Al for Social Good: Decision aids for Countering Terrorism, Extinction, Homelessness

MILIND TAMBE

Founding Co-director, Center for Artificial Intelligence in Society (CAIS)

University of Southern California

tambe@usc.edu

Co-Founder, Avata Intelligence

Al and Multiagent Systems Research for Social Good

Public Safety and **Security**

Conservation

Public Health

Viewing Social Problems as Multiagent Systems

Key research challenge across problem areas:

Optimize Our Limited Intervention Resources when Interacting with Other Agents

Multiagent Systems Optimizing Limited Intervention (Security) Resources

Public Safety and Security Stackelberg Security Games

- Game Theory for security resource optimization
- Real-world: US Coast Guard, US Federal Air Marshals Service...

Multiagent Systems Optimizing Limited Intervention (Ranger) Resources

Conservation/Wildlife Protection: Green Security Games

- Security games and adversary (poacher) behavior prediction
- Real-world: National parks in Uganda, Malaysia...

Multiagent Systems Optimizing Limited Intervention (Messaging) Resources

Public Health Awareness: Influence Maximization as a Game against Nature

- Social networks to enhance intervention, e.g., HIV information
- Real-world pilot tests: Homeless youth shelters in Los Angeles

Overall Research Framework, Partnerships and Publications

Immersion/ Models New multiagent intervention algorithms

Field testing and deployment

Outline

Public Safety and Security Stackelberg Security Games

Conservation/Wildlife Protection Green Security Games

Public Health Influence maximization/Game against nature

- AAMAS,AAAI,IJCAI evaluation + Real world evaluation
- PhD students and postdocs

11 July 2006: Mumbai

ARMOR Airport Security: LAX(2007) Game Theory direct use for security resource optimization?

Erroll Southers

LAX Airport, Los Angeles

10

Game Theory for Security Resource Optimization

New Model: Stackelberg Security Games, key aspects for tractability

Set of targets, payoffs based on targets covered or not Stackelberg Leader-Follower formulation

Date: 12/3/18

11

Model: Stackelberg Security Games

Stackelberg: Defender commits to randomized strategy, adversary responds

Security optimization: Not 100% security; increase cost/uncertainty to attackers

Challenges faced: Massive scale games

Adversary

12

65 MIGELES AIRDORN		Terminal #1	Terminal #2
POLICE	Terminal #1	4, -3	-1, 1
Defender	Terminal #2	-5, 5	2, -1

ARMOR at LAX Basic Security Game Operation [2007]

Kiekintveld

13

	Target #1	Target #2	Target #3
Defender #1	2, -1	-3, 4	-3, 4
Defender #2	-3, 3	3, -2	
Defender #3			

Mixed Integer Program

Pr (Canine patrol, 8 AM @Terminals 2,5,6) = 0.17

Canine	Team	Schedule,	July	28
--------	-------------	-----------	------	----

	Term 1	Term 2	Term 3	Term 4	Term 5	Term 6	Term 7	Term 8
8 AM		Team1			Team3	Team5		
9 AM			Team1	Team2				Team4

Security Game MIP [2007]

$$\max \sum_{i \in X} \sum_{j \in Q} R_{ij} \times x_i \times q_j$$

Maximize defender expected utility

$$s.t. \quad \sum_{i} x_{i} = 1$$

Defender mixed strategy

$$\sum_{j \in Q} q_j = 1$$

Adversary response

$$0 \le (a - \sum_{i \in X} C_{ij} x_i) \le (1 - q_j) M$$

Adversary best response

SECURITY GAME PAYOFFS [2007] Previous Research Provides Payoffs in Security Games

	Target #1	Target #2	Target #3
Defender #1	2, -1	-3, 4	-3, 4
Defender #2	-3, 3	3, -2	
Defender #3			

+ Handling Uncertainty

 $\max \sum_{i \in X} \sum_{j \in Q} R_{ij} \times x_i \times q_j$

Maximize defender expected utility

ARMOR:

Optimizing Security Resource Allocation [2007]

First application: Computational game theory for operational security

January 2009

•January 3rd Loaded 9/mm pistol

•January 9th 16-handguns,

January 10th Two unloaded shotguns

•January 12th Loaded 22/cal rifle

•January 17th Loaded 9/mm pistol

•January 22nd Unloaded 9/mm pistol

16

ARMOR AIRPORT SECURITY: LAX [2008] Congressional Subcommittee Hearings

Commendations City of Los Angeles

Erroll Southers testimony Congressional subcommittee

19

ARMOR...throws a digital cloak of invisibility....

Federal Air Marshals Service [2009]

Visiting Freedom Center: Home of Federal Air Marshals Service

	Strategy 1	Strategy 2	Strategy 3	Strategy 4
Strategy 1				
Strategy 2	IRIS 1000 flights/day			
Strategy 3	Actions: ~10 ⁴¹			
Strategy 4				

18

Scale Up Difficulty [2009]

Kiekintveld

Jain

19

Defender mixed strategy

1000 flights, 20 air marshals:

10⁴¹) combinations

$\max_{x,q}$	$\sum_{i}\sum_{j}$	$R_{ij}x_iq_j$
	$i \in X \ j \in Q$	

s.t.
$$\sum_{i} x_{i} = 1, \sum_{j \in Q} q_{j} = 1$$

s.t.
$$\sum_{i} x_{i} = 1, \sum_{j \in Q} q_{j} = 1$$

 $0 \le (a - \sum_{i \in X} C_{ij} x_{i}) \le (1 - q_{j})M$

	Attack 1	Attack 2	Attack 	Attack 1000
1 ,2, 3	5,-10	4,-8		-20,9
1, 2, 4	5,-10	4,-8		-20,9
1, 3, 5	5,-10	-9,5		-20,9
	← 10	41 rows		

Scale Up [2009] Exploiting Small Support Size

Kiekintveld

Jain

Theorem: For T targets, solutions exist where support set size is T+1

Small support set size:

Most x_i variables zero

1000 flights, 20 air marshals:

(10⁴¹) combinations

		Attack 1	Attack 2	Attack 	Attack 1000
$X_{123} - 0.0$	1,2,0	5, 10	4, 0		20,0
$N_{123} - 0.0$. ,_, &	<u> </u>	., 0		
$X_{124} = 0.239$	1, 2, 4	5,-10	4,-8		-20,9
$X_{135} - 0.0$	1 2 5	5 -10	-0.5		-20.0
$\lambda_{135} - 0.0$	1, 0, 0 11		-,-	•••	
$X_{378} = 0.123$					
	🛨	— 10 ⁴	¹ rows		

Kiekintveld

Jain

Incremental strategy generation: First for Stackelberg Security Games

Master

	Attack 1	Attack 2	 Attack 6
1,2,4	5,-10	4,-8	 -20,9

	Attack 1	Attack 2	 Attack 6
1,2,4	5,-10	4,-8	 -20,9
3,7,8	-8,10	-8,10	 -8, 10

Slave (LP Duality Theory)
Best new pure strategy

Attack 1
1,2,4 5,-10
3,7,8 -8.10
...

GLOBAL OPTIMAL 1000 defender strategies NOT 10⁴¹ Theory)
strategy

IRIS: Deployed FAMS [2009-]

Significant change in FAMS operations

22

September 2011: Certificate of Appreciation (Federal Air Marshals)

26 Nov 2008, Mumbai Police Checkpoints: Network Security Game

Road networks:

20,000 roads, 15 checkpoints

150 edges 2 Checkpoints 150-choose-2 strategies

Zero-Sum Network Security Game [2013]

Jain

Double oracle: New exact optimal algorithm for scale-up

	Path #1	Path #2	Path #3
Checkpoint strategy #1	5, -5	-1, 1	-2, 2
Checkpoint strategy #2	-5, 5	1, -1	-2, 2

	Path #1	Path #2
Checkpoint strategy #1	5, -5	-1, 1
Checkpoint strategy #2	-5, 5	2, -1

Attacker oracle

Presentation at the Indian National Police Academy: Network Security Game [2016]

Road networks:

20,000 roads, 15 checkpoint: Solved under 20 min

PROTECT: Port and Ferry Protection Patrols [2011] Using Marginals for Scale up

Shieh

า Aı

Boston

Los Angeles

New York

PROTECT: Ferry Protection Deployed [2013]

Date: 12/3/18

27

Fang

g Jiang

Marginal strategy: New scale-up approach for Stackelberg Security Games

Fang

g Jiang

Fang

g Jiang

Patrol protects nearby ferry locations

g Jiang

Fang

g Jiang

ARMOR style LP: Determine probability for each route

FERRIES: Scale-Up Transition Graph Representation

Fang

g Jiang

Variables: NOT routes, but marginal probability over each segment

FERRIES: Scale-Up Transition Graph Representation

Fang

g Jiang

Theorem: Marginal representation does not lose any solution quality

PROTECT: Port Protection Patrols [2013] Congressional Subcommittee Hearing

June 2013: Meritorious Team Commendation from Commandant (US Coast Guard)

July 2011: Operational Excellence Award (US Coast Guard, Boston)

35

Train Patrols Execution Uncertainty: MDPs

36

Jiang

ng Delle Fave

Handling Payoff Uncertainty: Optimal Defender Strategy Minimizing Max Regret

Nguyen

Adversary

Payoff uncertainty

Defender

	Target #1	Target #2
Target #1	4, [-4,-2]	-1, [0,2]
Target #2	- 5, [4,6]	2, [-2,0]

Adversary

DefenderUtility(c): -2.3

Optimal utility: 0.4

Regret (c, payoff): 2.7

Defender

	Target #1	Target #2	С
Target #1	4, -3	-1, 1	0.3
Target #2	-5, 5	2, -2	0.7

Minimizing Maximum Regret: New Iterative Constraint Generation Algorithm

Nguyen

Infinite #regret constraints

min r c, r where $r \ge regret(c, payoff)$, $\forall payoff \in Interval$

Master: Compute Lower Bound

Minimax Regret with sample set of attacker payoffs

New attacker payoff causing max regret

Global Presence of Security using Game Theory [2015-2017]

Date: 12/3/18

39

Evaluating Deployed Security Systems Not Easy

How Well Optimized Use of Limited Security Resources?

Security Games superior
vs
Human Schedulers/"simple random"

- Lab evaluation
- Scheduling competitions: Patrol quality unpredictability? Coverage?
- Field evaluation: Tests against real adversaries
- Economic cost-benefit analysis

***** ...

Field Evaluation of Schedule Quality

Improved Patrol Unpredictability & Coverage for Less Effort

Patrols Before PROTECT: Boston

Patrols After PROTECT: Boston

41

350% increase in defender expected utility

Field Evaluation of Schedule Quality

Improved Patrol Unpredictability & Coverage for Less Effort

FAMS: IRIS Outperformed expert human over six months

Report:GAO-09-903T

Trains: TRUSTS outperformed expert humans schedule 90 officers on LA trains

Field Tests Against Adversaries

Computational Game Theory in the Field

Controlled

- 21 days of patrol, identical conditions
- Game theory vs Baseline+Expert

Not Controlled

43

New Directions in Stackelberg Security Games

Sinha

McCarthy

ny Schlenker

 Threat Screening Games (AAAI16, IJCAI17, IJCAI18...)

Cyber Security Games
 (IJCAI17, AAMAS18, CogSci18...)

Date: 12/3/18 12/3/18 ______

Outline

Public Safety and Security Stackelberg Security Games

Conservation/Wildlife Protection: Green Security Games

Dr Andy Plumptre Conservation Biology

Public Health/Social Work: Influence maximization/Game against nature

Poaching of Wildlife in Uganda Limited Intervention (Ranger) Resources to Protect Forests

Green Security GamesLimited Ranger Resources to Protect Forests

Fang

Adversary not fully strategic; multiple "bounded rational" poachers

Green Security Games Game Theory + Machine Learning Poacher Behavior

Xu

Learn adversary bounded rational response: At each grid location i

Learning Adversary Model 12 Years of Past Poaching Data

Learning Adversary Model Uncertainty in Observations

50

Adversary Modeling Imperfect Crime Observation-aware Ensemble Model

Poacher Attack Prediction in the Lab

52

Poacher Behavior Prediction

Results from 2016

Real-world Deployment 2016: First Trial

Ford

Gholami

53

- Two 9-sq. km patrol areas
 - Where there were infrequent patrols
 - Where no previous hot spots

Real-world Deployment Two Hot Spots Predicted

Ford

Poached Animals: Poached elephant

Snaring: 1 elephant snare roll

Snaring: 10 Antelope snares

Historical Base Hit Rate	Our Hit Rate	
Average: 0.73	3	

Date: 12/3/18 _______ 54

Model Predicted High Risk vs Low Risk Areas: 2 National Parks, 24 areas each, 6 months

Queen Elizabeth National Park

Murchison Falls National Park

Snares per patrolled sq. KM

Snares per patrolled sq. KM

Date: 12/3/18 ______ **55**

Green Security Games: Incorporating Real Time Information

Xu

Bondi

Drones in Green Security Games (AAAI18, IAAI18, GameSec17...)

$$\max_{x} \sum_{i \in X} g_i(x_i)$$
s.t.
$$\sum_{i} x_i = 1$$

Green Security Games: Around the Globe with SMART partnership

600
National Parks
Around the Globe

Wildlife, Forests, Fisheries...

Date: 12/3/18 ______ **57**

Outline

Public Safety and Security Stackelberg Security Games

Conservation/Wildlife Protection: Green Security Games

Public Health: Influence maximization/Game against nature

Prof Eric Rice Social Work

Public Health Optimizing Limited Intervention (Messaging) Resources

Preventing HIV in homeless youth: Rates of HIV 10 times housed population

> Shelters: Limited number of peer leaders to spread HIV information in social networks

59

Influence Maximization Background

Given:

- Social network Graph G
- Choose K "peer leader" nodes

60

- Objective:
 - Maximize expected number of influenced nodes

Assumption: Independent cascade model of information spread

Independent Cascade Model and Real-world Physical Social Networks

Date: 12/3/18

61

Robust, Dynamic Influence Maximization

Worst case parameters: a zero-sum game against nature

Algorithm

Chooses policy, i.e., Chooses Peer leaders

VS

Nature

Chooses parameters μ,σ

Payoffs: (performance of algorithm)/OPT

HEALER Algorithm [2017] Robust, Dynamic Influence Maximization

Theorem: Converge with approximation guarantees

Equilibrium strategy despite exponential strategy spaces: Double oracle

Nature

Influencer

	Params #1	Params #2	Params #3
Policy #1	0.8, -0.8	0.3, -0.3	0.4, -0.4
Policy #2	0.7, -0.7	0.5, -0.5	0.6, -0.6
Policy #3	0.6, -0.6	0.4, -0.4	0.7, -0.7

Nature's oracle

	Params #1	Params #2	Params #3
Policy #1	0.8, -0.8	0.3, -0.3	0.4, -0.4
Policy #2	0.7, -0.7	0.5, -0.5	0.6, -0.6

Influencer's oracle

	Params #1	Params #2	Params #3
Policy #1	0.8, -0.8	0.3, -0.3	0.4, -0.4
Policy #2	0.7, -0.7	0.5, -0.5	0.6, -0.6
Policy #3	0.6, -0.6	0.4, -0.4	0.7, -0.7

Challenge: Multi-step Policy

	Params #1	Params #2	Params #3
Policy #1	0.8, -0.8	0.3, -0.3	0.4, -0.4
Policy #2	0.7, -0.7	0.5, -0.5	0.6, -0.6
Policy #3	0.6, -0.6	0.4, -0.4	0.7, -0.7

HEALER: POMDP Model for Multi-Step Policy [2015] Robust, Dynamic Influence Maximization

 Ya

	Params #1	Params #2	Params #3
Policy #1	0.8, -0.8	0.3, -0.3	0.4, -0.4
Policy #2	0.7, -0.7	0.5, -0.5	0.6, -0.6
Policy #3	0.6, -0.6	0.4, -0.4	0.7, -0.7

Observation: Update propagation probability

12/3/18 65

Pilot Tests with HEALER with 170 Homeless Youth [2017]

Yadav

Recruited youths:

HEALER	HEALER++	DEGREE CENTRALITY
62	56	55

12 peer leaders

Results: Pilot Studies

67

Al Assistant: HEALER

Date: 12/3/18

68

New Directions: Los Angeles From an Angeleno

900 youth study

(AAAI18, AAMAS18)

Mayor Garcetti @ USC

12/3/18

New Directions: Mumbai

From a Mumbaikar

(AAAI18)

Prime Minister Modi @ Mumbai Al for Social Good

70

Key Lessons: Directing Multiagent Systems Research towards Social Good

Multiagent systems research helps address complex social problems:

• Public safety & security, conservation, public health

Shared multiagent research challenges, solutions across problem areas:

- Challenge: Optimize limited intervention resources in interacting with others
- Solution: Computational game theory models/algorithms
- New models: Stackelberg security games, green security games...
- Key algorithms: Incremental strategy generation, marginals, double oracle...

Immersion/Deployment helps identify crucial research challenges

Future: Multiagent Systems and Al Research for Social Good

Tremendous potential: Improving society & fighting social injustice

Vital to bring AI to those not benefiting from AI, e.g., global south

Embrace interdisciplinary research -- social work, conservation

Date: 12/3/18

72

Future Multiagent Systems and Al for Social Good in the FIELD

When working on AI for Societal Benefits:

Important step out of lab & into the field

- → Societal impact
- Actual problem for societal benefit?
- **■** Model deficiencies for new research directions?

73

Thank you

Mentor:

Barbara Grosz

Collaborators:

Sarit Kraus

Vince Conitzer

Eugene Vorobeychik

Andy

USC Collaborators:

Eric Rice

Bistra Dilkina

Phebe Vayanos

Fernando Ordonez

BACKUP

tambe@usc.edu