically, the following
lemma is easy to think through.

Lemma 4. Maximizing the increasing function
peLPt(zt) over any feasible region D reduces to di-
rectly maximizing zt over D and then plugging in the
optimal zt to peLPt(zt).

To this end, we summarize the main results in this section.
The following theorem essentially shows that computing
peSSE efficiently reduces to computing SSE [see (Conitzer
and Sandholm 2006) for a standard way to compute SSE by
multiple LPs]. In other words, adding the persuasion phase
does not increase the computational complexity.

Theorem 3. For any security game, the Strong Stackel-
berg Equilibrium with Persuasion (peSSE), defined in Defi-
nition 1, can be computed by multiple LPs.

Proof. According to Lemma 3 and 4, Algorithm 1, based
on multiple LPs, computes the peSSE.

Algorithm 1 Computing peSSE
1: For every target t ∈ [T ], compute the optimal objectives

for the following two LPs:

max zt (4)
s.t. Uatt(t, zt) ≥ 0

Uatt(t, zt) ≥ Uatt(t′, zt′),∀t′ ∈ [T ]

z ∈ Pd

and

max zt (5)
s.t. Uatt(t

′, zt′) ≤ 0,∀t′ ∈ [T ]

z ∈ Pd.

Let z∗t,1, z∗t,2 be the optimal objective value for LP 4,
LP 5 respectively. z∗t,i = null if the corresponding LP
is infeasible.

2: Choose the non-null z∗t,i, denoted as z∗, that maximizes
peLPt(z

∗
t,i) over t ∈ [T ] and i = 1, 2. The optimal

mixed strategy that achieves z∗ in one of the above LPs
is the peSSE mixed strategy.

Simulations
As expected, our simulation based on more than 20, 000
covariance random security games (Nudelman et al. 2004)
shows that peSSE outperforms SSE in terms of the defender
utility, and interestingly, performs much better than SSE
when the defender has negative SSE utilities. We omit de-
tails here due to space constraints and refer the reader to the
online version for further information.



Conclusions and Discussions
In this paper, we studied how the defender can use strategic
information revelation to increase defensive effectiveness.
The main takeaway is that, besides physical security re-
sources, the defender’s extra information can also be viewed
as a means of defense. This raises several new research ques-
tions in security games and beyond, and we list a few: In-
stead of only observing the signal from the chosen target,
what if the attacker simultaneously surveils several targets
before deciding which to attack? What about scenarios in
which the defender is privy to extra information regarding
the payoff structure of the game, such as the vulnerability of
various targets and effectiveness of defensive resources, and
can strategically reveal such information? Finally, do our re-
sults have analogues beyond our two-stage game model, to
extensive-form games more broadly?
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APPENDIX

A Proof of Lemma 2
Lemma Statement: There exist security games, in which
the optimal mixed strategy in Model 2 is different from the
SSE mixed strategy in the corresponding Model 1.

Proof. We prove directly by constructing the following
game. Consider a security game with payoff matrix in Ta-
ble 1.

U cd Uud U ca Uua
t1 1 -2 -1 1
t2 3 -5 -3 5
t3 1 -4 -2 4
t4 0 -0.5 -2 1

Table 1: Payoff

Assume there are two resources, and feasible pure strate-
gies are A1 = (t1, t2), A2 = (t2, t3) and A3 = (t3, t4).
Let p = (p1, p2, p3) denote a mixed strategy where pi
is the probability of taking action Ai. With a bit calcula-
tion, one can find the Strong Stackelberg Equilibrium (SSE)
as p = ( 3

8 ,
7
32 ,

13
32 ) with coverage probability vector z =

( 3
8 ,

19
32 ,

5
8 ,

13
32 ). The attacker’s utility is ( 1

4 ,
1
4 ,

1
4 ,− 7

32 ) and
defender’s utility is (− 7

8 ,− 1
4 ,− 7

8 ,− 19
64 ), so the attacker will

attack t2.
Now, if we add the persuasion phase as in Model 2, the

optimal mixed strategy is p = ( 3
8 ,

3
8 ,

1
4 ) with coverage prob-

ability vector z = ( 3
8 ,

3
4 ,

5
8 ,

1
4 ). The attacker’s utility is

( 1
4 ,−1, 14 ,

1
4 ) and defender’s utility is (− 1

2 , 1,− 1
4 ,− 1

8 ), so
the attacker will attack t4 in favor of the defender. So the de-
fender’s utility changes from− 1

4 in Model 1 to− 1
8 in Model

2.

Simulations
In this section, we compare SSE and peSSE on randomly
generated security games. Our simulations aim to compare
the two concepts, SSE and peSSE, in games with various
payoff structures.

To generate payoffs, we follow most security game papers
and use the covariance random payoff generator (Nudel-
man et al. 2004), but with a slight modification. Specifically,
let µ[a, b] denote a uniform distribution on interval [a, b],
then we randomly generate the following random payoffs:
U cd ∼ µ[0, r], Uud ∼ µ[−10, 0], U ca = aU cd× 10

r +bµ[−10, 0]

(set U cd× 10
r = 0 if r = 0) and Uua = aUud +bµ[0, 10], where

a = cov, b =
√

1− a2. Here cov ∈ [−1, 0] is the covari-
ance parameter between defender’s reward (or penalty) and
attacker’s penalty (or reward). So cov = 0 means a totally
random payoff structure while cov = −1 and r = 10 means
a zero-sum game. By setting U cd ∈ [0, r] while U ca ∈ [0, 10],
we intentionally capture the defender’s “overall” value of
catching the attacker by parameter r. Standard covariance
payoff fixes r = 10, but Theorem 1 suggests that r may
affect the utility difference between SSE and peSSE.
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Figure 2: Comparison between SSE and peSSE: fix parame-
ter r = 3 (upper) and fix parameter cov = −0.5. The trend
is similar for different r or cov, except the utility scales are
different.

In all the simulations, every game has 8 targets and 3 re-
sources, and the attacker has the option to not attack. We
simulate two different kinds of pure strategies, which results
in two types of games:

1. Uniform Strategy Game (UniG): in such games, a pure
strategy is any subset of targets with cardinality at most 3.

2. Random Strategy Game (RanG): for each game we ran-
domly generate 6 pure strategies, each of which is a subset
of targets with cardinality at most 3. Each target is guar-
anteed to be covered by at least one pure strategy.

We set r = 0, 1, ..., 10 and cov = 0,−0.1,−0.2, ...,−1. For
each parameter instance, i.e., r and cov, 100 random security
games are simulated. As a result, in total 2 × 100 × 112 =
24, 200 (2 types of games, 112 parameter combinations and
100 games per case) random security games are tested in our
experiments. We find that the UniG and RanG games have
similar experimental performance, except that RanG games
have a lower utility at a given parameter instance. This is
reasonable since UniG games are relaxations of the RanG
games in terms of the set of pure strategies. So we only show
results for UniG to avoid repetition.

Figure 2 gives a comprehensive comparison about the dif-
ference between SSE and peSSE. All these performances are
averaged over 100 games. These figures suggest the follow-
ing empirical conclusions as expected (note that the trends
reflected in the figures are basically similar for different r or
cov, except the utility scales are different):
• In the left two panels, the line SSE 6= peSSE describes

the number of games within 100 simulations that have
different SSE and peSSE mixed strategies. This number
seems not very sensitive in parameter cov (note games



with cov = −1 is not zero-sum when r = 3), but in-
creases as r decreases. That is, when defender cares less
about catching the attacker, then persuading the attacker
to not attack benefits the defender more.

• The line USSE > UpeSSE in the left two panels describes
how many games have strictly greater peSSE utility than
SSE utility. This number increases as cov or r decreases.
That is, if the defender cares less about catching the at-
tacker or the game becomes more competitive (i.e., cov
decreases), then defender benefits more by persuasion.
Note that the Udif lines in the right two panels also show
the same trend.

• The right two panels show that persuasion usually helps
more when the defender’s SSE utility is less. Specifically,
peSSE can increase the SSE utility by about half when r
is small with fixed cov = −0.5 (right-lower panel).


