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ABSTRACT
Recent applications of Stackelberg Security Games (SSG), from
wildlife crime to urban crime, have employed machine learning
tools to learn and predict adversary behavior using available data
about defender-adversary interactions. Given these recent devel-
opments, this paper commits to an approach of directly learning
the response function of the adversary. Using the PAC model, this
paper lays a firm theoretical foundation for learning in SSGs and
provides utility guarantees when the learned adversary model is
used to plan the defender’s strategy. The paper also aims to an-
swer practical questions such as how much more data is needed to
improve an adversary model’s accuracy. Additionally, we explain a
recently observed phenomenon that prediction accuracy of learned
adversary behavior is not enough to discover the utility maximiz-
ing defender strategy. We provide four main contributions: (1) a
PAC model of learning adversary response functions in SSGs; (2)
PAC-model analysis of the learning of key, existing bounded ratio-
nality models in SSGs; (3) an entirely new approach to adversary
modeling based on a non-parametric class of response functions
with PAC-model analysis and (4) identification of conditions under
which computing the best defender strategy against the learned ad-
versary behavior is indeed the optimal strategy. Finally, we conduct
experiments with real-world data from a national park in Uganda,
showing the benefit of our new adversary modeling approach and
verification of our PAC model predictions.

1. INTRODUCTION
Stackelberg Security Games (SSGs) are arguably the best exam-

ple of the application of the Stackelberg game model in the real
world. Indeed, numerous successful deployed applications [30]
(LAX airport, US air marshal) and extensive research on related
topics [5, 18, 6, 7] provide evidence about the generality of the
SSG framework. More recently, new application domains of SSGs,
from wildlife crime to urban crime, are accompanied by significant
amounts of past data of recorded defender strategies and adversary
reactions. This has enabled the learning of adversary behavior from
such data [36, 35]. Also, analysis of these datasets and human sub-
ject experiment studies [26] have revealed that modeling bounded
rationality of the adversary enables the defender to further opti-
mize her allocation of limited security resources. Thus, learning
the adversary’s bounded rational behavior and computing defender
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strategy based on the learned model has become an important area
of research in SSGs.

However, without a theoretical foundation for this learning and
strategic planning problem, many issues that arise in practice can-
not be explained or addressed. For example, it has been recently ob-
served that in spite of good prediction accuracy of the learned mod-
els of adversary behavior, the performance of the defender strategy
that is computed against this learned adversary model is poor [12].
A formal study could also answer several other important questions
that arise in practice, for example, (1) How many samples would be
required to learn a “reasonable” model of adversary behavior in a
given SSG? (2) What utility bound can be provided when deploy-
ing the best defender strategy that is computed against the learned
adversary model?

Motivated by the learning of adversary behavior from data in re-
cent applications [13, 36], we adopt the framework in which the de-
fender first learns the response function of the adversary (adversary
behavior) and then optimizes against the learned response. This
paper is the first theoretical study of the adversary bounded ratio-
nal behavior learning problem and the optimality guarantees (utility
bounds) when computing the best defender strategies against such
learned behaviors1. Indeed, unlike past theoretical work on learn-
ing in SSGs (see related work) where reasoning about adversary
response happens through payoff and rationality, we treat the re-
sponse of the bounded rational adversary as the object to be learned.

Our first contribution is using the Probably Approximately Cor-
rect (PAC) model [16, 2] to analyze the learning problem at hand. A
PAC analysis yields sample complexity, i.e., the number of samples
required to achieve a given level of learning guarantee. Hence, the
PAC analysis allows us to address the question of required quan-
tity of samples raised earlier. While PAC analysis is fairly standard
for classifiers and real valued functions (i.e., regression) it is not
an out-of-the-box approach. In particular, PAC-model analysis of
SSGs brings to the table significant new challenges. To begin with,
given that we are learning adversary response functions, we must
deal with the output being a probability distribution over the adver-
sary’s actions, i.e., these response functions are vector-valued. We
appeal to the framework of Haussler [14] to study the PAC learn-
ability of vector-valued response functions. For SSGs, we first pose
the learning problem in terms of maximizing the likelihood of see-
ing the attack data, but without restricting the formulation to any
particular class of response functions. This general PAC frame-
work for learning adversary behavior in SSGs enables the rest of
the analysis in this paper.

Our second contribution is an analysis of the Subjective Util-
ity Quantal Response (SUQR) model of bounded rationality adver-

1Our theory results apply to Stackelberg games also. See Ap-
pendix.



sary behavior used in SSGs, which posits a class of parametrized
response functions with a given number of parameters (and corre-
sponding features). SUQR is the best known model of bounded ra-
tionality in SSGs, resulting in multiple deployed applications [13,
11]. In analyzing SUQR, we advance the state-of-the-art in the
mathematical techniques involved in PAC analysis of vector-valued
function spaces. In particular, we provide a technique to obtain
sharper sample complexity for SUQR than simply directly apply-
ing Haussler’s original techniques. We decompose the given SUQR
function space into two (or more) parts, performing PAC analysis
of each part and finally combining the results to obtain the sam-
ple complexity result (which scales as T log T with T targets) for
SUQR (see details in Section 5).

Our third contribution includes an entirely new behavioral model
specified by the non-parametric Lipschitz (NPL) class of response
functions for SSGs, where the only restriction on NPL functions
is Lipschitzness. The NPL approach makes very few assumptions
about the response function, enabling the learning of a multitude of
behaviors albeit at the cost of higher sample complexity. As NPL
has never been explored in learning bounded rationality models in
SSGs, we provide a novel learning technique for NPL. We also
compute the sample complexity for NPL. Further, we observe in
our experiments that the power to capture a large variety of behav-
iors enables NPL to perform better than SUQR with the real-world
data from Queen Elizabeth National Park (QENP) in Uganda.

Our fourth contribution is to convert the PAC learning guaran-
tee into a bound on the utility derived by the defender when plan-
ning her strategy based on the learned adversary behavior model.
In the process, we make explicit the assumptions required from
the dataset of adversary’s attacks in response to deployed defender
mixed strategies in order to discover the optimal (w.r.t. utility) de-
fender strategy. These assumptions help explain a puzzling phe-
nomenon observed in recent literature on learning in SSGs [12]—
in particular that learned adversary behaviors provide good predic-
tion accuracy, but the best defender strategy computed against such
learned behavior may not perform well in practice. We explain this
as a mismatch between the adversary model guarantee required for
computing the best defender strategy and the guarantee provided by
the (PAC based) learning methods. The key is that the dataset for
learning must not simply record a large number of attacks against
few defender strategies but rather contain the attacker’s response
against a variety of defender mixed strategies. We discuss the de-
tails of our assumptions and its implications for the strategic choice
of defender’s actions in Section 7.

We also conduct experiments with real-world poaching data
from the QENP in Uganda (obtained from [25]) and data collected
from human subject experiments. The experimental results sup-
port our theoretical conclusions about the number of samples re-
quired for different learning techniques. Showing the value of our
new NPL approach, the NPL approach outperforms all existing ap-
proaches in predicting the poaching activity in QENP. Finally, our
work opens up a number of exciting research directions, such as
studying learning of behavioral models in active learning setting
and real-world application of non-parametric models. 2

2. RELATED WORK
Learning and planning in SSGs with rational adversaries has

been studied in two recent papers [8, 3], and in Stackelberg games
by Letchford et al. [20] and Marecki et al. [22]. All these papers
study the learning problem under an active learning framework,

2Due to lack of space, most proofs are in the online Appendix:
http://teamcore.usc.edu/papers/2016/PAC.Appendix.pdf

where the defender can choose the strategy to deploy within the
learning process. Also, all these papers study the setting with per-
fectly rational adversaries. Our work differs as we study bounded
rational adversaries in a passive learning scenario (i.e., with given
data) and once the model is learned we analyze the guarantees of
planning against the learned model. Also, our focus on SSGs dif-
ferentiates us from recent work on PAC learnability in co-operative
games [4], in which the authors study PAC learnability of the value
function of coalitions with perfectly rational players. Also, our
work is orthogonal to adversarial learning [33], which studies game
theoretic models of an adversary attacking a learning algorithm.

PAC learning model has a very rich and extensive body of
work [2]. The PAC model provides a theoretical underpinning
for most standard machine learning techniques. We use the PAC
framework of Haussler [14]. For the parametric case, we derive
sharp sample complexity bounds based on covering numbers using
our techniques rather than bounding it using the standard technique
of pseudo-dimension [28] or fat shattering dimension [2]. For the
NPL case we use results from [32] along with our technique of
bounding the mixed strategy space of the defender; these results
[32] have also been used in the study of Lipschitz classifiers [21]
but we differ as our hypothesis functions are real vector-valued.

3. SSG PRELIMINARIES
This section introduces the background and preliminary nota-

tions for SSGs. A summary of notations used in this paper is pre-
sented in Table 1. An SSG is a two player Stackelberg game be-
tween a defender (leader) and an adversary (follower) [27]. The
defender wishes to protect T targets with a limited number of se-
curity resources K (K << T ). For ease of presentation, we
restrict ourselves to the scenario with no scheduling constraints
(see Korzhyk et al. [18]). The defender’s pure strategy is to al-
locate each resource to a target. A defender’s mixed-strategy x̃
(∀j ∈ P. x̃j ∈ [0, 1],

∑P
j=1 x̃j = 1) is then defined as a

probability distribution over the set of all possible pure strategies
P . An equivalent description (see Korzhyk et al. [18]) of these
mixed strategies are coverage probabilities over the set of targets:
x (∀i ∈ T. xi ∈ [0, 1],

∑T
i=1 xi ≤ K). We refer to this latter

description as the mixed strategy of the defender.
A pure strategy of the adversary is defined as attacking a single

target. The adversary’s mixed strategy is then a categorical distribu-
tion over the set of targets. Thus, it can be expressed as parameters
qi (i ∈ T ) of a categorical distribution such that 0 ≤ qi ≤ 1 and∑
i qi = 1. The adversary’s response to the defender’s mixed strat-

egy is given by a function q : X → Q, where Q is the space of
all mixed strategies of the adversary. The matrix U specifies the
payoffs of the defender, and her expected utility is xTUq(x) when
she plays a mixed strategy x ∈ X .

Bounded Rationality Models: We discuss the SUQR model
and its representation for the analysis in this paper below. Build-
ing on prior work on quantal response [24], SUQR [26] states that
given n actions, a human player plays action i with probability
qi ∝ ew·v , where v denotes a vector of feature values for choice i
and w denotes the weight parameters for these features. The model
is equivalent to conditional logistic regression [23]. The features
are specific to the domain, e.g., in case of SSG applications, the set
of features include the coverage probability xi, the reward Ri and
penalty Pi of target i. Since, other than the coverage x, remaining
features are fixed for each target in real world data, we assume a
target-specific feature ci (which may be a linear combination of re-



Notation Meaning
T,K Number of targets, defender resources
dlp(o, o′) lp distance between points o, o′

d̄lp(o, o′) Average lp distance: = dlp(o, o′)/n
X Instance space (defender mixed strategies)
Y Outcome space (attacked target)
A Decision space
h ∈ H h : X → A is the hypothesis function
N (ε,H, d) ε-cover of setH using distance d
C(ε,H, d) capacity ofH using distance d
rh(p), r̂h(~z) true risk, empirical risk of hypothesis h
dL1(P,d)(f, g) L1 distance between functions f, g
qp(x) parameters of true attack distribution
qh(x) parameters of attack distr. predicted by h

Table 1: Notations

wards and penalties) and analyze the following generalized3 form
of SUQR with parameters w1 and ci’s: qi(x) ∝ ew1xi+ci . As∑T
i=1 qi(x) = 1, we have:

qi(x) =
ew1xi+ci∑T
j=1 e

w1xj+cj
.

Equivalent Alternate Representation: For ease of mathematical
proofs, using standard techniques in logistic regression, we take
qT ∝ e0, and hence, qi ∝ ew1(xi−xT )+(ci−cT ). To shorten no-
tation, let ciT = ci − cT , xiT = xi − xT . By multiplying the
numerator and denominator by ew1xT+cT , it can be verified that
qi(x) = ew1xiT+ciT

e0+
∑T−1
j=1 e

w1xjT+cjT
= ew1xi+ci∑T

j=1 e
w1xj+cj

.

4. LEARNING FRAMEWORK FOR SSG
First, we introduce some notations: given two n-dimensional

points o and o′, the lp distance dlp between the two points is:
dlp(o, o′) = ||o − o′||p = (

∑n
i=1 |oi − o′i|p)1/p. In particular,

dl∞(o, o′) = ||o − o′||∞ = maxi |oi − o′i|. Also, d̄lp = dlp/n.
KL denotes the Kullback-Leibler divergence [19].

We use the learning framework of Haussler [14], which includes
an instance space X and outcome space Y . In our context, X is
same as the space of defender mixed strategies x ∈ X . Outcome
space Y is defined as the space of all possible categorical choices
over a set of T targets (i.e., choice of target to attack) for the ad-
versary. Let ti denote the attacker’s choice to attack the ith target.
More formally ti = 〈t1

i , . . . , t
T
i 〉, where tji = 1 for j = i and

otherwise 0. Thus, Y = {t1, . . . , tT }. We will use y to denote
any general element of Y . To give an example, given three targets
T1, T2 and T3, Y = {t1, t2, t3} = {〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉},
where t1 denotes 〈1, 0, 0〉, i.e., it denotes that T1 was attacked
while T2 and T3 were not attacked, and so on. The training data
are samples drawn from Z = X × Y using an unknown prob-
ability distribution, say given by density p(x, y). Each training
data point (x, y) denotes the adversary’s response y ∈ Y (e.g.,
t1 or attack on target 1) to a particular defender mixed strategy
x ∈ X . The density p also determines the true attacker behavior
qp(x) which stands for the conditional probabilities of the attacker
attacking a target given x so that qp(x) = 〈qp1(x), . . . , qpT (x)〉,
where qpi (x) = p(ti|x).

Haussler [14] also defines a decision spaceA, a space of hypoth-
esis (functions) H with elements h : X → A and a loss function
l : Y ×A→ R. The hypothesis h outputs values in A that enables

3This general form is harder to analyze than the standard SUQR
form in which the exponent function (function of xi, Ri, Pi) for all
qi is same: w1xi+w2Ri+w3Pi. For completeness, we derive the
results for the standard SUQR form in the Appendix.

computing (probabilistic) predictions of the actual outcome. The
loss function l captures the loss when the real outcome is y ∈ Y
and the prediction of possible outcomes happens using a ∈ A.

Example 1: Generalized SUQR For the parametric represen-
tation of generalized SUQR in the previous section and consider-
ing our 3-target example above, H contains vector valued func-
tions with (T − 1) = 2 components that form the exponents of
the numerator of prediction probabilities q1 and q2. H contains
two components, since the third component q3 is proportional to
e0 as discussed above. That is, H contains functions of the form:
〈w1(x1 − x3) + c13, w1(x2 − x3) + c23〉; ∀x ∈ X . Also, A
is the range of the functions in H, i.e., A ⊂ R2. Then, given
h(x) = 〈a1, a2〉, the prediction probabilities qh1 (x), qh2 (x), qh3 (x)

are given by qhi (x) = eai

1+ea1+ea2
(assume a3 = 0).

PAC learnability: The learning algorithm aims to learn a h ∈ H
that minimizes the true risk of using the hypothesis h. The true
risk rh(p) of a particular hypothesis (predictor) h, given density
function p(x, y) overZ = X×Y , is the expected loss of predicting
h(x) when the true outcome is y:

rh(p) =

∫
p(x, y)l(y, h(x)) dx dy

Of course, as p is unknown the true risk cannot be computed.
However, given (enough) samples from p, the true risk can be es-
timated by the empirical risk. The empirical risk r̂h(~z), where
~z is a sequence of m training samples from Z, is defined as:
r̂h(~z) = 1/m

∑m
i=1 l(yi, h(xi)). Let h∗ be the hypothesis that

minimizes the true risk, i.e., rh∗(p) = inf{rh(p) | h ∈ H} and
let ĥ∗ be the hypothesis that minimizes the empirical risk, i.e.,
r̂ĥ∗(~z) = inf{r̂h(~z) | h ∈ H}. The following is the well-known
PAC learning result [2] for any empirical risk minimizing (ERM)
algorithm A yielding hypothesis A(~z):

If Pr(∀h ∈ H.|r̂h(~z)− rh(p)| < α/3) > 1− δ/2
and Pr(|r̂A(~z)(~z)− r̂ĥ∗(~z)| < α/3) > 1− δ/2

then Pr(|rA(~z)(p)− rh∗(p)| < α) > 1− δ

The final result states that output hypothesis A(~z) has true risk α-
close to the lowest true risk inH attained by h∗ with high probabil-
ity 1−δ over the choice of training samples. The first pre-condition
states that it must be the case that for all h ∈ H the difference be-
tween empirical risk and true risk is α

3
-close with high probability

1− δ
2

. The second pre-condition states that the output A(~z) of the
ERM algorithmA should have empirical risk α

3
-close to the lowest

empirical risk of ĥ∗ with high probability 1− δ
2

. A hypothesis class
H is called (α, δ)-PAC learnable if there exists an ERM algorithm
A such that H and A satisfy the two pre-conditions. In this work,
our empirical risk minimizing algorithms find ĥ∗ exactly (upto pre-
cision of convex solvers, see Section 6), thus, satisfying the second
pre-condition; hence, we will focus more on the first pre-condition.
As the empirical risk estimate gets better with increasing samples,
a minimum number of samples are required to ensure that the first
pre-condition holds (see Theorem 1). Hence we can relate (α, δ)-
PAC learnability to the number of samples.

Modeling security games: Having given an example for general-
ized SUQR, we systematically model learning of adversary behav-
ior in SSGs using the PAC framework for any hypothesis class H.
We assume certain properties of functions h ∈ H that we present
below. First, the vector valued function h ∈ H takes the form

h(x) = 〈h1(x), . . . , hT−1(x)〉.

Thus, A is the product space A1 × . . . , AT−1. Each hi(x) is
assumed to take values between [−M

2
, M

2
], where M >> 1,



which implies Ai = [−M
2
, M

2
]. The prediction probabilities in-

duced by any h is qh(x) = 〈qh1 (x), . . . , qhT (x)〉, where qhi (x) =
ehi(x)

1+
∑
i e
hi(x)

(assume hT (x) = 0). Next, we specify two classes
of functions that we analyze in later sections. We choose these two
functions classes because (1) the first function class represents the
widely used SUQR model in literature [26, 35] and (2) the second
function class is very flexible as it capture a wide range of functions
and only imposes minimal Lipschitzness constraints to ensure that
the functions are well behaved (e.g., continuous).

Parametric H: In this approach we model generalized SUQR.
Generalizing from Example 1, the functions h ∈ H take a paramet-
ric form where each component function is hi(x) = w1xiT + ciT .

Non-parametric Lipschitz (NPL) H: Here, the only restriction
we impose on functions h ∈ H is that each component function hi
is L-Lipschitz where L ≤ K̂, for given and fixed constant K̂. We
show later (Lemma 7) that this implies that qh is Lipschitz also.

Next, given the stochastic nature of the adversary’s attacks, we
use a loss function (same for parametric and NPL) such that mini-
mizing the empirical risk is equivalent to maximizing the likelihood
of seeing the attack data. The loss function l : Y × A → R for
actual outcome ti is defined as:

l(ti, a) = − log
eai

1 +
∑T−1
j=1 e

aj
(1)

It can be readily inferred that minimizing the empirical risk (recall
r̂h(~z) = 1/m

∑m
i=1 l(yi, h(xi))) is equivalent to maximizing the

log likelihood of the training data.

5. SAMPLE COMPLEXITY
In this section we derive the sample complexity for the paramet-

ric and NPL case, which provides an indication about the amount
of data required to learn the adversary behavior. First, we present
a general result about sample complexity bounds for any H, given
our loss l. This result relies on sample complexity results in [14].
The bound depends on the capacity C of H, which we define after
the theorem. The bound also assumes an ERM algorithm which we
present for our models in Section 6.

THEOREM 1. Assume that the hypothesis space H is permis-
sible4. Let the data be generated by m independent draws from
X × Y according to p. Then, assuming existence of an ERM algo-
rithm and given our loss l defined in Eq. 1, the least m required to
ensure (α, δ)-PAC learnability is (recall d̄l1 is average l1 distance)

576M2

α2

(
log

1

δ
+ log

(
8C( α

96T
,H, d̄l1)

))
PROOF SKETCH. Haussler [14] present a result of the above

form using a general distance metric defined on the space A for
any loss function l: ρ(a, b) = maxy∈Y |l(y, a) − l(y, b)|. The
main effort in this proof is relating ρ to d̄l1 for our choice of the
loss function l given by Equation 1. We are able to show that
ρ(a, b) ≤ 2T d̄l1(a, b). Our result then follows from this rela-
tion.

The above sample complexity result is stated in terms of the
capacity C(α/96T,H, d̄l1). Thus, in order to obtain the sample
complexity of the generalized SUQR and NPL function spaces we
need to compute the capacity of these function spaces. Therefore,
in the rest of this section we will focus on computing capacity

4As noted in Haussler: “This is a measurability condition defined
in Pollard (1984) which need not concern us in practice.”

C(α/96T,H, d̄l1) for both the generalized SUQR and NPL hy-
pothesis space. First, we need to define capacity C of functions
spaces, for which we start by defining the covering number N of
function spaces. Let d be a pseudo metric for the set H. For any
ε > 0, an ε-cover for H is a finite set F ⊆ H such that for any
h ∈ H there is a f ∈ F with d(f, h) ≤ ε, i.e., any element in H
is at least ε-close to some element of the cover F . The covering
number N (ε,H, d) denotes the size of the smallest ε-cover for set
H (for the pseudo metric d). We now proceed to define a pseudo
metric dL1(P,d) onH with respect to any probability measure P on
X and any given pseudo-metric d on A. This pseudo-metric is the
expected (over P ) distance (with d) between the output of f and g.

dL1(P,d)(f, g) =

∫
X

d(f(x), g(x)) dP (x) ∀f, g ∈ H

Then, N (ε,H, dL1(P,d)) is the covering number for H for the
pseudo metric dL1(P,d). However, to be more general, the capacity
of function spaces provides a “distribution-free” notion of covering
number. The capacity C(ε,H, d) is:

C(ε,H, d) = sup
P
{N (ε,H, dL1(P,d))}

Capacity of vector valued function: The function spaces (both
parametric and NPL) we consider are vector valued. Haussler [14]
provides an useful technique to bound the capacity for vector val-
ued function space H in terms of the capacity of each of the
component real valued function space. Given k functions spaces
H1, . . . ,Hk with functions from X to Ai, he define the free
product function space ×iHi with functions from X to A =
A1 × . . . Ak as ×iHi = {〈h1, . . . , hk〉 | hi ∈ Hi}, where
〈h1, . . . , hk〉(x) = 〈h1(x), . . . , hk(x)〉. He shows that:

C(ε,×iHi, d̄l1) <

k∏
i=1

C(ε,Hi, dl1) (2)

Unfortunately, a straightforward application of the above result
does not give as tight bounds for capacity in the parametric case
as the novel direct sum decomposition of function spaces approach
we use in the sub-section. Even for the NPL case where the above
result is used we still need to compute C(ε,Hi, dl1) for each com-
ponent function spaceHi.

5.1 Parametric case: Generalized SUQR
Recall that the hypothesis function h has T −1 component func-

tions w1xiT +ciT . However, the same weight w1 in all component
functions implies that H is not a free product of component func-
tion spaces, hence we cannot use Equation 2 directly. However,
if we consider the space of functions, say H′, in which the ith

component function space H′i is given by wixiT + ciT (note wi
can be different for each i) then we can use Equation 2 to bound
C(ε,H′, d̄l1). Also, the fact that H ⊂ H′ allows upper bound-
ing C(ε,H, d̄l1) by C(ε,H′, d̄l1). But, this approach results in a
weaker T log(T

α
log T

α
) bound (detailed derivation using this ap-

proach is in Appendix) than the technique we use below. We obtain
a T log(T

α
) result below in Theorem 2.

We propose a novel approach that decomposes H into a direct
sum of two functions spaces (defined below), each of which capture
the simpler functions w1xiT and ciT respectively. We provide a
general result about such decomposition which allows us to bound
C(ε,H, d̄l1). We start with the following definition.

DEFINITION 1. Direct-sum semi-free product of function
spaces G ⊂ ×iGi and ×iFi is defined as G ⊕ ×iFi = {〈g1 +
f1, . . . , gT−1 + fT−1〉 | 〈g1, . . . , gT−1〉 ∈ G, 〈f1, . . . , fT−1〉 ∈
×iFi}.



Applying the above definition for our case, Gi contains func-
tions of the form wxiT (w taking different values for differ-
ent gi ∈ Gi). A function 〈g1, . . . , gT−1〉 ∈ ×iGi can have
different weights for each component gi, and thus we con-
sider the subset G = {〈g1, . . . , gT−1〉 | 〈g1, . . . , gT−1〉 ∈
×iGi, same coefficient w for all gi}. Fi contains constant valued
functions of the form ciT (ciT different for different functions
fi ∈ Fi). Then, H = G ⊕ ×iFi. Next, we prove a general re-
sult about direct-sum semi-free products:

LEMMA 1. IfH is the direct-sum semi-free product G ⊕ ×iFi

C(ε,H, d̄l1) < C(ε/2,G, d̄l1)

T−1∏
i=1

C(ε/2,Fi, dl1)

PROOF. Fix any probability distribution over X , say P . For
brevity, we write k instead of T − 1. Consider an ε/2-cover
Ui for each Fi; also let V be an ε/2-cover for G. We claim
that V ⊕ ×iUi is an ε-cover for G ⊕ ×iFi. Take any func-
tion h = 〈g1 + f1, . . . gk + fk〉. Find functions f ′i ∈ Ui
such that dL1(P,dl1 )(fi, f

′
i) < ε/2. Similarly, find function

g′ = 〈g′1, . . . g′k〉 ∈ V such that dL1(P, ¯dl1 )(g, g
′) < ε/2 where

g = 〈g1, . . . gk〉. Let h′ = 〈g′1 + f ′1, . . . g
′
k + f ′k〉. Then,

dL1(P, ¯dl1 )(h, h
′)

=

∫
X

1

k

k∑
i=1

dl1(gi(x) + fi(x), g′i(x) + f ′i(x)) dP (x)

≤
∫
X

1

k

k∑
i=1

dl1(gi(x), g′i(x)) + dl1(fi(x), f ′i(x)) dP (x)

= dL1(P, ¯dl1 )(g, g
′) +

1

k

k∑
i=1

dL1(P,dl1 )(fi, f
′
i)

< ε/2 + ε/2 = ε

Thus, the size of ε-cover for G ⊕×iFi is bounded by |V |
∏
i |Ui|.

N (ε,G ⊕ ×iFi, dL1(P, ¯dl1 )) < |V |
∏
i |Ui|

= N (ε/2,G, dL1(P, ¯dl1 ))
∏k
i=1N (ε/2,Fi, dL1(P,dl1 ))

Taking sup over probability distribution P on both sides of the
above inequality we get our desired result about capacity.

Next, we need to bound the capacity of G andFi for our case. We
assume the range of all these functions (gi, fi) to be [−M

4
, M

4
] (so

that their sum hi lies in [−M
2
, M

2
]). We can obtain sharp bounds on

the capacities of G and Fi decomposed from H in order to obtain
sharp bounds on the overall capacity.

LEMMA 2. C(ε,G, d̄l1) ≤M/4ε and C(ε,Fi, dl1) ≤M/4ε.

PROOF SKETCH. Note that xiT = xi − xT lies between
[−1, 1]. Then, for any two g, g′ ∈ G we can prove following result:
dL1(P, ¯dl1 )(g, g

′) ≤ |(w − w′)| (details in Appendix). Also, note

that since the range of any g = w(xi−xT ) is [−M
4
, M

4
] and given

xi − xT lies between [−1, 1], we can claim that w lies between
[−M

4
, M

4
]. Thus, as the distance between functions is bounded by

the difference in weights, it is enough to divide the M/2 range of
the weights into intervals of size 2ε and consider functions at the
boundaries. Hence the ε-cover has at most M/4ε functions.

The proof for constant valued functions Fi is similar, since the
distance between two functions in this space is the absolute differ-
ence in the constants, which lie in [−M

4
, M

4
].

Then, plugging the result of Lemma 2 (substituting ε/2 for ε) into
Lemma 1 we obtain C(ε,H, d̄l1) < (M/2ε)T . Having bounded
C(ε,H, d̄l1), we use Theorem 1 to obtain:

THEOREM 2. The generalized SUQR parametric hypothesis
classH is (α, δ)-PAC learnable with sample complexity5

O
(( 1

α2

)(
log(

1

δ
) + T log(

T

α
)
))

The above result shows a modest T log T growth of sample com-
plexity with increasing targets, suggesting the parametric approach
can avoid overfitting limited data with increasing number of targets;
however, the simplicity of the functions captured by this approach
(compared to NPL) results in lower accuracy with increasing data,
as shown later in our experiments on real-world data.

5.2 Non-Parametric Lipschitz case
Recall that H for the NPL case is defined such that each com-

ponent function hi is L-Lipschitz where L ≤ K̂. Consider the
functions spaces Hi consisting of real valued L-Lipschitz func-
tions where L ≤ K̂. Then, H = ×iHi. Then, using Equation 2:
C(ε,H, d̄l1) ≤

∏T−1
i=1 C(ε,Hi, dl1).

Next, our task is to bound C(ε,Hi, dl1). Consider the sup-
distance metric between real valued functions: dl∞(hi, h

′
i) =

supX |hi(x) − h′i(x)| for hi, h′i ∈ Hi. Note that dl∞ is in-
dependent of any probability distribution P , and for all func-
tions hi, h

′
i and any P , dL1(P,dl1 )(hi, h

′
i) ≤ dl∞(hi, h

′
i).

Thus, we can infer [14] that for all P , N (ε,Hi, dL1(P,dl1 )) ≤
N (ε,Hi, dl∞) and then taking sup over P (recall C(ε,Hi, dl1) =
supP {N (ε,Hi, dL1(P,dl1 ))}) we get

C(ε,Hi, dl1) ≤ N (ε,Hi, dl∞) (3)

We bound N (ε,Hi, dl∞) in terms of covering number for X (re-
call X = {x | x ∈ [0, 1]T ,

∑
i xi ≤ K}) using results from [32].

LEMMA 3. N (ε,Hi, dl∞) ≤
(

2
⌈
M
ε

⌉
+ 1
)
· 2N ( ε

2K̂
,X,dl∞ )

To use the above result, we still need to boundN (ε,X, dl∞). We
do so by combining two remarkable results about Eulerian number〈
T
k

〉
[17] (k has to be integral).
• Laplace [10] [29] discovered that the volume of Xk =
{x|x ∈ [0, 1]T , k − 1 ≤

∑
i xi ≤ k} is

〈
T
k

〉
/T !. Thus,

if XK = ∪Kk=1Xk, then vol(XK) =
∑K
k=1 vol(Xk) =∑K

k=1

〈
T
k

〉
/T !.

• Also, it is known [31] that
〈
T
k

〉
/T ! = FT (k) − FT (k − 1),

where FT (x) is the CDF of the probability distribution of
ST = U1 + . . . + UT and each Ui is a uniform random
variable on [0, 1).

Combining these results, vol(XK+1) = FT (K + 1). The volume
of a l∞ ball of radius ε (l∞ ball is a hypercube) is (2ε)T [34].
Then, the number of balls that fit tightly (aligned with the axes)
and completely inside XK+1 is bounded by FT (K + 1)/(2ε)T .
Since ε << 1, these balls cover XK = X completely and the tight
packing ensures that the center of the balls forms an ε-cover for
X . Then, bounding FT (K + 1) using Bernstein’s inequality about
concentration of random variables we get:

LEMMA 4. For K + 1 ≤ 0.5T (recall K << T )

N (ε,X, dl∞) ≤ e
−3T (0.5−(K+1)/T )2

1−(K+1)/T /(2ε)T

Plugging the above result into Lemma 3 and then using that in
Equation 3, we bound C(ε,Hi, dl1). Finally, Equation 2 gives a
bound on C(ε,H, d̄l1) that we use in Theorem 1 to obtain
5In the Appendix, we show that for standard SUQR (simpler than
our generalized SUQR) the sample size is O

(
1
α2 (log 1

δ
+ log T

α
)
)



THEOREM 3. The non-parametric hypothesis class H is a
(α, δ)-PAC learnable with sample complexity

O
(( 1

α2

)(
log(

1

δ
) + (

TT+1

αT
)
))

The above result shows that the sample complexity for NPL grows
fast with T suggesting that NPL may not be the right approach to
use when the number of targets is large.

6. LEARNING ALGORITHM
As stated earlier, our loss function was designed so that the

learning algorithm (empirical risk minimizer in PAC framework)
was the same as maximizing log likelihood of data. Indeed, for
SUQR, the standard MLE approach can be used to learn the param-
eters (weights) and has been used in literature [26]. However, for
NPL, which has no parameters, maximizing likelihood only pro-
vides h(x) for those mixed strategies x that are in the training data.

Hence we present a novel two step learning algorithm for the
NPL case. In the first step, we estimate the most likely value for
hi(x) (for each i) for each x in the training data, ensuring that for
any pair x, x′ in the training data, |hi(x) − hi(x

′)| ≤ K̂||x −
x′||1. In the second step, we construct the function hi with the
least Lipschitz constant subject to the constraint that hi takes the
values for the training data output by the first step.

More formally, assume the training data has s unique values for
x in the training set and let these values be x1, . . . , xs. Further, let
there be nj distinct data points against xj , i.e., nj attacks against
mixed strategy xj . Denote by nj,i the number of attacks at each
target i when xj was used. Let hij be the variable that stands for
the estimate of value hi(xj); i ∈ {1, . . . , T}, j ∈ {1, . . . , s}. Fix
hTj = 0 for all j. Then, probability of attack on target i against
mixed strategy xj is given by qij = e

hij∑
i e
hij

. Thus, the log likeli-

hood of the training data is
∑s
j=1

∑T
i=1 nj,i log qij . Let Lip(K̂)

denote the set of L-Lipschitz functions with L ≤ K̂. Using our
assumption that hi ∈ Lip(K̂), the following optimization problem
provides the most likely hij :

max
hij

s∑
j=1

T∑
i=1

nj,i log
ehij∑
i e
hij

subject to ∀i, j, j′, |hij − hij′ | ≤ K̂||xj − xj
′
||1

∀i, j, −M/2 ≤ hij ≤M/2

Given solution h∗ij to the above problem, we wish to construct
the solution hi such that its Lipschitz constant (given by Khi ) is
the lowest possible subject to hi taking the value h∗ij for xj . Such
a construction provides the most smoothly varying solution given
the training data, i.e., we do not assume any more sharp changes in
the adversary response than what the training data provides.

min
hi∈Lip(K̂)

Khi subject to ∀i, j. hi(xj) = h∗ij (MinLip)

The above optimization is impractical to solve computationally as
uncountably many constraints are required to relateKhi to hi, For-
tunately, we obtain an analytical solution:

LEMMA 5. The following is a solution for problem MinLip

hi(x) = minj{h∗ij +K∗i ||x− xj ||1}

where K∗i = maxj,j′:j 6=j′
|h∗ij−h

∗
ij′ |

||xj−xj′ ||1

PROOF SKETCH. Observe that due to the definition of K∗ any
solution to MinLip will have Lipschitz constant≥ K∗. Thus, it suf-
fices to show that the Lipschitz constant of hi is K∗, to prove that
hi is a solution of MinLip, which we show in the Appendix.

Note that for any point xj is the training data we have hi(xj) =
h∗ij . Then the value of hi(x) for a x not in the training set and close
to xj is quite likely be the hi(xj) plus the scaled distance K∗i ||x−
xj ||1 showing the value of x is influenced by nearby training points.

7. UTILITY BOUNDS
Next, we bound the difference between the optimal utility and

the utility derived from planning using the learned h. The util-
ity bound is same for the parametric and NPL case. Recall that
the defender receives the utility xUqp(x) when playing strategy
x. We need to bound the difference between the true distribu-
tion qp(x) and the predicted distribution qh(x) of attacks in or-
der to start analyzing bounds on utility. Thus, we transform the
PAC learning guarantee about the risk of output h to a bound on
||qp(x)− qh(x)||1. As the PAC guarantee only bounds the risk be-
tween predicted h and the best hypothesis h∗ inH, in order to relate
the true distribution qp and predicted distribution qh, the lemma be-
low assumes a bounded KL divergence between the distribution of
the best hypothesis qh

∗
and the true distribution qp.

LEMMA 6. Assume E[KL(qp(x) || qh
∗
(x))] ≤ ε∗. Given

an ERM A with output h = A(~z) and guarantee Pr(|rh(p) −
rh∗(p)| < α) > 1 − δ, with prob. ≥ 1 − δ over training samples
~z we have

Pr(||qp(x)− qh(x)||1 ≤
√

2∆) ≥ 1−∆

where ∆ = (α+ ε∗)1/3 and x is sampled using density p.

Utility bound: Next, we provide an utility bound, given the
above guarantee about learned h. Let the optimal strategy com-
puted using the learned adversary model h be x̃, i.e., x̃TUqh(x̃) ≥
x′TUqh(x′) for all x′. Let the true optimal defender mixed strat-
egy be x∗ (optimal w.r.t. true attack distribution qp(x)), so that the
maximum defender utility is x∗TUqp(x∗). Let B(x, ε) denote the
l1 ball of radius ε around x. We make the following assumptions:

1. hi is K̂-Lipschitz ∀i and qp is K-Lipschitz in l1 norm.
2. ∃ small ε such that Pr(x ∈ B(x∗, ε)) > ∆ over choice of x

using p.
3. ∃ small ε such that Pr(x ∈ B(x̃, ε)) > ∆ over choice of x

using p.
While the first assumption is mild, the last two assumptions for
small ε mean that the points x∗ and x̃ must not lie in low density
regions of the distribution p used to sample the data points. In other
words, there should be many defender mixed strategies in the data
of defender-adversary interaction that lie near x∗ and x̃. We discuss
the assumptions in details after the technical results below. Given
these assumptions, we need Lemma 7 that relates assumption (1) to
Lipschitzness of qh in order to obtain the utility bound.

LEMMA 7. If hi is K̂-Lipschitz then ∀x, x′ ∈ X. ||qh(x) −
qh(x′)||1 ≤ 3K̂||x− x′||1, i.e., qh(x) is 3K̂-Lipschitz.

Then, we can prove the following:

THEOREM 4. Given above assumptions and the results of
Lemma 6 and 7, with prob. ≥ 1 − δ over the training samples
the expected utility x̃TUqp(x̃) for the learned h is at least

x∗TUqp(x∗)− (K + 1)ε− 2
√

2∆− 6K̂ε



Discussion of assumptions: A puzzling phenomenon observed
in recent work on learning in SSGs is that good prediction accuracy
of the learned adversary behavior is not a reliable indicator of the
defender’s performance in practice [12]. The additional assump-
tions, over and above the PAC learning guarantee, that are made to
bound the utility deviation from the optimal utility point towards
the possibility of such occurrences. Recall that the second assump-
tion requires the existence of many defender mixed strategies in
the dataset near the utility optimal strategy x∗. Of course x∗ is not
known apriori, hence in order to guarantee utility close to the high-
est possible utility the dataset must contain defender mixed strate-
gies from all regions of the mixed strategy space; or at-least if it
is known that some regions of the mixed strategies dominate other
parts in terms of utility then it is enough to have mixed strategies
from these regions. Thus, following our assumption, better utility
can be achieved by collecting attack data against a variety of mixed
strategies rather than many attacks against few mixed strategies.

Going further, we illustrate with a somewhat extreme example
where violating our assumptions can lead to this undesirable phe-
nomenon. Consider the extreme example where probability distri-
bution p (recall data points are sampled using p) puts all probabil-
ity mass on x0, where the the utility for x0 is much lower than x∗.
Hence, the dataset will contain only one defender mixed strategy x0

(with many attacks against it). Due to Lipschitzness (assumption
1), the large utility difference between x0 and x∗ implies that x0 is
not close to x∗ which in turn violates assumption 2. This example
provides a very good PAC guarantee since there is no requirement
for the learning algorithm to predict accurately for any other mixed
strategies (which occur with zero probability) in order to have good
prediction accuracy. The learning technique needs to predict well
only for x0 to achieve a low α, δ. As a result the defender strategy
computed against the learned adversary model may not be utility
maximizing because of the poor predictions for all defender mixed
strategies other than the low utility yielding x0. More generally,
good prediction accuracy can be achieved by good predictions only
for the mixed strategies that occur with high probability.

Indeed, in general, the prediction accuracy in the PAC model
(and any applied machine learning approach) is not a reliable in-
dicator of good prediction over the entire space of defender mixed
strategies unless, following our assumption 2, the dataset has at-
tacks against strategies from all parts of the mixed strategy space.
However, in past work [1, 9] researchers have focused on gathering
a lot of attack data but on limited number of defender strategies.
Our analysis provides a principled explanation of the issues that
arise from composing the machine learning module with the de-
fender strategy optimization module in the learning and planning
framework used for SSGs. Further, we believe that our analysis
provides guidance to overcome these issues and discover the de-
fender’s utility maximizing strategy.

8. EXPERIMENTAL RESULTS
We show experimental results on two datasets: (i) real-world

poaching data from QENP [25]; (ii) data from human subjects
experiments on Amazon Mechanical Turk (AMT) [15], to estimate
prediction errors and the amount of data required to reduce the error
for both the parametric and NPL learning settings. Also, we com-
pare the NPL approach with both the standard as well as the gener-
alized SUQR approach and show that: (i) the NPL approach, while
computationally slow, outperforms the standard SUQR model for
Uganda data; and (ii) the performance of generalized SUQR is in
between NPL and standard SUQR.

For each dataset, we conduct four experiments with 25%, 50%,
75% and 100% of the original data. We create 100 train-test splits

(a) SUQR, Uganda data,
coarse-grained prediction

(b) Generalized SUQR,
Uganda Data,
coarse-grained prediction

(c) NPL, Uganda data,
coarse-grained prediction

(d) SUQR, Uganda data,
fine-grained prediction

(e) Generalized SUQR,
Uganda Data, fine-grained
prediction

(f) NPL, Uganda data,
fine-grained prediction

(g) SUQR, AMT data (h) NPL, AMT data

Figure 1: Results on Uganda and AMT datasets for both the
parametric and NPL learning settings.

in each of the four experiments per dataset. For each train-test split
we compute the average prediction error α (average difference be-
tween the log-likelihoods of the attacks in the test data using pre-
dicted and actual attack probabilities). We report the α value at the
1 − δ percentile of the 100 α values, e.g., reported α = 2.09 for
δ = 0.1 means that 90 of the 100 test splits have α < 2.09.

8.1 Real-World Poaching data
We first present results of our experiments with real-world

poaching data. The dataset obtained contained information about
features such as ranger patrols and animal densities, which are used
as features in our SUQR model, and the poachers’ attacks, with
40,611 total observations recorded by rangers at various locations
in the park. The park area was discretized into 2423 grid cells, with
each grid cell corresponding to a 1km2 area within the park. After
discretization, each observation fell within one of 2423 target cells
and the animal densities and the number of poaching attacks within
each target cell were then aggregated. The dataset contained 655
poachers’ attacks in response to the defender’s strategy for 2012 at
QENP. Although the data is reliable because the rangers recorded
the latitudes and longitudes of the location for each observation
using a GPS device, it is important to note that this data set is ex-
tremely noisy because of: (i) Missing observations: all the poach-
ing events are not recorded because the limited number of rangers
cannot patrol all the areas in this park all the time; (ii) Uncertain
feature values: the animal density feature is also based on incom-
plete observations of animals; (iii) Uncertain defender strategy: the



actual defender mixed strategy is unknown; we estimate the mixed
strategies based on the provided patrol data.

In this paper, we provide two types of prediction in our exper-
iments: (i) fine-grained and (ii) coarse-grained. First, to provide
a baseline for our error measures, we use the same coarse-grained
prediction approach as reported by Nguyen et al. [25], in which the
authors only predict whether a target will be attacked or not. The
results for coarse-grained predictions with our performance metric
(α values for different δ) are shown in Figs. 1(a), 1(b) and 1(c).
Next, in the fine-grained prediction approach we predict the actual
number of attacks on each target in our test set; these results are
shown in Figs. 1(d), 1(e) and 1(f). In [25], the authors used a par-
ticular metric for prediction performance called the area under the
ROC curve (AUC), which we will discuss later in the section.

From our fine-grained and coarse-grained prediction approaches,
we make several important observations. First, we observe that α
decreases with increasing sample size at a rate proportional to 1√

m
,

where m is the number of samples. For example, in Fig. 1(a), the
α values corresponding to δ = 0.01 (black bar) for the 25%, 50%,
75% and 100% data are 2.81, 2.38, 2.18 and 1.8 respectively, which
fits 1√

m
with a goodness-of-fit, i.e., r2=0.97. This observation sup-

ports the relationship between α and m shown in Theorem 3 and
can be used to approximately infer the number of samples required
to reduce the prediction error to a certain value. For example, as-
suming we collect same number of samples (=655) per year, to re-
duce α from 1.8 to 1.64, we would require two more years of data.
Note here that α is in log-scale and hence the decrease is signifi-
cant. It is also worth noting here that, for a random classifier, we
observe a value of α = 6.3 for δ = 0.01 while performing coarse
grained predictions with 25% data. This is more than α = 2.81 for
δ = 0.01 obtained for our standardized SUQR model while per-
forming coarse grained predictions with 25% data. As α is in the
log-scale, the increase in error is actually more than two-fold.

Our second observation is that α values for fine-grained predic-
tions (e.g., 2.9 for δ = 0.01 and 100% data for the standardized
SUQR model in Fig. 1(d)) are understandably higher than the cor-
responding values for coarse-grained predictions (1.8 for δ = 0.01
and 100% data for SUQR in Fig. 1(a)) because in the fine-grained
case we predict the exact number of attacks.

Third, we observe that the performance of the generalized SUQR
model (e.g., 2.47 for δ = 0.01 and 100% data in Fig. 1(e)) is better
in most cases than that of the standardized SUQR approach (2.9 for
δ = 0.01 and 100% data in Fig. 1(d)), but worse than the NPL
approach (2.15 for δ = 0.01 and 100% data in Fig. 1(f)).

Finally, we observe that our NPL model performs better than its
parametric counterparts in predicting future poaching attacks for
the fine-grained case (see example in previous paragraph), indicat-
ing that the true adversary behavior model may indeed be more
complicated than what can be captured by SUQR.

Relation to previous work: In earlier work, Nguyen et al. [25]
uses the area under curve (of a ROC curve) metric to demonstrate
the performance of their approaches. The AUC value of 0.73 re-
ported in their paper is an alternate view of our α, δ metric for the
coarse grained prediction approach. While there has been alter-
nate analysis in terms of measuring prediction performances with
the AUC metric in earlier papers, in our paper we have shown
new trends and insights with the α, δ metric through analysis from
the PAC model perspective, which is missing in earlier work. We
show: (i) sample complexity results and the relationship between
increasing number of samples and the reduction in prediction error
for each of our models; (ii) the differences in errors while learn-
ing a vector valued response function (fine-grained prediction) as
opposed to classifying targets as attacked or not (coarse-grained

Uganda Para-
metric

Uganda
NPL

AMT Para-
metric

AMT NPL

0.7188 121.24 0.91 123.4

Table 2: Runtime results (in secs.) for one train-test split

prediction); and (iii) comparison of the performance of our new
NPL model with other parametric approaches in terms of both
fine-grained and coarse-grained predictions and its effectiveness on
real-world poaching data which was not shown in previous work.

8.2 AMT Data
Here we show fine-grained prediction results on real-world AMT

data obtained from [15] to demonstrate the performance of both our
approaches on somewhat cleaner data. This dataset is cleaner than
the Uganda data because: (i) all attacks are observed, and (ii) an-
imal densities and deployed defender strategies are known. The
dataset consisted of 16 unique mixed strategies. There were an
average of 40 attack data points per mixed strategy. Each attack
had been conducted by an unique individual recruited on AMT.
We used attack data corresponding to 11 randomly chosen mixed
strategies for training and data for the remaining mixed strategies
for testing. Results are shown in Figs. 1(g) and 1(h). We observe
that: (i) α values in this case are lower as compared to the Uganda
data as the AMT data is cleaner; and (ii) the NPL model’s perfor-
mance on this dataset is poor as compared to SUQR due to, (a)
low number of samples in AMT data, and (b) real-world poacher
behavior may be more complicated than that of AMT participants
and hence SUQR in this case was able to better capture AMT par-
ticipants’ behavior with limited number of samples.6

Runtime: While running on Matlab R2015a on an Intel Core
i7-5500 CPU@2.40Ghz, 8GB RAM machine with a 64-bit Win-
dows 10, on average, the NPL computation takes longer than the
parametric setting, as shown in Table 2.

9. CONCLUSION
Over the last couple of years, a lot of work has used learning

methods to learn bounded rationality adversary behavioral mod-
els, but there has been no formal study of the learning process and
its implication on the defender’s performance. The lack of formal
analysis also means that many practical questions go unanswered.
We have advanced the state of the art in learning of adversary be-
haviors in SSGs, in terms of their analysis and implications of such
learned behaviors on defender’s performance.

While we used the PAC framework, it is not an out of the box
approach. We needed to come up with innovative techniques to
obtain sharp bounds for our case. Furthermore, we also provide a
new non-parametric approach which showed promising results with
real-world data. Finally, we provided a principled explanation of
why prediction accuracy is not enough to guarantee good defender
performance by revealing that the PAC learning guarantee is not
the guarantee required for discovering the optimal defender strat-
egy. Finally, we hope this work leads to more theoretical work in
learning of adversary models and the use of non-parametric models
in the real world.
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