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AI and Multiagent Systems Research for Social Good

Public Safety 
and Security

Conservation Public Health



Viewing Social Problems as Multiagent Systems

Key research challenge across problem areas:

Optimize Our Limited Intervention Resources 
when 

Interacting with Other Agents
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Computational
Game Theory

End-to-End
Data-to-Deployment



 Game Theory for security resource optimization
 Real-world: US Coast Guard, US Federal Air Marshals Service…

Multiagent Systems
Optimizing Limited Intervention (Security) Resources

Public Safety and Security
Stackelberg Security Games
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 Security games and adversary (poacher) behavior prediction
 Real-world: National parks in Uganda, Malaysia…

Conservation/Wildlife Protection:
Green Security Games 

Multiagent Systems
Optimizing Limited Intervention (Ranger) Resources
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Public Health:  
Games against Nature

 Social networks to enhance intervention, e.g., HIV information
 Real-world pilot tests: Homeless youth shelters in Los Angeles

Multiagent Systems
Optimizing Limited Intervention (Social Worker) Resources
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Solving Problems: Overall Research Framework
Interdisciplinary Partnerships
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Solving Problems: Overall Research Framework
End-to-End, Data to Deployment Pipeline

Field tests
& 

deployment

Prescriptive
algorithm

Game 
theory 

Intervention

Immersion

Data 
Collection
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Predictive
model

Learning/
Expert 
input



Outline: Overview of Past 10 Years of Research

Public Safety & Security: Stackelberg Security Games
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Conservation/Wildlife Protection: Green Security Games 

Public Health: Influence maximization/Game against nature

 AAMAS,AAAI,IJCAI 
 Real world evaluation

 PhD students & postdocs



11 July 2006: Mumbai
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ARMOR Airport Security: LAX(2007)
Game Theory direct use for security resource optimization? 

Glasgow: June 30, 2007
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Erroll Southers LAX Airport, Los Angeles



Terminal #1 Terminal #2

Terminal #1 4, -3 -1, 1

Terminal #2 -5, 5 2, -1

Adversary

Game Theory for Security Resource Optimization

Defender
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New Model: Stackelberg Security Games



Terminal #1 Terminal #2

Terminal #1 4, -3 -1, 1

Terminal #2 -5, 5 2, -1

Adversary

Game Theory for Security Resource Optimization

Defender
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New Model: Stackelberg Security Games
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Terminal #1 Terminal #2

Terminal #1 4, -3 -1, 1

Terminal #2 -5, 5 2, -1

Adversary

Defender

Optimization: Not 100% security; increase cost/uncertainty to attackers

Stackelberg: Defender commits to randomized strategy, adversary responds 

Date: 3/18/2019

Security game: Played on targets, payoffs based on targets covered or not 

New Model: Stackelberg Security Games

Game Theory for Security Resource Optimization



ARMOR at LAX
Basic Security Game Operation [2007]
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Kiekintveld Pita

Target #1 Target #2 Target #3

Defender #1 2, -1 -3, 4 -3, 4
Defender #2 -3, 3 3, -2 ….
Defender #3 …. …. ….

Pr (Canine patrol, 8 AM @Terminals 2,5,6) = 0.17

Pr (Canine patrol, 8 AM @ Terminals 3,5,7) = 0.33
……

Mixed Integer Program

Canine Team Schedule, July 28
Term 1 Term 2 Term 3 Term 4 Term 5 Term 6 Term 7 Term 8

8 AM Team1 Team3 Team5
9 AM Team1 Team2 Team4
… … … … … … … … …
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Security Game MIP [2007]
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Target #1 Target #2 Target #3

Defender #1 2, -1 -3, 4 -3, 4

Defender #2 -3, 3 3, -2 ….

Defender #3 …. …. ….
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Kiekintveld Pita

i

j



Target #1 Target #2 Target #3

Defender #1 2, -1 -3, 4 -3, 4
Defender #2 -3, 3 3, -2 ….
Defender #3 …. …. ….

jqixijR
Xi Qj

××∑∑
∈ ∈

max Maximize defender 
expected utility

+ Handling
Uncertainty

SECURITY GAME PAYOFFS [2007]
Previous Research Provides Payoffs in Security Games
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ARMOR: 
Optimizing Security Resource Allocation [2007]

Date: 3/18/2019

January 2009
•January 3rd Loaded 9/mm pistol
•January 9th 16-handguns, 

1000 rounds of ammo
•January 10th Two unloaded shotguns 
•January 12th Loaded 22/cal rifle
•January 17th Loaded 9/mm pistol
•January 22nd   Unloaded 9/mm pistol

First application: Computational game theory for operational security



ARMOR AIRPORT SECURITY: LAX [2008]
Congressional Subcommittee Hearings

ARMOR…throws a digital cloak of invisibility….
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Commendations
City of Los Angeles

Erroll Southers testimony
Congressional subcommittee



Federal Air Marshals Service [2009]

Visiting Freedom Center: Home of Federal Air Marshals Service
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Scale Up Difficulty [2009]

Attack
1

Attack
2

Attack
…

Attack 
1000

1 ,2, 3 .. 5,-10 4,-8 … -20,9

1, 2, 4 .. 5,-10 4,-8 … -20,9

1, 3, 5 .. 5,-10 -9,5 … -20,9

…

… 1041 rows

1000 flights, 20 air marshals:
1041 combinations 

21
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Kiekintveld Jain

Defender mixed strategy𝑥𝑥𝑖𝑖



Scale Up [2009]
Exploiting Small Support Size

Attack
1

Attack
2

Attack
…

Attack
1000

1 ,2, 3 .. 5,-10 4,-8 … -20,9

1, 2, 4 .. 5,-10 4,-8 … -20,9

1, 3, 5 .. 5,-10 -9,5 … -20,9

…

… 1041 rows

1000 flights, 20 air marshals:
1041 combinations 

Small support set size:
Most xi variables zero  

X124 = 0.239
X123 = 0.0

X135 = 0.0
X378 = 0.123

22

Theorem: For T targets, optimal solution of support set size T+1 always exists
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Kiekintveld Jain



New Exact Algorithm for Scale up

Attack 1 Attack 2 … Attack 6
1,2,4 5,-10 4,-8 … -20,9 Slave (LP Duality Theory) 

Best new pure strategy

Master
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Kiekintveld Jain

Incremental strategy generation: First for Stackelberg Security Games

Slave (LP Duality Theory) 
Next best new pure strategy

Attack 1 Attack 2 … Attack 6
1,2,4 5,-10 4,-8 … -20,9
3,7,8 -8,10 -8,10 … -8, 10

Attack 1 Attack 2 … Attack 6
1,2,4 5,-10 4,-8 … -20,9
3,7,8 -8,10 -8,10 … -8, 10
… … … … …

GLOBAL OPTIMAL
1000 defender strategies

NOT 1041
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IRIS: Deployed FAMS [2009-]

Significant change in FAMS operations

September  2011: Certificate of 
Appreciation (Federal Air Marshals)



PROTECT: Port and Ferry Protection Patrols [2011]
Using Marginals for Scale up

Boston Los Angeles

New York
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AnShieh



PROTECT: Ferry Protection Deployed [2013]
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A, 5 min A, 10 min A, 15 min

B, 5 min B, 10 min B, 15 min

C, 5 min C, 10 min C, 15 min

A

B

C

5 min 10 min 15 min

FERRIES: Mobile Resources & Moving Targets
Spatio-Temporal Security Games: Transition Graphs
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JiangFang



A, 5 min A, 10 min A, 15 min

B, 5 min B, 10 min B, 15 min

C, 5 min C, 10 min C, 15 min

A

B

C

5 min 10 min 15 min

FERRIES: Mobile Resources & Moving Targets
Spatio-Temporal Security Games: Transition Graphs
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Ferry

JiangFang
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A, 5 min A, 10 min A, 15 min

B, 5 min B, 10 min B, 15 min

C, 5 min C, 10 min C, 15 min

A

B

C

5 min 10 min 15 min
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Ferry

Patroller

JiangFang

FERRIES: Mobile Resources & Moving Targets
Spatio-Temporal Security Games: Transition Graphs
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A, 5 min A, 10 min A, 15 min

B, 5 min B, 10 min B, 15 min

C, 5 min C, 10 min C, 15 min

A

B

C

5 min 10 min 15 min
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Patroller

Ferry

JiangFang

Exponential NT routes

FERRIES: Scale up Difficulties

Theorem: Marginals enable scale-up with no solution quality loss 
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PROTECT: Port Protection Patrols [2013]
Congressional Subcommittee Hearing

July 2011: Operational Excellence 
Award (US Coast Guard, Boston)

June 2013:  Meritorious Team Commendation 
from Commandant (US Coast Guard)
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http://teamcore.usc.edu/Awards/coast_guard_lapel_pin.png
http://teamcore.usc.edu/Awards/Meritorious_2013.jpg


Solving Problems: Overall Research Framework
End-to-End, Data to Deployment Pipeline

Field tests
& 

deployment

Prescriptive
algorithm

Game 
theory 

Intervention

Immersion

Data 
Collection
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Predictive
model

Learning/
Expert 
input
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Global Presence of Security using Game Theory 

Date: 3/18/2019 33



Security Games superior in 
Optimizing Limited Security Resources

Vs

Human Schedulers/“simple random”

Significant Real-World Evaluation Effort
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Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

C
ou

nt

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
C

ou
nt

Base Patrol Area

Patrols Before PROTECT: Boston Patrols After PROTECT: Boston

Field Evaluation of Schedule Quality

350% increase in defender expected utility
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Improved Patrol Unpredictability & Coverage for Less Effort



FAMS: IRIS Outperformed expert human over six 
months

Report:GAO-09-903T 

Field Evaluation of Schedule Quality

Train patrols: Game theory outperformed 
expert humans schedule 90 officers
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Human Game Theory
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Improved Patrol Unpredictability & Coverage for Less Effort



 Game theory vs  Baseline+Expert

Controlled

x

Not Controlled

0

5

10

15

20

# Captures /30
min

# Warnings /30
min

# Violations /30
min

Game Theory

Baseline + Expert

0

25

50

75

100

Pre-ARMOR 2008 2009 2010

Miscellaneous Drugs Firearm Violations

Field Tests Against Adversaries

 21 days of patrol, identical conditions
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Computational Game Theory in the Field

Before
ARMOR

http://la.streetsblog.org/wp-content/uploads/2012/08/blue_line_2.jpeg
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New Directions in 
Stackelberg Security Games [2018]

38

 Threat Screening Games
(AAAI16, IJCAI17, IJCAI18…)

Date: 3/18/2019 3/18/2019

 Cyber Security Games
(IJCAI17, AAMAS18, CogSci18…)

SinhaSchlenkerMcCarthy



Outline

Public Safety & Security: Stackelberg Security Games
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Conservation/Wildlife Protection: Green Security Games 

Public Health: Influence maximization/Game against nature

Dr Andy Plumptre
Conservation Biology



Poaching of Wildlife in Uganda
Limited Intervention (Ranger) Resources to Protect Forests
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Snare or Trap Wire snares



Green Security Games[2015]
Limited Ranger Resources to Protect Forests
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Fang
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Green Security Games [2015]
Game Theory + Machine Learning Poacher Behavior 
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Learn adversary bounded rational response: At each grid location i

Xu

Ranger patrols: X(i)

Features: F(i)

Probability 
of finding 
snare in 

cell i

gi
Machine
Learning

max ( )
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x
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i
i
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∈
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∑ Defender 

mixed strategy

Max defender 
utility



Learning Adversary Model 
12 Years of Past Poaching Data

Probability of snare
Per 1 KM Grid 

Square

Ranger patrol

Animal density

Distance to rivers / 
roads / villages

Area habitat

Area slope

…
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Nguyen

gi



Learning Adversary Model
Uncertainty in Observations
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Record: No Attack (NEG) 

1 
km

1 km

Record: Attack (POS)

1 km

1 
kmWalk more!

Nguyen

Probability of snare
Per 1 KM Grid 

Square

Ranger patrol

Animal density

Distance to rivers / 
roads / villages

Area habitat

Area slope

…

gi
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Adversary Modeling [2016]
Imperfect Crime Observation-aware Ensemble Model

Patrol Effort

Predict: Ensemble of Classifiers
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Training: Filtered Datasets

1 20

Gholami



0

0.5

1

1.5

2

2.5

3

L&L Score
Train Labels SVM Bagging Ensemble Our Best Model

Poacher Behavior Prediction

PAWS: Protection Assistant for Wildlife Security
Poacher Attack Prediction in the Lab

Results from 2016
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Gholami



PAWS:
Real-world Deployment 2016: First Trial

 Two 9-sq. km patrol areas

 Where there were infrequent patrols
 Where no previous hot spots
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GholamiFord



PAWS Real-world Deployment
Two Hot Spots Predicted

 Poached Animals: Poached elephant
 Snaring: 1 elephant snare roll
 Snaring: 10 Antelope snares

Historical Base Hit 
Rate Our Hit Rate

Average: 0.73 3
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GholamiFord



PAWS Predicted High vs Low Risk Areas:
2 National Parks, 24 areas each, 6 months [2017]
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Gholami



PAWS Real-world Deployment 
Cambodia: Srepok Wildlife Sanctuary [2018-2019]
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Xu



PAWS Real-world Deployment 
Trials in Cambodia: Srepok National Park [2018-2019]
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Xu

 521 snares/month our tests

vs

 101 snares/month 2018

0

0.1

0.2

0.3

0.4

Experiment Group

High-risk Medium-risk
Low-risk

Snares per patrolled sq. KM



Green Security Games: 
Integrating Real-Time Information in the Pipeline

Data 
Collection
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Learn predictions with 
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Real-Time information



Green Security Games: 
Integrating Real-Time “SPOT” Information [2018] 
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Goal: automatically find poachers

Bondi
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Drone Used to Inform Rangers [2019]

Prob(ranger) = 0.3

 Prob(ranger arrives) = 0.3 [poacher may not be stopped]
 Deceptive signaling to indicate ranger is arriving

BondiXu
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Drone Used to Inform Rangers [2019]

Prob(ranger) = 0.3

 Prob(ranger arrives) = 0.3 [poacher may not be stopped]
 Deceptive signaling to indicate ranger is arriving

BondiXu
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Drone Used to Inform Rangers [2019]

Prob(ranger) = 0.3

 Prob(ranger arrives) = 0.3 [poacher may not be stopped]
 Deceptive signaling to indicate ranger is arriving
 Must be strategic in deceptive signaling

BondiXu
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Strategic Signaling: Informational Advantage
Defender Knows Pure & Mixed Strategy

Xu

ranger

no ranger

0.3
0.3

0.7
0.4 0.4

0.6

No
Signal

New Model: Stackelberg Security Games with Optimal Deceptive Signaling

 Poacher best interest to “believe signal” even if know 50% time defender is lying
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Strategic Signaling: Informational Advantage
Defender Knows Pure & Mixed Strategy

Xu

ranger

no ranger

0.3
0.3

0.7
0.4 0.4

0.6

No
Signal

Theorem: Signaling reduces complexity of equilibrium computation

 Poacher best interest to “believe signal” even if know 50% time defender is lying



Green Security Games:
Around the Globe with SMART partnership [2019]
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Protect Wildlife
600 

National Parks 
Around the Globe

Also: Protect Forests, Fisheries…



Outline

Public Safety & Security: Stackelberg Security Games
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Conservation/Wildlife Protection: Green Security Games 

Public Health: Game against nature Prof Eric Rice
Social Work



Public Health
Optimizing Limited Intervention (Social Worker) Resources
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Preventing HIV in homeless youth: Rates of HIV 10 times housed population

 Shelters: Limited number of peer leaders to spread HIV information in social networks
 “Real” social networks gathered from observations in the field; not facebook etc



Influence Maximization Background

 Given: 

 Social network Graph G

 Choose K “peer leader” nodes

 Objective:

 Maximize expected number of influenced nodes

 Assumption: Independent cascade model of information spread
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Independent Cascade Model and 
Real-world Physical Social Networks
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A B
P(A,B)=0.4

C D

0 1μ = 0.5

C D

0 1μ ∈ [0.3, 0.7]



Robust, Dynamic Influence Maximization

 Worst case parameters: a zero-sum game against nature

 Payoffs: (performance of algorithm)/OPT

Nature
Chooses parameters 

μ,σvs

Algorithm
Chooses policy, i.e.,

Chooses Peer leaders 
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Wilder



Params #1 Params #2

Policy #1 0.8, -0.8 0.3, -0.3

Policy #2 0.7, -0.7 0.5, -0.5

HEALER Algorithm [2017]
Robust, Dynamic Influence Maximization

 Equilibrium strategy despite exponential strategy spaces: Double oracle

Influencer’s oracle

Nature’s oracle

Params #1 Params #2 Params #3

Policy #1 0.8, -0.8 0.3, -0.3 0.4, -0.4

Policy #2 0.7, -0.7 0.5, -0.5 0.6, -0.6

Policy #3 0.6, -0.6 0.4, -0.4 0.7, -0.7

In
flu

en
ce

r

Nature
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Params #1 Params #2 Params #3

Policy #1 0.8, -0.8 0.3, -0.3 0.4, -0.4

Policy #2 0.7, -0.7 0.5, -0.5 0.6, -0.6

Policy #3 0.6, -0.6 0.4, -0.4 0.7, -0.7

Wilder

Theorem: Converge with approximation guarantees

\ Params #1 Params #2

Policy #1 0.8, -0.8 0.3, -0.3

Policy #2 0.7, -0.7 0.5, -0.5

Policy #3 0.6, -0.6 0.4, -0.4



Challenge: Multi-step Policy

K = 4
1st time step
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Params #1 Params #2 Params #3

Policy #1 0.8, -0.8 0.3, -0.3 0.4, -0.4

Policy #2 0.7, -0.7 0.5, -0.5 0.6, -0.6

Policy #3 0.6, -0.6 0.4, -0.4 0.7, -0.7

K = 4
2nd time step

WilderYadav
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HEALER: POMDP Model for Multi-Step Policy
Robust, Dynamic Influence Maximization

Action
Choose nodes

Observation: Update
propagation probability

POMDP 
Policy

HIDDEN STATE

Yadav

Params #1 Params #2 Params #3

Policy #1 0.8, -0.8 0.3, -0.3 0.4, -0.4

Policy #2 0.7, -0.7 0.5, -0.5 0.6, -0.6

Policy #3 0.6, -0.6 0.4, -0.4 0.7, -0.7
POMDP
partitions



Pilot Tests with HEALER
with 170 Homeless Youth [2017] 

Recruited youths:

HEALER HEALER++ DEGREE CENTRALITY

62 56 55
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12 peer leaders

Yadav Wilder



Results: Pilot Studies [2017]
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Yadav Wilder

More details: Journal of Society of Social Work & Research (Nov 2018)



Data to Deployment Pipeline:
Network Sampling to avoid Data Collection Bottleneck
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Data collection costly Sample 18%

Sampling from largest 
communities 

Wilder

New experiment With 60 homeless youth

12 peer leaders



Results: Pilot Studies 
with New Sampling Algorithm [2018]
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Wilder



AI Assistant: HEALER
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Continuing Research on HIV prevention [2019]

 Completing 900 youth study at three homeless shelters

3/18/2019 73



Public Health: Optimizing Limited Social Worker Resources
Preventing Tuberculosis in India [2019]

74Date: 3/18/2019

Tuberculosis (TB): ~500,000 deaths/year, ~3M infected in India
 Patient in low resource communities: Non-adherence to TB Treatment

 Digital adherence tracking: Patients call phone #s on pill packs; many countries
 Predict adherence risk from phone call patterns? Intervene before patients miss dose 
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Killian

 Working jointly with Everwell Health Solutions & Microsoft Research India

Public Health: Optimizing Limited Resources 
Preventing Tuberculosis in India [2019]

 Everwell collaborates on software: Serves millions of TB patients in India, other countries



TB Treatment Adherence but Limited Resources:
Intervening Selectively before patients miss doses
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Data 
Collect

Phone 
logs

Predict
high risk 
patients

RF or 
LSTM

Prescription

Constraint
Top K

Field

Killian

 15K patients, 1.5M calls



Increasing TB Treatment Adherence:
Intervening before patients miss doses [2019]
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Killian

Data from

State of
Maharashtra

India
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Improving TB interventions
Stage by Stage Methods in Data to Deployment Pipeline
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Wilder

• Maximizing accuracy ≠ Maximizing decision quality

Predict: Machine learning

Goal: maximize accuracy

Local search

Prescription: Optimization 

Goal: maximize decision quality



Improving TB interventions
Decision-Focused Method in Data to Deployment Pipeline
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Wilder

Automatically shape model loss: Optimization problem in training loop

Predict: Machine learning 

Goal: maximize accuracy

Local search

Prescribe: Optimization 

Goal: maximize decision quality



Improving TB interventions
Decision-Focused vs Stage by Stage Methods
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(AAAI19)

Wilder
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Stage by Stage Decision Focused

Decision focused learning improves TB interventions



Integrating with Everwell’s Platform
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Killian

This work has a lot of potential to save lives.

Bill Thies
Co-founder, Everwell Health Solutions

.



Childhood Obesity Prevention 
via Network Optimization

 Childhood obesity: Diabetes, stroke and heart disease

 Early intervention with mothers: Change diet/activity using social networks

 Competitive influences in networks: Add/remove edges for behavior change

Wilder Ou



Suicide Prevention in Marginalized Populations: 
Choose Gatekeepers in social networks

3/18/2019 83

Nature
Chooses some 

gatekeepers to not 
participate

vs
Algorithm

Chooses K gatekeepers 

 Worst case parameters: a zero-sum game against nature

Rahmattalabi



New Directions: Los Angeles
From an Angeleno [2019]

3/18/2019 84

Mayor Garcetti @ USC

(AAMAS18)



Date: 3/18/2019 85

New Directions: Mumbai
From a Mumbaikar [2019]

Chief Minister Maharashtra 
@ Mumbai 

AI for Social Good(AAAI18)



Key Lessons
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Directing Multiagent Systems Research towards Social Good:
• Public safety & security, conservation, public health

Shared multiagent research challenges, solutions across problem areas:
• Challenge: Optimize limited intervention resources in interacting with others
• Solution: Computational game theory models/algorithms

Research contributions that arise from the domain:
• Models: Stackelberg Security Games/Green Security Games
• Algorithms: Incremental strategy generation, marginals, double oracle



Future: Multiagent Systems  and AI Research for Social Good 
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Tremendous potential: Improving society & fighting social injustice

Vital to bring AI to those not benefiting from AI, e.g., global south

Embrace interdisciplinary research -- social work, conservation



Future Multiagent Systems and AI for Social Good
in the FIELD

88Date: 3/18/2019

When working on AI for Societal Benefits: 
Important step out of lab & into the field

Societal impact
Model deficiencies for new research



Thank you for Inspiring Us
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THANK YOU
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