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Abstract

Poaching is a serious threat to the conservation of key
species and whole ecosystems. While conducting foot
patrols is the most commonly used approach in many
countries to prevent poaching, such patrols often do not
make the best use of limited patrolling resources. To
remedy this situation, prior work introduced a novel
emerging application called PAWS (Protection Assis-
tant for Wildlife Security); PAWS was proposed as a
game-theoretic (“security games”) decision aid to opti-
mize the use of patrolling resources.
This paper reports on PAWS’s significant evolution
from a proposed decision aid to a regularly deployed
application, reporting on the lessons from the first tests
in Africa in Spring 2014, through its continued evolu-
tion since then, to current regular use in Southeast Asia
and plans for future worldwide deployment. In this pro-
cess, we have worked closely with two NGOs (Panthera
and Rimba) and incorporated extensive feedback from
professional patrolling teams. We outline key techni-
cal advances that lead to PAWS’s regular deployment:
(i) incorporating complex topographic features, e.g.,
ridgelines, in generating patrol routes; (ii) handling un-
certainties in species distribution (game theoretic pay-
offs); (iii) ensuring scalability for patrolling large-scale
conservation areas with fine-grained guidance; and (iv)
handling complex patrol scheduling constraints.

Introduction
There is an urgent need to protect wildlife from poaching.
Indeed, poaching can lead to extinction of species and de-
struction of ecosystems. For example, poaching is consid-
ered a major driver (Chapron et al. 2008) of why tigers are
now found in less than 7% of their historical range (Sander-
son et al. 2006), with three out of nine tiger subspecies al-
ready extinct (IUCN 2015). As a result, efforts have been
made by law enforcement agencies in many countries to pro-
tect endangered animals; the most commonly used approach
is conducting foot patrols. However, given their limited hu-
man resources, improving the efficiency of patrols to combat
poaching remains a major challenge.

To address this problem, prior work introduced a novel
emerging application called PAWS (Protection Assistant for
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Wildlife Security) (Yang et al. 2014); PAWS is proposed as
a game-theoretic decision-aid to optimize the use of human
patrol resources to combat poaching. PAWS is an applica-
tion in the general area of “security games” (Tambe 2011);
security-game-based decision support systems have previ-
ously been successfully deployed in the real-world in pro-
tecting critical infrastructure such as airports, flights, ports,
and metro trains. PAWS was inspired by this success, and
was the first of a new wave of proposed applications in the
subarea now called “green security games” (Fang, Stone,
and Tambe 2015; Kar et al. 2015). Specifically, PAWS solves
a repeated Stackelberg security game, where the patrollers
(defenders) conduct randomized patrols against poachers
(attackers), while balancing the priorities of different loca-
tions with different animal densities. Despite its promise, the
initial PAWS effort did not test the concept in the field.

This paper reports on PAWS’s significant evolution over
the last two years from a proposed decision aid to a regularly
deployed application. We report on the innovations made in
PAWS and lessons learned from the first tests in Uganda in
Spring 2014, through PAWS’s continued evolution to cur-
rent regular use in Malaysia (in collaboration with two Non-
Governmental Organizations: Panthera and Rimba). Indeed,
the first tests revealed key shortcomings in PAWS’s initial
algorithms and assumptions (we will henceforth refer to the
initial version of PAWS as PAWS-Initial, and to the version
after our enhancement as PAWS). First, a major limitation,
the severity of which was completely unanticipated, was that
PAWS-Initial ignored topographic information. Yet in many
conservation areas, high changes in elevation and the exis-
tence of large water bodies may result in a big difference
in the effort needed for patrollers’ movement. These factors
also have a direct effect on poachers’ movement. Second,
PAWS-Initial assumed animal density and relevant problem
features at different locations to be known. However, in prac-
tice, there are uncertainties in the payoffs of different loca-
tions, due to uncertainty over animal movement. Not consid-
ering such uncertainty may lead to high degradation in pa-
trol quality. Third, PAWS-Initial could not scale to provide
detailed patrol routes in large conservation areas. Detailed
routes require fine-grained discretization, which leads to a
large number of feasible patrol routes. Finally, PAWS-Initial
failed to consider patrol scheduling constraints.

In this paper, we outline novel research advances which



remedy the aforementioned limitations, making it possible
to deploy PAWS on a regular basis. First, we incorporate
elevation information and land features and use a novel hier-
archical modeling approach to build a virtual “street map” of
the conservation area. This virtual “street map” helps scale-
up while providing fine grained guidance, and is an innova-
tion that would be useful in many other domains requiring
patrolling of large areas. Essentially, the street map connects
the whole conservation area through easy-to-follow route
segments such as ridgeline, streams and river banks. The ra-
tionale for this comes from the fact that animals, poachers,
and patrollers all use these features while moving. To ad-
dress the second and third limitations, we build on the street
map concept with a novel algorithm that uniquely synthe-
sizes two threads of prior work in the security games liter-
ature; specifically, the new PAWS algorithm handles payoff
uncertainty using the concept of minimax regret (Nguyen et
al. 2015), while simultaneously ensuring scalability – using
our street maps – via the cutting plane framework (Yang et
al. 2013). To address the final limitation, we incorporate in
PAWS’s algorithm the ability to address constraints such as
patrol time limit and starting and ending at the base camp. In
the final part of the paper, we provide detailed information
about the regular deployment of PAWS.

Background and Related Work
Criminologists have begun to work on the problem of com-
bating poaching, from policy design to illegal trade pre-
vention (Lemieux 2014). Geographic Information Systems
(GIS) experts (Hamisi 2008) and wildlife management staff
(Wato, Wahungu, and Okello 2006) have carefully studied
the identification of poaching hotspots. In recent years, soft-
ware tools such as SMART (SMART 2013), MIST (Stokes
2010) have been developed to help conservation managers
record data and analyze patrols retrospectively. We work on
a complementary problem of optimizing the patrol planning
of limited security staff in conservation areas.

In optimizing security resource allocation, previous work
on Stackelberg Security Games (SSGs) has led to many suc-
cessfully deployed applications for security of airports, ports
and flights (Pita et al. 2008; Fang, Jiang, and Tambe 2013).
Based on the early work on SSG, recent work has focused on
green security games (Kar et al. 2015), providing conceptual
advances in integrating learning and planning (Fang, Stone,
and Tambe 2015) and the first application to wildlife security
PAWS-Initial. PAWS-Initial (Yang et al. 2014) models the in-
teraction between the patroller (defender) and the poacher
(attacker) who places snares in the conservation area (see
Figure 1) as a basic green security game, i.e., a repeated
SSG, where every few months, poaching data is analyzed
and a new SSG is setup enabling improved patrolling strate-
gies. The deployed version of PAWS adopts this framework.

We provide a brief review of SSGs, using PAWS as a
key example. In SSGs, the defender protects T targets from
an adversary by optimally allocating a set of R resources
(R < T ) (Pita et al. 2008). In PAWS, the defender dis-
cretizes the conservation area into a grid, where each grid
cell is viewed as a target for poachers, to be protected by a

Figure 1: A picture of a
snare placed by poachers.

Figure 2: One patrol route
during the test in Uganda.

set of patrollers. The defender’s pure strategy is an assign-
ment of the resources to targets. The defender can choose a
mixed strategy, which is a probability distribution over pure
strategies. The defender strategy can be compactly repre-
sented as a coverage vector c = 〈ci〉 where ci is the cover-
age probability, i.e., the probability that a defender resource
is assigned to be at target i (Korzhyk, Conitzer, and Parr
2010). The adversary observes the defender’s mixed strat-
egy through surveillance and then attacks a target. An attack
could refer to the poacher, a snare, or some other aspect fa-
cilitating poaching (e.g., poaching camp). Each target is as-
sociated with payoff values which indicate the reward and
penalty for the players. If the adversary attacks target i, and
i is protected by the defender, the defender gets reward Ud

r,i
and the adversary receives penalty Ua

p,i. Conversely, if not
protected, the defender gets penalty Ud

p,i and the adversary
receives reward Ua

r,i. Given a defender strategy c, the play-
ers’ expected utilities when target i is attacked are:

Ua
i = ciU

a
p,i + (1− ci)Ua

r,i (1)

Ud
i = ciU

d
r,i + (1− ci)Ud

p,i (2)

The game in PAWS is zero-sum, Ud
r,i = −Ua

p,i, U
d
p,i =

−Ua
r,i. U

a
r,i is decided by animal density – higher animal

density implies higher payoffs.
In SSGs, the adversary’s behavior model decides his re-

sponse to the defender’s mixed strategy. Past work has of-
ten assumed that the adversary is perfectly rational, choos-
ing a single target with the highest expected utility (Pita et
al. 2008). PAWS is the first deployed application that re-
laxes this assumption in favor of a bounded rationality model
called SUQR, which models the adversary’s stochastic re-
sponse to defender’s strategy (Nguyen et al. 2013). SUQR
was shown to perform the best in human subject experi-
ments when compared with other models. Formally, SUQR
predicts the adversary’s probability of attacking i as follows:

qi =
ew1ci+w2U

a
r,i+w3U

a
p,i∑

j e
w1cj+w2Ua

r,j+w3Ua
p,j

(3)

where (w1, w2, w3) are parameters indicating the impor-
tance of three key features: the coverage probability and the
attacker’s reward and penalty. The parameters can be learned
from data.

First Tests and Feedback
We first tested PAWS-Initial (Yang et al. 2014) at Uganda’s
Queen Elizabeth National Park (QENP) for 3 days. Sub-



(a) Deployed route (b) Patrollers

Figure 3: First 4-day patrol in Malaysia. Figure 3(a) shows
one suggested route (orange straight lines) and the actual pa-
trol track (black line). Figure 3(b) shows the patrollers walk-
ing along the stream during the patrol.

sequently, with the collaboration of Panthera and Rimba,
we started working in forests in Malaysia since September
20141. These protected forests are home to endangered an-
imals such as the Malayan Tiger and Asian Elephant, but
are threatened by poachers. One key difference of this site
compared to QENP is that there is high changes in elevation
and the terrain is much more complex. The first 4-day patrol
in Malaysia was conducted in November 2014. These initial
tests revealed four areas of shortcomings, which restricted
PAWS-Initial from being used regularly and widely.

The first limitation, which was surprising given that it has
received no attention in previous work on security games,
is the critical importance of topographic information that
was ignored in PAWS-Initial. Topography can affect pa-
trollers’ speed in key ways. For example, lakes are inac-
cessible for foot patrols. Not considering such information
may lead to the failure of completing the patrol route. Fig-
ure 2 shows one patrol route during the test in Uganda.
The suggested route (orange straight line) goes across the
water body (lower right part of figure), and hence the pa-
trollers decided to walk along the water body (black line).
Also, changes in elevation requires extra patrol effort and
extreme changes may stop the patrollers from following a
route. For example, in Figure 3(a) [Malaysia], PAWS-Initial
planned a route on a 1km by 1km grid (straight lines), and
suggested that the patrollers walk to the north area (Row 1,
Column 3) from the south side (Row 2, Column 3). How-
ever, such movement was extremely difficult because of the
high changes in elevation. So patrollers decided to head to-
wards the northwest area as the elevation change is more
gentle. In addition, it is necessary to focus on terrain features
such as ridgelines and streams (Figure 3(b)) when planning
routes for three reasons: (i) they are important conduits for
certain mammal species such as tigers; (ii) hence, poach-
ers use these features for trapping and moving about in gen-
eral; (iii) patrollers find it easier to move around here than
on slopes. Figure 4(a) shows a prominent ridgeline.

The second limitation is that PAWS-Initial assumes the
payoff values of the targets — e.g., Ua

r,i – are known and
fixed. In the domain of wildlife protection, there can be un-

1For security of animals and patrollers, no latitude/longitude
information is presented in this paper.

(a) Ridgeline (b) Feasible routes (c) Coverage

Figure 4: Illustrative examples.

certainties due to animal movement and seasonal changes.
Thus, considering payoff uncertainty is necessary for opti-
mizing patrol strategy.

The third limitation is that PAWS-Initial cannot scale
to provide detailed patrol routes in large conservation ar-
eas, which is necessary for successful deployment. Detailed
routes requires fine-grained discretization, which leads to an
exponential number of routes in total.

The fourth limitation is that PAWS-Initial considers cov-
ering individual grid cells, but not feasible routes. In prac-
tice, the total patrolling time is limited and the patrollers
can move to nearby areas. A patrol strategy for implementa-
tion should be in the form of a distribution over feasible pa-
trol routes satisfying these constraints. Without taking these
scheduling (routing) constraints into account, the optimal
coverage probabilities calculated by PAWS-Initial may not
be implementable. Figure 4(b) shows an example area that is
discretized into four cells and the base camp is located at the
upper left cell. There are three available patrol routes, each
protecting two targets. The coverage probabilities shown in
Figure 4(c) cannot be achieved by a randomization over the
three routes because the coverage of the upper left cell (Tar-
get 1) should be no less than the overall coverage of the re-
maining three cells since all routes start from the base camp.

PAWS Overview and Game Model
Figure 5 provides an overview of the deployed version of
PAWS. PAWS first takes the input data and estimates the an-
imal distribution and human activity distribution. Based on
this information, an SSG based game model is built and the
patrol strategy is calculated. In wildlife protection, there are
repeated interaction between patrollers and poachers. When
patrollers execute the patrol strategy generated by PAWS
over a period (e.g., three months), more information is col-
lected and can become part of the input in the next round.

PAWS provides significant innovations in addressing the
aforementioned limitations of PAWS-Initial. In building the
game model, PAWS uses a novel hierarchical modeling ap-
proach to build a virtual street map, while incorporating de-
tailed topographic information. PAWS models the poachers
bounded rationality as described by the SUQR model and
considers uncertainty in payoff values. In calculating the pa-
trol strategy, PAWS uses ARROW (Nguyen et al. 2015) al-
gorithm to deal with payoff uncertainty and adopts cutting
plane approach and column generation to address the scala-
bility issue introduced by scheduling constraints.
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Figure 5: PAWS Overview

Input and Initial Analysis
The input information includes contour lines which describe
the elevation, terrain information such as lakes and drainage,
base camp locations, previous observations (animals and hu-
man activities), as well as previous patrol tracks. However,
the point detections of animal and human activity presence
are not likely to be spatially representative. As such, it is
necessary to predict the animal and human activity distri-
bution over the entire study area. To this end, we used: 1)
JAGS (Plummer 2003) to produce a posterior predictive den-
sity raster for tigers (as a target species) derived from a
spatially explicit capture-recapture analysis conducted in a
Bayesian framework; and 2) MaxEnt (Phillips, Anderson,
and Schapire 2006) to create a raster of predicted human ac-
tivity distribution based on meaningful geographical covari-
ates (e.g., distance to water, slope, elevation) in a Maximum
Entropy Modelling framework.

Build Game Model
Based on the input information and the estimated distribu-
tion, we build a game model abstracting the strategic in-
teraction between the patroller and the poacher as an SSG.
Building a game model involves defender action modeling,
adversary action modeling, and payoff modeling. We will
discuss all three parts but emphasize defender action model-
ing since this is one of the major challenges to bring PAWS
to a regularly deployed application. Given the topographic
information, modeling defender actions in PAWS is far more
complex than any other previous security game domain.

Defender Action Modeling Based on the feedback from
the first tests, we aim to provide detailed guidance to the pa-
trollers. If we use a fine-grained grid and treat every fine-
grained grid cell as a target, computing the optimal pa-
trolling strategy is exceptionally computationally challeng-
ing due to the large number of targets and the exponential
number of patrol routes. Therefore, a key novelty of PAWS
is to provide a hierarchical modeling solution, the first such
model in security game research. This hierarchical modeling
approach allows us to attain a good compromise between
scaling up and providing detailed guidance. This approach

would be applicable in many other domains for large open
area patrolling where security games are applicable, not only
other green security games applications, but others including
patrolling of large warehouse areas or large open campuses
via robots or UAVs.

More specifically, we leverage insights from hierarchi-
cal abstraction for heuristic search such as path planning
(Botea, Mller, and Schaeffer 2004) and apply two levels of
discretization to the conservation area. We first discretize the
conservation area into 1km by 1km Grid Cells and treat ev-
ery grid cell as a target. We further discretize the grid cells
into 50m by 50m Raster Pieces and describe the topographic
information such as elevation in 50m scale. The defender ac-
tions are patrol routes defined over a virtual “street map” –
which is built in the terms of raster pieces while aided by
the grid cells in this abstraction as described below. With
this hierarchical modeling, the model keeps a small number
of targets and reduces the number of patrol routes while al-
lowing for details at the 50m scale.

The street map is a graph consisting of nodes and edges,
where the set of nodes is a small subset of the raster pieces
and edges are sequences of raster pieces linking the nodes.
We denote nodes as Key Access Points (KAPs) and edges
as route segments. The street map not only helps scalability
but also allows us to focus patrolling on preferred terrain fea-
tures such as ridgelines. The street map is built in three steps:
(i) determine the accessibility type for each raster piece, (ii)
define KAPs and (iii) find route segments to link the KAPs.

In the first step, we check the accessibility type of every
raster piece. For example, raster pieces in a lake are inacces-
sible, whereas raster pieces on ridgelines or previous patrol
tracks are easily accessible. Ridgelines and valley lines are
inferred from the contour lines using existing approaches in
hydrology (Tarboton, Bras, and Rodriguez-Iturbe 2007).

Figure 6: KAPs (black)
for 2 by 2 grid cells.

The second step is to de-
fine a set of KAPs, via which
patrols will be routed. We
want to build the street map
in such a way that each
grid cell can be reached. So
we first choose raster pieces
which can serve as entries
and exits for the grid cells as
KAPs, i.e., the ones that are
on the boundary of grid cells
and are easily accessible. In
addition, we consider exist-
ing base camps and mountain
tops as KAPs as they are key
points in planning the patroller’s route. We choose additional
KAPs to ensure KAPs on the boundary of adjacent cells are
paired. Figure 6 shows identified KAPs and easily accessible
pieces (black and grey raster pieces respectively).

The last step is to find route segments to connect the
KAPs. Instead of inefficiently finding route segments to con-
nect each pair of KAPs on the map globally, we find route
segments locally for each pair of KAPs within the same
grid cell, which is sufficient to connect all the KAPs. When
finding the route segment, we design a distance measure



which estimates the actual patrol effort and also gives high
priority to the preferred terrain features. The effort needed
for three-dimensional movement can be interpreted as the
equivalent distance on flat terrain. For example, for gen-
tle slopes, equivalent “flat-terrain” distance is obtained by
adding 8km for every 1km of elevation ascent according
to Naismith’s rule (Thompson 2011). In PAWS, we apply
Naismith’s rule with Langmuir corrections (Langmuir 1995)
for gentle slopes (< 20◦) and apply Tobler’s hiking speed
function (Tobler 1993) for steep slopes (≥ 20◦). Very steep
slopes (> 30◦) are not allowed. We penalize not walking on
preferred terrain features by adding extra distance. Given the
distance measure, the route segment is defined as the short-
est distance path linking two KAPs within the grid cell.

The defender’s pure strategy is defined as a patrol route on
the street map, starting from the base camp, walking along
route segments and ending with base camp, with its total
distance satisfying the patrol distance limit (all measured as
distance on flat terrain). The patroller confiscates the snares
along the route and thus protects the grid cells. More specif-
ically, if the patroller walks along a route segment which
covers sufficiently large portion (e.g., 50% of animal distri-
bution) of a grid cell, the cell is considered to be protected.
The defender’s goal is to find an optimal mixed patrol strat-
egy — a probability distribution over patrol routes.

Poacher Action Modeling and Payoff Modeling The
poacher’s actions are defined over the grid cells to aid scala-
bility. In this game, we assume the poacher can observe the
defender’s mixed strategy and then chooses one target (a grid
cell) and places snares in this target. Following earlier work,
the poacher in this game is assumed to be boundedly rational
and his actions can be described by the SUQR model.

Each target is associated with payoff values indicating
the reward and penalty for the patrollers and the poach-
ers. As mentioned earlier, PAWS models a zero-sum game
and the reward for the attacker (and the penalty for the de-
fender) is decided by the animal distribution. However, in
this game model, we need to handle uncertainty in the play-
ers’ payoff values since key domain features such as ani-
mal density which contribute to the payoffs are difficult to
precisely estimate. In addition, seasonal or dynamic ani-
mal migration may lead to payoffs to become uncertain in
the next season. We use intervals to represent payoff un-
certainty in PAWS; the payoffs are known to lie within a
certain interval whereas the exact values are unknown. In-
terval uncertainty is in fact a well-known concept to cap-
ture uncertainty in security games (Nguyen et al. 2014;
2015). We determine the size of the payoff intervals at each
grid cell based on patrollers’ patrol efforts at that cell. Intu-
itively, if the patrollers patrol a cell more frequently, there is
less uncertainty in the players’ payoffs at that target and thus
a smaller size of the payoff intervals.

Calculate Patrol Strategy
We build on algorithms from the rich security game liter-
ature to optimize the defender strategy. However, we find
that no existing algorithm directly fits our needs as we need
an algorithm that can scale-up to the size of the domain of

ARROW: compute optimal coverage vec-
tor ĉ given a set of linear constraints S.

Separation Oracle
Find Cutting Plane: Find a hyperplane

separating ĉ and feasible region C. If exists,
ĉ /∈ C and a new constraint s is found.

Route Generation: find routes that
constitute the separation hyperplane.

Is ĉ ∈ C? S = S ∪ s

Figure 7: New integrated algorithm

interest, where: (i) we must generate patrol routes over the
street map over the entire conservation area region, while
(ii) simultaneously addressing payoff uncertainty and (iii)
bounded rationality of the adversary. While the ARROW
(Nguyen et al. 2015) algorithm allows us to address (ii) and
(iii) together, it cannot handle scale-up over the street map.
Indeed, while the (virtual) street map is of tremendous value
in scaling up as discussed earlier, scaling up given all possi-
ble routes (≈ 1012 routes) on the street map is still a massive
research challenge. We therefore integrate ARROW with an-
other algorithm BLADE (Yang et al. 2013) for addressing
the scalability issue, resulting in a novel algorithm that can
handle all the three aforementioned challenges. The new al-
gorithm is outlined in Figure 7. In the following, we explain
how ARROW and BLADE are adapted and integrated.

ARROW attempts to compute a strategy that is robust
to payoff uncertainty given that poachers’ responses follow
SUQR. The concept of minimizing maximum regret is a
well-known concept in AI for decision making under uncer-
tainty (Wang and Boutilier 2003). ARROW uses the solution
concept of behavioral minimax regret to provide the strat-
egy that minimizes regret or utility loss for the patrollers in
the presence of payoff uncertainty and bounded rational at-
tackers. In small-scale domains, ARROW could be provided
all the routes (the defender pure strategies), on the basis of
which it would calculate the PAWS solution – a distribution
over the routes. Unfortunately, in large scale domains like
ours, enumerating all the routes is infeasible. We must there-
fore turn to an approach of incremental solution generation,
which is where it interfaces with the BLADE framework.

More specifically, for scalability reasons, ARROW first
generates the robust strategy for the patrollers in the form
of coverage probabilities over the grid cells without consid-
eration of any routes. Then a separation oracle in BLADE
is called to check if the coverage vector is implementable.
If it is implementable, the oracle returns a probability dis-
tribution over patrol routes that implements the coverage
vector, which is the desired PAWS solution. If it is not im-
plementable – see Figure 4(c) for an example of coverage
vector that is not implementable – the oracle returns a con-
straint (cutting plane) that informs ARROW why it is not.
For the example in Figure 4(b)-4(c), if ARROW generates a



vector as shown in Figure 4(c), the constraint returned could
be c1 ≥

∑4
i=2 ci since all implementable coverage vector

should satisfy this constraint. This constraint helps ARROW
refine its solution. The process repeats until the coverage
vector generated by ARROW is implementable.

As described in BLADE (Yang et al. 2013), to avoid enu-
merating all the routes to check whether the coverage vec-
tor is implementable, the separation oracle iteratively gen-
erate routes until it has just enough routes (usually after a
small number of iterations) to match the coverage vector
probabilities or get the constraint (cutting plane). At each
iteration of this route generation (shown in the bottom-most
box in Figure 7), the new route is optimized to cover targets
of high value. However, we cannot directly use any exist-
ing algorithm to find the optimal route at each iteration due
to the presence of our street map. But we note similarities
to the well-studied orienteering problem (Vansteenwegen,
Souffriau, and Oudheusden 2011) and exploit the insight of
the S-algorithm for orienteering (Tsiligiridis 1984).

In particular, in this bottom-most box of in Figure 7, to
ensure each route returned is of high quality, we run a lo-
cal search over a large number of routes and return the one
with the highest total value. In every iteration, we start from
the base KAP, and choose which KAP to visit next through
a weighted random selection. The next KAP to be visited
can be any KAP on the map and we assume the patroller
will take the shortest path from the current KAP to the next
KAP. The weight of each candidate KAP is proportional to
the ratio of the additional target value that can be accrued
and distance from current KAP. We set the lower bound of
weight to be ε > 0 to make sure every feasible route can be
chosen with positive probability. The process continues until
the patroller has to go back to the base to meet the patrol dis-
tance limit constraint. Given a large number of such routes,
our algorithm returns a route close to the optimal solution.

Integrating all these algorithms, PAWS calculates the pa-
trol strategy consisting of a set of patrol routes and the cor-
responding probability for taking them.

Deployment and Evaluation
PAWS patrols are now regularly deployed at a conservation
area in Malaysia. This section provides details about the de-
ployment and both subjective and objective evaluations of
PAWS patrols.

PAWS patrol aims to conduct daily patrols from base
camps. Before the patrol starts, PAWS generates the patrol
strategy starting from the base camp selected by patrol team
leader. The patrol distance limit considered by PAWS is
10km per day (equivalent flat terrain). As shown in Table 1,
this leads to about 9000 raster pieces to be considered. Thus
it is impossible to consider each raster piece as a separate
target or consider all possible routes over the raster pieces.
With the two-level of discretization and the street map, the
problem scale is reduced, with 8.57(= 194.33/22.67) KAPs
and 80 route segments in each grid cell on average, making
the problem manageable. The strategy generated by PAWS
is a set of suggested routes associated with probabilities
and the average number of suggested routes associated with

Average # of Reachable Raster Pieces 9066.67
Average # of Reachable Grid Cells (Targets) 22.67

Average # of Reachable KAPs 194.33

Table 1: Problem Scale for PAWS Patrols.

Average Trip Length 4.67 Days
Average Number of Patrollers 5
Average Patrol Time Per Day 4.48 hours

Average Patrol Distance Per Day 9.29 km

Table 2: Basic Information of PAWS Patrols.

probability > 0.001 is 12.
Each PAWS patrol lasts for 4-5 days, and is executed by

a team of 3-7 patrollers. The patrol planner will make plans
based on the strategy generated by PAWS. After reaching
the base camp, patrollers execute daily patrols, guided by
PAWS’s patrol routes. Table 2 provides a summary of basic
statistics about the patrols. During the patrol, the patrollers
are equipped with a printed map, a handheld GPS, and data
recording booklet. They detect animal and human activity
signs and record them with detailed comments and photos.
After the patrol, the data manager will put all the information
into a database, including patrol tracks recorded by the hand-
held GPS, and the observations recorded in the log book.

Figure 8 shows various types of signs found during the
patrols. Table 3 summarizes all the observations. These ob-
servations show that there is a serious ongoing threat from
the poachers. Column 2 shows results for all PAWS patrols.
Column 3 shows results for explorative PAWS patrols, the
(partial) patrol routes which go across areas where the pa-
trollers have never been before. To better understand the
numbers, we show in Column 4 the statistics about early-
stage non-PAWS patrols in this conservation area, which
were deployed for tiger survey. Although it is not a fair
comparison as the objectives of the non-PAWS patrols and
PAWS patrols are different, comparing Column 2 and 3 with
Column 4 indicates that PAWS patrols are effective in find-
ing human activity signs and animal signs. Finding the hu-
man activity signs is important to identify hotspots of poach-
ing activity, and patrollers’ presence will deter the poachers.
Animals signs are not directly evaluating PAWS patrols but
they indicate that PAWS patrols prioritize areas with higher
animal density. Finding these signs is aligned with the goal
of PAWS – combat poaching to save animals – and thus is
a proof for the effectiveness of PAWS. Comparing Column
3 with Column 2, we find the average number of observa-
tions made along the explorative routes is comparable to and
even higher than that of all PAWS patrol routes. The obser-
vations on explorative routes are important as they lead to
a better understanding of the unexplored area. These results
show that PAWS can guide the patrollers towards hotspots
of poaching activity and provide valuable suggestions to the
patrol planners.

Along the way of PAWS deployment, we have received
feedback from patrol planners and patrollers. The patrol
planners mentioned that the top routes in PAWS solution
(routes with highest probability) come close to an actual



(a) Tiger sign (Nov. 2014) (b) Human sign (lighter; Jul.
2015)

(c) Human sign (old poacher
camp; Aug. 2015)

(d) Human sign (tree marking;
Aug 2015)

Figure 8: Various signs recorded during PAWS patrols.

Patrol Type
All

PAWS
Patrol

Explorative
PAWS
Patrol

Previous
Patrol for

Tiger
Survey

Total Distance (km) 130.11 20.1 624.75
Average # of Human
Activity Signs per km 0.86 1.09 0.57

Average # of Animal
Signs per km 0.41 0.44 0.18

Table 3: Summary of observations.

planner’s routes, which shows PAWS can suggest feasible
routes and potentially reduce the burden of planning effort.

Figure 9: One daily PAWS
Patrol route in Aug. 2015.

As we deploy PAWS in
the future at other sites,
the cumulative human
planners’ effort saved
by using PAWS will be
a considerable amount.
In addition, patrollers
commented that PAWS
is able to guide them to-
wards poaching hotspots.
The fact that they found
multiple human signs
along the explorative
PAWS patrol routes
makes them believe that
PAWS is good at finding good ridgelines that are taken by
animals and humans. Patrollers and patrol planners also
agree that PAWS generates detailed suggested routes which
can guide the actual patrol. Patrollers commented that the
suggested routes are mostly along the ridgeline, which are
easier to follow, compared with the routes from the first

trial by PAWS-Initial. Figure 9 shows one suggested route
(orange line) and the actual patrol track (black line) during
PAWS patrol in Aug. 2015 (shown on 1km by 1km grid).
Due to the precision of the contour lines we get, we provide
a 50m buffer zone (light orange polygon) around the
suggested route (orange line). The patrollers started from
the basecamp (green triangle) and headed to the southeast.
The patrollers mostly followed PAWS’s suggested route,
indicating that the route generated by PAWS is easy to
follow (contrast with PAWS-Initial as shown in Figure 3(a)).
Finally, the power of randomization in PAWS solution can
be expected in the long-term.

Lessons Learned
During the development and deployment process, we faced
several challenges and here we outline some lessons learned.

First, first-hand immersion in the security environment of
concern is critical to understanding the context and accel-
erating the development process. The authors (from USC
and NTU) intentionally went for patrols in the forest with
the local patrolling team to familiarize themselves with the
area. The first-hand experience confirmed the importance
of ridgelines, as several human and animal signs are found
along the way, and also confirmed that extreme changes in
elevation require considerable extra effort of the patrollers.
This gave us the insight for building the street map.

Second, visualizing the solution is important for commu-
nication and technology adaptation. When we communicate
with domain experts and human planners, we need to ef-
fectively convey the game-theoretic strategy generated by
PAWS, which is a probability distribution over routes. We
first visualize the routes with probability > 0.01 using Ar-
cGIS so that they can be shown on the topographic map and
the animal distribution map. Then for each route, we provide
detailed information that can assist the human planners’ de-
cision making. We not only provide basic statistics such as
probability to be taken and total distance, but also estimate
the difficulty level for patrol, predict the probability of find-
ing animals and human signs, and provide an elevation chart
that shows how the elevation changes along the route. Such
information can help planners’ understanding the strategy.

Third, minimizing the need for extra equipment/effort
would further ease PAWS future deployment, i.e., patrollers
would prefer having a single handheld device for collect-
ing patrol data and displaying suggested patrol routes. If
PAWS routes could be embedded in the software that is al-
ready in use for collecting data in many conservation areas,
e.g., SMART, it would reduce the effort required of planners.
This is one direction for future development.

Summary
PAWS is a first deployed “green security game” applica-
tion to optimize human patrol resources to combat poach-
ing. We provided key research advances to enable this de-
ployment; this has provided practical benefit to patrol plan-
ners and patrollers. The deployment of PAWS patrols will
continue at the site in Malaysia. Panthera has seen the util-
ity of PAWS and we are taking steps to expand PAWS to its



other sites. This future expansion and maintenance of PAWS
will be taken over by ARMORWAY (ARMORWAY 2015),
a “security games” company (starting in Spring 2016); AR-
MORWAY has significant experience in supporting security-
games-based software deployments.

Acknowledgement
This research was supported by MURI Grant W911NF-11-
1-0332. And thanks to our partners in the field who made
these tests possible.

References
ARMORWAY. 2015. http://armorway.com/.
Botea, A.; Mller, M.; and Schaeffer, J. 2004. Near opti-
mal hierarchical path-finding. Journal of Game Develop-
ment 1:7–28.
Chapron, G.; Miquelle, D. G.; Lambert, A.; Goodrich, J. M.;
Legendre, S.; and Clobert, J. 2008. The impact on tigers of
poaching versus prey depletion. Journal of Applied Ecology
45:16671674.
Fang, F.; Jiang, A. X.; and Tambe, M. 2013. Optimal patrol
strategy for protecting moving targets with multiple mobile
resources. In AAMAS.
Fang, F.; Stone, P.; and Tambe, M. 2015. When security
games go green: Designing defender strategies to prevent
poaching and illegal fishing. In International Joint Confer-
ence on Artificial Intelligence (IJCAI).
Hamisi, M. 2008. Identification and mapping risk areas for
zebra poaching: A case of Tarangire National Park, Tanza-
nia. Ph.D. Dissertation, Thesis, ITC.
IUCN. 2015. IUCN red list of threatened species. version
2015.2. http://www.iucnredlist.org.
Kar, D.; Fang, F.; Fave, F. D.; Sintov, N.; and Tambe, M.
2015. A Game of Thrones: When human behavior models
compete in repeated Stackelberg security games. In AAMAS
2015.
Korzhyk, D.; Conitzer, V.; and Parr, R. 2010. Complex-
ity of computing optimal Stackelberg strategies in security
resource allocation games. In AAAI, 805–810.
Langmuir, E. 1995. Mountaincraft and Leadership: A
Handbook for Mountaineers and Hillwalking Leaders in the
British Isles. Mountain Leader Training Board.
Lemieux, A. M., ed. 2014. Situational Prevention of Poach-
ing. Crime Science Series. Routledge.
Nguyen, T. H.; Yang, R.; Azaria, A.; Kraus, S.; and Tambe,
M. 2013. Analyzing the effectiveness of adversary modeling
in security games. In AAAI.
Nguyen, T. H.; Yadav, A.; An, B.; Tambe, M.; and Boutilier,
C. 2014. Regret-based optimization and preference elici-
tation for Stackelberg security games with uncertainty. In
AAAI.
Nguyen, T. H.; Fave, F. M. D.; Kar, D.; Lakshminarayanan,
A. S.; Yadav, A.; Tambe, M.; Agmon, N.; Plumptre, A. J.;
Driciru, M.; Wanyama, F.; and Rwetsiba, A. 2015. Mak-
ing the most of our regrets: Regret-based solutions to handle

payoff uncertainty and elicitation in green security games.
In Conference on Decision and Game Theory for Security.
Phillips, S. J.; Anderson, R. P.; and Schapire, R. E. 2006.
Maximum entropy modeling of species geographic distribu-
tions. Ecological Modelling 190(3-4):231–259.
Pita, J.; Jain, M.; Western, C.; Portway, C.; Tambe, M.; Or-
donez, F.; Kraus, S.; and Paruchuri, P. 2008. Deployed AR-
MOR protection: The application of a game theroetic model
for security at the Los Angeles International Airport. In AA-
MAS.
Plummer, M. 2003. JAGS: A program for analysis of
Bayesian graphical models using Gibbs sampling.
Sanderson, E.; Forrest, J.; Loucks, C.; Ginsberg, J.; Din-
erstein, E.; Seidensticker, J.; Leimgruber, P.; Songer, M.;
Heydlauff, A.; OBrien, T.; Bryja, G.; Klenzendorf, S.; and
Wikramanayake, E. 2006. Setting priorities for the conser-
vation and recovery of wild tigers: 2005-2015. the techni-
cal assessment. Technical report, WCS, WWF, Smithsonian,
and NFWF-STF, New York Washington, D.C.
SMART. 2013. The spatial monitoring and reporting tool
(SMART). http://www.smartconservationsoftware.org/.
Stokes, E. J. 2010. Improving effectiveness of protection ef-
forts in tiger source sites: developing a framework for law
enforcement monitoring using mist. Integrative Zoology
5(4):363–377.
Tambe, M. 2011. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge University
Press.
Tarboton, D. G.; Bras, R. L.; and Rodriguez-Iturbe, I. 2007.
On the extraction of channel networks from digital elevation
data. Hydrologic Processes 5(1):81–100.
Thompson, S. 2011. Unjustifiable Risk?: The Story of
British Climbing. Cicerone Press.
Tobler, W. 1993. Three presentations on geographical analy-
sis and modeling. non-isotropic geographic modeling: spec-
ulations on the geometry of geography, and global spatial
analysis (93-1). Technical report, UC Santa Barbara.
Tsiligiridis, T. 1984. Heuristic methods applied to orien-
teering. The Journal of the Operational Research Society
35(9):pp. 797–809.
Vansteenwegen, P.; Souffriau, W.; and Oudheusden, D. V.
2011. The orienteering problem: A survey. European Jour-
nal of Operational Research 209(1):1–10.
Wang, T., and Boutilier, C. 2003. Incremental utility elici-
tation with the minimax regret decision criterion. In IJCAI.
Wato, Y. A.; Wahungu, G. M.; and Okello, M. M. 2006.
Correlates of wildlife snaring patterns in tsavo west national
park, Kenya. Biological Conservation 132(4):500–509.
Yang, R.; Jiang, A. X.; Tambe, M.; and Ordonez, F. 2013.
Scaling-up security games with boundedly rational adver-
saries: A cutting-plane approach. In IJCAI.
Yang, R.; Ford, B.; Tambe, M.; and Lemieux, A. 2014.
Adaptive resource allocation for wildlife protection against
illegal poachers. In AAMAS.


