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Al and Multiagent Systems Research for Social Good

Public Safety Conservation Public Health
and Security
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Viewing Social Problems as Multiagent Systems

Key research challenge across problem areas:

Optimize Our Limited Intervention Resources
when
Interacting with Other Agents

Computational End-to-End
Game Theory Data-to-Deployment
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Multiagent Systems
Optimizing Limited Intervention (Security) Resources

Date: 3/18/2019

Public Safety and Security
Stackelberg Security Games

S

---i-i-‘

N

= Game Theory for security resource optimization

Real-world: US Coast Guard, US Federal Air Marshals Service...

J




Multiagent Systems
Optimizing Limited Intervention (Ranger) Resources

Conservation/Wildlife Protection:
Green Security Games

= Security games and adversary (poacher) behavior prediction

= Real-world: National parks in Uganda, Malaysia...
\_ J
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Multiagent Systems
Optimizing Limited Intervention (Social Worker) Resources

Public Health:
Games against Nature

dhood Obesity Prevention.
homE (COPE)

Home Visitors Manual

= Social networks to enhance intervention, e.g., HIV information

= Real-world pilot tests: Homeless youth shelters in Los Angeles
N J
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Solving Problems: Overall Research Framework
Interdisciplinary Partnerships
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Solving Problems: Overall Research Framework
End-to-End, Data to Deployment Pipeline

Predictive

Prescriptive
model

Immersion algorithm

Field tests
&
Data Learning/ Game
Collection Expert theory deployment
input Intervention
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Outline: Overview of Past 10 Years of Research

‘Public Safety & Security: Stackelberg Security Games

Conservation/Wildlife Protection: Green Security Games

Public Health: Influence maximization/Game against nature

and Social Work

TOAANMAS ARALCA

= Real world evaluation

SEGURITY and

= PhD students & postdocs T[T
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11 July 2006: Mumbai

TRAIN OF TERROR

Mumbai continues to be the prime target for terrorist groups.
It has borme the brunt of seven attacks in the past 13 years.

- - e
Explosive used Quantity of  “Why attack the first 3%
High-quality explosive, explosive class compartments 7
Most hkely RDX i Al least 5 kg per Blasl; | is essher to & lirst chass
(Cyclatrimathy- ﬁl-ﬂ possl by packed Inta compariment al peak hour (Ban &

o
\ .
N
5

lenelimitraming) Bags or liffin beses second class with & bag filbed with

Where were bombs placed?
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How many bombers were thereZ _ ===Fr
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== JAN B, 2006:
¢ saized 4om thre
yothi in bask

JAN 30, 20:06:

piraiber Givd 2 pE
fanem 2 paopie at

r MaY 9, 2006:
2,000 Thw cafnl
BH-5Es seized b

| — MAY 12, 2008
live cartridges m
granades daiied

MAY 14, 2005:
thven SK-4 75 and
cartridgas seized
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ARMOR Airport Security: LAX(2007)
Game Theory direct use for security resource optimization?

Erroll Southers LAX Airport, Los Angeles

‘Glasgow: June 30, 2007

Iy

Date: 3/18/2019 e 11



Game Theory for Security Resource Optimization

New Model: Stackelberg Security Games

| Terminal #2

terminal #1 [

[ Defender | Terminal #2

Date: 3/18/2019
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Game Theory for Security Resource Optimization

New Model: Stackelberg Security Games

Terriinal #1  Terminal #2

I
Terminal #2

[ Defender]

Date: 3/18/2019
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Game Theory for Security Resource Optimization

New Model: Stackelberg Security Games

Stackelberg: Defender commits to randomized strategy, adversary responds
Security game: Played on targets, payoffs based on targets covered or not
Optimization: Not 100% security; increase cost/uncertainty to attackers

Terminal #1  Terminal #2

Terminal #1

[ Defender | Terminal #2

Date: 3/18/2019 eeeeee—— 14



ARMOR at LAX o
Basic Security Game Operation [2007] Kiekintveld _Pita

Target #1 Target #2 Target #3

Defender #1
Defender #2
Defender #3

\ g

Mixed Integer Program

¥

Pr (Canine patrol, 8 AM @Terminals 2,5,6) = 0.17

Canine Team Schedule, July 28

Term1 Term2 Term3 Term4 Term5 Term6 Term7 Term 8

8 AM Team Team3 | Teamb
9 AM Team1 Team?2 Team4

Date: 3/18/2019 —— 15



Security Game MIP [2007] L a

Kiekintveld Pita

Target #1 Target #2 Target #3

Defender #1
Defender #2
Defender #3

max » > Rij X X.%q « { Maximize defender ]

ieX jeO J expected utility
> 1 ( Defender mixed |
S.z. X, = efender mixe
; l « strategy
- J
2.4, =1 " )
9q; = Adversary response
0<(a — Z C,x)<(l-q, )M « Adversary best
X / response
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SECURITY GAME PAYOFFS [2007]
Previous Research Provides Payoffs in Security Games

Target #1 Target #2 Target #3

Defender #1
Defender #2
Defender #3

+ Handling
Uncertainty

expected utility

max ZZ Ri‘x x'xqj « {Maximize defender}

— Delta Shuttle

Dalta Priority
Duoita
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ARMOR:
Optimizing Security Resource Allocation [2007]

First application: Computational game theory for operational security

January 2009
eJanuary 3@  Loaded 9/mm pistol
eJanuary 9"  16-handguns,

1000 rounds of ammo
eJanuary 10"  Two unloaded shotguns
eJanuary 12" Loaded 22/cal rifle
eJanuary 17"  Loaded 9/mm pistol
January 22" Unloaded 9/mm pistol

Date: 3/18/2019
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ARMOR AIRPORT SECURITY: LAX [2008]
Congressional Subcommittee Hearings

Commendations Erroll Southers testimony
City of Los Angeles Congressional subcommittee

Newsweek

ARMOR...throws a digital cloak of invisibility....

Date: 3/18/2019 e 19



Federal Air Marshals Service [2009]

Visiting Freedom Center: Home of Federal Air Marshals Service

Massau 04:20

Montego Bay06:00

Bermuda 04:20

Funta Cana/06:30

san Juan 06:00

sAruba 06:00

Date: 3/18/2019 |
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Scale Up Difficulty [2009]

Kiekintveld Jain

{xi Defender mixed strategy ]

1000 flights, 20 air marshals:
l Combinations

Attack Attack Attack Attack
1 2 1000
max,, ), ), Ryxg O 50 | a5 | . |
ieX jeQ
s.t. Zx =1 Zq ;=1
JjeQ
0<(a =) Cx)<(1-g,)M
ieX

Date: 3/18/2019 1 21



Scale Up [2009] ‘ o=
Exploiting Small Support Size

Kiekintveld Jain

Theorem: For T targets, optimal solution of support set size T+1 always exists

LSma" support set size:} 1000 flights, 20 air marshals:

Combinations

Most x; variables zero

Attack Attack Attack Attack
1 2 1000

123— [] 3 \J 3 \J = an ,

X, s = 0.239

5,-10 4,-8 -20,9

135 .
Xg7g = 0.123

1041 rows
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New Exact Algorithm for Scale up 1
Kiekintveld Jain

Incremental strategy generation: First for Stackelberg Security Games

Master
Attack 1 Attack2 ... Attack 6 [

Slave (LP Duality Theory)
Best new pure strategy

Attack 1 Attack2 ... Attack 6 ’

... |-20,9
-8,10 -8,10 ... |-8,10
\Theory)
Attack 1 GLOBAL OPTIMAL ; strategy}
1,2,4 1000 defender strategies
378 Pl NOT 104 )
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IRIS: Deployed FAMS [2009-]

E |;-{# Mew Project i

| ﬁ Load Project |

lrftellligrent Reandomization In Seheduling

MCREATE [Zreess

Significant change in FAMS operations

,,,,,,
£ =

AR

Transportation Security
Administration

Orffice of Law Enforcement/Federal Air Marshal Service
Milind Tambe

In revopnition and appreciation of your ouwsanding achievement in developing the
IniclljEent Randomization In Scheduling (IRIS) proproaom to sdvance the mission of the
Cfice of Law Enforcement'Federal Adr MMarslml Scrvicwe

I'tis 2™ day of Sepreinbwer, 3001

September 2011: Certificate of
Appreciation (Federal Air Marshals)
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PROTECT: Port and Ferry Protection Patrols [2011]
Using Marginals for Scale up

Boston Los Angeles

Date: 3/18/2019 O
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PROTECT: Ferry Protection Deployed [2013]

Date: 3/18/2019
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FERRIES: Mobile Resources & Moving Targets

Spatio-Temporal Security Games: Transition Graphs

5 min 10 min 15 min
A A 5min r------ > A, 10 min F------ > A, 15 min
—-__~~~~ —”’_:7. ~~~~~~~~~~~~
,——”"—’,~~~"‘~~Ah ~~~~~~~~~~~~~
B B,5min r------ >B, 10 min r------ > B, 15m|n
. e =
et PN L PN
C C.5min |------- 1C, 10 min F------ > C, 15 min
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FERRIES: Mobile Resources & Moving Targets

Spatio-Temporal Security Games: Transition Graphs

5 min 10 min 15 min

A in F------ A, 1‘0 min F------
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FERRIES: Mobile Resources & Moving Targets

Spatio-Temporal Security Games: Transition Graphs

5 min 10 min 15 Min Bl

A A 5min F------ A, 10 min [------ > Ferry
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FERRIES: Scale up Difficulties

Theorem: Marginals enable scale-up with no solution quality loss

[ Exponential NT routes ]
5 min 10 min 15 Min gl
A [ 15 min
B AL C0ee Patroller
C
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PROTECT: Port Protection Patrols [2013]
Congressional Subcommittee Hearing

June 2013: Meritorious Team Commendation July 2011: Operational Excellence
from Commandant (US Coast Guard) Award (US Coast Guard, Boston)

p: Infrastructure USHR12 Transpor

Date: 3/18/2019 |
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Solving Problems: Overall Research Framework
End-to-End, Data to Deployment Pipeline

SECURING
PG HEGKIES

Predictive
model

Immersion

Prescriptive
algorithm

Data

Learning/ Game
Collection Expert theory
input Intervention

Date: 3/18/2019

Field tests
&

deployment
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Significant Real-World Evaluation Effort

Security Games superior in
Optimizing Limited Security Resources

Vs

Human Schedulers/“simple random”

Date: 3/18/2019
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Field Evaluation of Schedule Quality

Improved Patrol Unpredictability & Coverage for Less Effort

Patrols Before PROTECT: Boston Patrols After PROTECT: Boston

Base Patrol Area

/\ ~— —

Count

Count

75 — :
m v - - e
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

350% increase in defender expected utility

Date: 3/18/2019
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Field Evaluation of Schedule Quality

Improved Patrol Unpredictability & Coverage for Less Effort

e )
FAMS: IRIS Outperformed expert human over six
months | 3
Report:GAO-09-903T I [{I S
\Lutteliganit Randomization In Scheg

/ «@=Human  =#=Game Theory \

0.0

()]

Train patrols: Game theory outperformed
expert humans schedule 90 officers

B
&)

SN

Security Score

w
o
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Field Tests Against Adversaries

Computational Game Theory in the Field

Controlled
i ! | e
e BEARD GED e

= 21 days of patrol, identical conditions

= Game theory vs Baseline+Expert

Not Controlled

Date: 3/18/2019

20 -
m Game Theory
15 -
Baseline + Expert

10 -

5 | I

0 _

# Captures /30 # Warnings /30 # Violations I30
min min min

100 - ®m Miscellaneous mDrugs u=Firearm Violations
75 | Before

50 - ARMOR

25 -

0

Pre-ARMOR 2008 2009 2010
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New Directions in 2= 3
Stackelberg Security Games [2018] e 4 ‘

McCarthy Schlenker Slnha

= Threat Screening Games = Cyber Security Games
(AAAI16, IJCAI17, IJCAI18...) (IJCAI17, AAMAS18, CogScii8...)

Cyber Network Deception

Adversary sends
probes to systems to
gather information

Hacker

system information

[ Defender lies about ]
when Teceiving probes

Enterprise Network

Date: 3/18/2019 3/18/2019 e 38



Outline

Public Safety & Security: Stackelberg Security Games

‘Conservation/Wildlife Protection: Green Security Games

Public Health: Influence maximization/Game against nature

Dr Andy Plumptre
Conservation Biology

Date: 3/18/2019 —— 39



Poaching of Wildlife in Uganda
Limited Intervention (Ranger) Resources to Protect Forests

Snare or Trap Wire snares

e E__:r' _ 'rﬂ-"'a e

I

—

D — w— - L ———————— —
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Green Security Games[2015]
Limited Ranger Resources to Protect Forests

SIMBA
SAFARI CAMP’

" =
llllllll

N
Max defender
max,, Y3 Ryxg, du Ve

ieX jeQ
N

B Defender
S.t. le- =1 «[mixed strategyj

0<(a —Z@—qj)M

ieX
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Green Security Games [2015]
Game Theory + Machine Learning Poacher Behavior

Learn adversary bounded rational response: At each grid location |

SIMBA
SAFARI CAMP.

(Probability\
of finding

Machine snare in

Learning

Features: F/; _ cell i Yy

N
Max defender
maXXZ gi(xi) ‘[ utility |

ieX
-

B Defender
S.z. Z xi — 1 «[mixed strategyj
l

o
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Learning Adversary Model
12 Years of Past Poaching Data

Nguyen

9
Ranger patrol Probability of snare Area habitat
~ Per 1 KM Grid
Animal density Square Area slope
Distance to rivers / * ._ ':m

roads / villages

Date: 3/18/2019 | 43



Learning Adversary Model
Uncertainty in Observations

Nguyen
9i
Ranger patrol Probability of snare Area habitat
~ Per 1 KM Grid
Animal density Square Area slope
Distance to rivers /
roads / villages
1 km ) 1 km
] [ ] [
Ry Walk more! &
i L
Record: No Attack (NEG) Record: Attack (POS)

Date: 3/18/2019 e —— 44



Adversary Modeling [2016]

Imperfect Crime Observation-aware Ensemble Model

Training: Filtered Datasets

Predict: Ensemble of Classifiers

Train Data

1500

p—
o O
e N
o O

0

NEG
m POS

PatrolEffort = 0

Train Data

1500

p—
o O
e R
o O

0

NEG
m POS

PatrolEffort = 1

Train Data

1500
1000
500
0 N
PatrolEffort =

NEG
m POS

2

-———>

\\-

Patrol Effort
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PAWS: Protection Assistant for Wildlife Security g
Poacher Attack Prediction in the Lab

Gholami

Poacher Behavior Prediction

Results from 2016

SIMBA
SAFARI CAMP
®

0 /]
L&L Score
Train Labels ®SVM Bagging Ensemble B Our Best Model
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PAWS:
Real-world Deployment 2016: First Trial

&4

Ford Gholami

= Two 9-sqg. km patrol areas / —

G|
= Where there were infrequent patrols P
: X LA & o
=  Where no previous hot spots . -;&;_
:&u . f‘
&,{ AV
/ f};" / g . { L 4 -*-T‘Tj}_.;h r'e ! ‘;:w/ﬁ-
i \ A a® g
. - AR
searfb o {’j S f\h :
L L__}] - e ® | ( c ]
; E| - ;f;:._::f A /
i ) = Y
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PAWS Real-world Deployment
Two Hot Spots Predicted

Ford Gholami

= Poached Animals: Poached elephant
= Snaring: 1 elephant snare roll
= Snaring: 10 Antelope snares

Historical Base Hit
Rate

Our Hit Rate

Average: 0.73 3

Date: 3/18/2019 1 48



PAWS Predicted High vs Low Risk Areas: g
2 National Parks, 24 areas each, 6 months [2017]

Gholami
mH
Queen ol e .
Elizabeth ~ & §~—=m  Murchison
National 7, -~ Falls
Park N e National
L A Park
Snares per patrolled sq. KM Snares per patrolled sq. KM
m High-risk = Low-risk ‘ m High-risk Medium-risk
0.25 0.6 Low-risk
0.2 04
0.15 '
0.1 0.2
0.05
0 0
Experiment group Experiment Group
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PAWS Real-world Deployment
Cambodia: Srepok Wildlife Sanctuary [2018-2019]

Date: 3/18/2019 |
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PAWS Real-world Deployment
Trials in Cambodia: Srepok National Park [2018-2019]

«w VS

s too this year.
)1 shares/month 2018

Rohit Singh, WWF (2019)
Snares per patrolled sq. KM

B High-risk Medium-risk
0.4 Low-risk

0.3
0.2
0.1

Experiment Group

51

Date: 3/18/2019




Green Security Games:
Integrating Real-Time Information in the Pipeline

Learn predictions with
Historical Ground Truth Data

Real-Time information

Prediction Prescription

max, g,(x;)
Data Z):(

CoIIion

.

s.t. Zx,. =1

s & ® LN
. e ® S
[ N
. e ® "
q —
L
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Green Security Games:
Integrating Real-Time “SPOT” Information [2018]

) Air
/ Shepher

The Lindbergh Fourdstion

Goal: automatically find poachers

Date: 3/18/2019 —— 53



Drone Used to Inform Rangers [2019]

Xu Bondi

» Prob(ranger arrives) = 0.3 [poacher may not be stopped]

» Deceptive signaling to indicate ranger is arriving

Air = 0.3

Shepherd

The Lindbergh Foundation

&
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Drone Used to Inform Rangers [2019]

Xu Bondi

» Prob(ranger arrives) = 0.3 [poacher may not be stopped]

» Deceptive signaling to indicate ranger is arriving

Air N p Prob(ranger) = 0.3
Shepherd

The Lindbergh Foundation

&
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Drone Used to Inform Rangers [2019]

Xu Bondi

» Prob(ranger arrives) = 0.3 [poacher may not be stopped]
» Deceptive signaling to indicate ranger is arriving

» Must be strategic in deceptive signaling

Air = 0.3

Shepherd

The Lindbergh Foundation

&
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Strategic Signaling: Informational Advantage
Defender Knows Pure & Mixed Strategy

New Model: Stackelberg Security Games with Optimal Deceptive Signaling

» Poacher best interest to “believe signal” even if know 50% time defender is lying

ranger

0.7

O

Nno ranger

Signal
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Strategic Signaling: Informational Advantage
Defender Knows Pure & Mixed Strategy

Theorem: Signaling reduces complexity of equilibrium computation

» Poacher best interest to “believe signal” even if know 50% time defender is lying

0.3

N 0.3 0.6
rr Qﬂb
0.7

Signal

® ,

Nno ranger
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Green Security Games:
Around the Globe with SMART partnership [2019]

e oMoy,

DY ¥

G AW :
WWE WS I

Protect Wildlife
600
National Parks

Around the Globe

Also: Protect Forests, Fisheries...
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Outline

Public Safety & Security: Stackelberg Security Games

Conservation/Wildlife Protection: Green Security Games

‘Public Health: Game against nature

Date: 3/18/2019

Prof Eric Rice
Social Work
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Public Health
Optimizing Limited Intervention (Social Worker) Resources

Preventing HIV in homeless youth: Rates of HIV 10 times housed population

» Shelters: Limited number of peer leaders to spread HIV information in social networks
» "Real” social networks gathered from observations in the field; not facebook etc
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Influence Maximization Background
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= Social network Graph G N a2

- Choose K “peer leader” nodes e

=  Objective:

= Maximize expected number of influenced nodes

Assumption: Independent cascade model of information spread
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Independent Cascade Model and
Real-world Physical Social Networks

° P(A,B)=0.4 G

L € [0.3,0.7] 1
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Robust, Dynamic Influence Maximization

= Worst case parameters: a zero-sum game against nature

Algorithm Nature

Chooses policy, i.e., Chooses parameters
Chooses Peer leaders M,O

= Payoffs: (performance of algorithm)/OPT

Date: 3/18/2019 |
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HEALER Algorithm [2017]
Robust, Dynamic Influence Maximization

Theorem: Converge with approximation guarantees

= Equilibrium strategy despite exponential strategy spaces: Double oracle

Nature

Influencer’s oracle

Params #1 Params #2 Params #3

Params #1 Params #2

Policy #1

Policy #1

Influencer

Policy #2

Policy #2
Policy #3

Policy #3
Nature’s oracle ‘ ‘

Params #1 Params #2 Params #3

Policy #1

Policy #2
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Challenge: Multi-step Policy

Params #1

Policy #1

Params #2 Params #3

Yadav

Policy #2

Policy #3
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HEALER: POMDP Model for Multi-Step Policy
Robust, Dynamic Influence Maximization

Yadav

Params #1 Params #2 Params #3

Policy #1

Policy #2

Policy #3

(- N
HIDDEN STATE

Action

Choose nodes

Observation: Update
propagation probability
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Pilot Tests with HEALER
with 170 Homeless Youth [2017]

Recruited youths:

HEALER HEALER++ DEGREE CENTRALITY

12 peer leaders
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Results: Pilot Studies [2017]

Percent of non-Peer Leaders Informed Non-Peer Leaders
Who Started Testing for HIV
B Informed Not Informed W Testing Non-Testing
100 100
80 30
60 60
40 40
: “MER B
0 0
HEALER HEALER++ Degree HEALER HEALER++ Degree

More details: Journal of Society of Social Work & Research (Nov 2018)
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Data to Deployment Pipeline:

Network Sampling to avoid Data Collection Bottleneck

Data collection costly Sample 18%
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New experiment With 60 homeless youth

12 peer leaders
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Results: Pilot Studies
with New Sampling Algorithm [2018]

Wilder

Percent of non-Peer Leaders Informed Non-Peer Leaders
Who Started Testing for HIV
B Informed Not Informed W Testing Non-Testing
100 100

30

30
60 60
40 40
20 . 20
0 0
@ HEALER Degree @ HEALER Degree
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Al Assistant: HEALER
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Continuing Research on HIV prevention [2019]

= Completing 900 youth study at three homeless shelters

“ Ty s.p.Y

ey .
ﬁlends safe place for youth
place
NN
LOS
ANGELES

LGBT
CENTER

3/18/2019
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Public Health: Optimizing Limited Social Worker Resources
Preventing Tuberculosis in India [2019]

Tuberculosis (TB): ~500,000 deaths/year, ~3M infected in India

> Patient in low resource communities: Non-adherence to TB Treatment

» Digital adherence tracking: Patients call phone #s on pill packs; many countries
» Predict adherence risk from phone call patterns? Intervene before patients miss dose

Date: 3/18/2019
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Public Health: Optimizing Limited Resources
Preventing Tuberculosis in India [2019]

Killian

» Working jointly with Everwell Health Solutions & Microsoft Research India

» Everwell collaborates on software: Serves millions of TB patients in India, other countries
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TB Treatment Adherence but Limited Resources:
Intervening Selectively before patients miss doses

Killian

redict
high risk
patients

rescription

Constraint
Top K

RF or

» 15K patients, 1.5M calls
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Increasing TB Treatment Adherence:
Intervening before patients miss doses [2019]

Killian
Data Predict rescription
Collect high risk .
patients Constraint
Phone Top K
logs LSTM
Best Model vs. Baseline: Prediction High Risk Patients

180

160 144
Y 140 +35% -19% Data from
CICJ 120 120
= 107
é-f 100 97 State Of
5 Maharashtra
g .
£ India
Z 40

20

0

True Positives False Positives
W Baseline M Best Model
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Improving TB interventions
Stage by Stage Methods in Data to Deployment Pipeline

"-‘1—“

‘Wilder

Predict
high risk
patients

Data
Collect

rescription

Constraint
Top K

Phone
logs

LSTM

* Maximizing accuracy # Maximizing decision quality

Predict: Machine learning Prescription: Optimization

V Greedy J

| =

Local search

MiXEd-integer
Program

Goal: maximize accuracy Goal: maximize decision quality
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Improving TB interventions
Decision-Focused Method in Data to Deployment Pipeline

- R "
e -
-y

Wilder

Predict
high risk
patients

Data
Collect

rescription

Constraint
Top K

Phone
logs

LSTM

Automatically shape model loss: Optimization problem in training loop

Predict: Machine learning Prescribe: Optimization

V Greedy J

| =

Local search

MiXEd-integer
Program

Goal: maximize accuracy Goal: maximize decision quality
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Improving TB interventions
Decision-Focused vs Stage by Stage Methods

i e~

‘Wilder

(AAAI19)

Predict
high risk
patients

Data
Collect

rescription

Constraint
Top K

Phone
logs

LSTM

Decision focused learning improves TB interventions

AUC: In overall risk prediction Interventions: Decision-Focused
Decision-Focused Worse Better
0.8 0.5
0.6 0.48
0.46
0.4
0.44
0.2 0.42 .
0 0.4
W Stage by Stage M Decision Focused M Stage by Stage M Decision Focused

Date: 3/18/2019 80




Integrating with Everwell’s Platform

Killian

averwell

This work has a lot of potential to save lives.

Bill Thies
Co-founder, Everwell Health Solutions

o
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Childhood Obesity Prevention
via Network Optimization

» Childhood obesity: Diabetes, stroke and heart disease

» Early intervention with mothers: Change diet/activity using social networks

» Competitive influences in networks: Add/remove edges for behavior change
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Suicide Prevention in Marginalized Populations:
Choose Gatekeepers in social networks

oy

= Worst case parameters: a zero-sum game against nature

a

Rahmattalabi

Nature
Algorithm Chooses some

Chooses K gatekeepers gatekeepers to not
participate
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New Directions: Los Angeles
From an Angeleno [2019]
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Angeles
National Forest
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New Directions: Mumbali
From a Mumbaikar [2019]

(OUGHFOR OVER 2WREKS COULDBETB Government of
MEET 4 DOCTOR NOW 2 Maharashtra

Other Symptoms of Tuberculosis (TB);

Fewer Loss of Appelite
Nigh Sweal Wieight-loss

Chief Minister Maharashtra

Vst your nearestqzeemmen bealth sty Sorhigh qualty fee cizgmosis and rectmart

rrequlor or incomplele Weatment may lood to Drug Resishant T l

(AAAI18)

@ Mumbai
Al for Social Good
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Key Lessons

Directing Multiagent Systems Research towards Social Good:

e Public safety & security, conservation, public health

Shared multiagent research challenges, solutions across problem areas:

aa e Challenge: Optimize limited intervention resources in interacting with others
e Solution: Computational game theory models/algorithms

Research contributions that arise from the domain:

e Models: Stackelberg Security Games/Green Security Games
e Algorithms: Incremental strategy generation, marginals, double oracle

Date: 3/18/2019 e —
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Future: Multiagent Systems and Al Research for Social Good

Embrace interdisciplinary research -- social work, conservation

Date: 3/18/2019
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Future Multiagent Systems and Al for Social Good
in the FIELD

Predictive

Prescriptive
model

Immersion algorithm

Field tests
&
Data Learning/ Game
Collection Expert theory deployment
input Intervention

When working on Al for Societal Benefits:

Important step out of lab & into the field
m=) Societal impact

== Model deficiencies for new research

Date: 3/18/2019
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Thank you for Inspiring Us

/ﬁ United States Coast Guard
)5, Department of Homeland Sacurdy

N®) [ransportation
) Security

4’%,) V5 Administration

Wildlife o) Air
Conservation SM ART [ / Shepherd
Society

= oo ¥ s everwel

CENTER safe place for youth
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