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AI and Multiagent Systems Research for Social Good

Public Safety 
and Security

Conservation Public Health



Viewing Social Problems as Multiagent Systems

Key research challenge across problem areas:

Optimize Our Limited Intervention Resources 
when 

Interacting with Other Agents
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§ Game Theory for security resource optimization
§ Real-world: US Coast Guard, US Federal Air Marshals Service…

Multiagent Systems
Optimizing Limited Intervention (Security) Resources

Public Safety and Security
Stackelberg Security Games
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§ Security games and adversary (poacher) behavior prediction
§ Real-world: National parks in Uganda, Malaysia…

Conservation/Wildlife Protection:
Green Security Games 

Multiagent Systems
Optimizing Limited Intervention (Ranger) Resources
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Public Health Awareness:  
Influence Maximization as a Game against Nature

§ Social networks to enhance intervention, e.g., HIV information
§ Real-world pilot tests: Homeless youth shelters in Los Angeles

Multiagent Systems
Optimizing Limited Intervention (Messaging) Resources
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Overall Research Framework, Partnerships
and Publications

Field 
testing and 
deployment

New 
multiagent
intervention 
algorithms

Immersion/
Models
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Outline

Public Safety and Security
Stackelberg Security Games
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Conservation/Wildlife Protection
Green Security Games 

Public Health 
Influence maximization/Game against nature

§ AAMAS,AAAI,IJCAI evaluation + Real world evaluation
§ PhD students and postdocs



11 July 2006: Mumbai
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ARMOR Airport Security: LAX(2007)
Game Theory direct use for security resource optimization? 

Glasgow: June 30, 2007
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Erroll Southers LAX Airport, Los Angeles



Terminal #1 Terminal #2
Terminal #1 4, -3 -1, 1

Terminal #2 -5, 5 2, -1

Adversary

Game Theory for Security Resource Optimization

Defender

Set of targets, payoffs based on targets covered or not

Date: 12/3/18 11

New Model: Stackelberg Security Games, key aspects for tractability

Stackelberg Leader-Follower formulation
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Terminal #1 Terminal #2
Terminal #1 4, -3 -1, 1

Terminal #2 -5, 5 2, -1

Adversary

Model: Stackelberg Security Games

Defender

Security optimization: Not 100% security; increase cost/uncertainty to attackers

Challenges faced: Massive scale games

Stackelberg: Defender commits to randomized strategy, adversary responds 

Date: 12/3/18



ARMOR at LAX
Basic Security Game Operation [2007]
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Kiekintveld Pita

Target #1 Target #2 Target #3

Defender #1 2, -1 -3, 4 -3, 4
Defender #2 -3, 3 3, -2 ….
Defender #3 …. …. ….

Pr (Canine patrol, 8 AM @Terminals 2,5,6) = 0.17

Pr (Canine patrol, 8 AM @ Terminals 3,5,7) = 0.33
……

Mixed Integer Program

Canine Team Schedule, July 28
Term 1 Term 2 Term 3 Term 4 Term 5 Term 6 Term 7 Term 8

8 AM Team1 Team3 Team5
9 AM Team1 Team2 Team4
… … … … … … … … …
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Target #1 Target #2 Target #3

Defender #1 2, -1 -3, 4 -3, 4
Defender #2 -3, 3 3, -2 ….
Defender #3 …. …. ….

Date: 12/3/18

Kiekintveld Pita
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Target #1 Target #2 Target #3

Defender #1 2, -1 -3, 4 -3, 4
Defender #2 -3, 3 3, -2 ….
Defender #3 …. …. ….

jqixijRXi Qj
´´åå

Î Î

max Maximize defender 
expected utility

+ Handling
Uncertainty

SECURITY GAME PAYOFFS [2007]
Previous Research Provides Payoffs in Security Games
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ARMOR: 
Optimizing Security Resource Allocation [2007]

Date: 12/3/18

January 2009
•January 3rd Loaded 9/mm pistol
•January 9th 16-handguns, 

1000 rounds of ammo
•January 10th Two unloaded shotguns 
•January 12th Loaded 22/cal rifle
•January 17th Loaded 9/mm pistol
•January 22nd   Unloaded 9/mm pistol

First application: Computational game theory for operational security



ARMOR AIRPORT SECURITY: LAX [2008]
Congressional Subcommittee Hearings

ARMOR…throws a digital cloak of invisibility….
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Commendations
City of Los Angeles

Erroll Southers testimony
Congressional subcommittee



Federal Air Marshals Service [2009]

Visiting Freedom Center: Home of Federal Air Marshals Service

18

Strategy 1 Strategy 2 Strategy 3 Strategy 4

Strategy 1

Strategy 2

Strategy 3

Strategy 4

IRIS 1000 flights/day 
Actions: ~1041

Date: 12/3/18



Scale Up Difficulty [2009]

Attack
1

Attack
2

Attack
…

Attack 
1000

1 ,2, 3 .. 5,-10 4,-8 … -20,9

1, 2, 4 .. 5,-10 4,-8 … -20,9

1, 3, 5 .. 5,-10 -9,5 … -20,9

…

… 1041 rows

1000 flights, 20 air marshals:
1041 combinations 
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Kiekintveld Jain

Defender mixed strategy!"



Scale Up [2009]
Exploiting Small Support Size

Attack
1

Attack
2

Attack
…

Attack
1000

1 ,2, 3 .. 5,-10 4,-8 … -20,9

1, 2, 4 .. 5,-10 4,-8 … -20,9

1, 3, 5 .. 5,-10 -9,5 … -20,9

…

… 1041 rows

1000 flights, 20 air marshals:
1041 combinations 

Small support set size:
Most xi variables zero  

X124 = 0.239
X123 = 0.0

X135 = 0.0
X378 = 0.123

20

Theorem: For T targets, solutions exist where support set size is T+1
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Kiekintveld Jain



New Exact Algorithm for Scale up

Attack 1 Attack 2 … Attack 6
1,2,4 5,-10 4,-8 … -20,9 Slave (LP Duality Theory) 

Best new pure strategy

Master
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Kiekintveld Jain

Incremental strategy generation: First for Stackelberg Security Games

Slave (LP Duality Theory) 
Next best new pure strategy

Attack 1 Attack 2 … Attack 6
1,2,4 5,-10 4,-8 … -20,9
3,7,8 -8,10 -8,10 … -8, 10

Attack 1 Attack 2 … Attack 6
1,2,4 5,-10 4,-8 … -20,9
3,7,8 -8,10 -8,10 … -8, 10
… … … … …

GLOBAL OPTIMAL
1000 defender strategies

NOT 1041
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IRIS: Deployed FAMS [2009-]

Significant change in FAMS operations

September  2011: Certificate of 
Appreciation (Federal Air Marshals)



26 Nov 2008, Mumbai
Police Checkpoints: Network Security Game

Road networks:
20,000 roads, 15 checkpoints

150 edges
2 Checkpoints

150-choose-2 strategies
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Jain



Double oracle: New exact optimal algorithm for scale-up

Path #1 Path #2
Checkpoint 
strategy #1 5, -5 -1, 1 Path #1 Path #2

Checkpoint 
strategy #1 5, -5 -1, 1

Checkpoint 
strategy #2 -5, 5 2, -1

Defender oracle

Attacker oracle

Path #1 Path #2 Path #3

Checkpoint 
strategy #1 5, -5 -1, 1 -2, 2

Checkpoint 
strategy #2 -5, 5 1, -1 -2, 2

Path #1 Path #2 Path #3

Checkpoint 
strategy #1 5, -5 -1, 1 -2, 2

Checkpoint 
strategy #2 -5, 5 1, -1 -2, 2

Zero-Sum Network Security Game [2013]
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Road networks:
20,000 roads, 15 checkpoint:

Solved under 20 min
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Presentation at the Indian National Police Academy:
Network Security Game [2016]



PROTECT: Port and Ferry Protection Patrols [2011]
Using Marginals for Scale up

Boston Los Angeles

New York
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AnShieh



PROTECT: Ferry Protection Deployed [2013]
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A, 5 min A, 10 min A, 15 min

B, 5 min B, 10 min B, 15 min

C, 5 min C, 10 min C, 15 min

A

B

C

5 min 10 min 15 min

FERRIES: Mobile Resources & Moving Targets
Transition Graph Representation
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JiangFang

Marginal strategy: New scale-up approach for Stackelberg Security Games



A, 5 min A, 10 min A, 15 min

B, 5 min B, 10 min B, 15 min

C, 5 min C, 10 min C, 15 min

A

B

C

5 min 10 min 15 min

FERRIES: Mobile Resources & Moving Targets
Transition Graph Representation
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Ferry

JiangFang



A, 5 min A, 10 min A, 15 min

B, 5 min B, 10 min B, 15 min

C, 5 min C, 10 min C, 15 min

A

B

C

5 min 10 min 15 min

FERRIES: Mobile Resources & Moving Targets
Transition Graph Representation
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Ferry

Patroller

Patrol protects nearby ferry locations

JiangFang



A, 5 min A, 10 min A, 15 min

B, 5 min B, 10 min B, 15 min

C, 5 min C, 10 min C, 15 min

A

B

C

5 min 10 min 15 min

FERRIES: Mobile Resources & Moving Targets
Transition Graph Representation
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Patroller

Ferry

JiangFang



A, 5 min A, 10 min A, 15 min

B, 5 min B, 10 min B, 15 min

C, 5 min C, 10 min C, 15 min

A

B

C

5 min 10 min 15 min

ARMOR style LP: Determine probability for each route

FERRIES: Mobile Resources & Moving Targets
Transition Graph Representation
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Patroller

Ferry

NT variablesDefender

JiangFang



A, 5 min A, 10 min A, 15 min

B, 5 min B, 10 min B, 15 min

C, 5 min C, 10 min C, 15 min

A

B

C

5 min 10 min 15 min

FERRIES: Scale-Up 
Transition Graph Representation
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Patroller

Ferry

NT variablesDefender

Variables: NOT routes, but marginal probability over each segment

JiangFang



A, 5 min A, 10 min A, 15 min

B, 5 min B, 10 min B, 15 min

C, 5 min C, 10 min C, 15 min

A

B

C

5 min 10 min 15 min

FERRIES: Scale-Up
Transition Graph Representation
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Patroller

Ferry

NT variables

N2.T variables Extract: Pr([(B,5), (C, 10), (C,15)]) = 0.47
Pr([(B,5), (C,10), (B,15)]) =0.23

Theorem: Marginal representation does not lose any solution quality 

Defender

JiangFang



PROTECT: Port Protection Patrols [2013]
Congressional Subcommittee Hearing

July 2011: Operational Excellence 
Award (US Coast Guard, Boston)

June 2013:  Meritorious Team Commendation 
from Commandant (US Coast Guard)
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A, 5 min A, 10 min

B, 5 min B, 15 min

C, 10 min C, 15 min

A

B

C

5 min 10 min 15 min

C, 5 min

B, 10 min

A, 15 min

Train Patrols
Execution Uncertainty: MDPs

0.050.30
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Handling Payoff Uncertainty:
Optimal Defender Strategy Minimizing Max Regret

§ Payoff uncertainty

§ DefenderUtility(c): -2.3
§ Optimal utility: 0.4
§ Regret (c, payoff): 2.7

Target #1 Target #2

Target #1 4, [-4,-2] -1, [0,2]

Target #2 -5, [4,6] 2, [-2,0]

Adversary

De
fe

nd
er

Target #1 Target #2

Target #1 4, -3 -1, 1

Target #2 -5, 5 2, -2

Adversary

De
fe

nd
er

c

0.3

0.7
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Minimizing Maximum Regret:
New Iterative Constraint Generation Algorithm

Infinite #regret constraints

min$, & r
where r ≥ regret c, payoff , ∀payoff ∈ Interval

Master: Compute Lower Bound
Minimax Regret with sample set of attacker payoffs

Slave: Compute Upper Bound
New attacker payoff causing max regret

c*payoff

Date: 12/3/18 38

Nguyen An



Global Presence of Security using Game Theory [2015-2017]
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Security Games superior 
vs 

Human Schedulers/”simple random”

Evaluating Deployed Security Systems Not Easy

How Well Optimized Use of Limited Security Resources?

Date: 12/3/18 40

v Lab evaluation
v Scheduling competitions: Patrol quality unpredictability? Coverage?
v Field evaluation: Tests against real adversaries
v Economic cost-benefit analysis
v …



Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Co
un

t

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
Co

un
t

Base Patrol Area

Patrols Before PROTECT: Boston Patrols After PROTECT: Boston

Field Evaluation of Schedule Quality

350% increase in defender expected utility
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Improved Patrol Unpredictability & Coverage for Less Effort



FAMS: IRIS Outperformed expert human over six 
months

Report:GAO-09-903T 

Field Evaluation of Schedule Quality

Trains: TRUSTS outperformed expert humans 
schedule 90 officers on LA trains 
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Human Game Theory
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Improved Patrol Unpredictability & Coverage for Less Effort



§ Game theory vs  Baseline+Expert

Controlled

x

Not Controlled

0
2
4
6
8

10
12
14
16
18

# Captures /30
min

# Warnings /30
min

# Violations /30
min

Game Theory

Baseline + Expert

0

25

50

75

100

Pre-ARMOR 2008 2009 2010

Miscellaneous Drugs Firearm Violations

Field Tests Against Adversaries

§ 21 days of patrol, identical conditions
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Computational Game Theory in the Field

Before
ARMOR



New Directions in 
Stackelberg Security Games

44

§ Threat Screening Games
(AAAI16, IJCAI17, IJCAI18…)

Date: 12/3/18 12/3/18

§ Cyber Security Games
(IJCAI17, AAMAS18, CogSci18…)

SinhaSchlenkerMcCarthy



Outline

Public Safety and Security
Stackelberg Security Games
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Conservation/Wildlife Protection:
Green Security Games 

Public Health/Social Work:  
Influence maximization/Game against nature

Dr Andy Plumptre
Conservation Biology



Poaching of Wildlife in Uganda
Limited Intervention (Ranger) Resources to Protect Forests
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Snare or Trap Wire snares



Green Security Games
Limited Ranger Resources to Protect Forests
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Fang
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Adversary not fully strategic; multiple “bounded rational” poachers

Defender 
mixed strategy

Max defender 
utility



Green Security Games
Game Theory + Machine Learning Poacher Behavior 
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Learn adversary bounded rational response: At each grid location i

Xu

Ranger patrols: X(i)

Features: F(i)

Probability 
of finding 
snare in 

cell i

gi
Machine
Learning

max ( )
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x
i X

i
i

i ig x
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å Defender 

mixed strategy

Max defender 
utility



Learning Adversary Model 
12 Years of Past Poaching Data

Probability of snare
Per 1 KM Grid 

Square

Ranger patrol

Animal density

Distance to rivers / 
roads / villages

Area habitat

Area slope

…
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Nguyen

gi



Learning Adversary Model
Uncertainty in Observations
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Record: No Attack (NEG) 

1 
km

1 km

Record: Attack (POS)

1 km

1 
kmWalk more!

Nguyen

Probability of snare
Per 1 KM Grid 

Square

Ranger patrol

Animal density

Distance to rivers / 
roads / villages

Area habitat

Area slope

…

gi
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Adversary Modeling
Imperfect Crime Observation-aware Ensemble Model

Patrol Effort

Predict: Ensemble of Classifiers
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a

NEG
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C2

0
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PatrolEffort = 2
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D
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a
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Training: Filtered Datasets

1 20

Gholami



0
0.5

1

1.5
2

2.5
3

L&L Score
Train Labels SVM Bagging Ensemble Our Best Model

Poacher Behavior Prediction

Poacher Attack Prediction in the Lab

Results from 2016
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Gholami



Real-world Deployment 2016: First Trial

§ Two 9-sq. km patrol areas

§ Where there were infrequent patrols
§ Where no previous hot spots

53Date: 12/3/18

GholamiFord



Real-world Deployment
Two Hot Spots Predicted

§ Poached Animals: Poached elephant
§ Snaring: 1 elephant snare roll
§ Snaring: 10 Antelope snares

Historical Base Hit 
Rate Our Hit Rate

Average: 0.73 3

54Date: 12/3/18

GholamiFord



Model Predicted High Risk vs Low Risk Areas:
2 National Parks, 24 areas each, 6 months 
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H
L

0

0.2

0.4

0.6

Experiment Group

High-risk Medium-risk
Low-risk

0
0.05
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0.25

Experiment group

High-risk Low-risk

Queen 
Elizabeth 
National 
Park

Murchison 
Falls 
National 
Park

H
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Snares per patrolled sq. KM Snares per patrolled sq. KM

Gholami



Green Security Games:
Incorporating Real Time Information
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BondiXu

Ranger patrols: X(i)

Features: F(i)

Probability 
of finding 
snare in 

cell i
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§ Drones  in Green Security Games
(AAAI18, IAAI18, GameSec17…)



Green Security Games:
Around the Globe with SMART partnership
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600 
National Parks 

Around the Globe

Wildlife, Forests, Fisheries…



Outline

Public Safety and Security
Stackelberg Security Games

Date: 12/3/18 58

Conservation/Wildlife Protection:
Green Security Games 

Public Health:  
Influence maximization/Game against nature

Prof Eric Rice
Social Work



Public Health
Optimizing Limited Intervention (Messaging) Resources
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Preventing HIV in homeless youth: Rates of HIV 10 times housed population

Ø Shelters: Limited number of peer leaders to spread HIV information in social networks



Influence Maximization Background

§ Given: 
§ Social network Graph G
§ Choose K “peer leader” nodes

§ Objective:
§ Maximize expected number of influenced nodes

§ Assumption: Independent cascade model of information spread
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Independent Cascade Model and 
Real-world Physical Social Networks
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A B
P(A,B)=0.4

C D

0 1μ = 0.5

C D

0 1µ ∈ [0.3, 0.7]



Robust, Dynamic Influence Maximization

§ Worst case parameters: a zero-sum game against nature

§ Payoffs: (performance of algorithm)/OPT

Nature
Chooses parameters 

μ,σvs
Algorithm

Chooses policy, i.e.,
Chooses Peer leaders 

62Date: 12/3/18

Wilder



Params #1 Params #2

Policy #1 0.8, -0.8 0.3, -0.3

Policy #2 0.7, -0.7 0.5, -0.5

HEALER Algorithm [2017]
Robust, Dynamic Influence Maximization

§ Equilibrium strategy despite exponential strategy spaces: Double oracle

Nature’s oracle

Influencer’s oracle

Params #1 Params #2 Params #3

Policy #1 0.8, -0.8 0.3, -0.3 0.4, -0.4

Policy #2 0.7, -0.7 0.5, -0.5 0.6, -0.6

Policy #3 0.6, -0.6 0.4, -0.4 0.7, -0.7In
flu

en
ce

r

Nature
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Params #1 Params #2 Params #3

Policy #1 0.8, -0.8 0.3, -0.3 0.4, -0.4

Policy #2 0.7, -0.7 0.5, -0.5 0.6, -0.6

Params #1 Params #2 Params #3

Policy #1 0.8, -0.8 0.3, -0.3 0.4, -0.4

Policy #2 0.7, -0.7 0.5, -0.5 0.6, -0.6

Policy #3 0.6, -0.6 0.4, -0.4 0.7, -0.7

Wilder

Theorem: Converge with approximation guarantees



Challenge: Multi-step Policy

K = 4
1st time step
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Params #1 Params #2 Params #3

Policy #1 0.8, -0.8 0.3, -0.3 0.4, -0.4

Policy #2 0.7, -0.7 0.5, -0.5 0.6, -0.6

Policy #3 0.6, -0.6 0.4, -0.4 0.7, -0.7

K = 4
2nd time step

WilderYadav
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HEALER: POMDP Model for Multi-Step Policy [2015]
Robust, Dynamic Influence Maximization

Action
Choose nodes

Observation: Update
propagation probability

POMDP 
Policy

HIDDEN STATE

Yadav

Params #1 Params #2 Params #3

Policy #1 0.8, -0.8 0.3, -0.3 0.4, -0.4

Policy #2 0.7, -0.7 0.5, -0.5 0.6, -0.6

Policy #3 0.6, -0.6 0.4, -0.4 0.7, -0.7
POMDP
partitions



Pilot Tests with HEALER
with 170 Homeless Youth [2017] 

Recruited youths:

HEALER HEALER++ DEGREE CENTRALITY

62 56 55
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12 peer leaders

Yadav Wilder



Results: Pilot Studies
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Who Started Testing for HIV

Testing Non-Testing
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Yadav Wilder



AI Assistant: HEALER
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New Directions: Los Angeles
From an Angeleno

12/3/18 69

Mayor Garcetti @ USC

900 youth study 

(AAAI18, AAMAS18)
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New Directions: Mumbai
From a Mumbaikar

Prime Minister Modi @ Mumbai 
AI for Social Good

(AAAI18)



Key Lessons: 
Directing Multiagent Systems Research towards Social Good
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Multiagent systems research helps address complex social problems:
• Public safety & security, conservation, public health

Shared multiagent research challenges, solutions across problem areas:
• Challenge: Optimize limited intervention resources in interacting with others
• Solution: Computational game theory models/algorithms
• New models: Stackelberg security games, green security games…
• Key algorithms: Incremental strategy generation, marginals, double oracle…

Immersion/Deployment helps identify crucial research challenges



Future: Multiagent Systems  and AI Research for Social Good 
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Tremendous potential: Improving society & fighting social injustice

Vital to bring AI to those not benefiting from AI, e.g., global south

Embrace interdisciplinary research -- social work, conservation



Future Multiagent Systems and AI for Social Good
in the FIELD
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When working on AI for Societal Benefits: 
Important step out of lab & into the field

Societal impact
Actual problem for societal benefit?
Model deficiencies for new research directions?



Thank you
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