Al for Social Good: Learning & Planning in End-to-End, Data to Deployment Pipeline

MILIND TAMBE

Founding Co-director, Center for Artificial Intelligence in Society (CAIS)

University of Southern California

tambe@usc.edu

Co-Founder, Avata Intelligence

Al and Multiagent Systems Research for Social Good

Public Safety and **Security**

Conservation

Public Health

Viewing Social Problems as Multiagent Systems

Key research challenge across problem areas:

Optimize Our Limited Intervention Resources when Interacting with Other Agents

Computational Game Theory

End-to-End Data-to-Deployment

Multiagent Systems Optimizing Limited Intervention (Security) Resources

Public Safety and Security Stackelberg Security Games

- Game Theory for security resource optimization
- Real-world: US Coast Guard, US Federal Air Marshals Service...

Multiagent Systems Optimizing Limited Intervention (Ranger) Resources

Conservation/Wildlife Protection: Green Security Games

- Security games and adversary (poacher) behavior prediction
- Real-world: National parks in Uganda, Malaysia...

Multiagent Systems Optimizing Limited Intervention (Social Worker) Resources

Public Health: Games against Nature

- Social networks to enhance intervention, e.g., HIV information
- Real-world pilot tests: Homeless youth shelters in Los Angeles

Solving Problems: Overall Research Framework Interdisciplinary Partnerships

Solving Problems: Overall Research Framework End-to-End, Data to Deployment Pipeline

Immersion

Data Collection

Predictive model

Learning/ Expert input Prescriptive algorithm

Game theory Intervention Field tests & deployment

Outline: Overview of Past 10 Years of Research

Public Safety & Security: Stackelberg Security Games

Conservation/Wildlife Protection: Green Security Games

Public Health: Influence maximization/Game against nature

- AAMAS,AAAI,IJCAI
- Real world evaluation
- PhD students & postdocs

11 July 2006: Mumbai

ARMOR Airport Security: LAX(2007) Game Theory direct use for security resource optimization?

Erroll Southers

LAX Airport, Los Angeles

11

Game Theory for Security Resource Optimization

New Model: Stackelberg Security Games

Game Theory for Security Resource Optimization

New Model: Stackelberg Security Games

Game Theory for Security Resource Optimization

New Model: Stackelberg Security Games

Stackelberg: Defender commits to randomized strategy, adversary responds

Security game: Played on targets, payoffs based on targets covered or not

Optimization: Not 100% security; increase cost/uncertainty to attackers

Adversary

S ANGELES AND OUR		Terminal #1	Terminal #2
POLICE	Terminal #1	4, -3	-1, 1
Defender	Terminal #2	-5, 5	2, -1

ARMOR at LAX **Basic Security Game Operation [2007]**

	Target #1	Target #2	Target #3
Defender #1	2, -1	-3, 4	-3, 4
Defender #2	-3, 3	3, -2	
Defender #3			

Mixed Integer Program

Pr (Canine patrol, 8 AM @Terminals 2,5,6) = 0.17

Canine Team Schedule, July 28

	Term 1	Term 2	Term 3	Term 4	Term 5	Term 6	Term 7	Term 8
8 AM		Team1			Team3	Team5		
9 AM			Team1	Team2				Team4

Kiekintveld

Target #3

-3, 4

Pita

$$\max \sum_{i \in X} \sum_{j \in Q} R_{ij} \times x_i \times q_j$$

Maximize defender expected utility

$$s.t. \quad \sum_{i} x_{i} = 1$$

Defender mixed strategy

$$\sum_{j \in Q} q_j = 1$$

Adversary response

$$0 \le (a - \sum_{i \in X} C_{ij} x_i) \le (1 - q_j) M$$

Adversary best response

SECURITY GAME PAYOFFS [2007] Previous Research Provides Payoffs in Security Games

	Target #1	Target #2	Target #3
Defender #1	2, -1	-3, 4	-3, 4
Defender #2	-3, 3	3, -2	
Defender #3			

+ Handling Uncertainty

 $\max \sum_{i \in X} \sum_{j \in Q} R_{ij} \times x_i \times q_j$

Maximize defender expected utility

ARMOR:

Optimizing Security Resource Allocation [2007]

First application: Computational game theory for operational security

January 2009

 January 3rd Loaded 9/mm pistol
 January 9th 16-handguns, 1000 rounds of ammo
 January 10th Two unloaded shotguns
 January 12th Loaded 22/cal rifle
 January 17th Loaded 9/mm pistol
 January 22nd Unloaded 9/mm pistol

18

ARMOR AIRPORT SECURITY: LAX [2008] Congressional Subcommittee Hearings

Commendations City of Los Angeles

Erroll Southers testimony Congressional subcommittee

19

ARMOR...throws a digital cloak of invisibility....

Federal Air Marshals Service [2009]

Visiting Freedom Center: Home of Federal Air Marshals Service

Date: 3/18/2019 **20**

Scale Up Difficulty [2009]

Kiekintveld

Jain

 χ_i Defender mixed strategy

1000 flights, 20 air marshals:

10⁴¹ combinations

$$\max_{x,q} \sum_{i \in X} \sum_{j \in Q} R_{ij} x_i q_j$$

s.t.
$$\sum_{i} x_{i} = 1, \sum_{j \in Q} q_{j} = 1$$

$$0 \le (a - \sum_{i \in X} C_{ij} x_i) \le (1 - q_j) M$$

	Attack 1	Attack 2	Attack 	Attack 1000
1 ,2, 3	5,-10	4,-8		-20,9
1, 2, 4	5,-10	4,-8		-20,9
1, 3, 5	5,-10	-9,5		-20,9
	← 10	41 rows		

Scale Up [2009] Exploiting Small Support Size

Kiekintveld

Jain

Theorem: For T targets, optimal solution of support set size T+1 always exists

Small support set size:

Most x_i variables zero

1000 flights, 20 air marshals:

(10⁴¹) combinations

		Attack 1	Attack 2	Attack 	Attack 1000
$X_{123} - 0.0$	1 2 3	5-40	4,-0		-20.0
$\lambda_{123} - 0.0$	1 ,2, 5	5,-10	1, 0	•••	-20,0
$X_{124} = 0.239$	1, 2, 4	5,-10	4,-8	•••	-20,9
	1 2 5	5 10	0.5		20.0
$X_{135} = 0.0$., 0, 0		0,0	•••	
$X_{378} = 0.123$					
		 10 ⁴	¹ rows		

Kiekintveld

Jain

Incremental strategy generation: First for Stackelberg Security Games

Master

	Attack 1	Attack 2	 Attack 6
1,2,4	5,-10	4,-8	 -20,9

	Attack 1	Attack 2	 Attack 6
1,2,4	5,-10	4,-8	 -20,9
3,7,8	-8,10	-8,10	 -8, 10

Slave (LP Duality Theory)
Best new pure strategy

Attack 1
1,2,4 5,-10
3,7,8 -8.10
...

GLOBAL OPTIMAL 1000 defender strategies NOT 10⁴¹ Theory)
strategy

IRIS: Deployed FAMS [2009-]

Significant change in FAMS operations

September 2011: Certificate of Appreciation (Federal Air Marshals)

Date: 3/18/2019 **24**

PROTECT: Port and Ferry Protection Patrols [2011] Using Marginals for Scale up

Shieh

h A

Boston

Los Angeles

New York

PROTECT: Ferry Protection Deployed [2013]

Date: 3/18/2019

26

FERRIES: Mobile Resources & Moving Targets Spatio-Temporal Security Games: Transition Graphs

Fang

ng Jiang

FERRIES: Mobile Resources & Moving Targets Spatio-Temporal Security Games: Transition Graphs

Fang

ng Jiang

FERRIES: Mobile Resources & Moving Targets Spatio-Temporal Security Games: Transition Graphs

Fang

g Jiang

FERRIES: Scale up Difficulties

Fang

g Jiang

Theorem: Marginals enable scale-up with no solution quality loss

Exponential N^T routes 10 min 5 min 15 min Ferry A A, 15 min A, 10 min A, 5 min Patroller B, 15 min B B, 5 min B, 10 min C, 5 min C, 15 min C, 10 min

PROTECT: Port Protection Patrols [2013] Congressional Subcommittee Hearing

COAST GUARD DISTRICT

June 2013: Meritorious Team Commendation from Commandant (US Coast Guard)

July 2011: Operational Excellence Award (US Coast Guard, Boston)

31

Solving Problems: Overall Research Framework End-to-End, Data to Deployment Pipeline

Immersion

Data Collection

Predictive model

Learning/ Expert input

Prescriptive algorithm

Game theory Intervention Field tests & deployment

Global Presence of Security using Game Theory

Date: 3/18/2019

33

Significant Real-World Evaluation Effort

Security Games superior in Optimizing Limited Security Resources Vs

Human Schedulers/"simple random"

Field Evaluation of Schedule Quality

Improved Patrol Unpredictability & Coverage for Less Effort

Patrols Before PROTECT: Boston

Patrols After PROTECT: Boston

35

350% increase in defender expected utility

Field Evaluation of Schedule Quality

Improved Patrol Unpredictability & Coverage for Less Effort

FAMS: IRIS Outperformed expert human over six months

Report:GAO-09-903T

Train patrols: Game theory outperformed expert humans schedule 90 officers

Field Tests Against Adversaries

Computational Game Theory in the Field

Controlled

- 21 days of patrol, identical conditions
- Game theory vs Baseline+Expert

Not Controlled

37

New Directions in Stackelberg Security Games [2018]

Sinha

McCarthy

Schlenker

 Threat Screening Games (AAAI16, IJCAI17, IJCAI18...)

Cyber Security Games (IJCAI17, AAMAS18, CogSci18...)

Date: 3/18/2019 3/18/2019

Outline

Public Safety & Security: Stackelberg Security Games

Conservation/Wildlife Protection: Green Security Games

Dr Andy Plumptre Conservation Biology

Public Health: Influence maximization/Game against nature

Poaching of Wildlife in Uganda Limited Intervention (Ranger) Resources to Protect Forests

Green Security Games[2015] Limited Ranger Resources to Protect Forests

Fang

Adversary not fully strategic; multiple "bounded rational" poachers

Green Security Games [2015] Game Theory + Machine Learning Poacher Behavior

Xu

Learn adversary bounded rational response: At each grid location i

Learning Adversary Model 12 Years of Past Poaching Data

Learning Adversary Model Uncertainty in Observations

Adversary Modeling [2016] Imperfect Crime Observation-aware Ensemble Model

PAWS: Protection Assistant for Wildlife Security Poacher Attack Prediction in the Lab

Poacher Behavior Prediction

Date: 3/18/2019 46

PAWS:

Real-world Deployment 2016: First Trial

Ford

Gholami

- Two 9-sq. km patrol areas
 - Where there were infrequent patrols
 - Where no previous hot spots

PAWS Real-world Deployment Two Hot Spots Predicted

Ford

- Poached Animals: Poached elephant
- Snaring: 1 elephant snare roll
- Snaring: 10 Antelope snares

Historical Base Hit Rate	Our Hit Rate
Average: 0.73	3

Date: 3/18/2019 **48**

PAWS Predicted High vs Low Risk Areas: 2 National Parks, 24 areas each, 6 months [2017]

Queen Elizabeth National Park

Murchison Falls National Park

Snares per patrolled sq. KM

Snares per patrolled sq. KM

Date: 3/18/2019 49

PAWS Real-world Deployment Cambodia: Srepok Wildlife Sanctuary [2018-2019]

Xu

PAWS Real-world Deployment Trials in Cambodia: Srepok National Park [2018-2019]

"@Milind: I am Super excited with our tests the results. Let's get this going on other countries too this year." VS

Rohit Singh, WWF (2019)

01 snares/month 2018

Green Security Games:Integrating Real-Time Information in the Pipeline

52

Green Security Games: Integrating Real-Time "SPOT" Information [2018]

Bondi

53

Goal: automatically find poachers

Drone Used to Inform Rangers [2019]

- Xu
- Bondi

- Prob(ranger arrives) = 0.3 [poacher may not be stopped]
- Deceptive signaling to indicate ranger is arriving

Drone Used to Inform Rangers [2019]

- Xu
- Bondi

- \triangleright Prob(ranger arrives) = 0.3 [poacher may not be stopped]
- Deceptive signaling to indicate ranger is arriving

Drone Used to Inform Rangers [2019]

Xu

Bondi

- > Prob(ranger arrives) = 0.3 [poacher may not be stopped]
- Deceptive signaling to indicate ranger is arriving
- Must be strategic in deceptive signaling

Strategic Signaling: Informational Advantage Defender Knows Pure & Mixed Strategy

Xu

New Model: Stackelberg Security Games with Optimal Deceptive Signaling

> Poacher best interest to "believe signal" even if know 50% time defender is lying

Strategic Signaling: Informational Advantage Defender Knows Pure & Mixed Strategy

Χu

Theorem: Signaling reduces complexity of equilibrium computation

> Poacher best interest to "believe signal" even if know 50% time defender is lying

Green Security Games: Around the Globe with SMART partnership [2019]

Protect Wildlife 600 National Parks Around the Globe

Also: Protect Forests, Fisheries...

Date: 3/18/2019 **59**

Outline

Public Safety & Security: Stackelberg Security Games

Conservation/Wildlife Protection: Green Security Games

Public Health: Game against nature

Prof Eric Rice Social Work

Public Health Optimizing Limited Intervention (Social Worker) Resources

Preventing HIV in homeless youth: Rates of HIV 10 times housed population

- > Shelters: Limited number of peer leaders to spread HIV information in social networks
- "Real" social networks gathered from observations in the field; not facebook etc.

61

Influence Maximization Background

Given:

- Social network Graph G
- Choose K "peer leader" nodes

62

- Objective:
 - Maximize expected number of influenced nodes

Assumption: Independent cascade model of information spread

Independent Cascade Model and Real-world Physical Social Networks

Robust, Dynamic Influence Maximization

Worst case parameters: a zero-sum game against nature

Algorithm

Chooses policy, i.e., Chooses Peer leaders

VS

Nature

Chooses parameters μ,σ

Payoffs: (performance of algorithm)/OPT

HEALER Algorithm [2017] Robust, Dynamic Influence Maximization

Theorem: Converge with approximation guarantees

Equilibrium strategy despite exponential strategy spaces: Double oracle

Nature

_
W
Ö
\subseteq
<u>a</u>
\supset
Į
_

	Params #1	Params #2	Params #3
Policy #1	0.8, -0.8	0.3, -0.3	0.4, -0.4
Policy #2	0.7, -0.7	0.5, -0.5	0.6, -0.6
Policy #3	0.6, -0.6	0.4, -0.4	0.7, -0.7

		Params #1	Params #2	Params #3
	Policy #1	0.8, -0.8	0.3, -0.3	0.4, -0.4
	Policy #2	0.7, -0.7	0.5, -0.5	0.6, -0.6
Date: 3/18/2019	Policy #3	0.6, -0.6	0.4, -0.4	0.7, -0.7

Influencer's oracle

\	Params #1	Params #2
Policy #1	0.8, -0.8	0.3, -0.3
Policy #2	0.7, -0.7	0.5, -0.5
Policy #3	0.6, -0.6	0.4, -0.4

Challenge: Multi-step Policy

	Params #1	Params #2	Params #3
Policy #1	0.8, -0.8	0.3, -0.3	0.4, -0.4
Policy #2	0.7, -0.7	0.5, -0.5	0.6, -0.6
Policy #3	0.6, -0.6	0.4, -0.4	0.7, -0.7

HEALER: POMDP Model for Multi-Step Policy Robust, Dynamic Influence Maximization

	Params #1	Params #2	Params #3
Policy #1	0.8, -0.8	0.3, -0.3	0.4, -0.4
Policy #2	0.7, -0.7	0.5, -0.5	0.6, -0.6
Policy #3	0.6, -0.6	0.4, -0.4	0.7, -0.7

Observation: Update propagation probability

3/18/2019

Pilot Tests with HEALER with 170 Homeless Youth [2017]

Yadav

Recruited youths:

HEALER	HEALER++	DEGREE CENTRALITY
62	56	55

12 peer leaders

Results: Pilot Studies [2017]

69

More details: Journal of Society of Social Work & Research (Nov 2018)

Data to Deployment Pipeline: Network Sampling to avoid Data Collection Bottleneck

New experiment With 60 homeless youth

12 peer leaders

Results: Pilot Studies with New Sampling Algorithm [2018]

71

Al Assistant: HEALER

Date: 3/18/2019

72

Continuing Research on HIV prevention [2019]

Completing 900 youth study at three homeless shelters

Public Health: Optimizing Limited Social Worker Resources Preventing Tuberculosis in India [2019]

Tuberculosis (TB): ~500,000 deaths/year, ~3M infected in India

- > Patient in low resource communities: Non-adherence to TB Treatment
- > Digital adherence tracking: Patients call phone #s on pill packs; many countries
- Predict adherence risk from phone call patterns? Intervene before patients miss dose

74

Public Health: Optimizing Limited Resources Preventing Tuberculosis in India [2019]

Killian

- Working jointly with Everwell Health Solutions & Microsoft Research India
- > Everwell collaborates on software: Serves millions of TB patients in India, other countries

Date: 3/18/2019 _______ **75**

TB Treatment Adherence but Limited Resources: Intervening Selectively before patients miss doses

Killian

76

> 15K patients, 1.5M calls

Increasing TB Treatment Adherence: Intervening before patients miss doses [2019]

Killiar

Data from

State of Maharashtra

India

Improving TB interventions Stage by Stage Methods in Data to Deployment Pipeline

Wilder

78

Maximizing accuracy ≠ Maximizing decision quality

Improving TB interventions Decision-Focused Method in Data to Deployment Pipeline

Wilder

Automatically shape model loss: Optimization problem in training loop

Predict: Machine learning

Goal: maximize accuracy

Prescribe: Optimization

Goal: maximize decision quality

Improving TB interventions Decision-Focused vs Stage by Stage Methods

Wilder

Decision focused learning improves TB interventions

Date: 3/18/2019 **80**

Integrating with Everwell's Platform

everwell

This work has a lot of potential to save lives.

Bill Thies

Childhood Obesity Prevention via Network Optimization

- Childhood obesity: Diabetes, stroke and heart disease
- > Early intervention with mothers: Change diet/activity using social networks
- Competitive influences in networks: Add/remove edges for behavior change

Suicide Prevention in Marginalized Populations: Choose Gatekeepers in social networks

Worst case parameters: a zero-sum game against nature

Algorithm

Chooses K gatekeepers

VS

Nature

Chooses some gatekeepers to not participate

New Directions: Los Angeles From an Angeleno [2019]

(AAMAS18)

Mayor Garcetti @ USC

3/18/2019

New Directions: Mumbai From a Mumbaikar [2019]

(AAAI18)

Government of Maharashtra महाराष्ट्र शासन

Chief Minister Maharashtra

@ Mumbai

Al for Social Good

Date: 3/18/2019 **85**

Key Lessons

Directing Multiagent Systems Research towards Social Good:

• Public safety & security, conservation, public health

Shared multiagent research challenges, solutions across problem areas:

- Challenge: Optimize limited intervention resources in interacting with others
- Solution: Computational game theory models/algorithms

Research contributions that arise from the domain:

- *Models*: Stackelberg Security Games/Green Security Games
- Algorithms: Incremental strategy generation, marginals, double oracle

Future: Multiagent Systems and Al Research for Social Good

Tremendous potential: Improving society & fighting social injustice

Vital to bring AI to those not benefiting from AI, e.g., global south

Embrace interdisciplinary research -- social work, conservation

Date: 3/18/2019

87

Future Multiagent Systems and Al for Social Good in the FIELD

When working on AI for Societal Benefits: Important step out of lab & into the field

- Societal impact
- Model deficiencies for new research

88

Thank you for Inspiring Us

89

THANK YOU

@MilindTambe_Al

CAIS.USC.EDU