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Global Challenges for Security:
Game Theory for Security Resource Optimization
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Example Model:
Stackelberg Security Games

Security allocation: 
Targets have weights
Adversary surveillance

Target
#1

Target
#2

Target #1 4, -3 -1, 1

Target #2 -5, 5 2, -1

Adversary

3

Defender
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Stackelberg Security Games
Security Resource Optimization: Not 100% Security

Random strategy: 
Increase cost/uncertainty to attackers

Stackelberg game: 
Defender commits to mixed strategy
Adversary conducts surveillance; responds

Stackelberg Equilibrium:  Optimal random?

Target
#1

Target
#2

Target #1 4, -3 -1, 1

Target #2 -5, 5 2, -1

Adversary

4

Defender
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Security Games: Research & Applications
Game theory+Optimization+Uncertainty+Learning+…

5

Infrastructure 
Security Games

• Massive-scale games

• Reason with uncertainty

• Learn adversary behavior from data
• Repeated games
• + Conservation biology, criminology

LAX TSA

Coast
Guard

Coast
Guard

LA Sheriff

Green 
Security Games

Coast 
Guard 

Opportunistic Crime 
Security Games

Panthera/WWF

Cyber Security 
Games

IBM

Argentina airport USC
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Global Presence of Security Games Efforts
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Startup: ARMORWAY
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Outline: Security Games Research  (2007-)

2007      2011          2013          2014          2014           2015

Air travel Ports Trains

Evaluation II: Real-world deployments (Patience)
Evaluation I: AAAI, IJCAI, AAMAS papers…

Fisheries Wildlife Urban Crime

Infrastructure 
Security Games

Green 
Security Games

Opportunistic 
Crime 
Security Games

2014          2014           20152015
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ARMOR Airport Security: LAX [2007]
Basic “Stackelberg Security Game” Model

GLASGOW 6/30/07
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Basic Security Game Operation [2007]
Using ARMOR as an Example Pita Paruchuri

Mixed Integer Program

Pr(Canine patrol, 8 AM @ Terminals 3,5,7) = 0.33
Pr(Canine patrol, 8 AM @Terminals 2,5,6) = 0.17

……Canine Team Schedule, July 28
Term 1 Term 2 Term 3 Term 4 Term 5 Term 6 Term 7 Term 8

8 AM Team1 Team3 Team5

9 AM Team1 Team2 Team4

10 AM Team3 Team5 Team2

Target #1 Target #2 Target #3

Defender #1 2, -1 -3, 4 -3, 4
Defender #2 -3, 3 3, -2 ….
Defender #3 …. …. ….
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Security Game MIP [2007]
Generate Mixed Strategy for Defender in ARMOR

1.. =å
i

ixts

jqixijRXi Qj
´´åå

Î Î

max

1=å
ÎQj

jq

MqxCa ji
Xi

ij )1()(0 -£-£ å
Î

Maximize defender 
expected utility

Defender mixed 
strategy

Adversary best 
response

Pita Paruchuri

Adversary response

Target #1 Target #2 Target #3

Defender #1 2, -1 -3, 4 -3, 4
Defender #2 -3, 3 3, -2 ….
Defender #3 …. …. ….
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Security Game Payoffs [2007]
Previous Research Provides Payoffs in Security Game Domains

jqixijRXi Qj
´´åå

Î Î

max Maximize defender 
expected utility

Target #1 Target #2 Target #3

Defender #1 2, -1 -3, 4 -3, 4
Defender #2 -3, 3 3, -2 ….
Defender #3 …. …. ….
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ARMOR MIP [2007]
Solving for a Single Adversary Type

!"

ARMOR…throws a digital cloak of invisibility….
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IRIS: Federal Air Marshals Service [2009]
Scale Up Number of Defender Strategies

Strategy 1 Strategy 2 Strategy 3

Strateg
y 1

Strateg
y 2

Strateg
y 3

Strateg
y 4

Strateg
y 5

Strateg
y 6

Incremental strategy generation:
Column generation: Not enumerate all 1041actions

Strategy 1 Strategy 2 Strategy 3

Strategy 1

Strategy 2

Strategy 3

Strategy 4

Strategy 5

Strategy 6

14

ARMOR runs out of memory
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Best new pure strategy

IRIS: Incremental Strategy Generation
Column Generation

Attack 1 Attack 2 … Attack 6

1,2,4 5,-10 4,-8 … -20,9
3,7,8 -8, 10 -8,10 … -8,10
…

500 rows 
NOT 1041

Attack 1 Attack 2 … Attack 6

1,2,4 5,-10 4,-8 … -20,9 Slave

Master

GLOBAL
OPTIMAL

Attack 1 Attack 2 … Attack 6

1,2,4 5,-10 4,-8 … -20,9

3,7,8 -8, 10 -8,10 … -8,10

15

Jain Kiekintveld
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IRIS: Deployed FAMS (2009-)

“…in 2011, the Military Operations Research Society selected a University 
of Southern California project with FAMS on randomizing flight 
schedules for the prestigious Rist Award…”

-R. S. Bray (TSA)
Transportation Security Subcommittee 

US House of Representatives 2012

16

Significant change  in FAMS operations
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Road, Social Networks[2013]
Scale-up: Double Oracle Jain

Road networks:
e.g., checkpoints

20416 Roads,15 checkpoints:
20 min
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PROTECT: Port Protection Patrols Deployed 2011-

18

Using “Marginals” for Scale-up 

USS Cole after attack French oil tanker hit by small boat
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PROTECT: Ferry Protection Deployed 2013-
Using “Marginals” for Scale-up 

19
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Ferries: Scale-up with Mobile Resources & Moving Targets
Transition Graph Representation

A, 5 min A, 10 min A, 15 min

B, 5 min B, 10 min B, 15 min

C, 5 min C, 10 min C, 15 min

A

B

C

5 min 10 min 15 min

20
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A, 5 min A, 10 min A, 15 min

B, 5 min B, 10 min B, 15 min

C, 5 min C, 10 min C, 15 min

A

B

C

5 min 10 min 15 min

Ferry

Ferries: Scale-up with Mobile Resources & Moving Targets
Transition Graph Representation

21
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A, 5 min A, 10 min A, 15 min

B, 5 min B, 10 min B, 15 min

C, 5 min C, 10 min C, 15 min

A

B

C

5 min 10 min 15 min

Ferry

22

Patrols protect nearby ferry location; Solve as done in ARMOR

Ferries: Patrol Routes as Variables
Exponential Numbers of Patrol Routes
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A, 5 min A, 10 min A, 15 min

B, 5 min B, 10 min B, 15 min

C, 5 min C, 10 min C, 15 min

A

B

C

5 min 10 min 15 min

Ferry

Patrols protect nearby ferry location; Solve as done in ARMOR

Ferries: Patrol Routes as Variables
Exponential Numbers of Patrol Routes

23

Pr([(B,5), (C, 10), (C,15)]) = 0.47
Pr([(B,5), (C,10), (B,15)]) =0.23

NT variables

Pr([(A,5), (A,10), (B,15)]) = 0.17
Pr([(A,5), (A,10), (A,15)]) = 0.13

Jiang KiekintveldFang
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A, 5 min A, 10 min A, 15 min

B, 5 min B, 10 min B, 15 min

C, 5 min C, 10 min C, 15 min

A

B

C

5 min 10 min 15 min

Ferry

Variables: NOT routes, but probability flow over each segment

Ferries: Scale-up 
Marginal Probabilities Over Segments

24

NT variables

Jiang KiekintveldFang
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A, 5 min A, 10 min A, 15 min

B, 5 min B, 10 min B, 15 min

C, 5 min C, 10 min C, 15 min

A

B

C

5 min 10 min 15 min

Ferry

0.30

0.17

0.13

Obtain marginal probabilities over segments 

0.10
0.07

0.03

N2.T variables
Extract: Pr([(B,5), (C, 10), (C,15)]) = 0.47

Pr([(B,5), (C,10), (B,15)]) =0.23

Ferries: Scale-up with Marginals Over Separable Segments
Significant Speedup

25

NT variables
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Fisheries

26

Outline: “Security Games” Research (2007-)

2007      2009          2013          2014          2014           2015

Air travel Ports Trains Wildlife Urban Crime
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TRUSTS: Frequent adversary interaction games
Patrols Against Fare Evaders

A, 5 min A, 10 min A, 15 min

B, 5 min B, 10 min B, 15 min

C, 5 min C, 10 min C, 15 min

A

B

C

5 min 10 min 15 min

0.30

0.17

0.13

0.10
0.10

27
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TRUSTS: Patrols Against Fare Evaders
Uncertainty in Defender Action Execution

A, 5 min A, 10 min A, 15 min

B, 5 min B, 10 min B, 15 min

C, 5 min C, 10 min C, 15 min

A

B

C

5 min 10 min 15 min

0.30

0.15

0.10

0.10
0.07

0.03

0.05

28

Jiang Delle Fave



/56

Markov Decision Problems in Security games

A, 5 min A, 10 min A, 15 min

B, 5 min B, 10 min B, 15 min

C, 5 min C, 10 min C, 15 min

A

B

C

5 min 10 min 15 min

0.30

0.15

0.10

0.10
0.07

0.03

0.05

29

TRUSTS: Patrols Against Fare Evaders
Uncertainty in Defender Action Execution Jiang Delle Fave
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Uncertainty Space Algorithms:
Bayesian and Robust Approaches

Adversary payoff  uncertainty

Adversary observation & 
defender execution 

uncertainty

Adversary rationality 
uncertainty

RECON 

BRASS

Monotonic Maximin
(Monotonic adversary)

30

URAC

Payoff interval;
Not point 
estimate

GMC HUNTER
Bayesian
Robust

Yin Nguyen An

0

0.5

1

1.5

5 10

D
ef

en
de

r'
s E

U

#Targets

ISG RECON URAC
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Outline: Security Games Research  (2007-)

2007      2011          2013          2014          2014           2015

Air travel Ports Trains Fisheries Wildlife Urban Crime

2014          2014           20152015
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Protecting Forests, Fish, Rivers & Wildlife:
Green Security Games

Fishery Protection

McCarthy Ford Brown

Forest Protection

River Pollution Prevention
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Wildlife Protection:
Murchison Falls National Park, Uganda
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Green Security Games:
Repeated Stackelberg Game

Learn from 
crime data: 

Improve model

Defender 
calculates 

mixed strategy

Defender 
executes 

randomized 
patrols

Poachers attack 
targets

Bounded rationality model of poachers
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Uncertainty in Adversary Decision: Bounded Rationality
Human Subjects as Poachers Kar
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Quantal Response(QR)[McFadden 73]:Stochastic Choice, Better Choice More likely 

Lesson 1:  Quantal Response [2011]:
Models of Bounded Rationality

å
=

×

×

= T

j

jxadversaryEU

jxadversaryEU
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Adversary’s 

probability of 
choosing target j

RewardProb)1(Penalty Prob)( ´-+´= CaptureCapturejadversaryEUPerfect:

-3

-2.5

-2

-1.5

-1

-0.5

0

Payoff 1 Payoff 2 Payoff 3 Payoff 4

Quantal
Response

Epsilon
robust

Perfect
rational

YangPita

42
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Lesson 2: Subjective Utility Quantal Response Models of 
Bounded Rationality 

Penalty3Reward2Prob1)( ´+´+´= wwCapturewjadversarySEU

å
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= M

j

jxSEU

jxSEU
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Subjective Utility Quantal Response(SUQR) [Nguyen 13]:

C
ap

tu
re

Pr
ob
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ili

ty

UWA data from 
Uganda:

Year 2012
Predicting 
poaching

Adversary’s 
probability of 

choosing target j

Nguyen

43

Reward (animals)
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CAPTURE 
Predictive Anti-Poaching Tool for Wildlife Protection

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CAPTURE

CAP-A
bs

tra
ct

CAP-N
oT

im
e

Log
it

SUQR

SUQR-4
SVM

AUC 
(Commercial Animal)

Animal	Density

Nguyen

12 years of Uganda data
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Green Security Games[2015]
Testing SUQR: From One-Shot to Repeated Games

Learn from 
crime data

Defender 
calculates 
strategy

Execute 
randomized 

patrols

Poachers 
attack 
targets

Repeated games on AMT:
35 weeks, 40 human subjects

10,000 emails!

Kar

-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1

Round 1Round 2Round 3Round 4Round 5

D
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r U
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ity

Maximin SUQR
Bayesian SUQR
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Lesson 3: SHARP and Repeated Stackelberg Games
Incorporate Past Success/Failure in SUQR Kar

Animal Density

C
ov

er
ag

e
Pr

ob
ab

ili
ty

Human
success

Human
Failure

Increase/decrease
Subjective Utility

-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1

Round 1 Round 2 Round 3 Round 4 Round 5

D
ef

en
de

r 
U

til
ity

Maximin SUQR
Bayesian SUQR SHARP

Learn from 
crime data

Defender 
calculates 
strategy

Execute 
randomized 

patrols

Poachers 
attack 
targets
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Learned Probability Weighting Function

Adversary’s probability weighting function is S-shaped.
Contrary to Prospect Theory (Kahneman ‘79).

Kar
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PAWS: Protection Assistant for Wildlife Security 
Trials in Uganda and Malaysia: [2014]

Andrew Lemieux PantheraUganda Malaysia

Important lesson: Geography! 

Malaysia
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PAWS for Wildlife Security:
Scale, Uncertainty in Green Security Games 
Scale: Hierarchical model

Hierarchical: Grid +“Street map” 

Species location uncertainty

In regular use in Malaysia

Fang
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Opportunistic Crime Security Game[2015]
Integrating Learning in Basic Security Game Model

Crime prediction: use past crime & police allocation data

44

Zhang Sinha

Best Simulation Results



/56

Evaluating Deployed Security Systems Not Easy:
Are Security Games Better at Optimizing Limited Resources

Security games improve over humans (or simple) planners
E.g., humans fall into predictable patterns; high cognitive load

45

Lab 
Evaluation

Simulated
adversary

Human subject 
adversaries

Field Evaluation:
Patrol quality 
Unpredictable? Cover?

Compare real schedules

Scheduling competition

Expert evaluation

Field Evaluation: 
Tests against adversaries

“Mock attackers”

Capture rates of
real adversaries
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Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

C
ou
nt

Field Evaluation of Schedule Quality:
Improved Patrol Unpredictability & Coverage for Less Effort

Patrols Before PROTECT: Boston Patrols After PROTECT: Boston

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

C
ou
nt

Base Patrol Area

46

PROTECT (Coast Guard): 350% increase  defender expected utility
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Field Evaluation of Schedule Quality:
Improved Patrol Unpredictability & Coverage for Less Effort

47

FAMS: IRIS Outperformed expert human over six months
Report:GAO-09-903T 

Trains: TRUSTS outperformed expert humans
schedule 90 officers on LA trains 

3
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4.5
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5.5
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Q
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Human Game Theory
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Field Test Against Adversaries: Mock Attackers
Example from PROTECT

“Mock attacker” team deployed in Boston
Comparing PRE- to POST-PROTECT: “deterrence” improved 

Additional real-world indicators from Boston:
Boston boaters questions: 

“..has the Coast Guard recently acquired more boats”

48
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Field Tests Against Adversaries
Computational Game Theory in the Field

Game theory vs Random
21 days of patrol
Identical conditions
Random + Human

Not controlled

0
20
40
60
80

100

Pre-
…

200
8

200
9

201
0

201
1

201
2

Miscellaneous
Drugs

Firearm Violations

0
5

10
15
20

# Captures
/30 min

# Warnings
/30 min

# Violations
/30 min

Game Theory

Rand+Human

Controlled
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User Feedback 
Example from ARMOR, IRIS & PROTECT

February 2009: Commendations
LAX Police (City of Los Angeles)

July 2011: Operational Excellence 
Award (US Coast Guard, Boston)

September  2011: Certificate of 
Appreciation (Federal Air Marshals)

June 2013:  Meritorious Team Commendation 
from Commandant (US Coast Guard)

50
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Global Efforts on Security Games:
Yet Just the Beginning…

51

Thank you 
to sponsors:
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THANK YOU

tambe@usc.edu
http://teamcore.usc.edu/security

52

mailto:tambe@usc.edu
mailto:tambe@usc.edu
http://teamcore.usc.edu/security
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Lab Evaluation via Simulations: 
Example from IRIS (FAMS)

-10

-8

-6

-4

-2

0

2

4

6

50 150 250
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ilit
y

Schedule Size

Uniform Weighted random 1 Weighted random 2 IRIS

53
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Learned Probability Weighting Function

Adversary’s probability weighting function is S-shaped.
Contrary to Prospect Theory (Kahneman ‘79).
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Field Test Against Adversaries: Mock Attackers
Example from PROTECT

“Mock attacker” team deployed in Boston
Comparing PRE- to POST-PROTECT: “deterrence” improved 

Additional real-world indicators from Boston:
Boston boaters questions: 

“..has the Coast Guard recently acquired more boats”

POST-PROTECT: Actual reports of illegal activity

55
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IRIS: Scale Up [2009]
Small Support Set for Mixed Strategies

Small support set size:
• Most xi variables zero

x124=0.239
x123=0.0

x135=0.0

Attack
1

Attack
2

Attack
…

Attack
1000

1,2,3.. 5,-10 4,-8 … -20,9
1,2,4.. 5,-10 4,-8 … -20,9
1,3,5.. 5,-10 -9,5 … -20,9
…

… 1041 rowsx378=0.123MqxCa

qxts

qxR

ji
Xi

ij

Qj
j

i
i

jiij
Xi Qj

qx

)1()(0

1,1..

max ,

-£-£

==

å

åå

åå

Î

Î

Î Î

1000 flights, 20 air marshals:

1041 combinations

57

Jain Kiekintveld
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Why Does Game Theory Perform Better?
Weaknesses of Previous Methods

Human schedulers: 
Predictable patterns, e.g., US Coast Guard
Scheduling effort & cognitive burden

Simple random (e.g., dice roll):
Wrong weights/coverage, e.g. officers to sparsely crowded terminals
No adversary reactions

Multiple deployments over multiple years: without us forcing them

58
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Key Lessons: Security Games 

Decision aids based on computational game theory in daily use

Optimize limited security resources against adversaries

Applications yield research challenges: Science of security games

Scale-up: Incremental strategy generation & Marginals

Uncertainty: Integrate MDPs, Robustness

Human behavior:  Model innovations based on quantal response

Current applications: Global, interdisciplinary challenges  

Green security games: criminology, computation, conservation

59



CAPTURE	A	New	Predictive	Anti-Poaching	Tool	for	Wildlife	Protection
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Attack	Probability	(CAPTURE)Patrol	Strategy	(Real)	

Optimal	Patrol	Strategy	(CAPTURE) Attack	Probability	(CAPTURE)



CAPTURE	
A	New	Predictive	Anti-Poaching	Tool	for	Wildlife	Protection
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Key Lessons: Security Games 

Decision aids based on computational game theory in daily use
Optimize limited security resources against adversaries

Applications yield research challenges and advances:
Scale-up: Incremental strategy generation & Marginals
Uncertainty: Integrate MDPs, Robustness
Human behavior:  Learning models from data in the field

Current applications: Global, interdisciplinary challenges  
Green security games: criminology, computation, conservation

63


