
BALANCING LOCAL RESOURCES AND GLOBAL GOALS IN

MULTIPLY-CONSTRAINED DISTRIBUTED CONSTRAINT OPTIMIZATION

by

Emma Bowring

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the
Requirements for the Degree

DOCTOR OF PHILOSOPHY
(COMPUTER SCIENCE)

December 2007

Copyright 2007 Emma Bowring

Acknowledgments

I would like to thank my adviser, Milind Tambe, and my committee members: Bar-

bara Grosz, Anne Balsamo, Yolanda Gil and Stacy Marsella for their support and ad-

vice. I would also like to thank my co-authors: Rachel Greenstadt, Hyuckchul Jung,

Gal Kaminka, Rajiv Maheswaran, Janusz Marecki, Ankit Modi, Jay Modi, Ranjit Nair,

Praveen Paruchuri, Jonathan Pearce, David Pynadath, Paul Scerri, Nathan Schurr,

Pradeep Varakantham and Makoto Yokoo. Finally, I would like to thank my friends

and family for their invaluable support.

ii

Contents

Acknowledgments ii

List Of Figures vi

Abstract viii

1 Introduction 1
1.1 Problem Addressed . 2
1.2 Challenges and Contributions . 5

1.2.1 Algorithm Design and Implementation 5
1.2.2 Sensitivity Analysis . 9

1.3 Guide to Thesis . 10

2 Problem Definition 12
2.1 DCOP Definition . 12
2.2 Motivating Domains . 16
2.3 Multiply-Constrained DCOP . 20

3 Complete MC-DCOP algorithms 24
3.1 Background: ADOPT . 25
3.2 Basic Ideas . 28

3.2.1 Constraint-Graph Transformation 28
3.2.2 Dynamically Constraining Search 29
3.2.3 Local Acyclicity (T-nodes) . 30

3.3 MCA Algorithm Description . 31
3.3.1 MCAP . 31
3.3.2 MCAS . 34
3.3.3 MCASA . 35
3.3.4 Combining Techniques . 37

3.4 Correctness and Complexity of MCA . 41
3.5 Experimental Results for MCA . 47

4 Incomplete MC-DCOP algorithms 54
4.1 Background:MGM . 55

4.1.1 K-optimality . 55

iii

4.1.2 MGM-1 . 59
4.1.3 MGM-2 . 60

4.2 Multiply Constrained MGM . 62
4.3 MC-MGM-1 . 62

4.3.1 Shared MC-MGM-1 . 63
4.3.2 Private MC-MGM-1 . 66
4.3.3 Heuristics in MC-MGM . 69

4.4 MC-MGM-2 . 71
4.4.1 Shared MC-MGM-2 . 71
4.4.2 Private MC-MGM-2 . 73

4.5 Proofs . 73
4.6 Experimental Results for MC-MGM . 80

5 Sensitivity Analysis 87
5.1 Sensitivity Analysis in MC-DCOP . 88

5.1.1 Challenges of Sensitivity Analysis 89
5.1.2 Other Approaches to Sensitivity Analysis 90
5.1.3 Semi-cooperativeness . 92

5.2 Approaches to Sensitivity Analysis . 92
5.2.1 Gain Types . 93
5.2.2 Link Analysis . 94
5.2.3 Local Reoptimization . 96

5.3 Experimental and Analytical Results . 98
5.3.1 Effectiveness . 99
5.3.2 Effects of Link Density . 101
5.3.3 Justification for Reoptimizing . 104

6 Related Work 106
6.1 Efficiency in DCOPs . 106
6.2 Multiple Objectives within DCOPs . 111
6.3 Multi-criteria collaboration in general . 113
6.4 Sensitivity Analysis . 114

7 Conclusion 116
7.1 Summary . 116
7.2 Future Work . 120

Reference List 122

Appendix A
Curriculum Vitae . 130
A.1 Education . 130
A.2 Experience . 131

A.2.1 Research . 131
A.2.2 Teaching . 131
A.2.3 Other . 132

iv

A.3 Publications . 132
A.3.1 Journals . 132
A.3.2 Conferences . 132
A.3.3 Short Papers . 133
A.3.4 Refereed Workshops and Symposia 133

A.4 Professional Activities . 134
A.4.1 Reviewer . 134
A.4.2 Co-Chair . 134

A.5 Awards . 134

v

List Of Figures

2.1 An example 2-coloring DCOP problem. 13

2.2 Meeting Scheduling Example . 18

2.3 Example Multiply-Constrained DCOP problem 21

3.1 a) Original constraint graph b) DFS tree 26

3.2 Snapshot of MCAP . 32

3.3 Snapshot of MCAS . 34

3.4 Snapshot of MCASA . 36

3.5 Multiply-Constrained Adopt Pseudo-code, part 1 38

3.6 Multiply-Constrained Adopt Pseudo-code, part 2 39

3.7 a) original constraint graph b) after adding x′1 40

3.8 MCASA fails on non-T-nodes . 45

3.9 g-budget vs. run-time for a) 100% T-node problems b) 85% T-node problems 49

3.10 a) g-budget vs. number of infinite cost messages b) g-budget vs. number
of values per domain . 50

3.11 g-budget vs. runtime, varying percentages of private constraints: a) 100%
T-node and b) 85% T-node problems . 51

3.12 g-constraint violation by Adopt . 52

4.1 K-Optimality example. 56

vi

4.2 Modified K-Optimality example. 58

4.3 Unsatisfying mc-k-optima. 59

4.4 Multiply-Constrained MGM-1 Pseudo-code 63

4.5 Blocking situation . 65

4.6 Shared vs. Private MC-MGM . 68

4.7 Multiply-Constrained MGM-2 Pseudo-code 72

4.8 A Deadlock example for MC-MGM-1 . 77

4.9 A Deadlock example for MC-MGM-2 . 78

4.10 g-budget vs. runtime on a) 10-node and b) 20-node cases 81

4.11 quality comparisons for different heuristics in MC-MGM-1 83

4.12 quality comparisons for MC-MGM-1 vs. MC-MGM-2 84

4.13 runtime vs. size for large scale problems 85

4.14 Runtime for MC-MGM-2 with varying percentages of private nodes 86

5.1 a) Single link gain b) Chain reaction gain 94

5.2 Link Analysis Pseudo-code . 95

5.3 MC-MGM Based Local Reoptimization Pseudo-code 96

5.4 Sensitivity analysis a) 100% T-Node cases using gain/unit b) 85% T-Node
cases using gain/unit c) 100% T-Node cases using absolute gain b) 85%
T-Node cases using absolute gain . 100

5.5 Example of MC-MGM-k failure a) star topology b) chain 101

vii

Abstract

Distributed constraint optimization (DCOP) is a useful framework for cooperative mul-

tiagent coordination. DCOP focuses on optimizing a single team objective. However, in

many domains, agents must satisfy constraints on resources consumed locally while opti-

mizing the team goal. These resource constraints may need to be kept private or shared

to improve efficiency. Extending DCOP to these domains raises two issues: algorithm

design and sensitivity analysis. Algorithm design requires creating algorithms that trade

off completeness, scalability, privacy and efficiency. Sensitivity analysis examines whether

slightly increasing the available resources could yield a significantly better outcome.

This thesis defines the multiply-constrained DCOP (MC-DCOP) framework and pro-

vides complete and incomplete algorithms for solving MC-DCOP problems. Complete

algorithms find the best allocation of scarce resources, while incomplete algorithms are

more scalable. The algorithms use mutually-intervening search; they use local resource

constraints to intervene in the search for the globally optimal solution. The algorithms

use four key techniques: (i) transforming constraints to maintain privacy; (ii) dynami-

cally setting upper bounds on resource consumption; (iii) identifying the extent to which

the local graph structure allows agents to compute exact bounds on resource consump-

tion; and (iv) using a virtual assignment to flag problems rendered unsatisfiable by their

viii

resource constraints. Proofs of correctness are presented for all algorithms. Finally, the

complete and incomplete algorithms are used in conjunction with one another to perform

distributed local reoptimization to address sensitivity analysis.

Experimental results demonstrated that MC-DCOP problems are most challenging

when resources are scarce but sufficient. In problems where there are insufficient re-

sources, the team goal is largely irrelevant. In problems with ample resources, the local

resource constraints require little consideration. The incomplete algorithms were two or-

ders of magnitude more efficient than the complete algorithm for the most challenging

MC-DCOP problems and their runtime increased very little as the number of agents in the

network increased. Finally, sensitivity analysis results indicated that local reoptimization

is an effective way to identify resource constraints that are creating bottlenecks.

Taken together these new algorithms and examination of the problem of sensitivity

analysis help extend the applicability of DCOP to more complex domains.

ix

Chapter 1

Introduction

This thesis focuses on cooperative multiagent systems. Cooperative multiagent systems

are networks of intelligent agents used to perform distributed computation. Intelligent

agents may be broadly defined as automated software or hardware entities that are goal-

oriented and situated in a complex, dynamic environment. The networks of cooperative

agents are heterogeneous, and not all agents have direct communication links to one

another. Additionally, information is distributed throughout the network either due to

privacy concerns or to the impractically of centralizing. Yet, the agents need to coordinate

their activities to accomplish their collective goals [29, 57, 35, 11, 38, 60, 37].

Various models have been proposed to handle cooperative multiagent coordination.

These models differ in the complexity of the computation performed by individual agents

and the complexity of the interactions among agents. Distributed Constraint Optimiza-

tion (DCOP) [36, 33, 1, 48] is a cooperative multiagent coordination framework that has

been applied to distributed meeting scheduling, distributed factory and staff scheduling,

and sensor network domains [29, 35, 39, 23].

1

1.1 Problem Addressed

DCOP algorithms have been widely applied, but, DCOP, like many cooperative multi-

agent frameworks, assumes that problems can be expressed in terms of a single global

goal to be optimized. However, many multiagent coordination problems cannot be fully

expressed as a single team goal. Examples range from distributed meeting schedul-

ing [35, 37] to distributed software development [10, 18, 23, 26], distributed task or role

allocation [24, 57, 41, 39], and sensor networks [29].

One prototypical bounded optimization domain is distributed meeting scheduling. In

distributed meeting scheduling problems, groups of researchers working in labs at several

different locations need to set up meetings to facilitate work on a joint project. Each

researcher has preferences over when and where the meetings he or she is involved in will

occur. The global goal is to schedule the meetings in such a way as to maximize the sum

of everyone’s satisfaction with their schedules. This global goal can be effectively modeled

using a cooperative multiagent framework like DCOP. However, given that the research

groups are in different locations, there are costs associated with traveling to meetings

and the money for these expenses is allocated from travel budgets maintained by group

leaders in each research group. Now the problem becomes that of maximizing the sum

of everyone’s preferences, while ensuring that the travel costs accrued by researchers in

each group do not exceed the travel budget for that group.

This combination of a global optimization goal and local resource constraints that

must be satisfied is what characterizes bounded optimization domains. The resource

constraints may be a feature of the problem (e.g. limited travel budget) over which

2

the agent has no control, or they may be within the control of the agent (e.g. time

devoted to the team goal). An agent may have many reasons for imposing a resource

constraint on itself: individual interests, commitments to another team, or commitments

to future goals of the team. Bounded optimization encompasses both internally and

externally imposed local resource constraints. Additionally, these resource constraints

may need to be kept private. Group leaders may be unwilling to share their budgetary

information. Since these resource constraints cannot be expressed as part of the team

goal and because specific constraints may need to be kept private during execution, the

existing DCOP framework is unable to address this important class of problems. Finally,

resource constraints may not be as absolute as the DCOP formalism assumes. In the

distributed meeting scheduling domain, researchers may wish to know how alterations to

the funds available for travel will impact the team’s performance before committing to

the alterations.

In extending DCOP to handle bounded optimization problems, this thesis tackles

two specific problems: designing algorithms to solve bounded optimization problems and

performing sensitivity analysis.

• Algorithm Design: Bounded optimization domains like distributed meeting schedul-

ing require multiply-constrained DCOP algorithms that can optimize a global ob-

jective, while ensuring that resource limits are not exceeded. These algorithms must

be able to keep these resource constraints private when required (e.g. travel bud-

gets in distributed meeting scheduling [35]). Some bounded optimization problems

require complete (globally-optimal) algorithms that can guarantee optimal usage of

scarce resources. For example, if group leaders had relatively tight travel budgets, it

3

might be worth expending the extra computation time to find the best way to allo-

cate every last travel dollar. Other problems require extremely efficient incomplete

(locally-optimal) algorithms that can handle large scale problems. For example,

if the distributed meeting scheduling problem involved a large number of research

groups and many meetings, finding the best schedule may be too time consuming.

Both types of algorithms are needed.

• Sensitivity Analysis: Performing sensitivity analysis is especially useful in bounded

optimization domains because these domains feature resource constraints that are

treated as hard constraints. In real world engineering domains, constraints may

not be as strict as the DCOP formalism assumes. In some domains, additional

resources could be acquired if the benefits to the team sufficiently outweighed the

costs [4, 3, 27]. For example, in the distributed meeting scheduling problem, group

leaders might be willing to reallocate a small amount of money to supplement their

travel budget, if it would allow the overall schedule to be significantly improved.

However, before taking money away from another budget item, group leaders would

want to know what effect their reallocation would have and whether they are the

best agent to make that reallocation. It is, therefore, very useful to be able to

perform sensitivity analysis.

In summary, the challenge is to balance local resource constraints and global objectives

in a privacy aware manner, while using non-private information to maximize efficiency.

In addition, techniques for analyzing problem solutions to see how to improve the balance

between resource constraints and global goals are needed.

4

1.2 Challenges and Contributions

1.2.1 Algorithm Design and Implementation

This thesis defines a new problem formulation called mutiply-constrained DCOP (MC-

DCOP), which captures problems involving global goals and local resource constraints.

The first part of this thesis focuses on algorithm design, specifically, designing both

complete and incomplete algorithms to solve MC-DCOP problems. Four main challenges

had to be addressed in designing the MC-DCOP algorithms:

• Search Complexity: Agents’ additional resource constraints add to the search com-

plexity of bounded optimization problems. Since these additional constraints have

been added to a problem without increasing the number of agents in the system,

the primary challenge in algorithm design is to handle this added complexity with-

out greatly increasing the runtime of the algorithm. This requires quickly pruning

unproductive search paths.

• Harnessing Existing Algorithms: A design choice was made to harness existing

DCOP algorithms, because significant progress has been made in maximizing their

efficiency [36, 60, 63, 1, 48, 30]. However, existing algorithms are not designed

to handle resource constraints that are possibly private and not part of the global

goal. The challenge was to adapt these algorithms to the new bounded optimization

problems while preserving their efficiency mechanisms.

• Privacy/Efficiency: The third challenge was how to exploit constraint revelation

to gain efficiency when privacy was not required. The design choice was made to

5

give fine-grained control over the privacy/efficiency tradeoff by allowing individual

resource constraints to be kept private. This meant that the inclusion of a single

private resource constraint did not necessitate using a completely private algorithm,

however, it created the challenge of handling private and non-private resource con-

straints simultaneously within the same problem.

• Unsatisfiability Detection: The final challenge, that of detecting when the local

resource constraints have rendered the problem unsatisfiable, is most relevant to

incomplete algorithms. Complete algorithms systematically consider all possible

assignments and thus can straightforwardly detect unsatisfiability. However, locally

optimal algorithms, explore only part of the search space and so need to know when

to stop searching if the problem is unsatisfiable.

One of the primary contributions of this thesis is that it presents both complete and

incomplete multiply-constrained DCOP (MC-DCOP) algorithms to solve bounded opti-

mization problems. These algorithms employ mutually-intervening searches to address

the challenge of search complexity: while an agent immediately intervenes in the search

for the team optimal if its local resource constraint is violated, opportunistic search for

the global optimal solution obviates testing all partial solutions for resource constraint

satisfaction.

The complete Multiply-Constrained Adopt (MCA) algorithm employs three tech-

niques, which all contribute to the mutually-intervening search: constraint-graph trans-

formation, dynamically-constraining search and local acyclicity. The first technique,

6

constraint-graph transformation, is motivated by the challenge of harnessing existing al-

gorithms. The key innovation is in efficiently employing virtual variables to enforce an

agent’s resource constraints within the singly-constrained DCOP algorithms. Each virtual

variable represents a single resource constraint. These virtual variables asynchronously

notify affected agents when an over-expenditure of resources occurs and preemptively

prune search paths. For correctness and privacy preservation, the algorithm restructures

the multiagent network and appropriately places the virtual variables in that network.

The other two techniques address the privacy/efficiency challenge by communicating in-

formation about the available resources to agents affected by the resource constraints.

In dynamically-constraining search, an agent reveals to its neighbors an upper-bound on

the resources available for use by that neighboring agent. When optimizing the global

objective function, the agent’s neighbors only consider solutions that abide by the upper-

bounds. Ignoring potential solutions that are overly resource expensive improves algorith-

mic efficiency. The final technique, local acyclicity, further improves efficiency in locally

acyclic networks by allowing the communicated resource bounds to be tightened to exact

bounds, which further prunes the search space. It is also shown that these exact bounds

cannot be applied in areas of the multiagent network that are not locally acyclic.

The incomplete Multiply-Constrained Maximum Gain Message algorithms (MC-MGM-

1 and MC-MGM-2) presented in this thesis also make use of constraint-graph transforma-

tion and dynamically-constraining search to meet the three challenges common between

complete and incomplete algorithms. The main innovation was addressing the unsatis-

fiability detection challenge. For this, two design choices were available: search for the

7

optimal satisfying assignment and detect during the search whether the problem is unsat-

isfiable or maintain an invariant that resource limitations are never exceeded and detect

at the outset whether the problem is unsatisfiable. The latter approach fits better with

the idea of mutually-intervening searches because it uses the resource limitations to prune

the search space. However, in order to maintain the satisfaction invariant, an initial as-

signment needs to be found that meets this invariant. To meet this challenge a virtual

starting assignment was added to the problem which met the satisfaction invariant. The

starting assignment was designed so that the failure of any agent to move away from it

before termination flagged the problem as unsatisfiable.

The complete bounded optimization DCOP algorithm presented in this thesis was

built on top of Adopt, one of the most efficient complete DCOP algorithms [36]. How-

ever, the techniques outlined above could also be applied to other complete algorithms,

e.g. OptAPO and SynchBB [33, 60]. The incomplete algorithms were built on top of the

k-optimal Maximum Gain Message (MGM) algorithms. K-optimal algorithms are locally

optimal algorithms where k indicates the locality of the optimal the algorithm reaches

[45]. The techniques described in this thesis could also be employed in conjunction with

other incomplete algorithms like the Distributed Stochastic Algorithm (DSA), the Dis-

tributed Breakout Algorithm (DBA) and the Low Communication Approximate DCOP

Algorithm (LA-DCOP) [45, 14, 61, 44, 41]. The algorithms allow for fine-grained control

over the privacy of constraints and the exploitation of the information inherent in indi-

vidual resource constraints. Proofs of correctness are provided for all of the algorithms.

Experimental results for the complete and incomplete algorithms demonstrated that

bounded optimization problems are most challenging when resource constraints are tight

8

but satisfiable. In problems where there are insufficient resources, the team goal is largely

irrelevant, making the problem a distributed constraint satisfaction problem. In problems

with ample resources, the local resource constraints require little consideration, making

the problem a normal DCOP. The incomplete algorithms were two orders of magnitude

more efficient than the complete algorithm for the most challenging bounded optimiza-

tion problems. The incomplete algorithms were also extremely scalable, with very little

increase in the runtime as the number of agents in the network increased. The results also

confirmed that the smaller the subgroup of agents that coordinated in the locally-optimal

algorithms, the greater the efficiency of the algorithm, but the lower the quality of the

solution obtained.

1.2.2 Sensitivity Analysis

While designing multiply-constrained DCOP algorithms is important for extending DCOP

to more realistic and complex domains, real world domains also raise the question of sen-

sitivity analysis. A simple approach to sensitivity analysis would be to run the complete

multiply-constrained DCOP algorithm on all of the possible problem variants that re-

sult from introducing additional resources and compare the solutions. However, even

singly-constrained DCOP is known to be an NP-hard problem, so running the complete

algorithm an additional O(2n) times, where n is the number of agents in the network,

would be very computationally expensive. Furthermore, the introduction of additional

resource at a set of agents causes only a local perturbation to the problem. Thus, re-

running from scratch on each problem variant would require performing many duplicate

computations. Therefore, the main challenge is to identify bottleneck resource constraints

9

efficiently while taking advantage of calculations that have already been performed. The

other main challenge is to do this identification in a distributed manner.

This thesis presents two different approaches to sensitivity analysis. The first ap-

proach, link analysis, takes the solution to the original problem and rapidly examines

individual resource constraints in isolation to see whether a particular agent can use ad-

ditional resources to improve its local contribution to the team effort. This approach

is very efficient, but it ignores the rippling effect that the local perturbation will have

on other team members. A more sophisticated approach, local reoptimization, harnesses

the strengths of both the complete and incomplete algorithms. The complete algorithm

provides the globally optimal solution to the problem as originally posed. Once seeded

with the original global optimal, the incomplete algorithm uses its local optimization

techniques to propagate the effects of the additional resources to other team members.

These two approaches to sensitivity analysis were compared experimentally and the

results indicated that considering individual resource constraints in isolation is ineffective

at solving sensitivity analysis. However, local reoptimization was found to be be very

effective. A heuristic was also identified to further target the search for bottleneck nodes.

1.3 Guide to Thesis

This thesis is organized in the following way. Chapter 2 introduces the general DCOP

framework and the new Multiply-Constrained DCOP problem that this thesis addresses.

Chapter 3 focuses on complete algorithms, providing background, algorithm descriptions

and experimental results. Chapter 4 examines incomplete algorithms, again providing

10

background information, new bounded optimization algorithms and experimental results.

Finally, Chapter 5 looks at the combined usage of the algorithms on sensitivity analysis

problems. Chapter 6 presents related work and Chapter 7 concludes the thesis.

11

Chapter 2

Problem Definition

This chapter begins by providing background on the DCOP formalism (Section 2.1),

which is a framework for approaching multiagent coordination. DCOP is used in domains

such as distributed task allocation, distributed meeting scheduling, and sensor networks.

It allows for distributed control over actions and information, which makes it useful in

domains where privacy is important or where computational or communication limitations

prevent centralization. In Section 2.2, two domains are presented that motivated this

thesis’ attempt to increase the expressivity of the DCOP formalism. Finally, Section 2.3

presents the new multiply-constrained DCOP (MC-DCOP) formalism which provides the

basis for this thesis work.

2.1 DCOP Definition

The field of cooperative multiagent systems studies how teams of intelligent agents can

be harnessed to perform distributed coordinated computation. DCOP is a widely-used

formalism for performing multiagent coordination. DCOP [36, 1, 48] grew out of the field

12

of Constraint Optimization (COP) [53, 61], which was itself built upon work from the

field of constraint satisfaction (CSP) [3, 63, 60].

A COP, like a CSP, is basically made up of a set of n variables or nodes, {x1, x2, . . . , xn},

and a set of constraints between the variables. Constraint reasoning problems are fre-

quently represented diagrammatically, with the variables represented by ellipses and the

constraints represented as links between subgroups (frequently pairs) of variables. An ex-

ample of a graph 2-coloring problem is shown in Figure 2.1. Graph coloring problems are

a standard benchmark domain in the field of constraint reasoning. In the example, there

are four variables {x1, x2, x3, x4} and four constraints, one between x1 and x2, another

between x1 and x3, a third between x2 and x3, and the last between x2 and x4.

x1 x2

x3

x4

d1 d2 f(d1,d2)

0 0 10
0 1 0
1 0 0
1 1 20

d2 d4 f(d2,d4)

0 0 10
0 1 0
1 0 0
1 1 20

d1 d3 f(d1,d3)

0 0 10
0 1 0
1 0 0
1 1 20

d2 d3 f(d2,d3)

0 0 10
0 1 0
1 0 0
1 1 20

Figure 2.1: An example 2-coloring DCOP problem.

Variable xi can take on any value from the discrete finite domain Di. The notation

xi ← di means that variable xi has taken on the value di. The value generally represents

an action the user or agent should perform as part of the larger team effort. For example,

13

in a sensor network domain an agent would control a variable representing a particular

sensor and the values the variable took on would represent when and where the sensor

should sense. In the graph 2-coloring example in Figure 2.1, each of the four variables

has two values in its domain {0,1}, which represent the two colors available for use.

In extending COP to DCOP, variables are assigned to agents, where agents are phys-

ically distinct entities. Each variable is owned by a single agent, which controls the value

that the variable takes on. Agents may own one or more variables. There is no stan-

dard diagrammatic way of indicating which agents own which variables in a DCOP. The

designation is usually omitted; its inclusion is only necessary when an algorithm makes

a logical (rather than just implementational) distinction between communication sent

between variables within an agent and communication between variables across agent

boundaries. Most DCOP algorithms do not make a logical distinction between the two

types of communication.

Constraints convey how the values taken on by different variables affect one another.

Variables xi and xj are considered neighbors if they share a constraint, and only neighbors

can directly communicate with one another. In CSP problems, constraints simply specify

that certain combinations of values are legal or illegal. However, in the more expressive

COP and DCOP formalisms, constraints specify how preferable different combinations of

values are by having cost functions (fij) associated with the constraints. Diagrammati-

cally the cost functions are shown as tables and the proximity of a table to a particular

link, as well as the column titles in the table, convey which link the cost function is asso-

ciated with. In the example in Figure 2.1, there are identical cost functions on each link.

The cost functions do not have to be identical on all links, but, for simplicity, they are in

14

this example. In the example, if x1 took on the value 0 and x2 took on the value 1, the

cost, denoted f, on that particular link would be 0. In contrast, if both x1 and x2 took on

the value 0, the f-cost on that link would be 10. This means that the assignment {x1 ← 0,

x2 ← 1} is preferable, due to its lower cost, to the assignment {x1 ← 0, x2 ← 0}. In terms

of the 2-coloring problem, the coloring constraint is reflected in the cost function, which

intuitively suggests that connected areas must select different colors, otherwise they will

incur a high cost; however, if they must use the same color, color 0 is preferred to color

1.

The objective of a DCOP is to choose values for the variables such that the global

sum over the set of constraint cost functions (fij) is minimized, i.e. find an assignment,

A, s.t. F(A) is minimized:

F (A) =
∑

xi,xj∈V

fij(di, dj) where xi ← di, xj ← dj ∈ A

In the example in Figure 2.1, F (x1 ← 0, x2 ← 0, x3 ← 0, x4 ← 0) = 40 because an

f-cost of 10 is accrued on each link. The assignment (x1 ← 1, x2 ← 0, x3 ← 1, x4 ← 0)

has an f-cost of 30 because the link between x1 and x3 has a cost of 20 and the link

between x2 and x4 has a cost of 10. The optimal assignment F(A*) would be (x1 ← 0,

x2 ← 0, x3 ← 1, x4 ← 1) which leads to an f-cost of 10 which is accrued from the link

between x1 and x2.

So far, DCOP has been defined as a problem that involves minimizing a set of cost

functions. However, DCOP can equivalently be defined as a problem of maximizing a

set of utility functions. Due to the legacy of the existing DCOP algorithms used in

15

this thesis (Adopt [36] and MGM [46]), different definitions of DCOP will be used in

different parts of the thesis. The complete algorithms described in chapter 3 work as

cost minimizers, whereas the incomplete algorithms described in chapter 4 are utility

maximizers. Converting a problem from one of costs to one of rewards can be done by

changing each constraint function from f(di, dj) = fij to f(di, dj) = B − fij , where B

is a large constant. This mapping becomes relevant in Chapter 5, where the work on

sensitivity analysis involves bringing both complete and incomplete algorithms to bear

on a problem.

2.2 Motivating Domains

This section demonstrates the need to extend the expressivity of DCOP with examples

from two domains: distributed meeting scheduling and distributed software development.

Distributed Meeting Scheduling: In distributed meeting scheduling problems, groups

of researchers working in labs at several different locations need to meet to facilitate work

on a joint project. Each researcher has preferences over when and where the meetings he

or she is involved in will occur. However, given that the research groups are in different

locations, there are costs associated with traveling to meetings. The money for these

expenses is allocated from travel budgets maintained by group leaders in each research

group. The problem being presented to the multiagent system is to maximize the global

sum of everyone’s satisfaction with the schedule, while ensuring that the travel costs

accrued by researchers do not exceed the local travel budget for their research group.

16

In addition, while researchers are willing to share their scheduling preferences with each

other, the budgetary information needs to be kept private.

The existing DCOP formalism is able to model meeting time preferences using f-cost

functions, however, it cannot handle multiple types of constraints being defined on the

same set of variables. Therefore, it cannot capture both the global and local aspects of

the problem simultaneously. In addition, the travel budgets are private n-ary constraints,

and DCOP cannot explicitly represent individual constraint privacy.

A simple distributed meeting scheduling example is shown in Figure 2.2. Researchers,

A, B, C, D and E are divided between labs at Loc1 (A,B) and Loc2 (C,D,E). Each

researcher has an agent (shown as a box) that acts on his/her behalf. Researchers A

and C need to meet, and researchers B, D and E also need to meet. Each researcher’s

agent has a variable which represents the meeting they are to participate in (shown as an

ellipse inside the box of the agent that owns the variable). The domain of each variable

is a tuple of time-of-meeting and location. In the example in Figure 2.2, the variables

are all assumed to have the same set of domain values and those domain values are the

6th of October at Loc1 (abbreviated in the figure as “6th”) and the 15th of October at

Loc2 (abbreviated as “15th”). Although not shown in the example, giving each agent

a separate copy of the meeting variable allows an individual researcher to opt out of

a meeting if his or her attendance is not mandatory. For example, the BDE meeting

is represented with three variables B-BDE, D-BDE and E-BDE. If E’s attendance were

not mandatory, E-BDE (E’s copy of the BDE meeting variable) could be set to a value

indicating non-attendance, while B-BDE and D-BDE took on a value indicating the time

and location the meeting was to be held.

17

B-BDE

A

B

C

D

Loc1 Loc2

 6th 6th 5
 6th 15th inf
 15th 6th inf
 15th 15th 0

B-BDE D-BDE f

budget = $470

 6th 6th $320
 6th 15th $120
 15th 6th $120
 15th 15th $0

C-AC D-BDE g

Locations Agent Variable

budget = $700

D-BDE

A-AC C-AC

E-BDE

E

 6th 6th 5 $100
 6th 15th 0 $100
 15th 6th 10 $0
 15th 15th 0 $0

C-AC E-BDE f g

Figure 2.2: Meeting Scheduling Example

The links between agents capture the scheduling preferences and the costs of travel.

For readability not all of the link functions are shown in Figure 2.2. The f-cost from the

DCOP framework can express agents’ scheduling preferences. An example is shown on

the link between agents B and D. If both agents pick the 6th October then the f-cost

(representing their preference) is 5. The infinite cost for selecting different values repre-

sents the fact that choosing different times for the same meeting is an invalid assignment.

The f-cost function on the link between agents C and E reflects a preference that the

BDE meeting precede the AC meeting. An additional cost (marked g) reflects the cost of

traveling to a meeting. The location of a particular meeting is indicated by the location

portion of the domain value. If the meeting is being held at the researcher’s current

location, then no travel costs are incurred. For example, on the link between C-AC and

D-BDE, when both meetings are scheduled for 15th of October at Loc2, the travel cost,

18

marked g, is $0. If travel is required, the researcher’s group leader incurs the travel cost.

The cost varies depending on the date of travel and whether all members are traveling on

the same day and can share a cab to the airport. For example, on the link between C-AC

and D-BDE, when at least one meeting variable has selected the value of 6th October at

Loc 1, the travel cost is greater than $0. In the example in Figure 2.2, A and C are group

leaders and their travel budgets are $700 for A and $470 for C. The presence of a travel

budget indicates they are the group leaders.

Distributed Software Development : Many software companies have campuses in differ-

ent parts of the globe, and teams there must collaborate across both distances and time

zones [10, 26]. Interdependent tasks within a project must be scheduled for their timely

completion. In addition, to facilitate the handoff, a team liaison must videoconference

with the team to which the code is being sent during the initial stages of development on

a dependent piece of software. This liaison may have to stay after hours to videoconfer-

ence in the new team’s time zone. To avoid burnout, corporate policy may limit liaison

overtime to a specific number of hours a week per liaison.

The limits on liaison overtime introduce an extra set of n-ary satisfaction constraints,

but unlike the travel budgets from the meeting scheduling domain, the overtime limits are

publicly known constraints. Once again, DCOP can capture the scheduling preference

constraints or it could capture the satisfaction constraints (since they are non-private),

however, it cannot express both sets of constraints simultaneously.

The variables a distributed software development domain would represent tasks to be

completed and the values would represent times at which a task could be scheduled. The

regular DCOP f-cost function could capture the temporal precedence constraints, e.g.

19

t1

t4

t2

t3

t5

Team1 Team2

Figure 2.3: Distributed Software Development Example

task 1 must complete before task 2. The f-cost constraints could also capture preferences

over the potential times, e.g. it is better to start task 1 early in the day. However, if task 2

builds on task 1, then the liaison from the team working on task 1 would accrue overtime

hours if task 2 is scheduled outside of the normal work hours of the team working on task

1. The sum of the hours of overtime worked by each liaison needs to remain below the

company threshold.

The two examples above illustrate the need for multiply-constrained DCOPs to model

such collaborations. These domains require agents to optimize an f-cost function and yet

adhere to additional resource constraints, which may or may not be publicly known. The

next section presents multiply-constrained DCOP, a new formalism with the expressivity

to capture these domain problems.

2.3 Multiply-Constrained DCOP

To address the expressivity challenges of real world applications such as those described in

the previous section, this thesis defines Multiply-Constrained DCOP (MC-DCOP). MC-

DCOP adds a new cost function gij on a subset of the links connected to node xi and

20

a g-budget Gi which the accumulated g-cost on local links must not exceed. Together

the g-function and g-budget constitute a g-constraint. Figure 2.3 shows an example with

g-constraints on x1 and x4. In the example, if x1, x2, x3 each take on the value of 1

(leading to an optimal f-cost) then x1’s local g-cost is 7, which violates x1’s g-budget of

4. G-constraints may be either private or shared.

x1 x2

x3

x4

d1 d2 f(d1,d2) g(d1,d2)

0 0 1 2
0 1 2 1
1 0 2 0
1 1 0 4

d2 d3 f(d2,d3)

0 0 1
0 1 2
1 0 2
1 1 0

d1 d3 f(d1,d3) g(d1,d3)

0 0 1 2
0 1 2 6
1 0 2 1
1 1 0 3

g-budget on x1: g <= 4

d2 d4 f(d2,d4) g(d2,d4)

0 0 1 2
0 1 2 1
1 0 2 0
1 1 0 4

g-budget on x4: g <= 3

Figure 2.4: Example Multiply-Constrained DCOP problem

G-cost functions cannot be merged with f-cost functions. Thus, each variable’s value

must meet the constraints of both f and g, and hence this is a multiply-constrained DCOP.

It is straightforward to extend this framework to multiple g-constraints on a variable.

In general, the g-constraint can be an arbitrary function on the values of xi and its

neighbors.1 However, given that both of the motivating domains described in Section 2.2

involve additive g-constraint functions, the assumption will be made in this thesis that the

function is additive. This makes the formalism slightly less general; however, the additive
1While for simplicity it is assumed that the set of f-neighbors and g-neighbors are the same, this is not

necessary.

21

nature of the g-constraints parallels the additive nature of the f-constraints in DCOP. It

is worth noting that the private multiply-constrained algorithms described in chapters 3

and 4 could handle non-additive g-constraints, but for simplicity of exposition, this thesis

will maintain throughout the assumption that g-constraints are additive. Given the g-

cost functions and g-budgets, the Multiply-Constrained DCOP (MC-DCOP) objective is

defined as follows: find A s.t. F(A) is minimized, where:

F (A) =
∑

xi,xj∈V

fij(di, dj) where xi ← di, xj ← dj ∈ A

and

∀xi ∈ V :
∑

xi,xj∈neighbors(xi)

gij(di, dj) ≤ Gi

Multiply-Constrained DCOP has three features absent in regular DCOP:

1. n-ary (g-cost) constraints

2. private g-constraints where both Gi and gij are kept private

3. the need to exploit the interaction between f- and g-constraints for pruning the

search space

No existing DCOP algorithm addresses these three issues simultaneously. Specifically,

none of the algorithms handle feature (3), because existing DCOP algorithms do not

allow for multiple types of constraints to be defined on the same pair of variables, so

there is no interaction for them to exploit. Adopt[36] can handle (2) because it does not

centralize constraints, but it cannot handle (1) because it was designed to exclusively use

22

binary constraints. OptAPO[33] and DPOP[48] can handle (1), but not (2) because they

partially centralize constraints.

Now that the motivation for extending DCOP and the new formalism of MC-DCOP

has been introduced the next two chapters will describe complete (Chapter 3) and in-

complete (Chapter 4) algorithms designed to solve this problem.

23

Chapter 3

Complete MC-DCOP algorithms

This chapter focuses on the complete algorithm developed to solve the MC-DCOP prob-

lem defined in Chapter 2. Multiply-Constrained Adopt (MCA) is a novel algorithm that

builds upon the highly efficient DCOP algorithm Adopt. As mentioned in the Introduc-

tion, there are three main challenges that had to be addressed in designing Multiply-

Constrained Adopt. First, g-constraints add to DCOP search complexity so MCA must

rapidly prune unproductive search paths. Second, Adopt [36, 1, 30] is not designed to

handle resource constraints that are local, private or defined over n-ary domains. Third,

MCA must exploit constraint revelation to gain efficiency when privacy is not required.

This chapter is organized as follows: Section 3.1 provides background on the Adopt

algorithm, Section 3.2 describes the key techniques employed in Multiply-Constrained

Adopt, Section 3.3 describes MCA in detail, Section 3.4 provides correctness and com-

plexity results and Section 3.5 contains the experimental results.

24

3.1 Background: ADOPT

The Adopt algorithm [36], which provides the basis for the complete MC-DCOP algo-

rithm developed in this thesis, is an asynchronous complete DCOP algorithm. Several

mechanisms in Adopt lend themselves particularly well to creating multiply-constrained

Adopt. Adopt uses an opportunistic search mechanism which can be harnessed for find-

ing not only the best global solution but also the second best, the third best and so on,

which is valuable when the best solution does not satisfy the g-constraints imposed on

a problem. In addition, Adopt does not centralize multiple variables’ constraints, which

is important in the managing of private constraints. Adopt is also a polynomial space

algorithm, which is helpful in domains where agents may have limited processing power.

In the course of computing the solution to a DCOP, variables communicate with

their neighbors, variables with whom they share a constraint. In order to organize the

communication between variables, Adopt sorts variables into a Depth-First Search (DFS)

priority tree in which constraints are allowed between a variable and its ancestors or

descendants, but not between variables in separate sub-trees. Heuristics are used to decide

how to prioritize linked variables. The example in Figure 3.1 shows (a) the constraint

graph initially given to Adopt and then (b) the DFS tree formed by Adopt. Each variable

(except the root) must have a single parent node, but may have any number of children

and neighbors. In Figure 3.1b variable x1 is the root of the DFS tree as well as the parent

of x2. x2 is the parent of x3 and x4. x2 is a child of x1 and x3 is a neighbor (but not a

child) of x1.

25

x1 x2

x3 x4

x1

x2

x4x3
a) b)

Figure 3.1: a) Original constraint graph b) DFS tree

In communicating between neighboring variables, Adopt employs two basic messages:

VALUE and COST.1 Assignments of values to variables are conveyed in VALUE messages

that are sent to all neighbors lower in the DFS tree. For example, x1 will send a VALUE

messages to x2 and x3 indicating the value it has currently taken on. A COST message

is sent from children to parents indicating the f-cost of the sub-tree rooted at the child.

In the example in Figure 3.1, x3 and x4 will send their COST messages to x2 and x2 will

send COST messages to x1 that incorporate its own local cost and those costs reported

by x3 and x4.

Adopt does not perform its computation synchronously, it is event driven and the

events that trigger computation are the receipt of messages. The receipt of a VALUE or

COST message prompts the sending of further VALUE and COST messages. Thus, in

order to begin computation, Adopt needs to send out an initial set of messages. It does

this by having variables randomly select a starting value (they cannot choose intelligently
1Adopt also uses THRESHOLD messages for improved efficiency. These messages are orthogonal to

the concerns of this thesis and so are not discussed.

26

since they do not know the choices of their neighbors) and then send VALUE messages

to their neighbors lower in the tree.

Upon receipt of a VALUE message, a variable, xi, will examine all the values in its

domain. For each value di, xi will compute the f-cost incurred on all of its links with

its ancestors given that xi has taken on the value di and the ancestors have taken on

the values communicated in their VALUE messages. If available, it will also add in the

lower bounds on cost reported by each child given xi’s value of di. If lower bound cost

information is not available it is assumed to be 0. The calculated sum represents a lower

bound on the cost of taking on the value di in the current context. Variable xi will

select the value that minimizes the lower bound cost given the current context. If the

lowest cost value is different to the value it had previously taken on, it will send VALUE

messages to its descendants. It will also send a COST message to its parent containing

the lower bound cost. Since communication is asynchronous, COST messages have a

context attached to help the receiver determine information relevance. The context is a

list of the variable assignments in existence at the time the COST message was sent and

if it matches the variables assignments currently in existence, the cost information is still

relevant.

Upon receipt of a COST message, a variable xi first examines the message to see if

the context matches the current one. If there is a match then the variable stores the lower

bound reported by the child and uses the procedure described in the previous paragraph

to select the lowest cost value given the information it currently possesses. After this

computation it sends a COST message to its parent, and if it has changed its value

assignment, it sends out VALUE messages.

27

A variable, xi, maintains a lower bound on the cost of different assignments, which

represents a lower bound on the f-cost of all assignment of values to the variables in the

subtree rooted at xi. A lower bound can be generated even before all children have sent

information to xi. In addition to the lower bound, variables maintain an upper bound on

the cost of their subtree. The upper bound is the actual cost of the lowest cost complete

assignment currently tried. Calculating an upper bound requires information for the

current context from all variables in the subtree to have percolated up to node xi. Until

then it is assumed to be infinite. The root’s upper and lower bounds represent the upper

and lower bounds on the global problem; when they meet the optimal has been found

and the algorithm terminates.

3.2 Basic Ideas

MCA uses mutually-intervening search to address these challenges. An agent immediately

intervenes in the search for the optimal f-cost if its local g-constraint is violated. In

addition, opportunistic search for the optimal f obviates testing all partial solutions for

g-constraint satisfaction. The mutually intervening approach is realized through three

techniques: constraint-graph transformation, dynamically constraining search, and local

acyclicity.

3.2.1 Constraint-Graph Transformation

To exploit existing DCOP algorithms and maintain privacy, virtual variables are added

to enforce n-ary g-constraints. Each virtual variable is responsible for the enforcement

of a single g-constraint. A virtual variable collects information from all of the regular

28

variables involved in its g-constraint and performs a centralized computation to see if

the g-constraint is currently violated. If it detects a g-constraint violation, the virtual

variable asynchronously preempts the current search path. Using extra variables to en-

force n-ary satisfaction constraints with binary satisfaction constraints has appeared in

the centralized CSP literature [55]. The use of this idea in MCA has 3 novel aspects.

• First, these virtual variables are embedded in a singly-constrained DCOP algo-

rithm. This thesis proves the correctness of the resulting asynchronous multiply-

constrained DCOP algorithm. To that end, Adopt’s DFS tree is restructured and

the virtual variables are appropriately placed in the tree.

• Second, since the constraint-graph restructuring can change local acyclicity proper-

ties of other variables, MCA’s preprocessing identifies and preserves local acyclicity

where feasible.

• Third, the local g-constraint is encapsulated in a virtual variable which is owned by

the same agent as the original variable and placed as a leaf in the DFS tree. This

allows the privacy of both the g-function and the g-budget to be protected because

the only information required by or revealed to the other agents is that their current

assignment is invalid.

3.2.2 Dynamically Constraining Search

To mitigate against the increased complexity of bounded optimization problems, it is

important to exploit g-constraint revelation when allowed to gain efficiency in the search

for the optimal solution. This is achieved by requiring descendant nodes to consider

29

only assignments that will not violate their ancestors’ g-constraints. Specifically, each

descendant is passed a bound (termed g-threshold) specifying how large a g-cost it can

pass up, limiting its effective domain. This g-threshold is an exact bound when the local

constraint graph is acyclic and an upper bound otherwise. If a potential value assignment

fails to satisfy an ancestor’s g-threshold, variables will not explore this value for f-cost

optimality. Additionally, the opportunistic search for an optimal f necessitates checking

for g-constraint violations only for those value combinations that are of low f-cost. Thus,

the searches dynamically constrain each other, leading to performance improvements.

3.2.3 Local Acyclicity (T-nodes)

The notion of local acyclicity is captured formally by the definition of T-nodes. A variable

xi is a T-node if all neighbors of xi lower in the DFS tree are children of xi. In Figure 2.1,

x1 is not a T-node because its lower priority neighbor x3 is not also its child. However,

x2, x3 and x4 are all T-nodes. T-nodes enable the calculation of exact g-thresholds and

elimination of virtual variables because their children respond independently to allocated

g-thresholds.

MCA exploits the fact that g-constraints are local constraints to allow these three

techniques to be applied simultaneously to different variables within the same problem.

As a result privacy protecting techniques like constraint-graph transformation apply only

at those variables requiring that their g-constraint be kept private. Thus, having a single

private g-constraint in the problem does not preclude the other variables from using the

more efficient dynamically constraining search and local acyclicity techniques.

30

3.3 MCA Algorithm Description

Figures 3.5 and 3.6 present pseudo-code for MCA. MCA uses three subalgorithms: (i)

MCA Private (MCAP) is used when a g-constraint may not be revealed: it uses constraint-

graph transformation, (ii) MCA Shared (MCAS) is used when a g-constraint is non-

private, but the variable is not a T-node: it employs constraint-graph transformation and

dynamically constraining search, and (iii) MCA Shared and Acyclic (MCASA) is utilized

when a g-constraint is non-private and the variable is a T-node: it uses dynamically

constraining search. Each sub-algorithm will be discussed separately, and then their

interaction in the unified algorithm will be described.

3.3.1 MCAP

The MCAP subalgorithm is used when a variable’s g-constraint must be kept private.

Privacy is taken to mean that neither the g-constraints nor the variables involved are

explicitly revealed to other agents. An illustrative snapshot of MCAP’s execution is

shown in Figure 3.2.

Since the g-constraints are not visible other agents, MCAP uses Adopt’s normal op-

portunistic search mechanisms to search for an optimal f-cost solution. To handle the

additional g-constraints, MCAP has a set of virtual variables. Each virtual variable is

responsible for enforcing the g-constraint of a single variable. In the example in Figure 3.2

x′1 is a virtual variable that is responsible for enforcing the g-constraint of variable x1.

The virtual variable is controlled by the agent that owns the original variable (lines 3-5).

31

x1
 1

x2
 1

x3
 1

x4
 1

x1'

g <= 4

inf
ini

ty

Figure 3.2: Snapshot of MCAP

A virtual variable receives VALUE messages from all of the variables in its particular

g-constraint. It looks at the current full or partial assignment and tests whether its g-

constraint is violated. If the current assignment violates the g-constraint, the virtual

variable sends out a feedback signal, in the form of an infinite COST message (lines 60-63

in Figure 3.6). The feedback is sent to the lowest priority variable involved in the violated

constraint, which in the example in Figure 3.2 would be x3. Using the f-cost optimization

mechanisms of Adopt, the feedback will propagate to the node(s) that must change their

values to find the optimal satisfying solution. Specifically, if a variable (e.g. x3) receives

an infinite cost for all of its domain values, it will send a COST message to its parent

(e.g. x2) indicating an lower bound and upper bound of ∞ which will prompt the parent

to change its value. As a result, the child’s context is reset, allowing the child to try its

domain values again.

Since feedback must be able to percolate up to all the nodes in a particular g-

constraint, Adopt’s DFS tree must be restructured to put all the variables in a particular

32

g-constraint in the same subtree (lines 6-8). MCAP preprocessing then creates the vir-

tual variables and places them as leaves, lower in the DFS tree than the variables in the

g-constraint they enforce (lines 10-11). Being a leaf allows the virtual variables to receive

VALUE messages from all of the variables in the g-constraint without having to send any

itself. The preprocessing of the DFS tree is revisited in Section 3.3.4.

MCAP protects privacy in several ways. Since the g-constraint is encapsulated in

the virtual variable, no other agent explicitly needs to know either the g-budget or the

g-functions. Other variables just search for the optimal f-cost solution. Additionally,

since the feedback sent by the virtual variables is a regular COST message and agents do

not know the global graph structure, the fact that a variable is a virtual variable can be

obfuscated. The receipt of an infinite COST message from a child can mean one of three

indistinguishable things:

• the child is a virtual variable

• the child is a regular variable passing up an infinite cost from a virtual variable

lower in the DFS tree

• the child is a regular variable passing up an infinite cost incurred due to the f-cost

constraints

In some versions of DCOP, agents are assumed to own only one variable. If this were

the case, the lowest priority neighbor in a particular g-constraint would be able to infer

that its child was a virtual variable because it would receive VALUE messages and COST

messages from two variables owned by the same agent. None of the other agents in

a g-constraint receive COST messages from the virtual variable, so it is only the lowest

33

priority variable that could make this inference. However, the general definition of DCOP

allows an agent to own multiple regular variables, thus in general, the fact that a variable

is connected to multiple variables owned by the same agent does not reveal whether the

variables are real or virtual.

3.3.2 MCAS

x1
 1

x2
 1

x3
 1

x4
 1

x1'

g <= 4

inf
ini

ty

g-thresh = 3

g-
th

re
sh

 =
 3

D2: {0,1}

D3: {0, 1}

Figure 3.3: Snapshot of MCAS

MCAP’s partial search of unsatisfying assignments slows the algorithm. When a g-

constraint does not have to be kept private, the g-function of a link is revealed to both the

variable with the g-constraint and the variable on the other end of the link. For example,

in Figure 3.3, x1 has a g-constraint which is made up of the g-budget (which is 4) and the

g-cost functions on the x1 − x2 and x1 − x3 links. Since the g-constraint is not private,

variable x2 will be aware of the g-cost function on the x1 − x2 link and x3 will be aware

of the g-cost function on the x1 − x3 link. The g-cost function indicates what g-cost is

incurred by each of the pairs of value choices the variables can take on.

34

MCAS and MCASA, shown in Figures 3.3 and 3.4 respectively, exploit g-function rev-

elation by having nodes send their descendants g-thresholds (line 52). These g-thresholds

indicate that the descendant may take on no value with a g-cost greater than the g-

threshold. The snapshots from Figures 3.3 and 3.4 show the g-thresholds being passed

down from x1 to x2 and x3.

If the variable is not a T-node, which is the case in MCAS, the g-threshold for a

child (xl) is an upper bound: the total g-budget minus the minimum g-cost that could

be consumed by each of the other links:

Gi −
∑

xj∈Neighbors(xi) 6=xl

min{gij(di, dj)}

In Figure 3.3, the total g-budget at x1 is 4. If the minimum g that could be consumed

on the x1−x3 link were 1, then the g-threshold sent to x2 would be 3. Given this bound,

a node can prune values from its domain that do not satisfy the g-threshold (e.g. 0 is

pruned from the domain of x2). This pruning of the domain reduces the search space and

leads to speedups over MCAP.

3.3.3 MCASA

MCASA is applied when a variable’s g-constraint is not required to be kept private and

the variable is a T-Node. For T-nodes, it is possible to calculate an exact bound which

enables more values to be pruned from the domain and further speed-ups to be achieved.

For example, x1 in Figure 3.4 is a T-node, and it calculates exact bounds, which means

that it sends a tighter g-threshold (0 instead of 3) to x3.

35

x1
 1

x2

x3 x4

g <= 4

g-
th

re
sh

 =
 0 g-thresh = 4

D2: {0,1}

D3: {0, 1}

Figure 3.4: Snapshot of MCASA

Calculating the exact bounds requires a node to maintain a mapping from potential

g-thresholds to lower bounds on f-costs (GFmap) for each of its children. For example, in

Figure 3.4, x1 would maintain a GFmap for x2 and a GFmap for x3. The GFmap for x2

would have entries for g-budgets of 0 . . . 4 and the entry for 0 would be the lower bound

on cost that x2 would report if given a g-threshold of 0 in the current context. GFmap

is dynamically initialized from the link g-functions (line 17-18; line 50) and then updated

as COST messages arrive (line 38).

A T-node uses the g-threshold to f-cost mappings to calculate how to split its remain-

ing g-budget among its children. The remaining g-budget is its total g-budget minus the

g-cost consumed on each of the links with its ancestors. The optimal split minimizes the

sum of the f-costs that will be reported by the variable’s children, as estimated in the

GFmap. Each time the GFmap is updated the optimal split is recalculated. The split

is calculated by the calcOptimalSplit function, which is implemented using a straightfor-

ward dynamic program.

36

Since xi’s lower bound (lb) and upper bound (ub) for the current context now depend

upon the way xi splits its g-budget among its children, xi’s current split is now part of

the context for lb and ub. Variable xi stores the g-budget split as part of its context and

when xi’s children send COST messages, they include the g-threshold that was in effect

when they sent the message. The lb and ub are reset to 0 and ∞ respectively whenever

xi changes its split (line 39) as well as after normal context changes (line 28). If a node

can’t find a satisfactory split of its remaining g-budget, it will send up a cost of ∞ to its

parent which will cause its ancestors to switch their values (line 45).

3.3.4 Combining Techniques

The subalgorithms may be applied simultaneously to different nodes within the same

problem. The g-constraints are local constraints, so the only challenging situations occur

when a parent and a child are using different techniques. The algorithm handles these

situations as follows:

• Parent = MCAS/MCASA, Child = MCAP: The child can restrict its domain based

upon the g-threshold of its parent, and the parent will automatically change its

value if an infinite COST message percolates up from the child’s virtual variable.

• Parent = MCAP, Child = MCAS/MCASA: The child will automatically adjust

its value if the parent’s virtual variable passes up an infinite cost and the child’s

technique makes no difference to the parent.

One key issue is whether the tree transformations performed as part of the preprocess-

ing for MCAP and MCAS can turn a T-node somewhere else in the tree into a non-T-node

37

% An initial DFS tree is assumed to have been built in preprocessing.
% Convention: xi is self, xj is a higher priority neighbor
% and xk and xl are lower priority neighbors.
Preprocessing
(1) for each xi from highest priority to lowest
(2) if Tnodei == false or privatei == true
(3) x′

i is a new virtual variable
(4) Neighbors(x′

i)← Neighbors(xi) ∪ xi

(5) Neighbors(xi)← Neighbors(xi) ∪ x′
i

(6) forall xk ∈ Children(xi)
(7) if xk is not a neighbor of xl ∈ Children(xi)
(8) Neighbors(xk)← Neighbors(xk) ∪ xl

(9) rebuildDFStree(x1 . . . xn)
(10) forall virtual variables x′

i,
(11) parent(x′

i)← lowest priority Neighbor of x′
i

Initialize
(12) CurrentContext← {}
(13) initialize structures to store lb and ub from children
(14) di ← d that minimizes LB(d)
(15) if privatei == false and Tnodei == true
(16) forall xl ∈ Children
(17) for gt← 0 . . . Gi

(18) GFmap(xl, gt)← min f(di, dl) s.t. g(di, dl) ≤ gt
(19) if Tnodei == true and privatei == false
(20) calcOptimalSplit
(21) else if privatei == false
(22) calcUpperBound
(23) backTrack

when received (VALUE, xj , dj , gThreshj)
(24) if privatej == false
(25) add (xj ,dj ,gThreshj) to CurrentContext
(26) else
(27) add (xj ,dj) to CurrentContext
(28) reset lb and ub if CurrentContext has changed
(29) if privatei == false and Tnodei == true
(31) if CurrentContext has changed
(30) forall xl ∈ Children
(32) GFmap(xl, gt)← min f(dl, di) s.t. g(dl, di) ≤ gt
(33) calcOptimalSplit
(34) backTrack ;

Figure 3.5: Multiply-Constrained Adopt Pseudo-code, part 1

38

when received (COST, xk, context, lb, ub)
(35) update CurrentContext
(36) if context compatible with CurrentContext

and Tnodei == true and privatei == false
(37) GFmap(xl, gThreshil)← lb s.t.

(xi, di, gThreshil) is part of context from xk

(38) calcOptimalSplit
(39) if any gThreshil has changed, reset lb,ub
(40) else store lb,ub
(41) else if context compatible with CurrentContext and gThreshil

(42) store lb and ub
(43) backTrack

procedure backTrack
(44) if xi not a virtual variable
(45) if no d satisfies gThreshj LB, UB ←∞
(46) else if LB(di) > LB(d) for some d
(47) di ← d that minimizes LB(d) and satisfies gThreshj

(48) if Tnodei == true and privatei == false
(49) GFmap(xl, gt)← min f(di, dl) s.t. g(di, dl) ≤ gt
(50) calcOptimalSplit ; reset lb and ub
(51) if privatei == false
(52) SEND (VALUE, (xi, di, gThresh(xk)))

to each lower priority neighbor xk

(53) else SEND (VALUE, (xi, di))
to each lower priority neighbor xk

(54) if LB == UB:
(55) if TERMINATE received from parent or xi is root:
(56) SEND TERMINATE to each child
(57) Terminate execution;
(58) SEND (COST, xi, CurrentContext, LB, UB)
(59) else % else a virtual variable
(60) if g(di, CurrentContext) > gBudget(xi)
(61) SEND (COST, xi, CurrentContext, ∞, ∞) to parent
(62) else
(63) SEND (COST, xi, CurrentContext, 0, 0) to parent

Figure 3.6: Multiply-Constrained Adopt Pseudo-code, part 2

39

x1

x2

x3 x4

x1

x2

x3

x4

x1'

Figure 3.7: a) original constraint graph b) after adding x′1

because it would interfere with MCA’s ability to use MCASA independently of MCAS and

MCAP. There are two steps in the preprocessing that cause links to be added: (i) adding

empty links between xi’s children to force them into the same subtree (lines 6-8) and (ii)

adding a virtual variable and empty links to each of the variables in the g-constraint it

represents (lines 10-11). If a link is added between two children of a T-node, then despite

having no f-function or g-function it can turn a T-node into a non-T-node. For instance,

in Figure 3.7a, x1 has a g-constraint with x2, x3 and x4. During preprocessing, a link

must be added between x3 and x4, because the tree building algorithm will attempt to

place non-neighbors in separate subtrees to increase parallelism. Additionally, one vari-

able must be chosen (arbitrarily) to be the parent of the other (x3 is made parent of x4).

x4’s COST messages no longer flow directly to x2 but are sent via x3 where they are

combined with x3’s local costs. This combination prevents x2 from calculating an exact

bound and renders it no longer a T-node.

40

In contrast, in Figure 3.2 the addition of virtual variables and their accompanying

links, does not change a T-node to a non-T-node. While x2 is originally a T-node, the

addition of the virtual variable x′1 creates a lower priority neighbor for x2 that is not

a child. However, in this case, x′1 is a virtual variable, i.e. it has no f-functions or g-

functions on any of its links and it has no domain of its own. Since x′1 need be given no

g-threshold, the fact that it is not one of x2’s children does not prevent x2 from being a

T-node.

Given these two cases, preprocessing (lines 1-11) starts by walking through the tree in

priority order adding in the empty links between children where necessary and adjusting

the priorities accordingly. Once a node, xi, has been determined to be a T-node no links

added between its lower priority non-neighbors will change xi into a non-T-node, so one

sweep of the tree is sufficient to correctly determine which nodes are T-nodes. After this

sweep the virtual variables themselves can be added as leaves without causing any of the

previously determined T-nodes to lose that property.

3.4 Correctness and Complexity of MCA

In this section the proofs for each subalgorithm are handled separately for the sake of

clarity. As previously described, the interaction of the techniques in the combined algo-

rithm does not change their properties. In the following proofs a context is the set of

variable assignments upon which a piece of information is predicated.

41

Proposition 1 For each node xi for the current context, MCAP finds the assignment

whose f-cost, local cost (δ) plus the sum of each of xi’s children’s (xl’s) costs, is minimized

while satisfying the g-constraint:

OPT (xi, context)
def
=

mind∈Di
[δ(d) +

∑
xl

OPT (xl, context ∪ (xi, d))]

if ∀xi ∈ V :
∑

xi,xj∈neighbors(xi)
gij(di, dj) ≤ Gi

∞ otherwise

where δ(d)
def
=

∑
xj∈ancestors fij(di, dj)

Proof: The proof starts from the correctness of the original Adopt algorithm [36].

At every node xi Adopt will find:

OPT ′(xi, context)
def
=

mind∈Di
[δ′(d) +

∑
xl

OPT ′(xl, context ∪ (xi, d))]

where δ′(d)
def
=

∑
xj∈ancestors fij(di, dj)

To show that MCAP finds OPT (xi, context) it is shown that 1) MCAP never returns

an assignment containing a violated g-constraint, unless the g-constraint is unsatisfiable

and 2) MCAP finds the minimum f-cost solution.

Part (1) uses the fact that the virtual variables introduce an infinite f-cost into the

subtree containing the violated constraint. This infinite f-cost enters lower in the priority

tree than any variable in the constraint which allows the normal flow of COST messages

to eventually carry it to all of the involved nodes. Since any assignment that does not

violate the g-constraint will have a finite f-cost, it follows from the correctness of Adopt

42

that by choosing the assignment that minimizes f, variables in MCAP will never take on

a final assignment that violates a g-constraint unless the g-constraint is unsatisfiable.

Part (2) follows directly from the correctness of Adopt because the virtual variables

report a zero cost if all constraints are satisfied. As a result Adopt’s normal mechanisms

ensure it will find the minimum f-cost solution. �

Proving that MCAS is correct requires a minor addition to the MCAP proof from

Proposition 1.

Proposition 2 If the g-constraint for each node xi is:

∑
xj∈Neighbors(xi)

gij(di, dj) < Gi

then no satisfying solution can contain on link lil a g-cost greater than:

Gi −
∑

xj∈Neighbors(xi) 6=xl

min{gij(di, dj)}

Proof: Each link consumes a certain minimum g-cost, and MCAS only subtracts the

sum of the absolute minimum costs on all links. �

For MCASA, if the g-thresholds are assigned optimally, then given the correctness of

the original Adopt algorithm, MCASA is correct.

Proposition 3 For each T-node xi, MCASA always terminates with an optimal division

of the g-budget given di and the current context.

Proof by Contradiction: Assume xk ∈ Children(xi) and that there are no non-T-

nodes as descendants of xi. Additionally, assume MCASA terminates with g-thresholds

43

g′ik (∀xk) which are not optimal. Thus there exists another set of g-thresholds (g∗ik) such

that:

δ(di) +
∑
xk

min lb(di, dk∗) < δ(di) +
∑
xk

min lb(di, d
′
k)

where dk∗ ∈ {Dk | gik(di, dk) ≤ gik∗}

where d′k ∈ {Dk | gik(di, dk) ≤ g′ik}

Since local cost δ(di) is constant for all g-thresholds, it can be ignored. To have been

selected, g′ik must have seemed optimal based on the current information at some point.

To distinguish these two states of knowledge let the following terms be defined:

• factual(gik, xk) is the f-cost (specifically min{lb(di, xk)} where dk ∈ {Dk|gik(di, dk) ≤

gik}) when all costs have percolated up from all descendants

• fcurrent(gik, xk) is the current lower bound on f-cost

When g′ik is selected:

1.
∑

xk
factual(g′ik, xk) >

∑
xk

factual(g∗ik, xk)

2.
∑

xk
fcurrent(g′ik, xk) <

∑
xk

fcurrent(g∗ik, xk)

3. fcurrent(gik, xk) ≤ factual(gik, xk) for any gik

4.
∑

xk
fcurrent(gik, xk) ≤

∑
xk

factual(gik, xk)

Since there are a finite number of nodes in the tree below xi, before termination∑
xk

fcurrent(g′ik, xk) =
∑

xk
factual(g′ik, xk) will become true. At this point:

∑
xk

fcurrent(g′ik, xk) =
∑
xk

factual(g′ik, xk)

44

∑
xk

fcurrent(g′ik, xk) >
∑
xk

factual(g∗ik, xk) by (1)

∑
xk

fcurrent(g′ik, xk) >
∑
xk

fcurrent(g∗ik, xk) by (4)

Thus, based upon current information (fcurrent) MCASA will switch from g′ik to gik∗

because it has a lower associated f-cost. This contradicts the assumption that MCASA

will terminate with g-thresholds g′ik. �

If xi is not a T-node, then MCASA is not guaranteed to find the assignment whose

f-cost, local cost (δ) plus the sum of xi’s children’s costs, is minimized while satisfying

the g-constraint, as the counter-example in Figure 3.8 shows.

x1

x2

x3

d1 d2 f g

 0 0 3 1
 0 1 1 2

 d1 d3 f g

 0 0 1 2
 0 1 2 1

d2 d3 g

 0 0 0
 0 1 10
 1 0 0
 1 1 10

g-budget = 3

g-budget = 2

Figure 3.8: MCASA fails on non-T-nodes

45

In Figure 3.8, x1 is a non-T-node since x3 is a child of x2 not x1. If it is assumed that

x1 has a g-budget of 3 and only one value in its domain, then it must choose how to split

its g between its two children. Based upon the functions on the links, it will choose to

give a g-threshold of 2 to x2 and 1 to x3, leading to a predicted f-cost of 2 + 1 = 3. This

effectively removes the value 0 from x3’s domain and causes the link between x2 and x3

to incur a g-cost of 10, which in turn leads x2’s g-constraint to be unsatisfiable for any

g-threshold it could receive from x1 (x2 tries out both values under given threshold of

2). Since increasing x2’s g-threshold does not stop x2’s g-constraint from being violated2,

x1 infers that the problem is unsatisfiable. It is at this point that condition (3) from

the previous proof has been violated since x1 estimates fcurrent(gt, x2) = ∞ whereas

factual(gt, x2) = 4 where gt ∈ {1, 2, 3}. This counter example is based on having just a

g-function on the x2 − x3 link, but, similar examples can be constructed using just an

f-function or both an f- and a g-function on the link. Modifications to MCASA to make

these cases feasible is an issue for future work. �

The final issue is that of MCA’s runtime and space complexity. The original DCOP

problem is known to be NP-hard. The algorithm for solving the MC-DCOP problem

adds at most n additional nodes, so the runtime complexity class has not worsened. A

key feature of Adopt is that its space complexity is linear in the number of nodes, n,

specifically |Di|n. In MCAP and MCAS, the space used at each regular node is the

same, but up to n virtual variables have been added, so the space complexity for MCAP

and MCAS is (|Di|+1)n. In MCASA there are no virtual variables, but each node stores
2Variable x1 will not try lowering x2’s g-threshold because logically a lower g-threshold should only

worsen the situation.

46

a g-to-f mapping for each of its children. The addition of the mapping causes the space

complexity to be |Di|n + Gin.

3.5 Experimental Results for MCA

This section presents five sets of experiments. The first compares the performance of

MCAP, MCAS and MCASA on four settings that were motivated by the distributed meet-

ing scheduling and distributed software development domains described in Section 2.2.

Setting 1 comprises 20-node problems, with 3 values per node, an average link density of

1.9 and maximum link density of 4. It has 100% T-nodes and both the f- and g-costs were

randomly chosen from a uniform distribution varying from 0 to 10. Setting 2 is similar to

setting 1, except that the graph is 85% T-node (which increases the average link density

to 2.2) to allow for comparison of the impact of T-nodes. Settings 3 and 4 are similar

to settings 1 and 2 respectively, except that they are 10-node problems. Fifteen sets of

constraint functions were created for each of the domain settings, so each data-point in

the graphs in this section is an average over 15 problem instances.

While the four settings were motivated by examples from the meeting scheduling and

software development domains in Section 2.2, three modifications were made to draw out

interesting features of the MCA algorithm.

• In order to run each of the MCA subalgorithms in isolation on a single problem,

the 100% T-Node settings were created. However, a 100% T-Node structure would

be more realistic in domains with a strictly hierarchical setting. In the meeting

47

scheduling and software development domains, the 85% T-Node settings provide a

realistic group structure.

• MCA can only be simulated on a single machine for problems up to 30 variables

in size. Thus, in order to test the g-constraint handling of the MCA algorithm on

greater numbers of variables, g-constraints were added to all variables, not just the

group leaders or team liaisons.

• The f- and g-costs were randomly assigned from a uniform distribution rather than

tailored to specific scheduling preferences like ”afternoons are better than mornings”

to prevent the accidental introduction of bias into the constraint functions.

While these modifications mean that the settings do not represent actual instances of

meeting scheduling or software development, they are reflective of these types of prob-

lems. Additionally, the experimental results obtained using them are no better than the

performance of MCA on actual domain problems because having a larger number of g-

constraints and having randomized preferences rather than ones with patterns makes the

problem instances more difficult for MCA to solve.

To highlight the tradeoff between the subalgorithms, Figure 3.9 shows the performance

of each subalgorithm when applied to all the nodes in a problem i.e. either MCAP is

applied to all the nodes or MCAS or MCASA. Figure 3.9a shows the average run-times

of MCAP, MCAS, MCASA in settings 1 and 3. The x-axis shows the g-budget applied to

all variables and ranges from 0, which is unsatisfiable, to 40, which is effectively a singly-

constrained problem. The y-axis shows runtime, which is measured in cycles where one

cycle consists of all agents receiving incoming messages, performing local processing and

48

Figure 3.9: g-budget vs. run-time for a) 100% T-node problems b) 85% T-node problems

sending outgoing messages[36]. The y-axis is logarithmically scaled. The y-axes are not

identical in the two graphs.

The graphs show that MCAP has the poorest performance. This result is caused

by its preserving the privacy of g-constraints. The upper bounds calculated by sharing

information in MCAS improve performance, while the exact bounds and lack of tree-

restructuring in MCASA give it the best performance. Figure 3.9b demonstrates similar

results for setting 2 and setting 4. Only MCAP and MCAS results are shown given the

switch to 85% T-node problems in these settings. MCASA cannot be applied to all the

nodes in these settings. The switch from 100% T-node to 85% T-nodes causes a significant

increase in run-time.

For all of the subalgorithms, the runtime curves in Figure 3.9 have a distinct inverted

U-shape: the run-times are lowest at high g-budgets, which correspond to no resource

49

Figure 3.10: a) g-budget vs. number of infinite cost messages b) g-budget vs. number of
values per domain

constraints, and at low g-budgets, which correspond to tight resource constraints. This

suggests that bounded optimization problems are most challenging when the resources are

sufficient but not plentiful. The data shown in Figure 3.10a suggest an explanation. This

figure plots the g-budget on the x-axis and the total number of infinite cost messages

received by any variable from a virtual variable. The figure shows results from three

representative cases from setting 3 when running MCAP. The same hump can be seen

appearing at a g-budget of 10 and diminishing to almost 0 at a g-budget of 20. This

shape is consistent with the fact that the maximum g-cost on a link is 10 and the average

link density is 1.9 (there are still one or two infinite cost messages all the way up to a

g-budget of 35 because the maximum link density is 4). The larger number of infinite

cost messages in the mid-g range indicates that it takes longer to discover unsatisfiability

of solutions, leading to longer run-times and the hill shape.

In all settings, for low g-budgets, the MCAS algorithm outperforms MCAP. However,

for high g-budgets, there is no difference in performance. The narrowing of the perfor-

mance difference is based on the fact that MCAS prunes fewer domain values when the

50

g-budget is high. In Figure 3.10b, the g-budget is plotted on the x-axis and the average

number of values remaining in the domain of a variable running MCAS on the y-axis. The

numbers are plotted as an average over all nodes over all 15 problem instances of setting

3. For comparison, results are also provided for MCAP, which performs no pruning and

hence is a flat line. This figure shows that when g-budgets are tight, MCAS provides

significant pruning, but when g-budgets are loose MCAS upper-bounds provide no prun-

ing (in comparison with MCAP) and thus there is no efficiency loss due to privacy. The

domain sizes converge at a g-budget of 25, which is also where the runtimes converge in

Figure 3.9.

g-budget g-budget

Figure 3.11: g-budget vs. runtime, varying percentages of private constraints: a) 100%
T-node and b) 85% T-node problems

In real domains, there may be situations in which only some of the agents are con-

cerned about privacy. For example, in meeting scheduling domains, people may trust

different individuals or organizations differently with their budgetary information. How-

ever, to prevent bias, the experiments in Figure 3.11 randomly assign g-constraints to

be private. These experiments demonstrate the benefits of the per-node application of

51

the different subalgorithms: MCAP, MCAS and MCASA. Here, the examples from set-

tings 1 and 2 from Figure 3.9a and b were taken and 0%, 25%, 50% and 100% of the

nodes were randomly assigned to have private g-constraints while the remaining were

assumed to be non-private. In the 25% and 50% cases, all three of the subalgorithms

(MCASA, MCAS and MCAP) were executing simultaneously. At 0% private only MCAS

and MCASA were executing and at 100% private only MCAP was executing. The results

are shown in Figure 3.11a and b. The x-axis again shows the g-budget applied and the

y-axis measures the runtime in cycles on a logarithmic scale. Each bar in the graph shows

an average over the 15 instances and we can see that as the percentage of nodes whose

additional constraint is private increases, the runtime increases for smaller g-budgets. In-

terestingly, the increase in run-time is not proportional to the increase in the number of

private g-constraints; there is a significant jump in run-time when all nodes have private

g-constraints. However, as in Figure 3.9, when the g-budget on each variable is loose,

the runtimes converge because no pruning takes place.

g-budget

Figure 3.12: g-constraint violation by Adopt

52

One question that arises is whether singly-constrained algorithms could automatically

satisfy the g-constraint simply by loosening their tolerances on optimal solutions. This

was examined by measuring the degree to which the g-constraint is violated by Adopt

when ignoring g but specifying a tolerance on f. Figure 3.12 shows the results with

each data point representing an average over 5 randomly generated runs. The x-axis

gives the g-budget applied to each variable and again varies from 0 to 40. The y-axis is

the percentage of nodes whose g-constraint was not satisfied by the solution obtained by

Adopt. The tolerance is a percentage of the difference between the optimal and maximum

cost solutions. The key result is that even with a large 40% tolerance on f, large numbers

of g-constraints are violated with small g-budgets. Thus, running singly-constrained

algorithms with tolerances is inadequate in addressing multiply-constrained DCOPs.

This chapter has presented a complete algorithm (MCA) to solve the MC-DCOP

problem defined in chapter 2. MCA builds upon Adopt and tailors its performance to

the specific privacy/efficiency requirements of each agent. A detailed description of the

algorithm, proofs of completeness, and experimental results were presented. The next

chapter emphasizes the other side of the completeness/scalability tradeoff by presenting

locally optimal algorithms for solving MC-DCOP problems.

53

Chapter 4

Incomplete MC-DCOP algorithms

While complete algorithms like those given in Chapter ?? have the advantage of finding

the globally optimal apportionment of scarce resources, their completeness limits their

efficiency and scalability. In some domains finding the global optimal is more important

than finishing rapidly, while in others the priorities are reversed. To address domains

where scalability and efficiency are of primary importance, this chapter describes a new

set of incomplete algorithms for solving bounded optimization DCOPs. Two of the three

primary techniques used in the complete algorithms also play a role in the incomplete

algorithms: constraint graph transformation and dynamically constraining search.

Section 4.1 describes k-optimality, which is a way of classifying locally optimal algo-

rithms. It also describes the MGM algorithms, which provide the basis for the locally

optimal bounded optimization DCOP algorithms developed as part of this thesis [44]. Sec-

tions 4.3 and 4.4 describe the algorithms developed in this thesis: Multiply-Constrained

54

MGM-1 (MC-MGM-1) and Multiply-Constrained MGM-2 (MC-MGM-2), which are col-

lectively referred to as the MC-MGM algorithms. Section 4.5 presents proofs of termi-

nation and multiply-constrained k-optimality. Finally, section 4.6 presents experimental

results for the incomplete, bounded optimization algorithms.

One important caveat is that complete algorithms like Adopt have traditionally de-

fined the DCOP problem as one of minimizing a global cost function. However, incomplete

algorithms like MGM have traditionally defined DCOP in terms of maximizing a global

utility function. Thus, Chapter ?? discussed problems of minimizing cost, whereas this

chapter will frame the problem as one of maximizing utility.

4.1 Background:MGM

K-optimality is a way of describing how local an optimal solution an algorithm is designed

to reach [46, 44]. This section will describe k-optimality and how it can be applied in

bounded optimization domains. It will also describe a 1-optimal algorithm (MGM-1) and

a 2-optimal algorithm (MGM-2) that are the basis for the multiply-constrained incomplete

algorithms described in section 4.2 [32, 44].

4.1.1 K-optimality

K-optimality is a useful feature of an incomplete algorithm, because prior research has

established two types of theoretical guarantees on the quality of the final solution of k-

optimal DCOP algorithms [46, 44]. The first type fixes an upper bound on the number

of k-optima that can occur in a problem. The second type establishes a lower bound on

the quality of the k-optimum as a percentage of the quality the globally optimal solution.

55

These results allow users to estimate the benefits of using a particular level of k-optimum

on a particular problem because the efficiency/performance tradeoff has been rigorously

quantified. Recent research has extended the theoretical results of k-optimality to cover

DCOPs with n-ary constraints similar to those used in MC-DCOP [44].

x1 x2 x3

d1 d2 f(d1,d2)

0 0 10
0 1 0
1 0 0
1 1 5

d2 d3 f(d2,d3)

0 0 20
0 1 0
1 0 0
1 1 11

Figure 4.1: K-Optimality example.

A k-optimal solution is one where no group of k or fewer variables could make a

coordinated value change and improve the quality of the overall solution. A 1-optimal

solution is one where no individual variable could change its value and improve the quality

of the team solution. Figure 4.1 gives an example that illustrates k-optimality. In this

example, x1, x2 and x3 are variables belonging to different agents. The f-reward functions

are shown on the two links. In this example, assignments {0,0,0} and {1,1,1} are 1-

optima. The assignment {0,0,0} is 1-optimal because given this solution, variable x2 has

no motivation to switch values from 0 to 1 because x2’s local reward would diminish from

30 to 0. Similarly, x1 and x3 have no motivation to switch from 0 to 1 because their local

utility would decrease from 10 to 0 and from 20 to 0 respectively. In a 2-optimal solution,

by contrast, no pair of agents are motivated to change their values. Thus in Figure 4.1

only {0,0,0} is a 2-optimal solution, because it would be profitable for variables x2 and

56

x3 to make a coordinated move away from the assignment {1,1,1}. An algorithm which

is designed to reach a 1-optimum is a 1-optimal algorithm.

The definition of k-optimality has to be modified when dealing with bounded opti-

mization domains, because the added resource constraints may prevent a set of variables

from switching their values to an assignment which would improve the quality of the

global solution. This thesis defines a modification to k-optimality called mc-k-optimality

to address this issue.

• An mc-k-optimum is a solution where no group of k or fewer variables can change

their values without either a) failing to improve the overall solution quality or b)

having at least one g-constraint violation in the resulting assignment.

The example in Figure 4.2 demonstrates the change. In this example, x1 and x2 are

variables belonging to different agents and x1 has a g-budget of 1. The f-reward and

g-cost functions are shown on the link between x1 and x2. While {1,1} would not be

considered a 1-optimum under the traditional definition of 1-optimality, it is an mc-1-

optimum, because x2 cannot change its value to the more profitable assignment of 0 due

to x1’s g-constraint.

As with regular k-optimality, all mc-k+1-optima are also mc-k-optima, however, not

all mc-k-optima are mc-k+1-optima. This subset relation is inherent in the definition of

an mc-k+1-optima, which states that no group of k+1 or fewer variables can improve

the solution.

An mc-k-optimal solution may be an unsatisfying solution in the sense that some g-

constraints are violated. This can occur for 2 reasons. First, the problem may be a globally

57

x1 x2

d1 d2 f(d1,d2) g(d1,d2)

0 0 10 0
0 1 0 4
1 0 8 4
1 1 5 0

g <= 1

Figure 4.2: Modified K-Optimality example.

unsatisfiable problem, which is a problem where there does not exist an assignment such

that all g-constraints are satisfied. The problem in Figure 4.3a is globally unsatisfiable.

None of the four possible assignments satisfies x1’s g-constraint. The second source

of unsatisfying mc-k-optima is when the k-optimal algorithm cannot reach a satisfying

solution by making local moves. The problem in Figure 4.3b is not globally unsatisfiable

since the assignment {1,1} satisfies x1’s g-constraint. However, in a k-optimal algorithm,

the assignments able to be explored are limited by the starting assignment. In hill-

climbing algorithms like MGM and Multiply-Constrained MGM, the starting assignments

are chosen stochastically. If an mc-1-optimal algorithm were to start out with an initial

assignment of {0,0}, there would be no way for a single variable to change its value

and reach a satisfying assignment. This would still be considered terminating at an mc-

1-optimum because if no group of 1 or fewer variables can change values and reach a

satisfying solution. Thus {0,0} would be mc-1-optimal even though it contained a g-

constraint violation. If an mc-1-optimal algorithm were to start out in any of the other

three assignments, it would be able to find the satisfying mc-1-optimal assignment {1,1}.

58

x1 x2

d1 d2 f(d1,d2) g(d1,d2)

0 0 10 2
0 1 0 4
1 0 8 4
1 1 5 2

g <= 1
a)

x1 x2

d1 d2 f(d1,d2) g(d1,d2)

0 0 10 2
0 1 0 4
1 0 8 4
1 1 5 0

g <= 1
b)

Figure 4.3: Unsatisfying mc-k-optima.

4.1.2 MGM-1

A 1-optimal algorithm only considers unilateral actions by agents in a given context. This

thesis builds a 1-optimal algorithm based on the MGM-1 (Maximum Gain Message-1)

Algorithm [32, 44] which is a modification of DBA (Distributed Breakout Algorithm) [61].

The other 1-optimal DCOP algorithms that exist will be discussed in Chapter 6.

In MGM-1, variables begin by taking on an initial randomly selected assignment.

Then execution continues in rounds. A round is defined as the duration for the system to

move from one value assignment to the next. A round could involve multiple messaging

phases. Every time a messaging phase occurs, it is counted as one cycle. During a round

of MGM-1, each agent broadcasts a gain message to all its neighbors that represents

the maximum change in its local utility if it is allowed to act under the current context.

An agent is then allowed to act if its gain message is larger than all the gain messages

it receives from its neighbors (ties can be broken through variable ordering or another

method). For example, if the variables in the example in Figure 4.1 had initially selected

the assignment {0,1,0} then x1 would send a gain message to x2 indicating it could

59

switch values from 0 to 1 and achieve a gain of 5. x3 would also send a gain message to

x2 indicating it could change its value and achieve a gain of 11. x2 would send a proposal

message to both x1 and x3 indicating it could switch values and achieve a gain of 30.

Since x2 has the highest gain, it will switch its value to 0 and the other two variables will

remain at their current assignment. Execution continues until no further proposals are

made. MGM-1 requires two cycles per round [32, 44].

4.1.3 MGM-2

With a 1-optimal algorithm, the evolution of the assignments will terminate at a 1-

optimum. One method to improve the solution quality is for agents to coordinate actions

with their neighbors. This allows the algorithm to break out of some local optima. This

section introduces the 2-optimal algorithm MGM-2 (Maximum Gain Message-2) [44].

As with MGM-1, agents initially take on a random assignment and then begin ex-

ecuting rounds of the MGM-2 algorithm. MGM-2 uses randomization to decide which

subset of agents are allowed to make offers. Each agent is randomly assigned to be an

offerer or a receiver. Each offerer will choose a neighbor at random and send it an offer

message which consists of all coordinated moves between the offerer and receiver that will

yield a gain in local utility to the offerer under the current context. The offer message

will contain both the suggested values for each player and the offerer’s local utility gain

for each value pair. For example, suppose the agents in the example in Figure 4.1 had

currently taken on the assignment {x1 ← 1, x2 ← 1, x3 ← 0} and x1 had been assigned to

be an offerer, while x2 and x3 had been made receivers. Agent x1 could send a proposal

to x2 that they change values from {x1 ← 1, x2 ← 1} to {x1 ← 0, x2 ← 0} for a gain of 5

60

from x1’s perspective. Given that x3 is not a neighbor of any offerers, it will not receive

an offer in this round.

After it gets an offer, each receiver calculates the overall utility gain for each value

pair in the offer message by adding the offerer’s local utility gain to it’s own utility change

under the new context and subtracting the difference in the link between the two so it

is not counted twice:
∑

y∈Neighbors(xi)
Gainiy +

∑
z∈Neighbors(xj)

Gainjz −Gainij . In the

example in Figure 4.1, Agent x2 would receive the offer and calculate that their combined

gain from this move would be 25. If the maximum overall gain is positive, the receiver

will send an accept message to the offerer and both the offerer and receiver are considered

to be committed. Otherwise, it sends a reject message to the offerer, and neither agent

is committed.

Uncommitted agents choose their best local utility gain for a unilateral move and send

a proposal message. Uncommitted agents follow the same procedure as in MGM-1, where

they modify their value if their gain message was larger than all the gain messages they

received. Committed agents send the global gain for their coordinated move. Committed

agents send their partners a confirm message if all the gain messages they received from

their neighbors were less than the gain for the coordinated move they plan to make.

They send a deconfirm message, otherwise. A committed agent will only modify its value

if it receives a go message from its partner. MGM-2 requires five cycles (value, offer,

accept/reject, gain, confirm/deconfirm) per round in contrast to MGM-1’s 2 cycles per

round.

61

4.2 Multiply Constrained MGM

As mentioned in the Introduction, there are four main challenges that must be addressed

in designing locally optimal multiply-constrained DCOP algorithms: search complexity,

harnessing existing algorithms, privacy/efficiency, and unsatisfiability detection. The un-

satisfiability detection challenge is more relevant to incomplete than complete algorithms

because incomplete algorithms do not systematically consider all possible assignments

and thus cannot easily detect unsatisfiability. There are two approaches to this challenge:

a) require a valid initial starting point and maintain a satisfaction invariant or b) detect

when the search has covered all assignments without any being found that are satisfying.

This thesis uses approach a), but this still leaves the challenge of detecting when it will

be impossible to find a valid start point. The incomplete Multiply-Constrained DCOP

algorithms presented in this chapter address the unsatisfiability detection challenge with

a carefully defined dummy value which is added to variables’ domains so that they can

easily find a valid start point and also flag a local constraint violation that remains even

at termination.

4.3 MC-MGM-1

MC-MGM-1 may be thought of as containing two separate subalgorithms that can op-

erate simultaneously on the same problem. The first is the shared MC-MGM-1 subalgo-

rithm that makes g-constraint information available to neighboring variables. The second

62

MC-MGM-1 (allNeighbors, currentV alue)
(1) if !private
(2) SendValueMessages(allNeighbors, currentV alue, available-g-budget)
(3) else
(4) SendValueMessages(allNeighbors, currentV alue)
(5) currentContext = GetValueMessages(allNeighbors)
(6) for all newV alue in EffectiveDomain(currentContext)
(7) [gain, newV alue] = BestUnilateralGain(currentContext)
(8) if gain > 0
(9) SendGainMessage(allNeighbors,gain, newV alue)
(10) neighborGains = ReceiveGainMessages(allNeighbors, NeighborV alues)
(11) if GConstraintViolated(newContext) and !virtual
(12) n = SelectNeighborsToBlock()
(13) SendBlockMessages(n)
(14) else if GConstraintViolated(newContext) and virtual
(15) n = SelectNeighborsToBlock()
(16) SendNogoodMessages(n)
(17) if ReceivedNogoodMessage()
(18) NoGoods = NoGoods + [newV alue, newContext]
(19) else if gain > max(neighborGains) and !ReceivedBlockMessage()
(20) currentV alue = newV alue

Figure 4.4: Multiply-Constrained MGM-1 Pseudo-code

is the private subalgorithm which encapsulates g-constraint information in virtual vari-

ables. The pseudo-code for the combined MC-MGM-1 is shown in Figure 4.4 and will be

explained in the next two subsections.

4.3.1 Shared MC-MGM-1

MC-MGM-1 maintains an invariant that at no point during execution does the current

assignment violate any agent’s g-constraint. All moves are calculated to go from one

assignment where this invariant holds to another assignment where it holds. However,

the tricky part is finding the first assignment where this holds. In order to address this

issue as well as to provide a mechanism for determining when a problem is unsatisfiable,

MC-MGM-1 performs an initialization step when it first begins where it adds a dummy

63

value to each variable’s domain. This dummy value is used as the starting value for each

variable. The dummy value, d′, is defined to have the following constraint function on all

links:

• f(d′, d′) = c

• g(d′, d′) = 0

• f(d′, di) = f(di, d
′) = k

• g(d′, di) = g(di, d
′) = 0

• c and k are constants such that c < k < 0

• di is a regular domain value

This definition ensures that all variables can start at an assignment that spends 0 g,

which is a satisfying solution. However, since the quality in terms of f is by definition

lower than any real assignment, MC-MGM-1 will attempt to find a solution that does

not involve dummy values. The reason that c must be smaller than k is that since

MC-MGM-1 only allows one variable to move at a time, it must be profitable for nodes

to move from a dummy value to a real value even if their neighbors are all still set

to their dummy values. Otherwise the initial assignment becomes an mc-1-optimum and

termination occurs immediately. If MC-MGM-1 fails to find a valid assignment containing

no dummy values then the problem is 1-optimally unsatisfiable, since MC-MGM-1 will

always favor real domain values over the dummy one. So the dummy values also allow

for easy detection of 1-optimal unsatisfiability.

64

After initialization, each variable repeatedly runs rounds of the pseudo-code shown

in Algorithm 4.4. Note that each round involves multiple cycles of communication and

execution. The first thing the variables do is send value messages to their neighbors

informing them of their current value as well as how much g-budget is currently available

for use by that particular neighbor. The available-g sent to node xj equals total g minus

the g currently consumed by all of xi’s other neighbors (line 2 in Algorithm 4.4). This is

similar to the available-g sent out during MCAS and, like with MCAS, this can lead to

overspending if multiple variables try to use the full available-g.

After receiving the value messages, each node calculates its effective domain (line 6).

This means removing from consideration any values that given the current context would

violate either the variable’s own g-constraint or any of its neighbors’ available-g’s. The

node then considers all of the values in the effective domain and picks the one that would

allow it to gain the largest increase in local f, if selected (lines 6-7). It then sends a gain

message to all of its neighbors proposing the move and listing the gain that it would

achieve (lines 8-9).

x1

x2

x3

d1 d2 f g

 0 0 3 2
 0 1 1 1

 d1 d3 f g

 0 0 1 1
 0 1 2 2

g-budget = 3

Figure 4.5: Blocking situation

Upon receipt of gain messages, two things occur. First the variable looks to see if any

of its neighbors can achieve a better gain and if so rescinds its intention to move (line

65

21). Second, each variable checks to see whether the combined expenditure from all of

its neighbors’ proposed moves violates its g-constraint (line 11).

An example of this situation is shown in Figure 4.5. Variable x1 has taken on the

value 0 and receives two move proposals from its neighbors x2 and x3. The neighbors

are assumed to currently have taken on the dummy value, thus each sees an available-

g of 3. They make the following move proposals, neither of which individually violate

the available-g: x2 proposes taking on 0 and x3 proposes taking on 1. However, if both

moves are made, x1’s g-constraint will be violated. If a node detects this situation, then

it will send a blocking message to a subset of the offending neighbors (lines 12-13). For

example, x1 may choose to send a blocking message to x3. (The heuristics for selecting

neighbors will be discussed in section 4.3.3.) If a variable receives a block message, then

it will not move in the current round. The blocks are temporary and thus an agent is

free to consider moving in the next round. Those agents with the highest local gain in

the current round who don’t receive blocking messages will move. In the example from

Figure 4.5, x3 will not change from the dummy value, but x2 will go ahead and take on

the value 0. The available-g will then be updated and x3 will be informed in the next

round that it can only propose moves that spend no more than 1 unit of g. These rounds

repeat until all agents have ceased to propose moves.

4.3.2 Private MC-MGM-1

The private MC-MGM-1 subalgorithm works like the shared version with two modi-

fications. First, variables cannot explicitly take into account their private neighbors’

66

g-constraints when proposing moves and second, a private variable’s g-constraint is en-

capsulated in a virtual variable. Note that the virtual variable’s functionality could be

incorporated into the original variable itself. The reason for this is that unlike in MCA,

there is no priority ordering among neighbors, so the original variable will receive all the

necessary messages to act as its own virtual variable. However, for simplicity of explana-

tion, this thesis will treat the virtual variable as if it is a separate entity from the original

variable.

Initialization in Private MC-MGM-1 is the same as that of shared MC-MGM-1 except

that for each variable, xi, that has a private g-constraint, a virtual variable, x′i is created

and connected both to xi and all of xi’s neighbors. The virtual variable x′i has no domain

and its links to other variables have no f- or g-cost functions on them, they are purely

used for communication.

All of the non-virtual variables select their most profitable potential value, just like in

shared MC-MGM-1. However, in this case, the EffectiveDomain() function will not weed

out values that would overspend a neighbor’s g-budget (lines 4 and 6), if that neighbor

has a private g-constraint. One other difference is that EffectiveDomain() will consult a

list called Nogoods, which lists values for which a Nogood message was received and the

context during which it was received. If the current context is the same, then the value

from the Nogood list will be eliminated from the effective domain (line 6). These Nogood

messages are received from virtual variables and unlike the regular blocking messages of

shared MC-MGM-1, they are maintained throughout execution of the algorithm, thus

making them a permanent block (lines 18-19). They are made permanent because agents

67

have no other way to know what value assignments to avoid because their neighbors’

g-constraints are private.

The non-virtual variables send out their proposed moves to all of their neighbors (lines

11-12). At this point the virtual variables use the information from the proposal messages

to evaluate whether the g-constraint of the variable they represent will be violated. If

it will, then they send Nogood messages to some subset of the variables involved in the

g-constraint violation (lines 14-17).

If a Nogood message is received by a node then it is added to the Nogoods list along

with the appropriate context (lines 18-19). If not, then nodes make their moves just as if

they were running shared MC-MGM-1.

x1

x2

{0}

{1,...,n}

d1 d2 f g
0 1 n n
0 2 n-1 n-1
...
0 n 1 1

g <= 1

Figure 4.6: Shared vs. Private MC-MGM

Private MC-MGM-1 works like shared MC-MGM-1 in many respects except that it

does not consider its neighbors’ g-constraints a priori and its messages are more strongly

tied to the current context. As mentioned in Chapter ?? the current context is the current

assignment of values to neighboring variables. It is possible to demonstrate in a simple

example the contrast between the two algorithms and the reason for shared MC-MGM-1’s

greater efficiency. In Figure 4.6 a simple two variable example is shown. x1 has a single

68

value in its domain (for simplicity the dummy value has been omitted), while x2 has n

values in its domain. The constraint function for the single link is shown to the right.

Assuming that x1 has made the initial move from it’s dummy value to the value 0, when

x2 comes to move, if x1’s g-constraint is shared then x2 will prune all values from its

domain except n and when it proposes moving to the value n, x1 will not block the move

and execution will terminate immediately after moving. In contrast, if x1’s g-constraint

is private then x2 will propose moving to value 1, which will be blocked by a Nogood

message, then in the next round x2 will propose moving to value 2, and so on through n

rounds of execution before it finally tries the value n and terminates.

4.3.3 Heuristics in MC-MGM

Under certain circumstances a variable xi may receive proposed moves from multiple

neighbors such that while no individual move violates xi’s g-constraint, the combined

set of moves violates xi’s g-constraint. In this case xi must send one or more blocking

messages. The number of blocking messages sent is the minimum number that will prevent

xi’s g-constraint from being violated, which will be at worst one fewer than the number of

xi’s neighbors proposing moves (since each individual move is legal). Picking the optimal

neighbor to block only using local information is impossible, but there are several possible

heuristics for selecting which neighbor(s) to block. Heuristics can be deterministic or

stochastic. Deterministic heuristics have the advantage of not ignoring local information

in deciding who to block. However, local information may not indicate the globally

optimal choice, and so stochastic heuristics have the advantage, when run multiple times,

of being able to eventually find the optimal set of neighbors to block. Additionally, there

69

are two ways to handle a blocking message: 1) xj maintains its old value and chooses not

to make its proposed move (monotonic) 2) xj resets itself to a value that consumes less g

(non-monotonic). Monotonic heuristics are guaranteed to terminate, but non-monotonic

heuristics provide more options for breaking out of a local optimum. For this thesis,

four different heuristics were selected as representative examples of possible heuristics.

While examples can be created that cause particular problems for an individual heuristic,

experimental results (see Figure 4.11) demonstrate that on randomly generated examples,

the different heuristics produce similar quality results. The four heuristics used are as

follows:

• Monotonic: xi selects one or more random neighbors and sends blocking messages.

The blocking messages are interpreted by each neighbor xj to mean that xj should

refrain from changing its value in the current round. The advantage of this heuristic

is that it maintains the property of monotonicity which was a property of the original

MGM algorithms. The global utility never decreases during execution which allows

proof of termination to be guaranteed. However, experimentally, this heuristic is

the worst performing of the heuristics on random examples.

• Random Reset : xi selects one or more random neighbors and sends blocking mes-

sages which are interpreted by each neighbor xj to mean that it should reset its

value to the dummy value. This heuristic, when run multiple times, allows MC-

MGM to eventually send its blocking message(s) to the optimal neighbor(s). The

disadvantages are that monotonicity cannot be guaranteed and that random reset

will not consider changing its own value to prevent the violation.

70

• Self : xi sends no blocking messages but instead resets itself to the dummy value.

In this case, one fewer cycle of communication is required. However, monotonicity

is not guaranteed. This is also a deterministic heuristic.

• Biggest Spender : xi selects the neighbor xj that is using the greatest amount of

xi’s g-budget and sends a blocking message which is interpreted by xj to mean that

it should reset its value to the dummy value. This heuristic attempts to avoid the

pitfall of random neighbor selection by choosing a neighbor whose reseting will free

up the greatest amount of g. However, it has the disadvantages of a deterministic

heuristic.

4.4 MC-MGM-2

MC-MGM-2 is also divided into two subalgorithms which can be run simultaneously on

different parts of the same problem: Shared MC-MGM-2 and Private MC-MGM-2. The

pseudo-code appears in Figure 4.7.

4.4.1 Shared MC-MGM-2

Multiply-Constrained MGM-2 operates much like MC-MGM-1 with the exception that in

addition to making individual moves, it can propose joint moves between pairs of agents.

At the beginning of the round agents are stochastically designated to be either offerers

or receivers, this designation helps reduce redundant computation where multiple agents

propose the same move (lines 6-7 in Figure 4.7). If a node, xi, is an offerer, it will

randomly select a neighbor, xj and search for the best joint move that does not violate

71

MC-MGM-2 (allNeighbors, currentV alue)
(1) if !private
(2) SendValueMessages(allNeighbors, currentV alue, available-g-budget)
(3) else
(4) SendValueMessages(allNeighbors, currentV alue)
(5) currentContext = GetValueMessages(allNeighbors); committed = false
(6) if Random(0,1) < offererThreshold
(7) committed = true ; partner = RandomNeighbor(allNeighbors)
(8) for all newV alue in EffectiveDomain(currentContext)
(9) SendOfferMsg(partner, bestCoordinatedMove(partner))
(10) for all newV alue in EffectiveDomain(currentContext)
(11) [gain, newV alue] = BestUnilateralGain(currentContext)
(12) offers = ReceiveOffers(allNeighbors); offerReplySet = ∪ offers.neighbor
(13) if !committed
(14) bestOffer = FindBestOffer(offers)
(15) if bestOffer.gain > gain and newV alue in EffectiveDomain(currentContext)
(16) offerReplySet = offerReplySet \ {bestOffer.neighbor}
(17) committed = true; partner = bestOffer.neighbor
(18) newV alue = bestOffer.myNewV alue; gain = bestOffer.gain
(19) SendOfferReplyMsg(partner, commit, bestOffer.partnerNewV alue, gain)
(20) for all neighbor ∈ offerReplySet
(21) SendOfferReplyMsg(neighbor, noCommit)
(22) if committed
(23) reply = ReceiveOfferReplyMsg(partner)
(24) if reply = commit
(25) newV alue = reply.myNewV alue; gain = reply.gain
(26) else
(27) committed = false
(28) SendGainMsg(allNeighbors, gain)
(29) neighborGains = ReceiveGainMsgs(allNeighbors); changeV alue = no
(30) if GConstraintViolated(newContext) and !virtual
(31) n = SelectNeighborsToBlock()
(32) SendBlockMessages(n)
(33) else if GConstraintViolated(newContext) and virtual
(34) n = SelectNeighborsToBlock()
(35) SendNogoodMessages(n)
(36) if ReceivedNogoodMessage()
(37) NoGoods = NoGoods + [newV alue, newContext]
(38) else if committed
(39) if gain > max(neighborGains)
(40) SendConfirmMsg(partner, go)
(41) else
(42) SendConfirmMessege(partner, noGo)
(43) confirmed = ReceiveConfirmMsg(partner)
(44) if confirmed
(45) changeV alue = yes
(46) else if gain > max(neighborGains)
(47) changeV alue = yes
(48) if changeV alue = yes
(49) currentV alue = newV alue

Figure 4.7: Multiply-Constrained MGM-2 Pseudo-code
72

xi’s g-constraint or the available-g of any of xi’s neighbors including xj (line 8). Variable

xi will then send a proposal message to xj (line 9). As with regular MGM-2, xj will not

accept a proposal if it is itself an offerer (line 13). However, those receivers that receive a

proposal for a joint move will check to see if it violates their g-constraint of the available-g

of any of their neighbors. If the proposed move is legal and has the highest local gain,

then the node will send an acceptance message (line 19).

4.4.2 Private MC-MGM-2

Private MC-MGM-2 also uses virtual variables to encapsulate private g-constraints. The

only difference between the private versions of MC-MGM-1 and MC-MGM-2 is that when

blocking a joint move the virtual variable in MC-MGM-2 sends a nogood message to both

nodes planning to move (lines 35-36).

4.5 Proofs

This section presents proofs that when using the monotonic heuristic, MC-MGM-1 is

monotonic and terminates. Additionally, when MC-MGM-1 terminates it has found an

mc-1-optimal solution. Similarly this section gives proofs that when using the monotonic

heuristic, MC-MGM-2 is monotonic and terminates at an mc-2-optimal solution. Many

heuristics are available for use within MC-MGM. The proofs in this section depend on

the use of the monotonic heuristic from Section 4.3.3, because monotonicity is important

in proving termination. The other three heuristics described earlier were experimentally

found always to terminate, but they have not been proven to terminate.

The following definitions and assumptions are used in the proofs that follow:

73

• Variables are denoted as xi ∈ X, where X denotes the set of all variables; values of

variables are denoted as di ∈ Di where Di is the finite domain of the variable xi.

• d(n) refers to the assignment of values to variables in the DCOP due to MC-MGM

at the beginning of the n-th cycle of the algorithm. The global utility of this

assignment is denoted U(d(n)).

• L(di; d−i) refers to the local utility of agent i, given the current context denoted as

d−i. L(di; d−i) =
∑

xj∈Neighbors(xi)
fij(di, dj).

• Gaini is the change in local utility of xi due to a unilateral change in its value

from di to d′i, given fixed context d−i, i.e. the difference between L(di; d−i), and

L(d′i; d−i).

• Gainij is the change in local utility of xi and xj due to the 2-coordinated change in

values from di to d′i and dj to d′j . This equals L(d′i; d−i) + L(d′j ; d−j) + f(di, dj) −

f(d′i, d
′
j).

• In computing Gaini, xi only considers its EffectiveDomain, i.e. values that do not

violate its own g-constraint, or the available-g of those neighbors whose g-constraints

are public. Additionally, calculating EffectiveDomain removes from consideration

those values that have received nogood messages for the current context. Thus,

references to Gain below, refer to gain over xi’s EffectiveDomain.

• Once an agent in MC-MGM takes on a value from its real domain, it will never go

back to its dummy starting value, because the gain will be negative.

74

• MC-MGM maintains as an invariant that no agents’ g-constraint is violated at the

end of any round of execution.

Proposition 4 In MC-MGM-1, the global utility U(d(n)) never decreases.

Proof:

There are two separate cases to handle: non-blocking and blocking. In the non-blocking

case, no block messages or nogood messages are issued. In the blocking case at least one

blocking or nogood message is issued.

In the non-blocking case, if xi intends to modify its value in round r, then:

• Gaini > Gainj , ∀xj ∈ Neighbors(xi)

• Gaini > 0

Since xi’s neighbors would have received xi’s message proposing Gaini, they will not

modify their values in round r. Thus, no two neighboring variables will change values

simultaneously. So, when xi changes its value, Gaini will be realized. Since xi’s gain is

the sum of utilities on each link connected to xi, xi’s gain implies that the global utility

U(d(r)) increases. If multiple variables change values simultaneously, they are guaranteed

to be non-neighbors, and thus, each of their gains will add to U(d(r)).

In the blocking case, a blocking or nogood message within a round r will cause a

variable xi which had intended to change its value not to make the change. Such a block

would cause xi to realize a gain of 0, which does not cause a decrease in U(d(r)). The

message does not affect any other variables.

�

75

Proposition 5 In MC-MGM-2, the global utility U(d(n)) never decreases.

Proof:

Variables in MC-MGM-2 can either make individual moves or coordinated moves.

The individual moves are equivalent to moves in MC-MGM-1 and have been proven not

to decrease U(d(r)). This proof will examine the effects of the coordinated moves in both

blocking and non-blocking cases.

In the non-blocking case, if xi and xj are committed to making a coordinated value

change in round r, then

• Gainij > Gainkl, ∀xk ∈ {Neighbors(xi)∪Neighbors(xj)−xi−xj}, xl ∈ Neighbors(xk)

• Gainij > Gaink, ∀xk ∈ {Neighbors(xi) ∪Neighbors(xj)}

• Gainij > 0

Since xi and xj ’s neighbors would have received xi and xj ’s messages proposing Gainij ,

they will not modify their values in round r. Thus, no two neighboring variables will

change values simultaneously unless part of a coordinated move. Thus when the coordi-

nated value change is made, Gainij will be realized. Since the coordinated gain is amassed

from the sum of utilities on each link connected to xi or xj , the coordinated local gain

implies that the global utility U(d(r)) increases. If other variables change values during

round r, they are guaranteed not to be neighbors of either xi or xj , and thus, each of

their gains will add to U(d(r)).

In the blocking case, a blocking or nogood message within a round r will cause vari-

ables xi and xj which had intended to make a coordinated value change not to make the

76

change. Such a block would cause the pair of variables to realize a gain of 0, which does

not cause a decrease in U(d(r)). The message does not affect any other variables.

�

x1 x2

x4 x3

d2 d3 f(d2,d3) g(d2,d3)

P R 1 0
Y R 10 2

{R}

{R}{P,Y}

{P,Y}
d1 d4 f(d1,d4) g(d1,d4)

R P 1 0
R Y 10 2

g<=2

g<=2g<=10

g<=10

Figure 4.8: A Deadlock example for MC-MGM-1

Given that MC-MGM sends out blocking messages, there is a possibility of entering

deadlock. A cycle of blocking messages could block all variables from changing values,

even though they had not yet reached an mc-k-optimum. Figure 4.8 shows an MC-DCOP

where it is possible to enter deadlock. There are four agents, with domains as shown. The

f rewards and g costs are shown in the tables. The DCOP is initialized with all agents

taking on a dummy value of 0. x1 and x3 switch from 0 to value R. At this point, x2

and x4 propose switching to Y, which gives them each a gain of 20, and Y is under the

available-g of 2 (for both x1 and x3). Since x1 and x3’s budgets would be violated if both

x2 and x4 switched to the value Y, they must send blocking messages. If x1 randomly

selected x2 to block and x3 randomly selected x4 neither x2 or x4 could change values,

and this would create a deadlock situation.

77

In the monotonic heuristic, the agents being blocked are randomly selected. As a

result, remaining in deadlock indefinitely is impossible. Suppose agents can enter deadlock

with probability p, where p ∈ [0, 1). In Figure 4.8, p = 0.5 because there are four ways the

two blocking messages could be sent out and 2 result in deadlock. Since agents randomly

select who to block each round, there is a probability of 1 − p of escaping deadlock in

every round. After N rounds of execution, the probability of remaining in deadlock is pN .

Since execution continues until there are no longer any proposal messages being sent, N

approaches∞ and pN approaches 0. Furthermore, once one variable is allowed to change

its value, the budgets available at the remaining variables change and the old deadlock

is resolved. For example in Figure 4.8, if x2 is allowed to change its value to Y, then the

available-g at x1 and x3 changes to 0, and x4 will propose taking the value P in the next

round.

x1 x2

x6 x5

{R}

{P,Y}{P,Y}

{P,Y}
d1 d6 f g

R P 1 0
R Y 10 2

g<=2

g<=10g<=10

g<=10

x3

x4
{R}

{P,Y}

g<=2

g<=10

d3 d4 f g

P R 1 0
Y R 10 2

d5 d6 f g

P P 1 0
P Y 2 0
Y P 4 0
Y Y 5 0

d2 d3 f g

P P 1 0
P Y 2 0
Y P 4 0
Y Y 5 0

d1 d2 f g

R P 1 0
R Y 10 2

d4 d5 f g

R P 1 0
R Y 10 2

Figure 4.9: A Deadlock example for MC-MGM-2

78

A corresponding example of deadlock for MC-MGM-2 is shown in Figure 4.9. In this

example, it is assumed that x1 and x4 initially switched from the dummy value to R.

Now x2 and x3 are proposing making a coordinated move from their dummy values to

{Y ← x2, Y ← x3} and x5 and x6 want to make a coordinated move from their dummy

values to {Y ← x5, Y ← x6}. However, if both coordinated moves are made, x1 and x4’s

g-constraints will be violated. If x1 randomly chose to block x2 and x3 while x4 chose

to block x5 and x6, then deadlock would occur in MC-MGM-2. However, as with the

previous example, remaining in deadlock is dependent on x1 and x4 continuing to select

different pairs to block. Once again agents can enter deadlock with probability p, and in

Figure 4.9, p = 0.5. However, after N rounds of execution, the probability of remaining

in deadlock is pN and as N approaches ∞, pN approaches 0.

Proposition 6 Given that deadlocks are resolved using randomization, MC-MGM-1 will

terminate at an mc-1-optimal solution.

Proof:

In Proposition 4, it was shown that MC-MGM-1 will lead to a monotonically in-

creasing global utility U(d(n)). Since U(d(n)) cannot be higher than the finite globally

optimal solution, MC-MGM-1 cannot keep increasing U(d(n)) forever. Thus, assuming it

eventually resolves any deadlocks it enters, MC-MGM-1 will terminate.

Termination in MC-MGM-1 occurs when no variable xi is able to propose a move

from di to d′i given d−i where Gaini > 0 and no g-constraints are violated after the move.

This situation is the definition of an mc-1-optimal, so when MC-MGM-1 terminates, the

agents have reached an mc-1-optimal.

79

�

Proposition 7 Given that deadlocks are resolved using randomization, MC-MGM-2 will

terminate at an mc-2-optimal solution.

Proof:

In Proposition 5, it was shown that MC-MGM-2 will lead to a monotonically in-

creasing global utility U(d(n)). Since U(d(n)) cannot be higher than the finite globally

optimal solution, MC-MGM-2 cannot keep increasing U(d(n)) forever. Thus, assuming it

eventually resolves any deadlocks it enters, MC-MGM-2 will terminate.

Termination in MC-MGM-2 occurs when no variable xi is able to propose a move from

di to d′i where Gaini > 0 and no pair of variables xi and xj can propose a move from

{di, dj} to {d′i, d′j} where Gainij without there being at least one g-constraint violation in

the assignment reached after the move. This situation is the definition of an mc-2-optimal,

so when MC-MGM-2 terminates, the agents have reached an mc-2-optimal.

�

4.6 Experimental Results for MC-MGM

This section presents five sets of experiments. The testcase suite described in Chapter 3

is employed. As in chapter 3, setting 1 comprises 20-node problems, with 3 values per

node, an average link density of 1.9 and maximum link density of 4. It has 100% T-nodes

(although this does not impact the algorithm usage) and both the f- and g-costs are

randomly chosen from a uniform distribution varying from 0 to 10. Setting 2 is similar to

setting 1, except that the graph is 85% T-node (which increases the average link density

80

to 2.2). Setting 3 (setting 4) is similar to setting 1 (setting 2), except that it has only

10 nodes. Once again there are 15 sets of constraint functions for each domain setting.

In contrast with the complete MCA algorithm, MC-MGM involves stochastic elements,

specifically from three sources:

• when potential moves have identical gains, which is true at initialization, the vari-

able that moves is chosen stochastically.

• when variables in MC-MGM-2 are selecting whether to be offerers and who to make

an offer to, the decisions are made stochastically.

• when variables are sending blocking or nogood messages, 3 of the 4 heuristics use

randomization.

Due to these sources of randomness, each testcase was run 100 times. The results from

the 100 runs are averaged together in the graphs presented below.

g-budget g-budget

ru
nt

im
e

in
 c

yc
le

s

ru
nt

im
e

in
 c

yc
le

s

MC-MGM-1 Shared MC-MGM-2 Shared MC-MGM-1 Private MC-MGM-2 Private

Figure 4.10: g-budget vs. runtime on a) 10-node and b) 20-node cases

81

This first set of experiments demonstrate the runtime savings gained by using the

incomplete MC-MGM algorithms. The Random Reset heuristic described in Section 4.3.3

was used with both algorithms for the results presented in this graph because, as is

demonstrated in the next Figure, it slightly outperforms the other heuristics that were

tested. The examples from settings 2 and 4 from Figure 3.9 were taken and MC-MGM-

1 and MC-MGM-2 (both shared and private versions) were run on the problems. The

results are shown in Figure 4.10a and b. The x-axis shows the g-budget applied to each

node and the y-axis measures the runtime in cycles. Each data point is an average over

100 runs of each of the 15 instances of the problem.

We can see that whereas the runtime for MCA was on the order of hundreds to

thousands of cycles, MC-MGM takes only tens of cycles to run. As with MCA, the

runtime peaks at a g-budget of about 10 to 15 because that is where the most complicated

tradeoff between f and g is taking place. Additionally, the graphs demonstrate that the

private versions of MC-MGM-1 and 2 are slower than their non-private counterparts. This

is because in the private algorithms the nodes have no knowledge of how their moves will

impact their neighbors’ g-constraints and so they expend cycles proposing moves that are

then rejected by a virtual variable.

Under certain circumstances an agent xi may receive proposed moves from multiple

neighbors such that while no individual move violates xi’s g-constraint, the combined

set of moves violates xi’s g-constraint. In this case xi must send a blocking message.

There are various possible heuristics for selecting which neighbor to block, four of which

were described in Section 4.3.3. In this graph the four heuristics are used in conjunction

with MC-MGM-1 on the problems from setting 2 and the quality of the final solution is

82

g-budget

qu
al

ity Random Reset
Biggest Spender
Self
Monotonic

Figure 4.11: quality comparisons for different heuristics in MC-MGM-1

compared. The x-axis again shows the g-budget at each node and the y-axis measures

the global reward achieved. Each data point is an average of the results from 100 runs

of each of the 15 testcases in setting 2. Note that in contrast to MCA, these results are

expressed in terms of reward (not cost) so a higher final quality is better. As can be seen,

in these randomly generated cases, there is very little difference between the quality of

the final solutions. For all the other graphs in this section, the Random Reset heuristic

was used since it equaled or slightly out-performed the other heuristics.

Figure 4.12 shows the difference between the quality of solution obtained using MC-

MGM-1 and MC-MGM-2. Once again, problems from setting 2 were used and each data

point represents 100 runs of the algorithm on each of the 15 different problem instances.

The Best heuristic was used in both algorithms. The x-axis measures the g-budget of

each variable and the y-axis shows the average global reward of the final solutions. As

can be seen, MC-MGM-2 finds a higher quality solution on average than MC-MGM-1

because it is able to make coordinated moves.

83

g-budget

qu
al

ity

Figure 4.12: quality comparisons for MC-MGM-1 vs. MC-MGM-2

MC-MGM was run on some large-scale problems to demonstrate the scalability of

incomplete MC-DCOP algorithms. The problems were randomly generated in a manner

similar to the suite of testcases used in Figure 3.9. However, instead of assigning the

same g-budget to every single node in a problem, each node was randomly assigned a

g-budget between 0 and 40. Each data point represents 100 runs over each of 10 different

problems. As can be seen in Figure 4.13, unlike with MCA, MC-MGM’s runtime in cycles

increases very slowly and thus the algorithm is very scalable. One caveat to note is that

while the runtime in cycles remains very flat, the absolute runtime when simulating the

agents on a single machine increases because each cycle requires simulating execution of an

increasingly large number of agents. However, this issue would not arise in a distributed

implementation.

The next set of experiments demonstrate the advantages of the per-node application of

privacy in MC-MGM-2. Here, the examples from setting 2 were taken and 0%, 25%, 50%,

75% and 100% of the nodes were randomly assigned to have private g-constraints while

84

num of variables num of variables

ru
nt

im
e

in
 c

yc
le

s

ru
nt

im
e

in
 c

yc
le

s

Figure 4.13: runtime vs. size for large scale problems

the remaining were assumed to be non-private. The results are shown in Figure 4.14. The

x-axis again shows the g-budget applied and the y-axis measures the runtime in cycles.

Each bar in the graph shows an average over 100 runs of the 15 instances. We can see that

as the percentage of nodes whose g-constraint is private increases, the runtime increases.

Interestingly, the increase in run-time is not uniformly proportional to the increase in the

number of private g-constraints; there is a significant jump in run-time when all nodes

have private g-constraints for some cases. Thus even when using an incomplete algorithm

it is useful to have fine-grained control over privacy.

This chapter has presented the locally optimal MC-MGM algorithms for solving

bounded optimization DCOPs. In addition to tailoring the privacy/efficiency settings

to the requirements of each variable, users have the choice of a 1-optimal or 2-optimal

MC-MGM algorithm. Thus users can tailor the optimality/efficiency tradeoff to suit the

requirements of the domain.

85

g-budget

ru
nt

im
e

in
 c

yc
le

s

Figure 4.14: Runtime for MC-MGM-2 with varying percentages of private nodes

86

Chapter 5

Sensitivity Analysis

The last two chapters have focused on the challenges of algorithm design that arise when

extending DCOP into bounded optimization domains. This chapter considers the issue of

sensitivity analysis. In practical and complex domains, knowing the optimal solution to

a problem is not always as useful as knowing whether the outcome would be significantly

better, were the constraints of the problem slightly different. This analysis of the problem

is known as sensitivity analysis [4]. Sensitivity analysis is a commonly studied problem

in constrained optimization areas [4, 3, 27]. In general, the question posed is what effect

relaxing a subset of the problem constraints would have on the solution to the problem.

The problem is motivated by real-world domains where if the improvement in the overall

performance of the team were significant, it might be worth reallocating resources [4].

Sensitivity analysis assumes that additional resources could be procured or reallocated,

however, the benefit of doing so must outweigh the cost and inconvenience of acquiring the

new resources. The primary challenge in sensitivity analysis is, given the solution to the

original problem, to determine the effects of constraint relaxation without recomputing

the problem from scratch. The next section (Section 5.1) will discuss how the problem

87

of sensitivity analysis has been interpreted in this thesis and then contrast this with

the problem as defined in other fields [4, 3, 27]. Section 5.2 describes the approaches

developed for this thesis to tackle sensitivity analysis. Section 5.3 presents experimental

results from these approaches.

5.1 Sensitivity Analysis in MC-DCOP

Within the framework of Multiply-Constrained DCOP, the problem of sensitivity analysis

can be naturally construed as asking whether a significantly better team solution (higher

f-quality or lower f-cost) could be obtained by inserting a small amount of additional

resource (g) at one or more nodes. In this case, the constraints being relaxed are a subset

of the n-ary resource constraints. In many cases, adding additional units of g will yield

only a proportional change in f or no change at all. The goal of sensitivity analysis is to

identify disproportionate gains. The notion of disproportionate gain is captured in the

concept of gain/unit, which is defined as:

• gain / unit = |F ∗
new − F ∗

orig|/R, where

• F ∗
orig is the f-cost or f-reward of the globally optimal solution to the original MC-

DCOP problem

• F ∗
new is the f-cost or f-reward of the globally optimal solution to the new MC-

DCOP problem, which is identical to the original MC-DCOP problem except that

R additional units of g have been distributed to some subset of the g-budgets

The use of the absolute value of the difference between the two solution qualities allows

for the same formulation to work regardless of whether the MC-DCOP is formulated as

88

one that minimizes costs or maximizes rewards. F ∗
new will never be worse than F ∗

orig, and

thus any difference between the two is attributable to an improvement in F ∗
new. The goal

of sensitivity analysis is to identify new MC-DCOPs which introduce no more than Rmax

additional units of g and which have a gain/unit greater than c, where c is a proportional

factor, which is set by the user. In the examples in this chapter, c = 1, because the f-

and g-functions were randomly generated from the same range of values {0, . . . , 10}.

If no MC-DCOPs yielding a gain/unit greater than c can be found, then there is no

use investing in further resources since they will not yield a significant improvement in

the quality of the overall solution. If more than one such MC-DCOP can be found then

there are two ways to select which one to use: highest gain/unit or highest absolute gain.

Highest gain/unit makes sense when the cost of adding more resources is proportional to

the quantity of resources added, for example, when reallocating money from a different

project. Thus, although up to Rmax resources could be added, the user would prefer to

add only as many resources as necessary to get the highest rate of return. The highest

absolute gain makes sense when the cost of acquiring Rmax or fewer additional resources

is flat, for example, investing in the next largest size battery. In many cases, particularly

when Rmax is small, these two metrics will yield the same answer.

5.1.1 Challenges of Sensitivity Analysis

The naive approach to sensitivity analysis is to re-run MCA on all of the possible problem

variants and compare the solutions. However, this approach would involve running an

NP-complete algorithm an additional x times, where:

• x ≥
∑Smax

i=1 nCi

89

• n is the number of variables (potentially a large number in complex domains)

• Smax is the maximum size group of nodes that is being considered

The simple approach would be very computationally expensive, doubly-exponential, mak-

ing the cost of performing the analysis outweigh the benefits of performing it. Further-

more, the introduction of additional resources at one set of variables causes only a local

perturbation to the problem. Thus, re-running MCA from scratch on each problem vari-

ant would require performing many duplicate computations. There are two main causes

of this computational burden. The first is that analysis must be performed on each sub-

group of agents that contains up to Smax agents. In theory Smax could be as large as

n, which leads to a combinatorial number of subgroups that must be checked, O(2n).

Another source of computational expense in this naive approach is that the algorithm

being run a combinatorial number times (MCA) is NP-complete. Therefore, the main

challenge in sensitivity analysis is to reduce both of these sources of computational ex-

pense by using heuristics to target high probability sub-groups and by using an efficient

mechanism to reoptimize each problem variant. This chapter will primarily focus on

the efficient mechanism approach, but in the experimental results section, one promising

heuristic will be identified.

5.1.2 Other Approaches to Sensitivity Analysis

The problem of sensitivity analysis, while new in the distributed constrained reason-

ing field, has been extensively studied in areas such as linear and integer programming

90

(LP/IP), constraint satisfaction (CSP) and multi-criteria optimization. In linear and inte-

ger programming the problem solved is effectively a multiply-constrained non-distributed

constraint optimization problem, and there are several algorithms for using the dual of

a linear problem to perform sensitivity analysis [4, 19, 8, 22, 59, 51]. This allows for

rapid reoptimization of the relaxed problem, but, taking the dual of the problem is not

possible in integer programs, when constraint and variable information is distributed, or

when multiple constraints are being altered simultaneously. The only sensitivity analy-

sis work currently existing in the area of constraint reasoning is CSP work in the area

of constraint relaxation. The work in CSP looks at the problem of reoptimizing after

removing constraints entirely rather than making them easier to satisfy [3, 55]. This is

a different problem to the one considered in this thesis and since the techniques used

there don’t consider soft constraints, they would not work for the problem defined in this

thesis. Finally, multi-criteria optimization algorithms seek a pareto-optimal solution to

problems with multiple constraint functions and sensitivity analysis is generally framed

as a question of solution robustness [27, 24]. This is again distinct from the problem

being tackled here. Additionally, all of these fields take a centralized approach to the

sensitivity analysis problem, rather than a distributed one. The distributed sensitivity

analysis problem presents a new challenge because the information needed to estimate

the effects of relaxing the resource constraints is distributed among various agents. Thus

a primary contribution of this work is to explore an approach to sensitivity analysis in

distributed domains.

91

5.1.3 Semi-cooperativeness

Semi-cooperativeness is the reverse of the sensitivity analysis problem. In general, semi-

cooperative work looks at solving multi-agent coordination problems where agents are

assumed neither to be fully cooperative, like in DCOP [36, 1, 48, 33], nor fully self-

interested, like in game theory [9]. Instead, agents are assumed to have both cooperative

and self-interested tendencies [52, 5, 50, 15]. There are many challenges to building semi-

cooperative agent algorithms. One particular problem parallels the sensitivity analysis

problem discussed in this chapter. If a team of heterogeneous semi-cooperative agents

are performing a coordinated task using a framework that assumes cooperativeness, how

significant is the effect of the agents’ self-interested tendencies? The techniques developed

for sensitivity analysis could also be used to estimate the reduction in quality of the global

optimal if a particular agent or set of agents holds back some of their local resources

(which is equivalent to a problem with less g). This would allow the identification of

nodes where honesty and cooperativeness is more crucial. This chapter will phrase the

problem in terms of sensitivity analysis, but an equivalent formulation of all the concepts

can be made for semi-cooperativeness.

5.2 Approaches to Sensitivity Analysis

This section will first examine the two ways that disproportionate gains can occur after a

fixed amount of additional resource has been added to one or more variables: single-link

gain and chain reaction. Then the algorithms developed to perform distributed sensi-

tivity analysis will be described. The first algorithm, link analysis, is a computationally

92

inexpensive approach to identifying single-link gains. The second set of algorithms use

the MC-MGM algorithms to identify both single-link and chain reaction gains.

5.2.1 Gain Types

To simplify the discussion, it is worth first looking at how the addition of extra g at a

single node could affect the overall solution quality. There are two basic ways that a fixed

amount of extra g inserted at a single node could yield a disproportionate improvement

in f. Examples of the two types of gain are shown in Figure 5.1. One occurs when the g

vs. f function on an individual link has a slope greater than c, where c is the proportional

gain that would typically accompany the insertion of one additional unit of g. If one

plots the local f vs. g for a link and eliminates all dominated value-pairs (those with both

high g-cost and high f-cost/low f-reward), the slope can be: less than c, equal to c, or

greater than c. The local slope is the slope in the interval which is within a small distance

(Rmax) of the current assignment. In the example in Figure 5.1a, the addition of one unit

of g at variable x1 would allow the variable to reduce the f-cost on that link from 9 to 3.

This yields a disproportionate improvement in the team solution just by looking at one

link. Single-link gains are difficult to extend to sub-groups of variables larger than those

connected to a single link because only an individual link has a g vs. f function for which

the slope can be taken. Multiple links can be analyzed independently.

The second source of disproportionate gains comes from chains of proportional gains.

In this situation, no individual link yields a gain greater than c, but the change in values

caused by the introduction of the extra g causes a knock on set of value changes that

each yield additional improvement in the team utility. Figure 5.1b shows a chain reaction.

93

In this case, the optimal solution to the original problem is {0 ← x1, 0 ← x2, 0 ← x3}.

Inserting one additional unit of g at variable x1 would allow x1 to change value from 0 to

1 and reduce the f-cost on the x1 − x2 link by 1. This value change allows x2 and x3 to

make a coordinated value change from {0← x2, 0← x3} to {1← x2, 1← x3}. This value

change yields an additional 1 unit of savings in f-cost on the x2−x3 link. Thus while each

link only yields a proportionate saving in f (1 unit), together they yield a disproportionate

saving (2 units of f for 1 unit of g). The interaction of adding g at multiple variables

would be similar to that of a chain reaction from a single variable, in both cases multiple

local reoptimizations need to be performed. Therefore, the methods used to identify

chain reactions could also be used to solve the sensitivity analysis problems that involve

inserting g at multiple variables.

x1

x2

d1 d2 f g

 0 0 10 2
 0 1 9 1
 0 2 3 2

g-budget = 1

x1

g-budget = 1

x3

g-budget = 2

x2

g-budget = 4

d1 d2 f g

 0 0 3 1
 0 1 9 1
 1 0 2 2
 1 1 2 2

d2 d3 f g

 0 0 3 1
 0 1 9 0
 1 0 9 0
 1 1 2 2

b)a)

Figure 5.1: a) Single link gain b) Chain reaction gain

5.2.2 Link Analysis

Identifying link functions where the local slope is greater than c would be one efficient

way to do sensitivity analysis. That is because when the local slope is greater than c,

94

Link Analysis ()
(1) maxgain = c
(2) for all links xi − xj

(3) ComputeGFmap(xi − xj)
(4) for i = gcur . . . gcur + Rmax

(5) s = FindSlope(gcur, i)
(6) if s > maxgain and NoViolations()
(7) maxgain = s

Figure 5.2: Link Analysis Pseudo-code

adding additional units of g will yield a disproportionate single-link gain. This method

of performing sensitivity analysis is referred to as link analysis.

The pseudo-code for the link analysis algorithm is shown in Figure 5.2. Link analysis

involves examining the g vs. f function at every single link by constructing a GFmap

like the one used in MCASA (lines 2-3) and seeing whether the local slope is greater

than c (lines 4-6). It can only consider changes in assignment that will not create new

g-constraint violations for any of the neighboring nodes (line 6). It can thus identify

single link gains like that in Figure 5.1a, where the GFmap is:

g f
1 9
2 3

This GFmap gives a local slope of 6 without introducing any new g-constraint viola-

tions, so it would be identified by link analysis as a problem that merited the insertion of

more resources. Link analysis is difficult to extend to problems where Smax was greater

than the number of variables connected to a single link because only an individual link

has a g vs. f function for which the slope can be taken.

95

Local Reoptimization ()
(1) maxgain = c
(2) for all subgroups S smaller than Smax

(3) R = Rmax

(4) while R ≥ 1 and gain > 0
(5) for all distributions of R
(6) run MC-MGM on new problem
(7) gain = computeGain()
(8) if gain > maxgain
(9) maxgain = gain
(10) decrement R
(11) ReportMaxGain()

Figure 5.3: MC-MGM Based Local Reoptimization Pseudo-code

5.2.3 Local Reoptimization

The other method of performing sensitivity analysis, local reoptimization, involves using

the MC-MGM algorithms. Since the additional resource has been inserted at a localized

set of nodes, its effects percolate out from a single area through many local interactions.

Incomplete algorithms like MC-MGM-1 and MC-MGM-2 are a natural choice for getting

an estimate of the ripple effects of adding more g to a set of variables because their entire

optimization mechanism revolves around optimizing and re-optimizing the local value

assignments. This makes them able to identify both single-link and chain reaction gains

as well as handle problems with larger values of Smax. One reason for using incomplete

algorithms rather than complete ones is that complete algorithms may find an optimal

rapidly, but must still expend time systematically proving that the optimal has been

reached [30].

The local reoptimization approach to sensitivity analysis involves running MC-MGM

on variants of the original MC-DCOP problem where subgroups of nodes have been given

slightly more g. The pseudo-code for the local reoptimization algorithm is shown in

96

Figure 5.3. MC-MGM-1, MC-MGM-2 or any future MC-MGM-k algorithms could be

used in this approach. One thing to note is that this approach starts by inserting Rmax

units of extra resource and then decrements from there. If the gain for inserting R units

of additional resource into a particular subgroup is 0, then the algorithm abandons the

attempt to insert R−1, R−2, . . . , 1 units of g into that particular sub-group because they

will also yield a gain of 0 (line 4). Additionally, whether the absolute gain or gain/unit

is used as the selection criteria is left up to the user and computeGain() will report

whichever metric the user has selected (line 7).

In order to speed up computation and find an answer close to the global optimal,

the MC-MGM algorithms take the old optimal solution (which is a satisfying solution

in the new problem) as their initial assignment. The reason for using the old global

optimal is two-fold: speed and quality. In terms of speed, every additional cycle of

execution of the MC-MGM algorithms means O(2n) more cycles over all to perform

sensitivity analysis. Using the old global optimal instead of starting from scratch yields a

significant savings in runtime. In terms of quality, the old global optimal is the n-optimal

solution to the original problem, so it is very high quality. There is no guarantee that

the 1- and 2-optimal MC-MGM algorithms would find their way to such a high quality

solution without being seeded. However, since they are seeded with an assignment of

this quality, they will try no assignments of lower quality when performing sensitivity

analysis. This is because variables only switch assignments when doing so will yield

an improvement in the quality of the solution. One reason that using the MC-MGM

algorithms is much more efficient than using MCA for sensitivity analysis is because they

are locally optimal. Even if seeded with the old optimal solution MCA would have to

97

try many other assignments in order to prove that it had reached the global optimal

because its previous estimates of lower and upper bounds would no longer be valid. This

would involve doing many redundant computations for assignments which were already

determined to be suboptimal. In contrast, MC-MGM can start from the old optimal and

opportunistically use the extra resources to explore only those assignments that yield an

improvement over the existing assignment.

5.3 Experimental and Analytical Results

The randomly generated experiments from settings 3 and 4 from Chapter 3 were used

to run sensitivity analysis. The effect on the solution quality of the addition of up to 5

extra units of g at each individual node was examined (Smax = 1, Rmax = 5). Among the

testcases available, the ones with an initial g-budget of 15 were selected because this was

the g-budget at which the greatest tradeoff of f and g was being made and thus at which

the question of sensitivity analysis would be most relevant. The 3 different sensitivity

analysis algorithms were run on 50 different problem variants (10 variables, 5 possible

units of extra resource) for each of the 15 testcases in each of the settings. For each of

the cases, the algorithms attempted to identify which of the 50 problem variants had

a gain/unit greater than 1 (which was the proportional factor, c). If there was more

than one such variant, the algorithms identified which variant had the highest gain/unit

and which had the highest absolute gain. This amounted to identifying which (if any)

variable in a particular case should be given more resources and how many resources

(up to 5 units) should be given to the identified bottleneck variable. Since link analysis

98

is deterministic, it was run just once on each variant for each case. For the MC-MGM

algorithms, their results were averaged over 100 runs on each of the variants.

5.3.1 Effectiveness

The first surprise was that link analysis failed to work experimentally because it was

only able to consider alterations to the values of the two variables (xi and xj) on the

link. It could not alter the values of any of xi or xj ’s neighbors. Link analysis was too

constrained by the neighbors’ choices of values and found no opportunities for dispropor-

tionate gain. While link analysis might still work on sparser graphs than those used in

these experiments, its runtime savings would be diminished by the fact that incomplete

DCOP algorithms run rapidly on sparse graphs [44].

The results for local reoptimization using the MC-MGM algorithms are shown in

Figure 5.4. MC-MGM-1 identified 7 cases (out of the 15) in setting 3 and 6 cases in

setting 4 where disproportionate gains could be achieved by inserting up to 5 units of g

at one node in the problem. However, by only being allowed to change one value at a

time, MC-MGM-1 was still constrained as to its use of the extra g. MC-MGM-2 found 7

cases in both settings where disproportionate gains could be found. Additionally, in two

of the cases (case 14 for setting 3 and case 1 for setting 4) where both MC-MGM-1 and

MC-MGM-2 identified the opportunity for disproportionate gains, MC-MGM-2 found a

use for the extra g that yielded a greater gain even when inserted at the same variable.

Experiments later in this section demonstrate that, MC-MGM-2 takes a greater number

of cycles to execute on these problems than MC-MGM-1 (6.7 cycles vs. 3.2 cycles). Since

these performance differences will be magnified by the combinatorial number of runs

99

of these algorithms, there is a quality vs. efficiency tradeoff to be made in picking an

MC-MGM algorithm to do sensitivity analysis.

ga
in

 /
un

it
ab

so
lu

te
 g

ai
n

ga
in

 /
un

it
ab

so
lu

te
 g

ai
n

a)

c)

b)

d)

Figure 5.4: Sensitivity analysis a) 100% T-Node cases using gain/unit b) 85% T-Node
cases using gain/unit c) 100% T-Node cases using absolute gain b) 85% T-Node cases
using absolute gain

To get an indication of how well MC-MGM-2 was performing the local reoptimiza-

tion, MCA was run on the problem variant that MC-MGM-2 indicated had the most

disproportionate gain for each of the 14 cases MC-MGM-2 identified as being able to be

improved by the insertion of additional resources. As can be seen, MC-MGM-2 managed

to reoptimize to the new global optimal. To see whether any of the 16 cases MC-MGM-2

flagged as negative were false negatives, MCA was run on the problem variants for each

case that involved inserting the full 5 units of additional g at each variable. A negative

result when inserting 5 units of extra g necessarily implies that inserting 4, 3, 2 or 1

100

units would also yield no improvement in the quality of the solution. The experiments

confirmed that MC-MGM-2 flagged no false negatives.

5.3.2 Effects of Link Density

x0

x1

xk

d0 d1 f g

 0 0 2 1
 0 1 0
 1 0 0
 1 1 0 2

g-budget = k
d0 dk f g

 0 0 2 1
 0 1 0
 1 0 0
 1 1 0 1.....

8
8

8
8

x0

x1

xk

d0 d1 f g

 0 0 2 1
 0 1 0
 1 0 0
 1 1 0 2

g-budget = 1

d1 d2 f

 0 0 2
 0 1
 1 0
 1 1 0

8
8

8
8

x2

a) b)

Figure 5.5: Example of MC-MGM-k failure a) star topology b) chain

The experimental results in Figure 5.4 demonstrated that MC-MGM-2 finds the glob-

ally optimal solution to the problem variants in the test suite developed for this thesis.

However, no MC-MGM-k algorithm can be guaranteed to reach the global optimal unless

k = n, where n is the number of variables in the problem. Two examples are shown in

Figure 5.5 to demonstrate that for any value of k, MC-MGM-k is unable to guarantee

reaching the new global optimal for problems with k+1 variables. In the example in

Figure 5.5a, there are assumed to be k+1 variables {x0, . . . , xk} and k links in a star

topology. The f- and g-cost functions for all of the links that are not shown is assumed

to be the same as the one shown for the link between x0 and xk. The constraint between

x0 and x1 has a slightly different link function. Variable x0 has a g-constraint and the

initial available g-budget is k. Thus, the global optimal to the original problem is the

101

assignment {x0 ← 0 . . . xk ← 0}, which causes 1 unit of g to be consumed on each link. If

sensitivity analysis is examining the problem of inserting 1 additional unit of g at variable

x0, any locally-optimal algorithm which does not allow all k+1 variables to change values

simultaneously will be unable to move to the new global optimal of {x0 ← 1 . . . xk ← 1}.

The reason it won’t reach the new global optimal is that any move of k or fewer agents

will leave at least one link with the variables on each end having different values. Since

this accrues an infinite cost, the move will not be profitable and the agents won’t change

values. In the example in Figure 5.5b, there are again k+1 variables and k links, this time

in a chain topology. The f-cost functions for all of the links not shown is assumed to be

the same as the one shown for the link between x1 and x2. Variable x0 has an initial avail-

able g-budget of 1, which makes the globally optimal assignment {x0 ← 0 . . . xk ← 0}.

If inserting 1 extra unit of g at variable x0, it will once again be necessary for all k+1

variables to change values simultaneously in order to reach the new global optimal of

{x0 ← 1 . . . xk ← 1}. Any move of k or fewer agents will again leave at least one link

with the variables on each end having different values. Since this accrues an infinite cost,

the move will not be profitable and the agents won’t change values.

In the centralized CSP literature, graph structures can be categorized based on their

structural properties (k-trees) to determine the complexity of k-consistency algorithms

that need to be applied to make the CSP graph consistent [16, 28]. While k-consistency

differs from k-optimality [?], there was an expectation, nonetheless, that it would be

possible to identify simple tree structures to determine which MC-MGM-k algorithms

would guarantee reaching the global optimal. However, the examples given in Figure 5.5

use a star and a chain topology, which both have the minimum average link density.

102

The chain topology also has the lowest maximum link density. The fact that these

examples have a minimum link density demonstrates that choosing the correct MC-MGM-

k algorithm to run on a particular problem instance is not a simple matter of looking at

the link density.

Another result to emerge from the experiments in Figure 5.4 was that the most highly

connected nodes were also the nodes most frequently identified as bottlenecks. The first

step in identifying this pattern was to look at the number of times that a particular

variable, xi, was identified as the bottleneck node as well as the number of links connected

to xi. The results were then averaged over all the nodes with a particular link density to

show how many times on average a variable with a particular link density was identified

as the bottleneck. If there were no variables with a particular link density, a result of

N/A is indicated. As can be seen in Table 5.1, the greater the number of links a node

had, the greater the average number of times it was identified as a bottleneck for both

100% and 85% T-node cases. This demonstrates that, for problems like those developed

for this thesis, the problem of sensitivity analysis could be solved even more efficiently

by focusing the local reoptimization just on those nodes or groups of nodes with high

link density. This means that instead of running MC-MGM-1 or MC-MGM-2 on problem

variants involving all of the O(2Smax) possible subgroups of size less than or equal to k,

only the most likely variants need to be run.

The heuristic identified in Table 5.1 does not contradict the demonstration in Fig-

ure 5.5 that link density is not a useful metric in choosing the best MC-MGM-k algorithm

to run on a particular problem. Incomplete algorithms cannot be guaranteed to reach the

global optimal for problems with more variables than can be moved simultaneously. The

103

100% T-Node 85% T-Node
Links Average Times Identified Average Times Identified

1 0 0
2 1 0.5
3 1 N/A
4 4 1.5
5 N/A 2

Table 5.1: Properties of Bottleneck Nodes

examples in Figure 5.5 show that this result holds even if the assumption is made that

the variables are in a minimally connected topology. In contrast, the results in Table 5.1

indicate that when the new global optimal is found for all of the sensitivity analysis prob-

lem variants, it is likely that the variant that involved inserting additional resources at

the most highly connected nodes, will be the one with the highest quality. This result is a

feature of the problems whereas the rather than a property of the incomplete algorithms.

It makes no assumptions about how the new global optimal is reached.

5.3.3 Justification for Reoptimizing

Finally, experimental results provide justification for starting from the old global optimal

instead of beginning from scratch. The average runtime for a single run of MC-MGM-1

on the original problem was 11.4 cycles (as shown in Figure 4.10) and the average runtime

for MC-MGM-2 was 34.9 cycles. These averages were over 100 runs of the setting 3 and

setting 4 testcases with a g-budget of 15. In contrast, the average runtime for a single

run of MCA on the original problem was 587 cycles (as shown in Figure ??), which

is significantly slower than MC-MGM-1 and MC-MGM-2. The average runtime for a

single run of MC-MGM-1 to reoptimize a single problem variant was 3.2 cycles and for

MC-MGM-2 it was 6.7 cycles. These averages were calculated over 100 runs of the 50

104

variants of the setting 3 and setting 4 testcases with a g-budget of 15. Thus reoptimizing

rather than starting from scratch saved an average of 8.2 cycles per variant when running

MC-MGM-1 and 28.2 cycles per variant when running MC-MGM-2. Even restricting

the maximum group size (Smax) to be one, there were 50 problem variants for each of

the testcases. Thus on each testcase, reoptimizing rather than starting afresh saved an

average of 410 cycles for MC-MGM-1 and 1410 cycles for MC-MGM-2. For larger values

of Smax, the runtime savings per case would be even larger. The results are summarized

in Table 5.2.

MC-MGM-1 MC-MGM-2
Runtime from Scratch 11.4 34.9
Runtime to Reoptimize 3.2 6.7
Saving per Run 8.2 28.2
Saving per Case 410 1410

Table 5.2: Runtime Savings when Reoptimizing

This chapter has demonstrated how to use the incomplete MC-MGM algorithms in

tandem with MCA to perform sensitivity analysis on the bounded optimization DCOP

problems. MC-MGM-1 is slightly more efficient but misses some opportunities for im-

provement in the problem that MC-MGM-2 identifies. In addition, for randomly gener-

ated examples, the search for bottleneck nodes can be targeted at those groups of variables

that are the most highly connected.

105

Chapter 6

Related Work

This chapter examines four main areas of work that is related to the research in this

thesis: (i) efficiency work in Distributed Constraint Optimization (DCOP) algorithms;

(ii) advances in multi-objective tradeoffs within DCOPs; (iii) research on multi-criteria

collaboration beyond DCOPs; and (iv) work on sensitivity analysis.

6.1 Efficiency in DCOPs

There is significant continued progress in singly-constrained complete and incomplete

DCOP algorithms [36, 60, 63, 1, 48]. There are three leading complete algorithms, which

all use slightly different mechanisms to solve the DCOP problem: Adopt, OptAPO and

DPOP.

• Adopt [36]: This thesis already provided detailed background information on Adopt

and the complete multiply-constrained DCOP algorithms developed as part of this

thesis built upon the Adopt algorithm. Other work has continued to build upon and

improve Adopt. For example, [30] proposed node ordering heuristics, to construct

106

shallower trees in Adopt, which allowed for greater efficiency. Ali et al [1] pre-

sented preprocessing heuristics that propagate lower bounds on f-costs to variables

in the Adopt DFS tree and allow for quicker convergence on the optimal solution.

These heuristics led to an order of magnitude improvement in Adopt’s performance.

Additionally, Davin and Modi [7] provide techniques to efficiently handle multiple

variables per agent in Adopt since previous work had tended to focus on problems

with a single variable per agent. Finally, Pecora et al [47] looked at creating a ver-

sion of Adopt that could handle n-ary DCOP constraints in addition to the binary

constraints it was initially designed to work with.

• OptAPO [33]: OptAPO emerged as an early competitor to Adopt and makes use

of a partial centralization mechanism. Adopt uses very little centralization in its

execution, the main exception being the propagation of f-costs to the root node. In

OptAPO, partial centralization allows an individual variable to manage a group of

other nodes by deciding their assignments; in the extreme case, a single node may

manage assignments for all other nodes, leading to full centralization. There has

been much debate about how to compare the efficiency of Adopt and OptAPO[33, 6]

with different performance metrics giving an edge to one algorithm over the other.

Ultimately, the relative costs of computation and communication in the domain

appear to govern the choice of an appropriate algorithm.

• DPOP [48]: DPOP is the latest entry into the field of complete DCOP algorithms.

The key difference in DPOP is that it is a variable elimination algorithm, where

107

individual variables communicate all their information to their neighbor in one-

shot. This contrasts with the repeated rounds of value and cost message exchange

in Adopt. The result is that DPOP leads to a significantly smaller number of

messages exchanged among agents; unfortunately, the size of each message grows

exponentially in the link density of a variable and the domain size. DPOP’s expo-

nential memory requirements are problematic in some domains, but its low levels

of communication make it an option for domains where the more communication

intensive algorithms are infeasible. Recent research in DPOP has attempted to

reduce the memory requirements of the algorithm [49].

The work in this thesis is complementary to these advances. The multiply-constrained

DCOP formulation presents a new challenge for all of these algorithms. Some of the tech-

niques developed here would transfer to these other algorithms, e.g. MCAS and MCASA

style techniques could be applied to algorithms like OptAPO. Whether the DPOP algo-

rithm [48] will similarly benefit from the techniques introduced here is a challenge for

future work. Algorithms such as DPOP may face challenges when addressing multiply-

constrained DCOPs because the variable elimination algorithms rely on there being a

single best response to any combinations of a variable’s ancestors’ values. However, in

MC-DCOP, there are multiple best responses to a particular combination of ancestors’

values, one for each way the sets of g-budgets could be split. This would lead to a massive

increase in the amount of information a variable would need to send its parent and thus

to an explosion in the space requirements of the parent. Since space requirements are

108

the main limiting factor on how well DPOP can scale, this would exacerbate an existing

problem.

In addition to the complete DCOP algorithms that guarantee optimality, there have

been significant advances in incomplete algorithms [45, 58, 64, 61]. These algorithms

tradeoff optimality (settling for a local optimality) to gain in efficiency. There are several

leading incomplete DCOP algorithms: MGM, DSA, and LA-DCOP.

• MGM [45, 44, 14]: The MGM algorithms (MGM-1 and MGM-2) developed by

Pearce et al were extensively described earlier since they provide the basis for the

new MC-MGM algorithms described earlier. Recent research on the algorithms has

established that the algorithms are k-optimal and that two types of guarantees can

be made about the quality of the solution reached by these algorithms [44]. The

first type of guarantee fixes an upper bound on the number of k-optima that can

occur in a problem. The second type of guarantee establishes a lower bound on the

quality of the k-optimum as a percentage of the quality the globally optimal solu-

tion. These results allow users to estimate the benefits of using a particular level

of k-optimum on a particular problem because the efficiency/performance tradeoff

has been rigorously quantified.

• DSA[45, 44, 14]: The Distributed Stochastic Algorithm (DSA) is similar to the

MGM algorithms but introduces a stochastic element to the algorithm [14, 44].

Instead of an agent simply changing values when it has the highest local gain, an

agent decides randomly whether to move or not. This reduces the messaging load

109

of the algorithm and in some cases allows the agents to reach a higher quality

k-optimum than MGM, while in others, MGM outperforms DSA.

• LA-DCOP [41]: The Low-Communication Approximate DCOP (LA-DCOP) algo-

rithm was developed to meet the challenges of role-allocation DCOP domains re-

quiring dynamism, low communication and rapid execution. LA-DCOP employs a

token-based approach to DCOP. Agents pass tokens and can only take on a particu-

lar role if they have the corresponding token in their possession. Local probabilistic

information is used to determine whether to accept a token or pass it along. Agents

self-select into teams by choosing tokens that represent the same joint-task without

explicitly coordinating their choice. LA-DCOP has been shown to scale to very

large-scale problems.

My work is complementary to these advances. Multiply-constrained DCOP is a new

challenge that cannot yet be tackled by any of these algorithms. Some of the techniques

developed here would transfer to these other algorithms. Given that DSA and MGM are

very similar, the techniques used to build MC-MGM would transfer fairly easily to DSA.

LA-DCOP’s token based approach could be adapted to meet the challenges of MC-DCOP

domains. LA-DCOP already has a notion of resource constraints and local capabilities

due to its having originally been developed in the context of role-allocation domains,

making it straightforward to introduce MC-DCOP’s local constraints.

110

6.2 Multiple Objectives within DCOPs

While this thesis focuses on multiple cost objectives (i.e. f-costs and g-costs), complete

DCOP algorithms already engage in a complex tradeoff between privacy, efficiency, di-

versity and optimality. Error-bounds in Adopt [36] allow it to trade the optimality of a

solution for an improvement in efficiency. Maheswaran et al [31] and Greenstadt et al

[21, 20] studied the privacy loss in different complete DCOP algorithms, thus providing a

better understanding of the privacy-efficiency tradeoffs in these algorithms. Traditionally,

DCOP algorithms tolerate some loss in privacy for the sake of efficiency. However, Silaghi

[54] coined the term ’semi-cooperative algorithms’ to describe DCOP algorithms that re-

quired agents to attain global optimality while maintaining privacy. Yokoo et al[62] looked

at how to use multiple external server agents to find the global optimal while guaranteeing

significant privacy. However, this guarantee came at the cost of efficiency.

The balancing of multiple objectives within regular DCOP algorithms also comes

to light in the work on incomplete algorithms. Incomplete algorithms[45, 58, 64, 61,

41] trade off optimality to gain efficiency. Pearce et al.’s k-optimality [44] presented a

novel consideration of multiple objectives within DCOPs: solution quality and solution

diversity. Thus, multiple solutions are chosen not only due to their low cost but also

their diversity, i.e. how far away the solutions are from each other. Thus, Pearce et al’s

technique focuses on choosing multiple DCOP solutions that are each locally optimal,

and are guaranteed to be each a distance of k agent’s value assignments away from other

solutions.

111

There is, therefore, a vast space of tradeoffs in DCOP algorithms, and the Multiply-

Constrained DCOP algorithms in this thesis explore one area within this space. Indeed,

the algorithms in this thesis add another dimension to this tradeoff space, that of re-

source constraints. Furthermore, this thesis has explored the privacy-efficiency tradeoff

as it occurs in MC-DCOP domains by examining the effects of having fine-grained control

over the privacy of resource constraints. This extends beyond the whole algorithm ap-

proaches that have been used in studying the privacy-efficiency tradeoff in regular DCOP

algorithms [20, 31, 21].

This thesis briefly touched on another area where two objectives require balancing:

semi-cooperativeness. Semi-cooperativeness involves trading off team objectives for self-

interest. In general, multi-agent coordination work has fallen into two categories, those

where agents are assumed to be fully cooperative, like in DCOP [36, 1, 48, 33], or these

where agents are fully self-interested, like in game theory [9]. Recent research in economics

has suggested that people have both cooperative and self-interested tendencies [52, 5, 50,

15] and therefore may require agents that can balance these two objectives. Several

distributed constraint reasoning algorithms have been built that don’t assume either

fully cooperative or fully self-interested agents [12, 65, 13]. In this thesis one particular

problem related to semi-cooperativeness was examined, that of identifying agents whose

critical position in the team makes honesty and cooperativeness more critical. This is

complementary to the work on semi-cooperative algorithms.

112

6.3 Multi-criteria collaboration in general

Also related to the multiply-constrained DCOP work in this thesis is research into multi-

criteria collaboration [38, 11, 39, 23, 34] which looks at finding a pareto-optimal for

problems containing multiple objectives rather than optimizing a single objective subject

to resource constraints. While that work has focused on applications such as distributed

planning, it did not benefit from recent research that formalized DCOP and developed

efficient algorithms for it. The algorithms in this thesis built on these efficient DCOP al-

gorithms. Approaches to multi-criteria constraint satisfaction and optimization problems

have tackled the problem using centralized methods [17, 25], but a central contribution

of this thesis is in tackling the distributed problem, which requires designing algorithms

where agents function without global knowledge [25].

Research on distributed Markov Decision Processes (MDPs) has also focused on mul-

tiple objectives: attempting to maximize total expected reward of the distributed MDPs

while balancing a second objective [42, 2]. This work takes as its multi-objective tradeoff

that of balancing optimality with security, which is taken to mean randomization. When

randomized policies are obtained in distributed MDP settings, the key challenge that

arises is one of coordinating multiple agents without the benefit of unbounded communi-

cation. Paruchuri et al [42, 43] present efficient linear programming techniques to address

this problem. However, this work focuses on centralized planning for distributed execu-

tion whereas the algorithms in this thesis focus on distributed planning for distributed

execution.

113

6.4 Sensitivity Analysis

The problem of sensitivity analysis, while new in the distributed constrained reason-

ing field, has been extensively studied in areas such as linear and integer programming

(LP/IP), constraint satisfaction (CSP) and multi-criteria optimization.

• Linear and Integer Programming [4, 19, 8, 22, 59, 51]: Linear programming (LP)

techniques such as branch and bound and the simplex algorithm can be used to

solve resource-constrained optimization problems almost identical to the bounded

optimization DCOP problems tackled in this thesis. The primary differentiations

are that DCOP is distributed and uses discrete domains for variables whereas lin-

ear programming assumes continuous domains. The problem of sensitivity analysis

has been well-studied in linear programming and it is possible to rapidly reopti-

mize a solution after one of the resource constraints has been relaxed by using the

dual of the problem. The technique cannot handle relaxing multiple constraints

simultaneously. There are various theoretical results on the effectiveness of the re-

optimization [4, 19, 8, 22]. Integer programming (IP) algorithms allow for solving

problems with discrete domains similar to those represented in a non-distributed

MC-DCOP. While the problem of sensitivity analysis has been less extensively stud-

ied in IP, there are still several algorithms for performing sensitivity analysis, but

they involve resolving the problem to a far greater extent [59, 51, 8].

• Constraint Satisfaction[3, 55]: CSP work in the area of constraint relaxation is a

form of sensitivity analysis. In constraint relaxation the relaxation of the problem

is taken to mean removing constraints rather than making them easier to satisfy.

114

CSP work also involves hard constraints and does not have the soft optimization

constraints represented in MC-DCOP [3, 55].

• Multi-Criteria Optimization[27, 24]: As described in section 6.3, multi-criteria op-

timization looks at problems with multiple objective functions. However, multi-

criteria optimization algorithms seek a pareto-optimal solution to problems with

multiple constraint functions rather than seeking to optimize one function while

satisfying another. In this field, sensitivity analysis is generally framed as a ques-

tion of solution robustness. In this case, the problem is not to look for simple

modifications that would improve the solution, but to find solutions that are still

optimal even if the problem varies slightly [27, 24].

All of these areas take a centralized approach to the sensitivity analysis problem,

rather than a distributed one which is required for distributed MC-DCOP domains. The

distributed sensitivity analysis problem presents its own challenges and opportunities. It

presents a new challenge because information needed to estimate the effects of relaxing

the resource constraints is distributed among various agents, thus taking the dual of

the problem is not possible. However, this distribution also presents an opportunity for

parallelization not present for centralized approaches. In addition, the work previously

done in the areas of CSP and multi-criteria optimization have tended to frame the goal

of sensitivity analysis slightly differently to the way it is defined in this thesis.

115

Chapter 7

Conclusion

7.1 Summary

This thesis focused on extending the expressivity of DCOP to capture more complex

domains, in particular distributed bounded optimization domains. These domains require

that networks of agents not only optimize a global objective function as in DCOP, but

also satisfy local resource constraints. One example of a bounded optimization domain is

distributed meeting scheduling. In distributed meeting scheduling domains the global goal

of maximizing everyone’s satisfaction with the schedule of meetings has to be balanced

with the limited local travel budgets. Existing DCOP algorithms are unable to solve

bounded optimization problems because they are unable to handle local, possibly private

resource constraints in addition to the team goal. This thesis defined the MC-DCOP

framework, which is an extension to DCOP, to capture these problems. It also made

two primary contributions toward extending DCOP to bounded optimization domains:

(i) designing new complete and incomplete algorithms to solve bounded optimization

116

DCOPs and (ii) exploring ways to perform distributed sensitivity analysis on bounded

optimization problem instances.

The algorithm design challenge required creating distributed MC-DCOP algorithms

to solve bounded optimization problems efficiently. The goal in designing the algorithms

was to prevent a significant increase in runtime complexity by using mutually-intervening

search. The idea behind mutually-intervening search was to use the information inherent

in the resource constraints to preemptively prune the search space for the global goal.

In order to obtain the maximum benefit from mutually-intervening search, it was useful

to have as many agents as possible make their resource constraint information available.

Thus, giving fine-grained control over the privacy of resource constraints was important.

This meant that the introduction of a single private constraint into the problem did

not necessitate using a completely private algorithm and the information available from

the non-private constraints could still still be exploited to increase efficiency. The other

tradeoff to be considered in designing the new algorithms was scalability vs. optimality.

Some bounded optimization problems require complete algorithms which can find the

most effective use of scarce resources, while others require incomplete algorithms which

can rapidly solve large-scale problems at the cost of finding suboptimal solutions.

One of the main contributions of this thesis was to present both complete and incom-

plete multiply-constrained DCOP algorithms that employed mutually-intervening search.

Three different algorithms were developed: one complete algorithm and two incomplete

algorithms. The complete algorithm, Multiply-Constrained Adopt (MCA), found the

117

globally-optimal solution to bounded optimization problems. The two incomplete algo-

rithms differed in the locality of the optimal that they were designed to reach. Multiply-

Constrained Maximum Gain Message-1 (MC-MGM-1) was a 1-optimal algorithm which

only considered moves that were profitable for an individual agent. MC-MGM-2 allowed

pairs of agents to make coordinated moves, which allowed it to break out of some of

the lower quality local optima that MC-MGM-1 could not escape. The three algorithms

allowed for trading off optimality and scalability. Additionally, all three algorithms al-

lowed for fine-grained control over the privacy vs. efficiency tradeoff. There were four

main algorithmic innovations in designing the multiply-constrained DCOP algorithms:

(i) transforming the network to allow private n-ary constraints to be enforced; (ii) as-

signing upper-bounds on resource consumption to neighbors, in order to gain efficiency;

(iii) identifying a structural property of the graph – T-nodes – which allowed agents to

calculate exact bounds on resource consumption; (iv) using a virtual value assignment

to identify when resource constraints have rendered a problem unsatisfiable. Proofs of

correctness were provided for both sets of algorithms.

Experiments were run to demonstrate the efficacy of the MC-DCOP algorithms at

solving bounded optimization problems as well as to explore the tradeoffs that were built

into the algorithms: privacy vs. efficiency and optimality vs. scalability. Experimental

results confirmed the usefulness of fine-grained control over the privacy/efficiency tradeoff.

Designating fewer than 25% of the agents’ resource constraints as private had a negligible

effect on the runtime. However, as the percentage of resource constraints designated as

private increased, the effect on the runtime became more pronounced. When all of the

resource constraints were kept private, the runtime was an order of magnitude greater

118

than when all were non-private. Experimental results also demonstrated that MC-MGM-

1 executed more rapidly than MC-MGM-2, but generally reached a lower quality final

solution. Both algorithms took two orders of magnitude fewer cycles to execute than

MCA on the most challenging bounded optimization problems.

The second main contribution of this thesis was in addressing the problem of sensitiv-

ity analysis. The sensitivity analysis challenge was prompted by real-world engineering

domains where resource constraints are not always as rigid as the DCOP formalism as-

sumes. System users may be interested to know whether investing in a few more resources

could significantly improve the functioning of the network of agents. In particular, the

question posed in bounded optimization DCOPs is whether the addition of c units of

resource at a particular variable or set of variables could yield more than c units of im-

provement in the global goal. The main challenges are to identify these bottleneck nodes

in a distributed manner and without performing redundant computation.

This thesis explored two approaches to sensitivity analysis on bounded optimization

DCOPs: link analysis and local reoptimization. Link analysis was a simple approach

which examined each of the resource constraints in isolation to see whether the addition

of resources locally would cause a significant improvement in the local contribution to

the global objective. Local reoptimization harnessed the strengths of the complete and

incomplete MC-DCOP algorithms by starting from the old global optimal and using the

incomplete algorithms to locally re-optimize.

Experimental results demonstrated that considering the individual constraints in iso-

lation from the network was too restrictive an approach. Link analysis was unable to

identify any opportunities for disproportionate gains in the testcases developed for this

119

thesis. Local reoptimization, which allowed for consideration of ripple effects in the

network of agents, was more successful. Once again there was a tradeoff to be made be-

tween optimality and efficiency. MC-MGM-1 was able to do the reoptimization extremely

rapidly and it identified most of the opportunities for improvement. MC-MGM-2 allowed

for all of the opportunities in the developed testcases to be identified. However, it took

longer to execute than MC-MGM-1. Finally, a heuristic was discovered for targeting the

use of local reoptimization in sensitivity analysis. Variables with a high link density were

identified as bottlenecks more frequently than those with a low link density.

In summary, this thesis contributes a more expressive extension to DCOP, called

MC-DCOP, new algorithms for solving MC-DCOP problems and new approaches to per-

forming sensitivity analysis. These contributions allow for the extension of the widely-

used DCOP framework into domains that it previously could not encompass. These are

domains with both a global objective and local resource constraints.

7.2 Future Work

The integration of intelligent agents into our environment, from routine office and class-

room environments to extreme disaster response and sensor web environments, will lead

to a large number of agents being connected and available continuously. In these future

environments, algorithms that enable collaboration among networks of agents will be ex-

tremely valuable. Currently, certain fundamental issues in the creation of collaborative

networks of agents remain open, specifically uncertainty and semi-cooperativeness.

120

Uncertainty : Whereas efficient models such as DCOP assume certainty about the

interaction structure and the costs and benefits of interaction, uncertainty in interactions

is often a prominent feature of real domains. Agents must interact with others without

having certain knowledge of the benefits or costs of their coordinated actions. Addition-

ally, network connectivity may not be completely reliable, with agents moving in and

out of communication range. The Distributed Partially-Oberservable Markov Decision

Process (Distributed POMDP) framework allows networks of agents to handle problems

that involve uncertain information. However, Distributed POMDP algorithms are NEXP-

complete, so they remain impractical for extremely large-scale domains [56, 40]. An open

challenge is to develop more expressive models and algorithms that address both types

of uncertainty, while maintaining the algorithmic efficiency of the current DCOP models.

Semi-cooperativeness: While this thesis has initiated research on semi-cooperative

domains in my thesis, there is a wealth of new research to draw upon in nascent fields such

as neuro-economics which indicates that while humans look out for their own interests,

they do act in a non-self-interested fashion on many occasions [50, 15, 52, 5]. However,

most research in the agents arena has ignored this work, basing itself on either purely

self-interested users or purely cooperative agents. The investigation of the implications

of having networks of agents with varying degrees of trust and cooperativeness working

together is an important open problem. New algorithms are needed to allow users to

make fine-grained tradeoffs between efficiency and self-interest as well as protocols for

dealing with agents of differing or unknown cooperativeness.

121

Reference List

[1] S. Ali, S. Koenig, and M. Tambe. Preprocessing techniques for accelerating the

DCOP algorithm ADOPT. In AAMAS, 2005.

[2] E. Altman. Constrained Markov Decision Process. Chapman and Hall, 1999.

[3] R.R. Bakker, F. Dikker, F. Tempelman, and P.M. Wognum. Diagnosing and solving

over-determined constraint satisfaction problems. In IJCAI, 1993.

[4] D. Bertsimas and J.N. Tsitsiklis. Introduction to Linear Optimization. Athena

Scientific, 1997.

[5] S. Bowles and H. Gintis. Social capital and community governance. Economic

Journal, 112:419–436, 2002.

[6] J. Davin and P.J. Modi. Impact of problem centralization in distributed constraint

optimization algorithms. In AAMAS, 2005.

[7] J. Davin and P.J. Modi. Hierarchical variable ordering for multiagent agreement

problems. In DCR, 2006.

[8] M. Dawande and J. N. Hooker. Inference-based sensitivity analysis for mixed inte-

ger/linear programming. Operations Research, 48:623–634, 2000.

122

[9] F.Y. Edgeworth. Mathematical Psychics: an Essay on the Application of Mathemat-

ics to the Moral Sciences. Kegan Paul, 1881.

[10] J. A. Espinosa and E. Carmel. The impact of time separation on coordination in

global software teams: a conceptual foundation. Software Process Improvement and

Practice, 8, 2004.

[11] A. El Fallah, P. Moratis, and A. Tsoukias. An aggregation-disaggregation ap-

proach for automated negotiation in multi-agent systems. In MultiAgents and Mobile

Agents, 2000.

[12] B. Faltings, D. Parkes, A. Petcu, and J. Shneidman. Optimizing streaming applica-

tions with self-interested users using mdpop. In Workshop on Computational Social

Choice, 2006.

[13] A. Fedoruk and J. Denzinger. A general framework for multi-agent search with indi-

vidual and global goals: Stakeholder search. International Transactions on Systems

Science and Applications, 1:357–362, 2006.

[14] S. Fitzpatrick and L. Meertens. Distributed coordination through anarchic optimiza-

tion. In V. Lesser, C. L. Ortiz, and M. Tambe, editors, Distributed Sensor Networks:

A Multiagent Perspective, pages 257–295. Kluwer, 2003.

[15] R.H. Frank. Passions Within Reason: The Strategic Role of the Emotions. W.W.

Norton and Company, 1988.

[16] E.C. Freuder. Complexity of k-structured constraint satisfaction problems. In AAAI,

1990.

123

[17] M. Gavanelli. An algorithm for multi-criteria optimization in CSPs. In ECAI, pages

136–140, 2002.

[18] S. Goldmann, J. Mnch, and H. Holz. Distributed process planning support with

milos. International Journal of Software Engineering and Knowledge Engineering,

2000.

[19] C. Gomes. Artificial intelligence and operations research: Challenges and opportu-

nities in planning and scheduling. Knowledge Engineering Review, 15:1–10, 2000.

[20] R. Greenstadt. Improving Privacy in Distributed Constraint Optimization. PhD

thesis, Harvard University, 2007.

[21] R. Greenstadt, J. P. Pearce, and M. Tambe. Analysis of privacy loss in DCOP

algorithms. In AAAI, 2006.

[22] N.G. Hall. Sensitivity analysis for scheduling problems. Journal of Scheduling, 7:49–

83, 2004.

[23] T. Hanne and S. Nickel. A multi-objective evolutionary algorithm for scheduling

and inspection planning in software development projects. Institute for Technical

and Economic Mathematics (ITWM) Technical Report, 42, 2003.

[24] D. Huisman. Integrated and Dynamic Vehicle and Crew Scheduling. PhD thesis,

Erasmus University, 2004.

[25] I.B. Jaafar, N. Khayati, and K. Ghedira. Multicriteria optimization in CSPs: Foun-

dations and distributed solving approach. In AIMSA, pages 459–468, 2004.

124

[26] P. Jalote and G. Jain. Assigning tasks in a 24-hour software development model. In

Asia-Pacific Software Engineering Conference (APSEC04), 2004.

[27] G. Kharmanda, N. Olhoff, A. Mohamed, and M. Lemaire. Reliability-based topology

optimization. Journal of Structural and Multidisciplinary Optimization, 26:295–307,

2004.

[28] V. Kumar. Algorithms for constraint satisfaction problems: A survey. AI Magazine,

13:32–44, 1992.

[29] V. Lesser, C. Ortiz, and M. Tambe. Distributed Sensor Networks: A Multiagent

Perspective. Springer, 2003.

[30] R. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and P. Varakantham. Taking

DCOP to the real world : Efficient complete solutions for distributed event schedul-

ing. In AAMAS, 2004.

[31] R. T. Maheswaran, J. P. Pearce, P. Varakantham, E. Bowring, and M. Tambe. Val-

uation of possible states: A unifying quantitative framework for evaluating privacy

in collaboration. In AAMAS, 2005.

[32] R.T. Maheswaran, J.P. Pearce, and M. Tambe. Distributed algorithms for dcop: A

graphical-game-based approach. In International Conference on Parallel and Dis-

tributed Computing Systems (PDCS), 2004.

[33] R. Mailler and V. Lesser. Solving distributed constraint optimization problems using

cooperative mediation. In AAMAS, 2004.

125

[34] N.F. Matsatsinis and P. Delias. A multi-criteria protocol for multi-agent negotia-

tions. Lecture Notes in Computer Science, 3025, 2004.

[35] A. Meisels and O. Lavee. Using additional information in discsps search. In Dis-

tributed Constraint Reasoning Workshop (DCR), 2004.

[36] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. ADOPT: Asynchronous dis-

tributed constraint optimization with quality guarantees. Artificial Intelligence Jour-

nal, 161:149–180, 2005.

[37] P. J. Modi and M. Veloso. Bumping strategies for the multiagent agreement problem.

In AAMAS, 2005.

[38] P. Moraitis and A. Tsoukias. A multicriteria approach for distributed planning and

negotiation in multiagent systems. In ICMAS, 1996.

[39] S. Murthy and R. Goodwin. Cooperative multi-objective decision-support for the

paper industry. Interfaces, 29:5–30, 1999.

[40] R. Nair. Coordinating Multiagent Teams in Uncertain Domains Using Distributed

POMDPs. PhD thesis, University of Southern California, 2005.

[41] S. Okamoto. Allocating roles in large scale teams: An empirical evaluation. Master’s

thesis, University of Southern California, 2004.

[42] P. Paruchuri, M. Tambe, F. Ordonez, and S. Kraus. Towards a formalization of

teamwork with resource constraints. In AAMAS, 2004.

126

[43] P. Paruchuri, M. Tambe, F. Ordonez, and S. Kraus. Security in multiagent systems

by policy randomization. In MSDM, 2006.

[44] J.P. Pearce. Local Optimization in Cooperative Agent Networks. PhD thesis, Uni-

versity of Southern California, 2007.

[45] J.P. Pearce, R.T. Maheswaran, and M. Tambe. Solution sets for dcops and graphical

games. In AAMAS, 2006.

[46] J.P. Pearce and M. Tambe. Quality guarantees on k-optimal solutions for distributed

constraint optimization problems. In IJCAI, 2007.

[47] F. Pecora, P.J. Modi, and P. Scerri. Reasoning about and dynamically posting n-ary

constraints in adopt. In Workshop on Distributed Constraint Reasoning, 2006.

[48] A. Petcu and B. Faltings. A scalable method for multiagent constraint optimization.

In IJCAI, Edinburgh, Scotland, Aug 2005.

[49] A. Petcu and B. Faltings. Mb-dpop: A new memory-bounded algorithm for dis-

tributed optimization. In IJCAI, 2007.

[50] M. Ridley. The Origins of Virtue : Human Instincts and the Evolution of Coopera-

tion. Penguin Publishers, 1998.

[51] L. Schrage and L.A. Wolsey. Sensitivity analysis for branch and bound integer

programming. Operations Research, 33:1008–1023, 1984.

[52] A. Sen. Rational fools: A critique of the behavioral foundations of economic theory.

Philosophy and Public Affairs, 6, 1977.

127

[53] M. Silaghi and D. Mitra. Distributed constraint satisfaction and optimization with

privacy enforcement. In IAT, 2004.

[54] M. Silaghi and D. Mitra. Distributed constraint satisfaction and optimization with

privacy enforcement. In IAT, 2004.

[55] K. Stergiou and T. Walsh. Encoding non-binary constraint satisfaction problems.

In AAAI, 1999.

[56] P. Varakantham. Towards Efficient Planning for Real World Partially Observable

Domains. PhD thesis, University of Southern California, 2007.

[57] B. Viswanathan and M. desJardins. A model for large-scale team formation for a

disaster rescue problem. In AAMAS, 2005.

[58] N. Vlassis, R. Elhorst, and J. R. Kok. Anytime algorithms for multiagent decision

making using coordination graphs. In International Conference on Systems, Man

and Cybernetics, 2004.

[59] L.A. Wolsey. Integer programming duality: Price functions and sensitivity analysis.

Mathematical Programming, 20:173–195, 1981.

[60] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint sat-

isfaction problem: Formalization and algorithms. IEEE Transactions on Knowledge

and Data Engineering, 10:673–685, 1998.

[61] M. Yokoo and K. Hirayama. Distributed breakout algorithm for solving distributed

constraint satisfaction problems. In ICMAS, 1996.

128

[62] M. Yokoo, K. Suzuki, and K. Hirayama. Secure distributed constraint satisfaction:

Reaching agreement without revealing private information. In CP, 2002.

[63] Makoto Yokoo. Distributed Constraint Satisfaction: Foundation of Cooperation in

Multi-agent Systems. Springer, 2001.

[64] W. Zhang, Z. Xing, G. Wang, and L. Wittenburg. An analysis and application of

distributed constraint satisfaction and optimization algorithms in sensor networks.

In AAMAS, 2003.

[65] X. Zhang and V. Lesser. Solving Negotiation Chains in Semi Cooperative Multi-

Agent Systems. Technical report, University of Massachusetts, 2005.

129

Appendix A

Curriculum Vitae

Emma Bowring
University of Southern California
Powell Hall of Engineering, Room 516
Los Angeles
CA 90089
(213) 740-9569
bowring@usc.edu

A.1 Education

Doctor of Philosophy in Computer Science (in progress)
University of Southern California, Los Angeles, CA
Adviser: Professor Milind Tambe

Master of Science in Computer Science
University of Southern California, Los Angeles, CA 2006

Bachelor of Science in Computer Science
University of Southern California, Los Angeles, CA 2003
Minor: Spanish
Recognition: Summa Cum Laude

130

A.2 Experience

A.2.1 Research

Research Assistant Computer Science Dept, USC Los Angeles, CA 8/03-present
Developed an algorithm for distributed multi-criteria constraint optimization. Investi-
gated privacy in distributed constraint optimization algorithms. Integrated distributed
constraint optimization into CALO, a personal assistant project, for privacy preserving
meeting and task negotiation.

Merit Research Scholar Integrated Media Systems Center, USC Los Angeles, CA 9/99-
12/00
Redesigned Immersive Audio GUI and created test programs for Immersive Audio project.

A.2.2 Teaching

Course Co-Designer Computer Science Dept, USC Los Angeles, CA 1/06-1/07
Co-developed with Milind Tambe (Computer Science) and Anne Balsamo (Cinema) ”Sci-
ence, Technology and Culture: Artificial Intelligence and Science Fiction,” a new interdis-
ciplinary seminar course to be offered to freshman students at USC; experience developing
the syllabus and selecting readings.

Co-Instructor School of Engineering, USC, Los Angeles, CA 10/06 Co-taught with Milind
Tambe a seminar offered during Trojan Family Weekend to parents of Engineering stu-
dents demonstrating innovative teaching techniques at USC. It covered material from our
”Intelligent Agents and Science Fiction,” class.

Co-Instructor Office of Undergraduate Programs, USC, Los Angeles, CA 8/06 Co-taught
with Milind Tambe a micro-seminar offered during Welcome Week at USC to incoming
freshmen excerpted from our ”Intelligent Agents and Science Fiction” class.

Course Co-Designer Computer Science Dept, USC Los Angeles, CA 9/05-9/06
Co-developed with my advisor (Milind Tambe) ”Intelligent Agents and Science Fiction,”
a new undergraduate course to be introduced as a technical elective in the computer
science department; experience developing the syllabus, selecting readings and proposing
the class to the computer science faculty.

Teaching Assistant Computer Science Dept, USC Los Angeles, CA 8/04-12/04
Taught ”Advanced Artificial Intelligence,” a graduate course, for one semester including
experience conducting lectures, grading assignments and exams, organizing a panel dis-
cussion and addressing students’ concerns.

131

A.2.3 Other

Jr. Software Engineer Symmetry Communications San Jose, CA 5/01-8/01
Developed an automated test suite for GPRS system using TCL and Expect and designed
basic test suite architecture. Tested basic GPRS unit functionality.

A.3 Publications

A.3.1 Journals

• R.T. Maheswaran, J.P. Pearce, P. Varakantham, E. Bowring and M. Tambe, ”Pri-
vacy Loss in Distributed Constraint Reasoning: A Quantitative Framework for
Analysis and its Applications.” Journal of Autonomous Agents and Multiagent
Systems (JAAMAS), Springer vol 13 num 1, July 2006.

• P. Paruchuri, E. Bowring, R. Nair, J. P. Pearce, N. Schurr, M. Tambe and P.
Varakantham, ”Multiagent Teamwork: Hybrid Approaches.” Communications of
the Computer Society of India, 2006.

A.3.2 Conferences

• E. Bowring, M. Tambe and M. Yokoo, ”Multiply-Constrained Distributed Con-
straint Optimization.” Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-06), Hakodate, Japan, May
8-12, 2006.

• M. Tambe, E. Bowring, H. Jung, G. Kaminka, R.T. Maheswaran, J. Marecki, P.J.
Modi, R. Nair, P. Paruchuri, J.P. Pearce, D. Pynadath, P. Scerri, N. Schurr and
P. Varakantham, ”Conflicts in Teamwork: Hybrids to the Rescue.” Proceedings of
The Fourth International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS-05), Utrecht, Netherlands, July 25-29, 2005.

• R.T. Maheswaran, J.P. Pearce, P. Varakantham, E. Bowring and M. Tambe, ”Val-
uation of Possible States: A Unifying Quantitative Framework for Evaluating Pri-
vacy in Collaboration.” Proceedings of the Fourth International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-05), Utrecht, Netherlands,
July 25-29, 2005.

• R.T. Maheswaran, M. Tambe, E. Bowring, J.P. Pearce and P. Varakantham, ”Tak-
ing DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-
Event Scheduling.” Proceedings of The Third International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-04), New York, NY, July
19-23, 2004.

132

A.3.3 Short Papers

• R. Greenstadt, J. P. Pearce, E. Bowring and M. Tambe, ”An Experimental Anal-
ysis of Privacy Loss in DCOP Algorithms.” Proceedings of the Fifth International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-06),
Hakodate, Japan, May 8-12, 2006.

A.3.4 Refereed Workshops and Symposia

• R. Greenstadt, J. P. Pearce, E. Bowring and M. Tambe, ”An Experimental Analysis
of Privacy Loss in DCOP Algorithms.” Proceedings of Workshop on Distributed
Constraint Reasoning (DCR-06), Hakodate, Japan, May 8-12, 2006.

• N. Schurr, P. Varakantham, E. Bowring, M. Tambe and B. Grosz, ”Asimovian
Multiagents: Applying Laws of Robotics to Teams of Agents and Humans.” Pro-
ceedings of Workshop on Programming Multiagent Systems Languages and Tools
(ProMAS-06), Hakodate, Japan, May 8-12, 2006.

• M. Tambe, E. Bowring, J.P. Pearce, P. Varakantham, P. Scerri, and D. Pynadath,
”Electric Elves: What Went Wrong and Why.” American Association of Artificial
Intelligence (AAAI) Spring Symposium on What Went Wrong and Why, Stanford,
CA, March 27-29, 2006.

• E. Bowring, M. Tambe and M. Yokoo, ”Multiply-Constrained DCOP for Distributed
Planning and Scheduling.” American Association of Artificial Intelligence (AAAI)
Spring Symposium on Distributed Plan and Schedule Management, Stanford, CA,
March 27-29, 2006.

• E. Bowring, M. Tambe and M. Yokoo, ”Distributed Multi-Criteria Coordination:
Privacy vs. Efficiency.” Proceedings of Workshop on Distributed Constraint Rea-
soning at the Nineteenth International Joint Conference on Artificial Intelligence
(DCR-05), Edinburgh, Scotland, July 30 - Aug 5, 2005.

• E. Bowring, M. Tambe and M. Yokoo, ”Distributed Multi-Criteria Coordination in
Multi-Agent Systems.” Proceedings of Workshop on Declarative Agent Languages
and Technologies at the Fourth International Joint Conference on Agents and Mul-
tiagent Systems (DALT-05), Utrecht, Netherlands, July 25-29, 2005.

• E. Bowring, M. Tambe and M. Yokoo, ”Optimize My Schedule But Keep It Flexible:
Distributed Multi-Criteria Coordination for Personal Assistants.” American Associ-
ation of Artificial Intelligence (AAAI) Spring Symposium on Persistent Assistants:
Living and Working with AI, Stanford, CA, March 21-23, 2005.

• R.T. Maheswaran, J.P. Pearce, P. Varakantham, E. Bowring, and M. Tambe, ”Valu-
ations of Possible States (VPS): A Quantitative Framework for Analysis of Privacy
Loss Among Collaborative Personal Assistant Agents.” American Association of
Artificial Intelligence (AAAI) Spring Symposium on Persistent Assistants: Living
and Working with AI, Stanford, CA, March 21-23, 2005.

133

A.4 Professional Activities

A.4.1 Reviewer

• Distributed Constraint Reasoning Workshop (DCR) 2006

• Journal of Artificial Intelligence Research (JAIR) 2005

• Distributed Constraint Reasoning Workshop (DCR) 2005

• International Joint Conference on Artificial Intelligence (IJCAI) 2005

• FLAIRS 2005

• Physics of Life Reviews 2004

• Brazilian Symposium on Artificial Intelligence 2004

A.4.2 Co-Chair

• AAMAS Women’s Lunch and Panel 2005

A.5 Awards

• Outstanding Scholar, Computer Science Dept. 2003

• Order of Troy 2003

• USC Renaissance Scholar 2003

• Del Amo Study in Madrid Scholarship 2002

• WVT Rusch Engineering Honors Program 2001-2003

• Robert C Byrd Scholarship 1999-2003

• Jimmy Treybig Scholarship 1999-2003

• USC Trustee Scholar 1999-2003

• USC Merit Research Scholar 1999-2000

134

