
CONFLICT RESOLUTION STRATEGIES AND THEIR PERFORMANCE

MODELS FOR LARGE-SCALE MULTIAGENT SYSTEMS

by

Hyuckchul Jung

A Dissertation Presented to the

FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the

Requirements for the Degree

DOCTOR OF PHILOSOPHY

(COMPUTER SCIENCE)

December 2003

Copyright 2003 Hyuckchul Jung

Dedication

This thesis is dedicated to my loved family...

ii

Acknowledgements

After long years of formal school education, I won the highest degree from one of the

top universities in my field. Recalling the past, I found that, without the support of many

people, it would have not been possible for me to make this great achievement.

First of all, I would like to express my deepest gratitude to my advisor, Milind

Tambe. As a researcher, he has taught me passion, patience, devotion, and thoroughness

which are the necessity for a true researcher. As a teacher, he has given me endless care

and encouragement which helped me overcome a lot of difficulties throughout my Ph.D.

program. Furthermore, as a human being, he has shown wit and humor (sometimes).

I am very grateful to my thesis committee members who deserve many thanks for

their sincere advice and hearty guidance. I was very lucky to have some of the best

researchers in my research area on my thesis committee. Paul Rosenbloom pointed

out what I had accepted as a matter of course, and made me think of my work in new

perspectives. Ed Durfee spent enormous amount of time in discussing my thesis top-

ics and helped me see a big picture in them. Guarav Sukhatme always made himself

available to provide help and technical advice for my research. Finally, Dan O’Leary

always encouraged me with his cheerful comments and provided guidance from non-CS

perspective.

While Tony Barrett at JPL was not in my thesis committee, he provided me with a lot

of pointers based on his practical experience and gave me good and thorough comments

iii

on my thesis. He also helped me improve my writing in English and gave me good

suggestion for my thesis presentation. I also owe a lot to Brad Clement at JPL who

helped me clarify what were the assumptions in my thesis. It was a great privilege to

communicate with Makoto Yokoo at NTT in Japan when I started to work on DCSP. As

a leading researcher in the field, he gave me insights into DCSP and provided me with

kind comments on my work. I wish to give special thanks to Jeff Bradshaw and James

Allen at IHMC for their understanding and support when I had difficulties in completing

my thesis as scheduled.

I would like to thank my colleagues who were and have been at USC and ISI. In

particular, I wish to thank Gal Kaminka, Paul Scerri, David Pynadath, Jay Modi, Ranjit

Nair, Nathan Schurr, and Praveen Paruchuri for their time and effort to improve my

presentation. My grateful thanks also go to my Korean friends at USC who helped me

settle down when I first came to US and were always with me at difficult times as good

friends. Just being with them gave me great comfort.

Finally, I would like to thank my family. Whichever decision I made, my parents

have always supported me and sacrificed themselves for my success. I know that there

is no way for me to compensate for my indebtedness to them. I have always sought

advice from my sister whose counsel was a great help to me at every decision. My loved

wife, Jaeyeon, is a great gift from God. When I had the most difficult time in my Ph.D.

program, she was there and, with her help, I could cope with the situation making this

great achievement. I thank her for everything and love her not because she has given me

help but because she is just here on earth with me.

The research in this thesis was sponsored by NASA Jet Propulsion Laboratory sub-

contract “Continual Coherent Team Planning”. The earlier work for cooperative strate-

gies was funded by DARPA ITO award number F30602-99-2-0507.

iv

Contents

Dedication ii

Acknowledgements iii

List of Figures viii

List of Tables xv

Abstract 1

1 Introduction 3
1.1 Part I: Cooperative Conflict Resolution Strategies 5

1.1.1 Problem Statement of Part 1 5
1.1.2 Summary of Approach and Results 8

1.2 Part II: Performance Models for Conflict Resolution Strategies 15
1.2.1 Problem Statement of Part II 16
1.2.2 Summary of Approach and Results 17

1.3 Contribution . 19
1.4 Organization of This Thesis . 21

2 Motivating Domains 22

I Cooperative Conflict Resolution Strategies 28

3 Fast Convergence Strategies 29
3.1 Formal Framework to Illustrate Conflict Resolution Strategies 29

3.1.1 Distributed Constraint Satisfaction Problems (DCSP) 30
3.1.2 Mapping Multiagent Conflict Resolution onto DCSP 31
3.1.3 Asynchronous Weak Commitment (AWC) DCSP Algorithm . . 33

3.2 Cooperative Strategies . 33
3.2.1 Local Cooperativeness . 34
3.2.2 Cooperativeness-Based Strategies 36

v

4 Strategy Performance Measurements 42
4.1 Existing Method . 42
4.2 Analytical Model for Run-time . 46
4.3 Analysis of Locally Cooperative Strategy Performance 48

4.3.1 Experimental Settings . 49
4.3.2 Overview of Experimental Results 53
4.3.3 Performance in Run-time Analytical Model 63
4.3.4 Performance Variation in Different Computing & Networking

Environments . 73
4.3.5 Scalability of LCDCSP Strategies 80
4.3.6 Motivation for Strategy Selection 82

II Distributed POMDP-based Performance Models for Cooper-
ative Conflict Resolution Strategies 84

5 Performance Analysis 85
5.1 Distributed POMDP-based Model . 85

5.1.1 MTDP model . 86
5.1.2 Mapping from DCSP to MTDP 87
5.1.3 Building Block . 89
5.1.4 Building Block Composition for Performance Analysis 95

5.2 Performance Prediction . 100
5.2.1 Complexity of Performance Evaluation 101
5.2.2 Analysis of Performance Prediction 105
5.2.3 Efficiency of Building Block Based Approach 115

6 Related Work 118
6.1 Multiagent Conflict Resolution Techniques 118

6.1.1 General DCSP Techniques . 118
6.1.2 DCSP Agent Ordering . 120
6.1.3 CSP-based Conflict Resolution Approach 121
6.1.4 Learning Coordination Strategies 123
6.1.5 Other Conflict Resolution Approaches 124

6.2 Performance Estimation in Constraint Satisfaction Problems 127
6.2.1 Cost Estimation by Estimating Search Space Size 127
6.2.2 Probabilistic Analysis of Heuristics 128

6.3 MDP and POMDP Decomposition . 129

7 Conclusion and Future Work 131
7.1 Locally Cooperative Strategies . 132

vi

7.2 Distributed POMDP based Performance Models for Conflict Resolution
Strategies . 134

7.3 Future Work . 136

Reference List 139

A Comparison between the DCSP Approach in This Thesis and Globally Aware
DCSP Approach 148

B Experimental Results 150
B.1 Detailed Peformance Results . 150
B.2 Detailed Problem Hardness and Speedup by LCDCSP Strategies 158
B.3 Run-time and Speedup for the Exemplar Problem Settings with High

Performance Improvement . 160
B.3.1 Run-time and Speedup When Message Size is a Major Factor

for Message Processing/Communication Overhead 160
B.3.2 Run-time and Speedup When Message Number is a Major Fac-

tor for Message Processing/Communication Overhead 163
B.4 Performance Measurements in Bottleneck Agents for Selected Problem

Settings . 166
B.4.1 Message Size and Constraint Checks of Bottleneck Agents . . . 166
B.4.2 Message Number and Constraint Checks of Bottleneck Agents . 170

B.5 Performance Variation in Different Computing & Networking Environ-
ments . 174
B.5.1 When Message Size is a Major Factor for Message Processing

& Communication Overhead 174
B.5.2 When Message Number is a Major Factor for Message Process-

ing & Communication Overhead 177

C Computation Cost Saving by Building Blocks 180

D Efficiency of Novel Conflict Resolution Strategies in Sensor Networks 182
D.1 Search space reduction from local constraint communication and con-

straint propagation . 186
D.2 Comparison of numbers of cycles with and without constraint propagation189

vii

List of Figures

2.1 A distributed sensor domain . 23

2.2 sensor sectors . 23

2.3 Distributed spacecraft domain . 25

2.4 Helicopter combat simulation . 26

3.1 Model of agents in DCSP . 30

3.2 Cooperative strategy �� � �� performed by agent �� in AWC framework 40

3.3 Cooperativeness relationship: the higher, the more locally cooperative . 41

4.1 Difference between AWC strategy and LCDCSP strategy in constraint
checks and message size per cycle for different domains (based on empir-
ical results in Section 4.3) . 45

4.2 Model of runtime . 46

4.3 Example: Speedup for individual problem instances (��� means ���������	��

strategy) . 56

4.4 Speedup for problem instances with different problem hardness: Check-
ing whether speedup comes from easier or harder problem instances . . 57

4.5 Maximum speedup in the problem settings classified by external con-
straint compatibility and topology . 59

4.6 Example: Problem settings where external constraint compatibility is
30% and local constraint compatibility is 25% 61

4.7 Example: Problem settings where topology is grid, external constraint
compatibility 60%, local constraint compatibility 25%, and domain size
40 . 62

viii

4.8 Speedup for problem instances with different problem hardness: Check-
ing whether speedup comes from easier or harder problem instances . . 68

4.9 Speedup for problem instances with different problem hardness: Check-
ing whether speedup comes from easier or harder problem instances . . 72

4.10 Speedup variation: hexagonal topology; external constraint compatibil-
ity 30%; local constraint compatibility 25%; domain size 10; Ratio of
locally constrained agents 30% . 76

4.11 Speedup variation: grid topology; external constraint compatibility 60%;
local constraint compatibility 25%; domain size 40; Ratio of locally
constrained agents 90% . 78

4.12 Speedup variation: triangular topology; external constraint compatibil-
ity 30%; local constraint compatibility 25%; domain size 10; Ratio of
locally constrained agents 90% . 79

4.13 LCDCSP performance in different number of agents for selected cases
(problem settings shown in Table 4.4) 81

4.14 Percentage of problem settings where an LCDCSP strategy dominates
and how much worse it is if not the best (mc: min-conflict strategy) . . 82

4.15 Performance comparison between the best strategy and ��		 � ��		 in
the problem settings where ��		 � ��		 is not the best (mc: min-conflict
strategy): In run-time model, time unit � indicates the time for a single
constraint check. 83

5.1 Building block example . 91

5.2 Example of states in a building block 92

5.3 Long-tail distribution example for the case with 90% locally constrained
agents in high flexibility setting . 93

5.4 Long-tail distribution example for the case with 90% locally constrained
agents in low flexibility setting . 94

5.5 Long-tail distribution example for the case with 10% locally constrained
agents in high flexibility setting . 94

5.6 Long-tail distribution example for the case with 10% locally constrained
agents in low flexibility setting . 95

5.7 Weighted sum method . 97

ix

5.8 Docking point between two building blocks 98

5.9 Interaction between building blocks 98

5.10 Interaction method . 100

5.11 Building block docking points . 101

5.12 Performance prediction in low flexibility setting with 60% locally con-
strained agents using interaction method 107

5.13 Performance prediction in low flexibility setting with 90% locally con-
strained agents using interaction method 108

5.14 Performance prediction in high flexibility setting with 60% locally con-
strained agents . 111

5.15 Performance prediction in high flexibility setting with 90% locally con-
strained agents . 112

5.16 Composition method comparison in low flexibility setting with 60%
locally constrained agents (mc: min-conflict) 113

5.17 Composition method comparison in low flexibility setting with 90%
locally constrained agents (mc: min-conflict) 113

5.18 Composition method comparison in high flexibility setting with 60%
locally constrained agents (mc: min-conflict) 114

5.19 Composition method comparison in high flexibility setting with 90%
locally constrained agents (mc: min-conflict) 114

A.1 Message size and constraint checks per agent: Assume that each agent
(whose domain size is 40) has four neighbors (in 2D grid topology). . . 148

B.1 Hexagonal topology; local constraint compatibility 25%; domain size 10 150

B.2 Hexagonal topology; local constraint compatibility 50%; domain size 10 150

B.3 Hexagonal topology; local constraint compatibility 75%; domain size 10 151

B.4 Hexagonal topology; local constraint compatibility 25%; domain size 40 151

B.5 Hexagonal topology; local constraint compatibility 50%; domain size 40 151

B.6 Hexagonal topology; local constraint compatibility 75%; domain size 40 151

x

B.7 Hexagonal topology; local constraint compatibility 25%; domain size 80 152

B.8 Hexagonal topology; local constraint compatibility 50%; domain size 80 152

B.9 Hexagonal topology; local constraint compatibility 75%; domain size 80 152

B.10 Grid topology; local constraint compatibility 25%; domain size 10 . . . 152

B.11 Grid topology; local constraint compatibility 50%; domain size 10 . . . 153

B.12 Grid topology; local constraint compatibility 75%; domain size 10 . . . 153

B.13 Grid topology; local constraint compatibility 25%; domain size 40 . . . 153

B.14 Grid topology; local constraint compatibility 50%; domain size 40 . . . 153

B.15 Grid topology; local constraint compatibility 75%; domain size 40 . . . 154

B.16 Grid topology; local constraint compatibility 25%; domain size 80 . . . 154

B.17 Grid topology; local constraint compatibility 50%; domain size 80 . . . 154

B.18 Grid topology; local constraint compatibility 75%; domain size 80 . . . 154

B.19 Triangular topology; local constraint compatibility 25%; domain size 10 155

B.20 Triangular topology; local constraint compatibility 50%; domain size 10 155

B.21 Triangular topology; local constraint compatibility 75%; domain size 10 155

B.22 Triangular topology; local constraint compatibility 25%; domain size 40 155

B.23 Triangular topology; local constraint compatibility 50%; domain size 40 156

B.24 Triangular topology; local constraint compatibility 75%; domain size 40 156

B.25 Triangular topology; local constraint compatibility 25%; domain size 80 156

B.26 Triangular topology; local constraint compatibility 50%; domain size 80 156

B.27 Triangular topology; local constraint compatibility 75%; domain size 80 157

B.28 Number of problem settings for different speedup 159

xi

B.29 Run-time and speedup for AWC strategy and the best LCDCSP strategy
with different message processing/communication overhead: hexagonal
topology; external constraint compatibility 30%; local constraint com-
patibility 25%; domain size 10; Ratio of locally constrained agents 30%
(case 1 in Table 4.4) . 160

B.30 Run-time and speedup for AWC strategy and the best LCDCSP strategy
with different message processing/communication overhead: hexagonal
topology; external constraint compatibility 30%; local constraint com-
patibility 25%; domain size 10; Ratio of locally constrained agents 60%
(case 2 in Table 4.4) . 160

B.31 Run-time and speedup for AWC strategy and the best LCDCSP strat-
egy with different message processing/communication overhead: grid
topology; external constraint compatibility 30%; local constraint com-
patibility 25%; domain size 10; Ratio of locally constrained agents 60%
(case 3 in Table 4.4) . 161

B.32 Run-time and speedup for AWC strategy and the best LCDCSP strat-
egy with different message processing/communication overhead: grid
topology; external constraint compatibility 30%; local constraint com-
patibility 25%; domain size 80; Ratio of locally constrained agents 60%
(case 4 in Table 4.4) . 161

B.33 Run-time and speedup for AWC strategy and the best LCDCSP strat-
egy with different message processing/communication overhead: grid
topology; external constraint compatibility 60%; local constraint com-
patibility 25%; domain size 40; Ratio of locally constrained agents 90%
(case 5 in Table 4.4) . 162

B.34 Run-time and speedup for AWC strategy and the best LCDCSP strategy
with different message processing/communication overhead: triangular
topology; external constraint compatibility 30%; local constraint com-
patibility 25%; domain size 10; Ratio of locally constrained agents 30%
(case 6 in Table 4.4) . 162

B.35 Run-time and speedup for AWC strategy and the best LCDCSP strategy
with different message processing/communication overhead: hexagonal
topology; external constraint compatibility 30%; local constraint com-
patibility 25%; domain size 10; Ratio of locally constrained agents 30%
(case 1 in Table 4.4) . 163

xii

B.36 Run-time and speedup for AWC strategy and the best LCDCSP strategy
with different message processing/communication overhead: hexagonal
topology; external constraint compatibility 30%; local constraint com-
patibility 25%; domain size 10; Ratio of locally constrained agents 60%
(case 2 in Table 4.4) . 163

B.37 Run-time and speedup for AWC strategy and the best LCDCSP strat-
egy with different message processing/communication overhead: grid
topology; external constraint compatibility 30%; local constraint com-
patibility 25%; domain size 10; Ratio of locally constrained agents 60%
(case 3 in Table 4.4) . 164

B.38 Run-time and speedup for AWC strategy and the best LCDCSP strat-
egy with different message processing/communication overhead: grid
topology; external constraint compatibility 30%; local constraint com-
patibility 25%; domain size 80; Ratio of locally constrained agents 60%
(case 4 in Table 4.4) . 164

B.39 Run-time and speedup for AWC strategy and the best LCDCSP strat-
egy with different message processing/communication overhead: grid
topology; external constraint compatibility 60%; local constraint com-
patibility 25%; domain size 40; Ratio of locally constrained agents 90%
(case 5 in Table 4.4) . 165

B.40 Run-time and speedup for AWC strategy and the best LCDCSP strategy
with different message processing/communication overhead: triangular
topology; external constraint compatibility 30%; local constraint com-
patibility 25%; domain size 10; Ratio of locally constrained agents 30%
(case 6 in Table 4.4) . 165

B.41 Speedup variation: hexagonal topology; external constraint compatibil-
ity 30%; local constraint compatibility 25%; domain size 10; Ratio of
locally constrained agents 30% . 174

B.42 Speedup variation: hexagonal topology; external constraint compatibil-
ity 30%; local constraint compatibility 25%; domain size 10; Ratio of
locally constrained agents 60% . 174

B.43 Speedup variation: grid topology; external constraint compatibility 30%;
local constraint compatibility 25%; domain size 10; Ratio of locally
constrained agents 60% . 175

xiii

B.44 Speedup variation: grid topology; external constraint compatibility 30%;
local constraint compatibility 25%; domain size 80; Ratio of locally
constrained agents 60% . 175

B.45 Speedup variation: grid topology; external constraint compatibility 60%;
local constraint compatibility 25%; domain size 40; Ratio of locally
constrained agents 90% . 176

B.46 Speedup variation: triangular topology; external constraint compatibil-
ity 30%; local constraint compatibility 25%; domain size 10; Ratio of
locally constrained agents 30% . 176

B.47 Speedup variation: hexagonal topology; external constraint compatibil-
ity 30%; local constraint compatibility 25%; domain size 10; Ratio of
locally constrained agents 30% . 177

B.48 Speedup variation: hexagonal topology; external constraint compatibil-
ity 30%; local constraint compatibility 25%; domain size 10; Ratio of
locally constrained agents 60% . 177

B.49 Speedup variation: grid topology; external constraint compatibility 30%;
local constraint compatibility 25%; domain size 10; Ratio of locally
constrained agents 60% . 178

B.50 Speedup variation: grid topology; external constraint compatibility 30%;
local constraint compatibility 25%; domain size 80; Ratio of locally
constrained agents 60% . 178

B.51 Speedup variation: grid topology; external constraint compatibility 60%;
local constraint compatibility 25%; domain size 40; Ratio of locally
constrained agents 90% . 179

B.52 Speedup variation: triangular topology; external constraint compatibil-
ity 30%; local constraint compatibility 25%; domain size 10; Ratio of
locally constrained agents 30% . 179

D.1 Distributed sensor networks with targets (for simplification, radar sec-
tors for each sensor is not drawn.) . 184

xiv

List of Tables

4.1 Overview of problem hardness and speedup by LCDCSP strategies . . . 54

4.2 Maximum speedup in the problem settings where external constraint
compatibility is 30% . 59

4.3 Maximum speedup in the problem settings where topology is grid, and
external constraint compatibility is 60% 60

4.4 Problem settings with more than an order of magnitude speedup by
LCDCSP strategies based on cycles: numbers in parenthesis (the last
column) the speedup achieved by the best LCDCSP strategy 63

4.5 Speedup change in run-time model . 65

4.6 Message size of AWC and the best LCDCSP strategy when � � ���
and � � ����� . 66

4.7 Number of constraint checks of AWC and the best LCDCSP strategy
when � � ��� and � � ����� . 67

4.8 Speedup by LCDCSP strategies when � � ��� and � � ����� 67

4.9 Speedup change in run-time model . 69

4.10 Message size of AWC and the best LCDCSP strategy when � � ���
and � � ����� . 70

4.11 Number of constraint checks of AWC and the best LCDCSP strategy
when � � ��� and � � ����� . 71

4.12 Speedup by LCDCSP strategies when � � ��� and � � ����� 71

5.1 Correspondence between DCSP and distributed POMDP 86

5.2 Correlation between experimental results and performance evaluation
for four cooperative strategies and min-conflict strategy 109

xv

5.3 Correlation between experimental results and performance evaluation
for only cooperative strategies without min-conflict strategy 109

5.4 Comparison of runtime (sec) to select the best strategy 115

5.5 Time and accuracy results with small-scale test runs 116

B.1 Distribution of problem hardness . 158

B.2 Non-definitive problem settings where both AWC and LCDCSP srate-
gies exceed the cycle limit . 158

B.3 Average message size of AWC and the best LCDCSP strategy when
� � ��� and � � ���� . 166

B.4 Average number of constraint checks of AWC and the best LCDCSP
strategy when � � ��� and � � ���� 166

B.5 Distribution of problem hardness and speedup by locally cooperative
strategies when � � ��� and � � ���� 166

B.6 Average message size of AWC and the best LCDCSP strategy when
� � ��� and � � ����� . 167

B.7 Average number of constraint checks of AWC and the best LCDCSP
strategy when � � ��� and � � ����� 167

B.8 Distribution of problem hardness and speedup by locally cooperative
strategies when � � ��� and � � ����� 167

B.9 Average message size of AWC and the best LCDCSP strategy when
� � ��� and � � ����� . 168

B.10 Average number of constraint checks of AWC and the best LCDCSP
strategy when � � ���� and � � ���� 168

B.11 Distribution of problem hardness and speedup by locally cooperative
strategies when � � ���� and � � ���� 168

B.12 Average message size of AWC and the best LCDCSP strategy when
� � ���� and � � ����� . 169

B.13 Average number of constraint checks of AWC and the best LCDCSP
strategy when � � ���� and � � ����� 169

B.14 Distribution of problem hardness and speedup by locally cooperative
strategies when � � ���� and � � ����� 169

xvi

B.15 Average message size of AWC and the best LCDCSP strategy when
� � ��� and � � ���� . 170

B.16 Average number of constraint checks of AWC and the best LCDCSP
strategy when � � ��� and � � ���� 170

B.17 Distribution of problem hardness and speedup by locally cooperative
strategies when � � ��� and � � ���� 170

B.18 Average message size of AWC and the best LCDCSP strategy when
� � ��� and � � ����� . 171

B.19 Average number of constraint checks of AWC and the best LCDCSP
strategy when � � ��� and � � ����� 171

B.20 Distribution of problem hardness and speedup by locally cooperative
strategies when � � ��� and � � ����� 171

B.21 Average message size of AWC and the best LCDCSP strategy when
� � ���� and � � ���� . 172

B.22 Average number of constraint checks of AWC and the best LCDCSP
strategy when � � ���� and � � ���� 172

B.23 Distribution of problem hardness and speedup by locally cooperative
strategies when � � ���� and � � ���� 172

B.24 Average message size of AWC and the best LCDCSP strategy when
� � ���� and � � ����� . 173

B.25 Average number of constraint checks of AWC and the best LCDCSP
strategy when � � ���� and � � ����� 173

B.26 Distribution of problem hardness and speedup by locally cooperative
strategies when � � ���� and � � ����� 173

C.1 Comparison of runtime for Markov chain 180

C.2 Memory space for transition table in Markov chain analysis 181

xvii

Abstract

Distributed, collaborative agents are promising to play an important role in large-scale

multiagent applications, such as distributed sensors and distributed spacecraft. Since

no single agent can have complete global knowledge in such large scale applications,

conflicts are inevitable even among collaborative agents over shared resources, plans, or

tasks. Fast conflict resolution techniques are required in many multiagent systems under

soft or hard time constraints. In resolving conflicts, we focus on the approaches based

on DCSP (distributed constraint satisfaction problems), a major paradigm in multiagent

conflict resolution. We aim to speed up conflict resolution convergence via developing

efficient DCSP strategies.

We focus on multiagent systems characterized by agents that are collaborative,

homogeneous, arranged in regular networks, and relying on local communication (found

in many multiagent applications). This thesis provides the followings major contribu-

tions. First, we develop novel DCSP strategies that significantly speed up conflict res-

olution convergence. The novel strategies are based on the extra communication of

local information between neighboring agents. We formalize a set of DCSP strategies

which exploit the extra communication: in selecting a new choice of actions, plans,

or resources to resolve conflicts, each agent takes into account how much flexibility is

given to neighboring agents. Second, we provide a new run-time model for performance

measurement of DCSP strategies since a popular existing DCSP performance metric

1

does not consider the extra communication overhead. The run-time model enables us to

evaluate the strategy performance in various computing and networking environments.

Third, the analysis of message processing and communication overhead of the novel

strategies shows that such overhead caused by the novel strategy is not overwhelming.

Thus, despite extra communication, the novel strategies indeed show big speedups in

a significant range of problems (particularly for harder problems). Fourth, we provide

categorization of problem settings with big speedups by the novel strategies Finally,

to select the right strategy in a given domain, we develop performance modeling tech-

niques based on distributed POMDP (Partially Observable Markov Decision Process)

based model where scalability issue is addressed with a new decomposition technique.

2

Chapter 1

Introduction

Distributed, collaborative agents play an important role in large-scale multiagent

applications [Durfee, 1991; Grosz, 1996; Lesser, 1999]. Examples of such appli-

cations include distributed sensor networks [Lesser et al., 2003], distributed space-

craft [Barrett, 1999], distributed disaster rescue applications [Kitano et al., 1999],

agent assisted human organizations [Scerri et al., 2001], cooperative teams of robots

[Parker, 1993], and virtual environments for training [Rickel and Johnson, 1997]. In

these multiagent applications, collaborative agents must coordinate their plans and allo-

cate adequate resources to carry out the plans [Durfee, 2001; Liu and Sycara, 1996;

Neiman et al., 1994].

While such applications require agents to be collaborative, conflicts are inevitable

even among collaborative agents over shared resources, joint plans, or tasks, since

no single agent can have complete global knowledge in such large-scale applications

[Müller and Dieng, 2000; Tessier et al., 2000]. In distributed, dynamic and complex

environments, centralized conflict resolution is often impractical because of compu-

tational and communication bottleneck (in particular for a large-scale multiagent sys-

tem), the vulnerability of system failure, and security risks. Therefore, agents need to

resolve conflicts in a distributed manner without global knowledge. Distributed con-

flict resolution is thus a fundamental challenge in multiagent systems [Liu et al., 1998;

Müller and Dieng, 2000; Tessier et al., 2000; von Martial, 1991].

3

In many multiagent systems under soft and hard time constraints, fast conflict res-

olution is required. For instance, in distributed sensor networks, agents must resolve

conflicts over shared sensors as quickly as possible since a delay in conflict resolution

may lead to a situation where no targets are tracked before moving out of sensor range

[Lesser et al., 2003]. Distributed spacecraft is another example where fast conflict res-

olution in planning and scheduling is required. A constellation of spacecraft flies in a

formation investigating three dimensional structure of the phenomena within the Earth’s

magnetosphere. Given unpredictable phenomena that change rapidly within the mag-

netosphere and last for only a few seconds, spacecraft must quickly resolve conflicts in

sequencing their sensing activities [Angelopoulos and Panetta, 1998]. We will discuss

these domains in detail in Chapter 2 of this thesis.

In resolving conflicts, we focus on the approaches based on DCSP (Distributed Con-

straint Satisfaction Problems) [Yokoo, 2000]. (For readers unfamiliar with DCSP, a

formal definition is introduced in Section 3.1.1.) DCSP-based approach is a major tech-

nique in multiagent conflict resolution: it provides rich foundation for the representation

of conflict resolution problems and there exist highly efficient baseline algorithms [Liu

and Sycara, 1993; Mammen and Lesser, 1998; Modi et al., 2003; Sathi and Fox, 1989;

Silaghi et al., 2000; Yokoo and Hirayama, 1998; Zhang and Wittenburg, 2002]. Market-

based conflict resolution approaches have been also applied to resolving conflicts among

collaborative agents [Hunsberger and Grosz, 2000; Walsh and Wellman, 1998], and

while the key results of this thesis bear upon those approaches as well (see Chapter 6:

Related work), we will not explicitly target them in this thesis.

While DCSP is a major paradigm in distributed conflict resolution [Yokoo, 2000],

existing techniques do not provide fast enough conflict resolution for large-scale multia-

gent systems, given real-time constraint. For instance, in sensor networks, even the best

4

published DCSP algorithm, ABT/AWC [Yokoo and Hirayama, 1998], cannot resolve

conflicts in real-time [Scerri et al., 2003; Zhang et al., 2003]. Scerri et al. reported that,

while working on the sensor network domain, they had to augment ABT algorithm with

ad-hoc reactive layer for fast conflict resolution [Scerri et al., 2003]. Other researchers

have also developed approximate algorithms highly compromising on quality [Lesser et

al., 2003].

This thesis focuses on fast conflict resolution techniques (based on DCSP) for mul-

tiagent systems. To this end, there are two key areas of contributions in this thesis which

naturally divide the thesis into two parts: part 1 (Section 1.1) aims to develop novel

conflict resolution strategies and part 2 (Section 1.2) aims to build a formal model to

analyze the performance of the strategies.

1.1 Part I: Cooperative Conflict Resolution Strategies

In part 1 of this thesis, we focus on novel conflict resolution strategies that improve

the speed of conflict resolution convergence over the current best DCSP technique (by

exploiting the communication of local constraints). Such improvement is critical since

fast conflict resolution is required in multiagent applications under hard and soft real-

time constraint. Section 1.1.1 provides the problem statement of part 1, and Section

1.1.2 introduces our approach to the problem described in Section 1.1.1, and show the

results.

1.1.1 Problem Statement of Part 1

This section formally defines the type of conflicts that we focus on and provides the

actual problem statement of part 1 in detail. We also illustrate the restriction that is

5

applied to our approach and application domains, thus outlining the scope of our empir-

ical investigation.

Conflict Type and Conflict Resolution

Even in collaborative multiagent systems, since no single agent has accurate and com-

plete global knowledge, it is inevitable that agents enter into conflicts over actions, plans,

or resources (that they select) [Müller and Dieng, 2000; Tessier et al., 2000]. In this

thesis, we focus on such conflicts over agents’ individual action/plan/resource choices

which can be characterized as follows:

� Given that there exists a set of agents � � ���� ���� ��� and each agent �� � �

has a set (��) of action/plan/resource choices, ��’s choice �� from �� may conflict

with another agent’s choice (��) or a set of other agents’ choices (���� � � � � �
�).

– E.g., in sensor networks, each sensor agent (��) has a set (��) of resource

choices, radar sectors, to scan for a target. Assume that sensor agents aim

to find non-overlapping sectors for maximizing sensor coverage. When an

agent (��) selects a sector (�� � ��) while another agent (��) selects its own

radar sector (�� � ��), �� may conflict with �� if �� and �� are scanning the

same area.

Note that we do not focus on other types of conflicts such as contradictory goals or

beliefs [Liu et al., 1998]. In this thesis, given the type of conflicts described above, the

resolution of the conflicts is formally defined as follows:

� Conflict resolution: Given a set of agents � � ���� ���� ��� and a set of

action/plan/resource choices selected by the agents � � ���� ���� ���, if there is

6

any conflict in �, agents find a new set of choices � � such that there exists no

conflict in � �. That is, conflict resolution requires all conflicts to be resolved.

Goal of Part I

We aim to develop algorithmic techniques that significantly speed up DCSP-based con-

flict resolution in large-scale multiagent systems. These multiagent systems are charac-

terized by agents which are:

� Collaborative: Agents collaborate with each other to achieve a shared goal (e.g.,

conflict resolution) throughout their operational period.

� Homogeneous: Agents are identical with the same capabilities.

� Arranged in regular networks: In real applications such as sensor networks [Lesser

et al., 2003], distributed spacecraft [Angelopoulos and Panetta, 1998], and micro-

air-vehicles for surveillance [Gordon et al., 1999], agents are often arranged in

regular networks.

� Relying on local communication between neighboring agents: Local communi-

cation is the type of communication in our domains of interest. For instance, in

sensor networks, agents indeed communicate only with neighboring agents. Some

benefits from local communication are energy saving and the increase in message

transmission reliability [Pottie and Kaiser, 2000; Ganesan et al., 2002].

Significant speedup implies that our approach resolves conflicts faster than AWC

technique (the best published DCSP approach [Yokoo, 2000]) by an order of magnitude

difference in time to solution. This speedup must be observed over a significant range

of problems (in particular for harder problems).

7

� Solution test: Any algorithmic technique that achieves such significant speedup

without centralization (that is, in resolving conflicts, each agent selects its own

value).

1.1.2 Summary of Approach and Results

A major characteristic of most DCSP-based approaches for multiagent conflict resolu-

tion is that they have focused on minimal communication: agents communicate only

their intended values for the objects on which they need to agree. While the value

selection is based on each agent’s local knowledge and local situation, agents do not

communicate such information. Instead, only values (minimum information required to

be communicated for conflict resolution) are communicated. The major assumptions for

minimal communication in the DCSP-based approaches are three fold [Yokoo, 2000]:

1. Security/privacy issues in revealing local information: Competitive agents or non-

fully-cooperative agents (that make a temporary coalition) may not want to reveal

private information.

2. Knowledge transformation: For heterogeneous agents, if one agent has com-

plicated internal constraint (represented with its own knowledge), communicat-

ing such local information needs some translation of one’s knowledge into an

exchangeable format or other agents must have a capability of interpreting it.

3. Communication overhead: For additional information exchange, increased num-

ber of messages and larger message size are required.

In this thesis, we challenge these assumptions for minimal communication. As large-

scale systems based on such minimal communication get developed and novel conflict

8

resolution algorithms are developed for the domains of interest in this thesis, it is criti-

cal to re-examine the commitment to minimal communication that is the foundation of

DCSP. The reason for going beyond minimal communication of values is based on the

hypothesis that “exploiting extra communication of local information can significantly

increase the speed of conflict resolution in some domains”.

Indeed, it is feasible that, by unnecessarily subscribing to such minimal communi-

cation, researchers may be forced to compromise on correctness or quality of solutions;

and/or forced to develop unnecessarily complex algorithms. In the worst case, entire

application arenas may remain out of reach. For instance, since finding a complete

solution can be extremely slow in large-scale systems, approximate methods have been

proposed as a compromise in DCSP-based approaches which rely on minimal commu-

nication [Lemaitre and Verfaillie, 1997; Modi et al., 2003]. However, strategies which

exploit extra communication could speed up conflict resolution (as shown in this thesis)

and make complete methods more feasible in practice.

Questioning minimal communication does not automatically imply centralizing all

computation. There is a big space between current methods with minimal communica-

tion and fully centralized approaches, and this thesis has taken a key step in exploring

that space. Thus, we remain faithful to our assumption of distributed conflict resolution.

Going back to the assumptions regarding minimal communication, note that, in this

thesis, assumptions (1) and (2) are not applicable:

1. Security/privacy issue: Collaborative agents have no reason to hide information

from other agents.

2. Knowledge transformation issue: Many of the domains we focus on involve

homogeneous agents, which nullifies the knowledge transformation issue. Also,

9

recent advances in the infrastructure for collaborative agents may enable hetero-

geneous agents to seamlessly communicate with each other using uniform proxies

[Tambe et al., 2000], mitigating the knowledge transformation issue.

Finally, we question the one remaining assumption of communication overhead (the

third assumption above) that has conspired towards minimal communication. There can

be trade-offs in time to solution due to communicating extra local information:

� Increase: Extra communication of local information can increase individual

agents’ computation and communication cost since they need to process and trans-

mit additional information, thus increasing time to solution.

� Decrease: If extra communication help agents resolve conflicts quickly (while

computation and communication cost may initially increase), overall time to solu-

tion (required until a solution is found) may decrease.

The analysis of such trade-offs is an empirical question and various aspects of dif-

ferent types of domains need to be considered in the analysis (e.g., communication or

local computation cost). This empirical analysis is at the heart of part 1 of this thesis.

Chapter 4 provides detailed results and analysis of the experimentation.

Based on the discussion above, we propose to develop fast conflict resolution tech-

niques that exploit the extra communication of local information between neighboring

agents. In particular, our techniques focus on how an agent selects a choice of actions,

plans, or resources to resolve a given conflict (referred as distributed conflict resolution

strategy below). Here, we present the following terminologies regarding the techniques:

� Distributed conflict resolution strategy (strategy for short): A heuristic function

(�) by which an agent (��) selects a choice (��) from a set (��) of actions, plans,

or resources available to �� in resolving conflicts that involve ��.

10

– E.g, min-conflict strategy in which, given conflicts, an agent (��) selects a

choice (��) from a set (��) of actions, plans, or resources that minimizes the

number of conflicts with others’ choices known to �� [Minton et al., 1992].

– A strategy can have a substantial impact on the time for conflict resolution: if

each agent is able to select a choice that has the least possibility of conflicting

with others’ choices, there is a potentially good chance for agents to rapidly

resolve all the conflicts.

� Local information: Information only locally known to an agent �� that affects its

choice (��) of actions/plans/resources from ��.

– E.g., in sensor networks, a sensor agent may have a limited set of available

radar sector combinations since one of its radar sectors is out of order. But,

the limited set is unknown to a neighboring agents.

– We limit the extra communication to the local information defined above:

information irrelevant to the restriction on agents’ choices is not communi-

cated.

We envision that strategies based on the extra communication of local information

can enable fast conflict resolution. However, in the multiagent literature, such strategies

remain largely uninvestigated. We need to formalize strategies in a general framework

so that they can be applied in different problem settings, and investigate their perfor-

mance and trade-offs to selectively apply them for a given domain.

We formulate different conflict resolution strategies, varying the level of cooper-

ativeness to neighboring agents. For instance, when distributed agents must resolve

conflicts over shared resources such as shared sensors, they could select a strategy that

11

offers maximum possible resources to most constrained agents, or a strategy that dis-

tributes resources equally among all agents requiring such resources, and so on. A key

measure that enables agents to explicitly reason about their cooperativeness towards

neighboring agents is the flexibility (number of available action/plan/resource choices)

given to neighboring agents.

With regard to the issue of “which level of non-local awareness should agents have

in communicating local information?”, we focus on a specific level where agents get

local information only from their neighboring agents because of the following reasons:

� The approach in this thesis has relation to a popular centralized CSP technique,

the least-constraining-value heuristic, which chooses a value that rules out the

smallest number of values in variables connected to the current variable by con-

straints [Haralick and Elliot, 1980]. We investigate whether a DCSP version of

the popular centralized CSP technique (enhanced by the extra communication of

local information) can improve performance of DCSP-based conflict resolution. 1

In the DCSP literature, this investigation of value selection techniques based on

the extra communication is the first in the DCSP literature.

� Appendix A shows the comparison between the thesis approach and an approach

based on global awareness (an extreme case of non-local awareness) in terms

of constraint checks and message sizes per agent. We avoid strategies with

global awareness since they lead to significant increase in message sizes and con-

straint checks per agent. While strategies with more non-local awareness than

1Note that our approach is not just a simple mapping of the least-constraining-value heuristic onto the
DCSP framework. With strategies (defined in Chapter 3), agents explicitly reason about which agents to
consider most with respect to the constrainedness given towards neighboring agents.

12

the approach in this thesis (but much less non-local awareness than global aware-

ness) can be feasible, this thesis focuses on a specific level of non-local aware-

ness described above, opening the space of different strategies based on non-local

awareness and showing the potential/feasibility of such strategies. Note that, even

with a fixed level of non-local awareness, there is a large problem space to inves-

tigate as described in Section 4.3.1.

While previous work has investigated different types of conflict resolution tech-

niques [Decker and Lesser, 1995; Prasad and Lesser, 1997; von Martial, 1991;

Zhang and Lesser, 2002], to the best of our knowledge, this is the first detailed sys-

tematic investigation of collaborative strategies in varying the degree of cooperativeness

towards neighboring agents in a large scale multiagent system. We illustrate the pres-

ence of multiple cooperative conflict resolution strategies and systematically investigate

the performance of these strategies in conflict resolution convergence.

We also develop a run-time model to measure the performance of strategies since our

approach is based on the extra communication of local information which can increase

the computation and communication cost. The major performance metric used in DCSP,

cycles (explained in detail in Section 4.1), does not take into account the overhead from

increased message number and size due to the extra communication. 2 Therefore, we

propose a run-time model which takes into account computation and computation cost

in different computing/networking environments. Chapter 4 provides the performance

analysis of strategies based on the run-time model.

2Cycles has been used as a key measurement of DCSP strategy performance [Bessière et al., 2001;
Fernàndez et al., 2003; Modi, 2003; Silaghi et al., ; Yokoo and Hirayama, 1998; Zhang et al., 2003]
since the amount of local computation and communication that each agent solves mostly remains same
in the most of previous DCSP approaches: the difference is in the protocol for passing values and con-
trolling backtracking. However, cycles could be an inappropriate measurement when there exists a big
variation in message size/number among strategies and such variation is not ignorable in a given comput-
ing/networking environments.

13

In the empirical investigation for the performance and trade-offs of the strategies,

there is an exponential search space as we consider different types of strategies. Thus,

we set a boundary in the investigation as follows:

� Homogeneous strategy (a homogeneous strategy implies that, given a conflict res-

olution problem, all the agents use an identical strategy for conflict resolution):

We investigate homogeneous strategies as a key step to verify the hypothesis that

exploiting extra communication of local information can enable fast conflict res-

olution. Indeed, conflict resolution strategies that exploit extra communication

show performance improvement over the min-conflict strategy which does not

assume local information communication (Chapter 4). Building on our investi-

gation, heterogeneous strategies could help further improve the performance of

conflict resolution.

Even with the above assumption, we have a large problem space for systematic

investigation (with 208,845 experiments in 351 different problem settings) as explained

in Section 4.3.1. The experimentation in this thesis is the most extensive systematic

investigation of DCSP strategies with extra communication of local information. The

following is the result of the experimentation:

1. Strategies based on extra communication can indeed speed up the conflict resolu-

tion convergence in a significant range of problem settings, particularly for harder

problems with more than an order of magnitude difference in run-time (compared

with the best published DCSP technique, AWC [Yokoo and Hirayama, 1998]).

� The overhead from increased message processing and communication with

extra communication is not overwhelming, and do not cause serious degra-

dation in conflict resolution convergence.

14

2. It is not always the case that more information communication leads to improved

performance (in some cases, strategies with extra communication perform worse

than a strategy that does not communicate local information).

3. The strategy that provides maximum flexibility to all neighboring agents is not

always the best.

4. No single strategy dominates the other strategies across all domains (a strategy

that performs the best in one domain setting can be an order of magnitude slower

than another strategy in a different setting).

In particular, the fourth result implies that, for fast conflict resolution convergence,

agents are required to adopt the right strategy in a given domain. Furthermore, based on

systematic experimentation, we provide categorization of domains where high speedups

can be achieved by the strategies with extra communication (formally defined in Chapter

3). Given a domain, such categorization can provide a guidance for whether to apply

our approach or not.

1.2 Part II: Performance Models for Conflict Resolution

Strategies

In part 2 of this thesis, we focus on techniques for performance modeling of conflict

resolution strategies that can help select the right strategy in a given domain. Given

the variable nature of multiagent application domains and a wide variety of conflict res-

olution strategies, a key challenging question is how to select the strategy which will

show the best performance in a given domain. Performance modeling of conflict resolu-

tion strategies could help predict the right strategy to adopt for a given domain, leading

15

to maximum speedup in conflict resolution convergence. Unfortunately, performance

modeling has not received significant attention in the mainstream multiagent research

community: although within subcommunities such as mobile agents, performance mod-

eling has been considerably investigated [Rana, 2000].

In this thesis, we provide formal performance models for conflict resolution strate-

gies to select the right strategy in a given large scale multiagent domain. Section

1.2.1 provides the actual problem statement of part 2, and Section 1.2.2 describes our

approach for the performance modeling problem.

1.2.1 Problem Statement of Part II

We aim to develop a formal model by which we can compare conflict resolution strate-

gies in multiagent systems by predicting their performance. The multiagent systems are

characterized by agents which are 3:

� Collaborative

� Homogeneous

� Arranged in regular networks

� Relying on local communication

As an initial approach to performance modeling for conflict resolution strategies, the

goal of part 2 is not to provide a formal model which computes exact real run-time of

conflict resolution strategies. Instead, for the purpose of selecting the right strategy in

3Note that the properties of agents are the same with those of agents assumed in the problem statement
of part 1 of this thesis

16

a given domain, we aim to provide a formal model which distinguishes better perform-

ing strategies with worse performing strategies. Note that we focus on homogeneous

strategies in this investigation as in part 1.

� Solution test: Any formal model that distinguishes better performing strategies

with worse performing strategies in a given domain with high correlation between

experimental results (e.g., cycles) and analytical results from the model.

1.2.2 Summary of Approach and Results

Our performance models are based on recent research in distributed POMDPs (partially

observable Markov decision processes) and MDPs (Markov decision processes) that

has begun to provides key tools in modeling the performance of multiagent systems

[Bernstein et al., 2000; Boutilier, 1999; Pynadath and Tambe, 2002; Xuan and Lesser,

2002]. However, there are at least two major problems in applying such distributed

POMDP and MDP based models for performance modeling. First, while previous work

has focused on modeling communication strategies within very small numbers of agents

[Pynadath and Tambe, 2002], we are interested in strategy performance analysis for

large-scale multiagent systems. Second, techniques to apply such models to investigate

conflict resolution strategies have not been investigated.

To model the performance of conflict resolution strategies, we provide formal mod-

els based on MTDP (Markov Team Decision Problem) [Pynadath and Tambe, 2002],

a distributed POMDP model for multiagent analysis, although we could use other dis-

tributed POMDP based models such as DEC-POMDP (decentralized POMDP) [Bern-

stein et al., 2000], POIPSG (Partially Observable Identical Payoff Stochastic Game)

[Peshkin et al., 2000] and Xuan-Lesser framework [Xuan et al., 2001]. We illustrate

how conflict resolution strategies can be modeled in the MTDP. A conflict resolution

17

strategy is mapped onto a policy in the MTDP, and the mapped policy is evaluated to pre-

dict the performance of the strategy. The MTDP provides tools for varying key domain

parameters to compare the performance of different conflict resolution strategies.

A key difficulty in the MTDP-based performance modeling for a large-scale mul-

tiagent system is the combinatorial explosion of the problem space. To address this

scale-up issue, we have developed a new technique based on small-scale models

(called ”building blocks”) that represent the local interaction among a small group

of agents. While MDP and POMDP decomposition techniques have been intro-

duced in the literature [Dean and Lin, 1995; Hauskrecht et al., 1998; Parr, 1998;

Pineau et al., 2001], the novelty of our building-block-based technique is three fold:

1. Rather than exploiting geometric clusters within a domain (suitable in a single-

agent POMDP), building-blocks exploit the multiagent nature of the domain —

the decomposition is based on clustering agents with close interactions with each

other.

2. We are focused on evaluating policies rather than searching for optimal policies.

3. Observability conditions within a building block can be exploited to further reduce

the complexity of policy evaluation.

The building block based approach enables efficiency in computation (by significant

reduction of search space) and reusability of building blocks in different domains which

have some commonalities. We investigate several ways to combine building blocks for

performance prediction of a larger-scale multiagent system, and present the performance

analysis results. Combining building blocks by taking into account their interaction

- via agents acting as docking points between building blocks - performs the best in

18

predicting the performance of conflict resolution strategies: better performing strategies

can be distinguished from worse performing strategies with statistical significance.

1.3 Contribution

In part 1, for fast conflict resolution in multiagent systems, we provide novel strategies

that exploit extra communication of local information. Our approach breaks the bar-

rier of conventional DCSP algorithms which focus on minimizing communication, and

opens a big space of approaches to solving DCSP. Through systematic experimentation

(which is the most extensive empirical investigation of DCSP strategies with extra com-

munication), we show that the novel strategies can significantly increase the speedup

of conflict resolution convergence in a significant range of problems (in particular, for

harder problems). We also presents a categorization of problem settings where our

approach provides big speedups, providing a guidance for whether to apply our approach

or not given a domain.

In addition to developing the novel strategies, we provide a run-time model to

evaluate the performance of the strategies since an existing popular performance mea-

surement does not take into account the overhead from extra communication in our

approach. As the first analytical model for the performance measurement in DCSP

which takes into account the overhead (e.g., increase message size/number) from extra

communication, the run-time model could provide a useful method for performance

measurement to the DCSP community. Furthermore, as shown in Chapter 4, the

run-time model provides interesting results in different computing/networking environ-

ments: we can easily simulate different computing/networking environments by chang-

ing parameters for message processing/communication overhead in the model.

19

Part 2 addresses the performance modeling problem for conflict resolution strategies

which remains largely uninvestigated in the multiagent literature. We provide a dis-

tributed POMDP-based model by which we can distinguish better performing strategies

with worse performing strategies in a given domain. We addresses the scalability issue

by introducing small scale models (called building blocks) and presenting several meth-

ods of combining the building blocks. We also show that, under certain circumstances,

the evaluation of a distributed POMDP policy can be reduced into the evaluation of a

Markov chain.

In summary, the research in this thesis makes the following key contributions:

� Novel conflict resolution strategies that significantly increase the speed of conflict

resolution convergence (in particular for harder problems).

� Run-time model for performance measurement of strategies that takes into

account message processing/communication overhead from extra communication

of local information.

� Analysis of message processing/communication overhead which shows that the

overhead from the novel strategy is not overwhelming. Thus, despite extra com-

munication, the novel strategies can improve the speed of conflict resolution con-

vergence.

� Categorization of problem settings where the novel conflict resolution strategies

in this thesis provide high speedups.

� Distributed POMDP-based performance model for conflict resolution strategies

– Addressing scalability issue with small-scale models

– Investigation of different composition methods for the small-scale models

20

The research in this thesis has implications in many different settings. Coordina-

tion or conflict resolution strategies based on resource flexibility have been investigated

in multi-linked negotiation [Zhang and Lesser, 2002], distributed multiagent planning

[Decker and Lesser, 1995; Prasad and Lesser, 1997; von Martial, 1991], and centralized

planning/scheduling [Nareyek, 2001; Sadeh and Fox, 1996; Smith, 1994]. The conflict

resolution strategies with extra communication of local information can be applied to

such applications for faster conflict resolution convergence. The new run-time model

presented in this thesis could provide a useful method for performance measurement

to the DCSP research community (as the first run-time model which takes into account

message processing/communication overhead). Furthermore, our approach in modeling

the performance of conflict resolution strategies points the way to new tools for strategy

analysis and performance modeling in multiagent systems in general.

1.4 Organization of This Thesis

This thesis is organized as follows. Chapter 2 presents motivating examples and back-

ground. Chapter 3 defines novel conflict resolution strategies and presents how the

strategies can be embedded in DCSP framework. Chapter 4 provides an existing per-

formance measurement of DCSP and the run-time model for strategy performance mea-

surement (that takes into account the overhead of extra communication of local infor-

mation). Chapter 4 also presents experimental settings in detail and shows the results of

systematic investigation. Chapter 5 provides details in performance modeling based on

distributed POMDP and addresses the scale-up issue by introducing small-scale models

(called “building-blocks”). Chapter 6 presents related work in the CSP/DCSP and the

distributed POMDP literature. Finally, Chapter 7 concludes with future works.

21

Chapter 2

Motivating Domains

This chapter outlines three key domains that motivate our work, and provides key illus-

trative examples. The first domain is a distributed sensor domain. This domain consists

of multiple stationary sensors and targets moving through their sensing range (Figure

2.1.a and Figure 2.1.b illustrate the real hardware and simulator screen, respectively).

Each sensor is equipped with a Doppler radar with three sectors. At a given time, at

most one sector of a sensor can be activated. While the activation of sensors must be

coordinated to track targets, there are some key difficulties in such tracking. First, in

order to accurately track a target, at least three sensors must concurrently turn on over-

lapping sectors. This allows the target’s position to be triangulated. Second, to minimize

power consumption, sensors need to be periodically turned off. Third, sensor readings

may be noisy and false detections may occur. Finally, the situation is dynamic as targets

move through the sensing range 1.

Tracker agents control multiple sensors in a region to coordinate the sensing activ-

ities of multiple sensors, and collect sensing information to track targets in the region

(Figure 2.2). When a sensor detects a target, it notifies the target detection to a tracker

agent associated with the sensor. Then, the tracker agent assigns a set of three sensors

to track the detected target. For instance, in Figure 2.2, when sensor 4 detects target 1 in

its sector 0 (shaded region in Figure 2.2), it notifies tracker 1 of target 1. Then, tracker

1The simulation testbed was created for DARPA’s ANTS program [Lesser et al., 2003]

22

(a) sensor(left) and target(right) (b) simulator (top-down view)

Figure 2.1: A distributed sensor domain

Sector Number

0

1
2

Sensor 4

Sensor 5

Sensor 6

Sensor 1

Sensor 2

Sensor 3

Target 1

Target 2

Tracker 1

Tracker 2

Figure 2.2: sensor sectors

1 assigns sensor 1, sensor 4, and sensor 5 to the task of tracking target 1: distance infor-

mation from the three sensors will enable tracker 1 to triangulate the position of target

1. Tracker agent can physically reside in any sensor which it controls.

Given multiple targets, tracker agents may have contention over resources (e.g.,

shared sensors). For instance, a sensor may be required to track multiple targets at

the same time by two different tracker agents. As illustrated in Figure 2.2, given target

1 and target 2, sensor 5 may be requested to turn on sector 0 and sector 1 by tracker 1

and tracker 2 respectively. Since only one sector can be activated at a given time, the

23

resource choice of tracker 1 conflicts with that of tracker 2. Therefore, to track multiple

targets, a team of tracker agents must resolve such conflicts in selecting their choice of

resources. If there is a delay in conflict resolution, the system performance will sig-

nificantly degrade since targets may not be tracked at all before moving out of sensing

range. Therefore, it is critical for agents to make the right decision to resolve conflicts

over their sensors.

In a collaborative setting, an agent can make an efficient decision if the local infor-

mation of neighboring agents is available to the agent. For example, if tracker 1 in

Figure 2.2 is notified of target 1 by sensor 4, it may assign sensor 1, sensor 4, and sensor

5 to track target 1: in this assignment, tracker 1 also specifies radar sectors to turn on

(e.g., sensor 1’s sector 0, sensor 4’s sector 0, and sensor 5’s sector 1). In particular, it

may be the case that sensor 5 is already assigned to track target 2. If tracker 1 had the

knowledge of its neighboring tracker 2’s local situation (sensor 5’s sector 0 is already

activated to track another target), tracker 1 would not assign sensor 5 to track target 1.

Instead, tracker 1 could assign another set of sensors, sensor 1, sensor 2, and sensor 4,

if sensor 2 is available. Here, tracker 1’s resource allocation that takes into account its

neighboring agents’ local information can avoid possible conflicts with the neighbors.

The second application domain is distributed spacecraft domain 2. NASA is increas-

ingly interested in multi-platform space missions [Angelopoulos and Panetta, 1998].

Pathfinder has its rover (Sojourner), Cassini has its Huygens lander, and Cluster II has 4

spacecraft for multi-point magnetosphere plasma measurements. This trend is expected

to continue to progressively larger fleets. For example, one proposed mission involves

44 to 104 spacecraft flying in formation to measure global phenomena within the Earth’s

magnetosphere [Mettler and Milman, 1996]. In this mission, since the science goal is

2This project was supported by NASA JPL subcontract “Continual Coherent Team Planning”

24

to collect 3 dimensional structure of the phenomenon, any missing data from a single

spacecraft can degrade the quality of the whole data. Therefore, the spacecraft agents

must coordinate their sensing activities to collect data simultaneously. Here, a key diffi-

culty is that the location of such phenomenon is not known in advance, which requires

agents to quickly resolve conflicts given an opportunity to observe the phenomenon.

Furthermore, each spacecraft agent has its own restrictions from limited battery power,

a specified small time window for science data communication, etc. If each agent can

make a choice of action (e.g., sensor activation) that allows more action choices to its

neighboring agents, it will make easier for the neighbors to schedule their local activities

or resolve future conflicts with others.

Spacecraft flying in a formation

Illustration of the Earth's Magnetosphere

Figure 2.3: Distributed spacecraft domain

The third application domain is helicopter pilot agents in battlefield simulation. Fig-

ure 2.4 is a snapshot of ModSAF (Modular Semi-Automated Forces) [Calder et al., 1993]

25

Helos

Enemy units

Figure 2.4: Helicopter combat simulation

simulator for pilot agents. One example of conflicts that arise in a team of simulated pilot

agents involves allocating firing positions for the team. Individual pilots in a helicopter

team attack the enemy from firing positions. Each firing position must enable a pilot to

shoot at enemies while protecting the pilot from enemy fire. In addition, a pilot’s firing

position is constrained by the firing positions of the others. Two firing positions are in

conflict if they are within one kilometer of each other. Therefore, the pilot agents must

position themselves on a field while ensuring safe distance. Here, a pilot agent’s selec-

tion of resource (firing position) that takes into account the other agents’ local situation

will also reduce possible future conflicts. For instance, if an agent knows that enemy

exists near a neighboring agent, the agent would not ask its neighbor to move towards

the enemy.

The above applications illustrate the importance of efficient conflict resolution tech-

niques. They also show that an agent’s choice of actions/plans/resources based on its

neighbors’ local situations may improve the performance in conflict resolution con-

vergence. Here, it is useful to understand that, in this paper, we focus on distributed

approach to resolve conflicts as opposed to a centralized approach, where a single agent

26

gathers all information to provide a solution. Indeed, in many applications, such a cen-

tralized approach could prove problematic. First, this approach introduces a central

point of failure, so that there is no fault tolerance. Second, centralization of all infor-

mation could be a significant security risk, open to actual physical or cyber-attacks,

particularly in hostile adversarial environments. Third, centralization requires all agents

to accept a central authority, which may not always be feasible. Finally, a centralized

agent could be a significant computational and communication bottleneck. Specifically,

in domains such as distributed sensors, conflict resolution must continually occur among

all agents for readjustment of the sensors. Centralization would require all sensors to

continuously communicate their local information to the centralized agent which can

be a significant bottleneck given scale-up to thousands of agents. Furthermore, given

limited communication ability, agents may be unable to directly communicate with a

central agent: introducing many hops for message transmissions may cause delays. In

contrast, a distributed system provides fault tolerance, reduces the security risk, avoids

a central authority and prevents a centralized communication/computational bottleneck.

27

Part I

Cooperative Conflict Resolution

Strategies

28

Chapter 3

Fast Convergence Strategies

As shown in Chapter 2, fast conflict resolution is critical in many real world multia-

gent applications particularly under real-time constraints. In this section, we provide

novel conflict resolution strategies to enable fast conflict resolution convergence. As

mentioned earlier, the strategies are built on DCSP (Distributed Constraint Satisfaction

Problem) framework which is a major paradigm for conflict resolution in collaborative

multiagent systems and provides highly efficient base algorithms. Thus, our strategies

are improving the performance of state of the art conflict resolution algorithms. We

first introduce DCSP and formalize novel strategies based on the local cooperativeness

towards neighboring agents. We also systematically investigate the performance of the

local cooperativeness based strategies (defined below).

3.1 Formal Framework to Illustrate Conflict Resolution

Strategies

DCSP techniques have been used for coordination and conflict resolution in many mul-

tiagent applications such as distributed sensor networks [Modi et al., 2001]. DCSP pro-

vides an abstract formal framework to model multiagent conflict resolution: agents are

modeled as variables and the restrictions on agents are mapped onto intra- or inter-agent

29

Agent A3

LC2

LC3 LC4

Agent A4

C13 C24

C34

C12

Agent A1

LC1

X1 X2

X3 X4

V1 V2 V3 V4

(a)

Agent A2

(b)

Figure 3.1: Model of agents in DCSP

constraints. Rich body of knowledge on constraint representation and efficient algo-

rithms already exist and the nature of many DCSP algorithms fits into our assumption

that no centralized control is required.

3.1.1 Distributed Constraint Satisfaction Problems (DCSP)

A Constraint Satisfaction Problem (CSP) is commonly defined by a set of � variables,

	 = �
�, ...,
��, each element associated with value domains ��, ..., �� respectively,

and a set of � constraints, � = �
�, ...,

�. A solution in CSP is the value assignment

for the variables which satisfies all the constraints in �. A DCSP is a CSP in which

variables and constraints are distributed among multiple agents [Bessière et al., 2001;

Silaghi et al., 2000; Yokoo et al., 1998; Yokoo and Hirayama, 1998]. Formally, there is

a set of � agents, �� = ���, ..., ���. Each variable (
�) belongs to an agent ��. There

are two types of constraints based on whether variables in a constraint belong to a single

agent or not:

� For a constraint
� � �, if all the variables in
� belong to a single agent �� �

��, it is called a local constraint.

� For a constraint
� � �, if variables in
� belong to different agents in ��, it is

called an external constraint.

30

Figure 3.1.a illustrates an example of a DCSP: each agent �� (denoted by a big

circle) has a local constraint �
� and there is an external constraint
�� between ��

and �� . As illustrated in Figure 3.1.b, each agent can have multiple variables. Here,

the squares labeled v1, v2, v3, and v4 are the variables whose values are externally

known, and the small circles and the links between them are locally known variables

and constraints. There is no limitation on the number of local/external constraints for

each agent. Solving a DCSP requires that agents not only satisfy their local constraints,

but also communicate with other agents to satisfy external constraints. Note that DCSP

is not concerned with speeding up centralized CSP via parallelization; rather, it assumes

the problem is originally distributed among agents.

3.1.2 Mapping Multiagent Conflict Resolution onto DCSP

Given the DCSP framework, we can model a mutliagent conflict resolution problem as a

DCSP in terms of variables, values and constraints. Depending on the problem, the defi-

nition of variables, values, and constraints can vary. For instance, in distributed resource

allocation, tasks can be modeled as variables whose values are actions or resources to

complete the tasks. Constraints do not allow simultaneous selection of exclusive actions

or resources. In contrast, in distributed planning, variables model operators and the val-

ues of the variables can be constants that represent time. Constraints between variables

will be precedence relationship that enforces the ordering of operators. The solution of a

multiagent conflict resolution is a DCSP instance where the selected values of variables

satisfy all the constraints defined in the DCSP mapping.

Here, we discuss this mapping in the distributed sensor network domain described

in Chapter 2 both as a basis for further discussion and as a concrete illustration. Each

tracker agent is modeled as a variable whose values are radar sector combinations of

31

sensors controlled by the tracker plus a special value �� (no target). For instance, if

we let �������� be the sector � of sensor �, the domain of a variable representing tracker 1

in Figure 2.2 will be �� ��������� ������
�
�� ������

�
� �, � ��������� ������

�
�� ������

�
� �, �

��������� ������
�
�� ������

�
� �, � ��������� ������

�
�� ������

�
� �, ���. There exist external

binary constraints between variables and unary constraints for each variable as follows:

� External constraint: two tracker agents cannot share any sensor in their values.

� Local constraint: if a tracker agent is notified of target detection by any associated

sensor, the tracker’s value cannot be �� .

Note that this model is an initial mapping of the distributed sensor networks. We can

easily extend this mapping to problems involving more resources (e.g., power, band-

width, etc.) with multiple variables per agent. For instance, if we include power in the

mapping, a tracker agent could be modeled with five variables: one variable (�) for sec-

tor combinations and four variables (��) for the batteries of the four sensors controlled

by the tracker. ��’s value indicates the power level of a sensor. Between � and ��, there

exists an internal binary constraint as follows:

� If ��’s value is less than a threshold �, �’s value cannot include sensor �’s sector.

Henceforth, for simplification, we will assume that each agent has exactly one vari-

able and the constraints between variables are binary. In our initial investigations of con-

flict resolution strategy, we found it sufficient to model each agent as having only one

variable and a single node constraint as illustrated in Figure 3.1.a. Henceforth, agents

and variables in our description are used interchangeably since each agent has only one

variable in the current mapping. Here, the local constraint �
� often involves very com-

plex computation, and there is no limitation on the number of external constraints
 ��

for each agent.

32

3.1.3 Asynchronous Weak Commitment (AWC) DCSP Algorithm

In this thesis, we use Asynchronous Weak Commitment (AWC) search algorithm (one

of the best published DCSP algorithms [Yokoo and Hirayama, 1998]) as a basis to build

our novel strategies for conflict resolution. Thus, our strategies introduced below are

improving the performance of state of the art conflict resolution algorithms. In the AWC

approach, agents asynchronously assign values to their variables from available domain

values, and communicate the values to neighboring agents with shared constraints. Each

variable has a non-negative integer priority that changes dynamically during search. A

variable is consistent if its value does not violate any constraints with higher priority

variables. A solution is a value assignment in which every variable is consistent.

When the value of an agent’s variable is not consistent with the values of its higher

priority neighbor agents’ variables, there can be two cases: (i) a good case where there

exists a consistent value in the variable’s domain; (ii) a nogood case that lacks a consis-

tent value. In the good case with one or more value choices available, an agent selects

a value that minimizes the number of conflicts with lower priority agents. On the other

hand, in the nogood case, an agent increases its priority to max+1, where max is the

highest priority of its neighboring agents, and selects a new value that minimizes the

number of conflicts with all of its neighboring agents. This priority increase forces pre-

viously higher agents to select new values. Agents avoid infinite cycles of selecting

non-solution values by saving the nogood situations.

3.2 Cooperative Strategies

While AWC is one of the most efficient DCSP algorithms, it is focused on minimal com-

munication between agents. Each agent communicate only their value assignment when

33

there is a value change in its variables. To enable fast conflict resolution convergence in

large scale multiagent applications under real-time constraints, we need to improve the

performance of existing DCSP techniques. In enhancing the performance of AWC algo-

rithm, it is hypothesized that some extra local communication can significantly increase

the speedup of conflict resolution convergence. This section introduces novel conflict

resolution strategies that vary the degree of local cooperativeness towards neighboring

agents (which is enabled by local communication of agents’ internal constraints). We

formally define the local cooperativeness based on the notion of flexibility and introduce

the new strategies varying the degree of flexibility towards neighboring agents.

3.2.1 Local Cooperativeness

In AWC, agents relies on min-conflict strategy [Minton et al., 1990] for conflict reso-

lution. That is, when an agent’s choice of actions or plans conflicts with other agents’

choices, the agent changes its current choice into one that minimizes the number of

conflicts with other agents’ currently assigned choices. However, this min-conflict strat-

egy does not take neighboring agents’ local constraints into account. Instead, it only

considers the conflicts between an agent’s action/plan/resource choice and neighboring

agents’ choices. Even if an agent selects a choice that resolves current constraint vio-

lation, it can have another constraint violation since neighboring agents may have to

change their values because of other constraints. By considering neighboring agents’

local constraints, an agent can generate a more locally cooperative response, potentially

leading to faster conflict resolution convergence. The concept of local cooperativeness

goes beyond merely satisfying constraints of neighboring agents to accelerate conver-

gence. That is, an agent �� cooperates with a neighbor agent �� by selecting a value

for its variable that not only satisfies the constraint with �� , but also maximizes ��’s

34

flexibility (choice of values). Then �� has more value choices that satisfy ��’s local

constraints and other external constraints with its neighboring agents, which can lead to

faster convergence.

Such cooperative value selection is enabled by legal value communication. By

receiving neighboring agents’ local constraint induced legal values, an agent can com-

pute how much flexibility is given to its neighbors by a value in its domain. For instance,

agent �� might have a domain �� . After applying its local constraints �
� , �� discov-

ers its revised domain ��

�
 �� , and communicates ��

� to its neighboring agent ��. 1

After receiving ��

�, by propagating the external constraint
�� between �� and ��, ��

changes its domain �� into ��

�. This constraint propagation (enabled by local constraint

communication) eliminates incompatible values with �� from ��’s domain, which may

lead to improved conflict resolution convergence.

However, for faster conflict resolution, agent �� can reason explicitly about its avail-

able values’ impact on �� and generate a more locally cooperative response to �� , i.e.,

select a value from ��

� that gives more flexibility to �� (more value choices in ��

�). To

elaborate on this cooperative value selection, we define the notion of local cooperative-

ness. For this definition, let�� be an agent with domain��, and a set of��’s neighboring

agents is denoted as ��.

� Definition 1: For a value � ��� and a set of agents � ���
� ���, flexibility function

is defined as ������ ���
� � = �(���� ���) where

1. �� � � ���
�

2. ���� ��� is the number of values of �� that are consistent with �

1Alternatively, if �� is aware of ��’s domain �� , �� sends its local constraint ��� to ��. Then, ��

could infer ��

� by applying ��� to �� .

35

3. �, referred to as a flexibility base, can be � �, ���, �!
, "��# ��,

$���%��#� �, etc.

� Definition 2: For a value � of 	�, local cooperativeness of � is defined as

��������. That is, the local cooperativeness of � measures how much flexibility

(choice of values) is given to all of ��’s neighbors by �.

As an example of the flexibility function, suppose agent �� has two neighboring

agents �� and ��, where a value � leaves 70 consistent values to �� and 40 to �� while

another value �� leaves 50 consistent values for �� and 49 to ��. Now, assuming that �

is set as � � and values are ranked based on flexibility, an agent will prefer � to � � since

� is more locally cooperative than � �: � ������ ���� ���� = 110 and � ������� ���� ���� =

99. However, if� is set to���, the preference will change since ������� ���� ���� = 40

and �������� ���� ���� = 49. Thus, the value choice based on local cooperativeness is

influenced by flexibility base. In the next section, using the notion of flexibility function

and local cooperativeness, we define new strategies which consider how much flexibility

(choice of values) is given to other agents by a selected value. The effect of flexibility

base on the performance of conflict resolution strategies (defined below) is investigated

in the subsequent section.

3.2.2 Cooperativeness-Based Strategies

Based on the definitions of flexibility function and local cooperativeness, we define

cooperative strategies by varying the degree of cooperativeness towards neighboring

agents. Given multiple neighbors, agents provide different degrees of cooperativeness to

different groups of the neighbors. For each agent ��, its neighboring agents (denoted by

��) are grouped into higher and lower agents based on their priorities defined in DCSP

36

algorithms. While we illustrate the cooperative strategies based on dynamic priorities

in AWC framework, the strategy definition in this section can be applied to other DCSP

frameworks. To define the cooperative strategies, let N����
� (N	��

�) be the subset of �� (a

set of all neighboring agents) such that, for every �� � N����
� (N	��

�), the priority of ��

is higher (lower) than the priority of ��.

� ���������	��
: Each agent �� selects a value based on min-conflict heuristic (the

original strategy in the AWC algorithm);

� �����: Each agent �� attempts to give maximum flexibility towards its higher

priority neighbors by selecting a value � that maximizes ����������
� �;

� �	��: Each agent �� attempts to give maximum flexibility towards its lower prior-

ity neighbors by selecting a value � that maximizes ������ 	��
� �;

� ��		: Each agent �� selects a value � that maximizes ��������, i.e. max flexibility

to all neighbors.

We now define cooperativeness relation among these strategies based on the cooper-

ativeness of values they select.

� Definition 3: For two different strategies �� and �� defined on a flexibility base

�, �� is more cooperative than �� iff the following two conditions are satisfied:

1. for all ��, 	�, and ��, �� ��� such that �� and �� are selected by �� and ��

respectively, ������ ���
 ������ ���

2. for some ��, when ������ ��� �� ������ ���, ������ ��� � ������ ���.

� Theorem 1: For any given flexibility base�, the strategy ��		 is maximally locally

cooperative strategy in the good case, i.e., for any other strategy ��
��� on the same

37

flexibility base �, ��		 is more cooperative than ��
���.

Proof: By contradiction. Assume that ��
��� is more cooperative given the flex-

ibility base �. For ��, ��		 is selected by ��		 and ��
��� by ��
��� such that if

�����		� ��� �� �����
���� ���, then �����		� ��� � �����
���� ���. However, by

the definition of ��		, ��
��� would be selected by ��		 instead of ��		. A contradic-

tion.

By theorem 1, ��		 is more cooperative than the other strategies �����, �	��, and

���������	��
 for the good case. The theorem also applies to the nogood case: the com-

putation in the nogood case is identical to the good case except that the domains values

to consider are different (details appear in Figure 3.2). Therefore, ��		 is also the most

locally cooperative strategy in the nogood case. Note that both S���� and S	�� have

trade-offs. For instance, S���� may leave very little or no choice to an agent’s neighbors

in N	��
� , making it impossible for them to select any value for their variables. S	�� has a

reverse effect. S��������	��
 also has trade-offs because it does not consider neighbors’

flexibility.

Based on the ideas introduced above, we can create different strategy combinations

for the good and nogood cases: there are sixteen strategy combinations for each flexi-

bility base because the four strategies defined above can be applied to both the good and

nogood cases. Since, we will only consider strategy combinations, henceforth, we will

refer to them as strategies for short. Note that all the strategies are enhanced with local

constraint communication and propagation as described in Section 3.2.1. Here, three

exemplar strategies are listed:

� ���������	��
 � ���������	��
: This is the original AWC strategy. Min-conflict

heuristic is used for the good and nogood cases.

38

� �	�� � �����: For the good case, an agent is most locally cooperative towards

its lower priority neighbor agents by using �	��. (Note that the selected value

doesn’t violate the constraints with higher neighbors). On the contrary, for the

nogood situations, an agent attempts to be most locally cooperative towards its

higher priority neighbors by using �����.

� ��		 � ��		: In both the good and the nogood cases, an agent uses S�		 which is to

select a value that maximizes flexibility of all neighboring agents.

Figure 3.2 describes how a cooperative strategy can be incorporated in AWC [Yokoo

and Hirayama, 1998] framework. In Figure 3.2, check agent view is a procedure per-

formed by an agent�� receiving its neighbors’ current value assignments and legal value

sets. Check agent view procedure checks the consistency of ��’s current value assign-

ment (��) with other agents’ values (agent view) and selects a new value if it violates

any constraint with higher agents. For Figure 3.2, let’s assume that �� selects �� � ��

strategy such that �, � � �high, low, all, min-conflict�. In the new cooperative value

procedure (Figure 3.2), �����, �	��, and ��		 use min-conflict heuristic to break ties

among the values with the same max flexibility.

Among the cooperative strategies described above, ��		���		 is the most cooperative

strategy because it is maximally locally cooperative to neighboring agents in both good

and nogood cases. Figure 3.3 shows a partial order over the cooperativeness of 16

different strategies. A higher strategy is more locally cooperative than a lower one.

In general, the strategies at the same level are not comparable to each other such as

�	�� � ����� and ����� � �	��. However, strategies such as ���������	��
 � ���������	��

were not originally defined with the notion of cooperativeness as defined in this section;

and could thus be considered less cooperative than a strategy such as �	�� � ����� that

attempts to be explicitly cooperative to neighboring agents.

39

Given: for each agent �� � �� (a set of ��’s neighbors),

� Current value assignment (��)

� Legal value set (��

�) under ��’s local constraint �
�

Procedure check agent view

1. Revise ��’s domain by constraint propagation: �� changes into ��

�;

2. If there is any constraint (
��) violation with higher priority neighbors or ��’s
current value assignment �� is not included in ��

�;

(a) Find a value set������

� whose values satisfy constraints with higher neigh-
bors;

(b) If ��� �� � // good case

� new cooperative value(�, ���);

(c) Else // nogood case (no consistent value in � �

�)

� Record and communicate nogood;

� 	�’s priority = max of neighbors’ priorities + 1;

� new cooperative value(�, ��

�)

(d) If there exists a change for ��, communicate it to neighbor agents;

Procedure new cooperative value (Input: strategy &, domain � � ��

�)

� If & ����-����'���,

1. select ���� � � where ���� minimizes the number of constraint violation
with lower priority agents;

� Else (& � �high, low, all�)

1. � = ��
� (Here, ��		

� � ��);

2. For ēach value � � �, �’s flexibility = �������;

3. Find � � � which has max flexibility;

– Apply min-conflict heuristic to break ties;

4. Set the selected � to ����;

� Change ��’s current value assignment into ����;

Figure 3.2: Cooperative strategy �� � �� performed by agent �� in AWC framework

40

Sall-Sall

Sall-SmcSall-SlowSall-Shigh Smc-SallSlow-SallShigh-Sall

Shigh-ShighSlow-ShighSmc-Shigh Shigh-SlowSlow-SlowSmc-Slow Shigh-SmcSlow-SmcSmc-Smc

mc: min-conflict

Figure 3.3: Cooperativeness relationship: the higher, the more locally cooperative

41

Chapter 4

Strategy Performance Measurements

This chapter provides detailed information about the metrics to evaluate the performance

of DCSP strategies. Section 4.1 describes the existing method used in the DCSP litera-

ture. Section 4.2 presents a new analytical method which overcomes the shortcomings

of the existing method (introduced in Section 4.1). Section 4.3 provides the analyti-

cal results for the performance of the locally cooperative strategies (defined in Section

3.2.2).

4.1 Existing Method

Since it has been practically difficult to access a real large-scale distributed system (with

hundreds of nodes in DCSP), the standard methodology in the field [Bessière et al.,

2001; Fernàndez et al., 2003; Modi, 2003; Silaghi et al., ; Yokoo and Hirayama, 1998;

Zhang et al., 2003] is to implement a synchronized distributed system which is a model

of distributed system where every agent synchronously performs the following steps

(which is called a cycle):

1. Agents receives all the messages sent to them in the previous cycle.

2. Agents resolve conflicts, if any, and determine which message to send.

3. Agents send messages to neighboring agents.

42

In the absence of a true distributed implementation, the benefit of the synchronized

distributed setting is the ease of simulation on a single machine: while an agent resolves

conflicts, other agents wait and all the messages are communicated at the same time after

all the agents perform their own local computation to resolve conflicts, which provides

an effect of a synchrony. Given such a synchronized distributed system, it is difficult

to directly measure the run-time for real distributed conflict resolution. However, in the

literature, as a compromise, researchers have used hardware independent metrics such as

cycles and constraint checks defined below. Note that hardware independent evaluation

is important since it enables researchers to compare their approaches without re-running

others’ approaches in their systems. The cycles and constraint checks are defined as

follows:

� Cycles: The number of cycles until a solution is found. As the number of cycles

increases, agents’ communication is increased since agents communicate with

others at each cycle. Note that total time for conflict resolution is expected to

be proportional to cycles [Yokoo and Hirayama, 1998]: the more cycles, the more

time to find a solution. If computation time is extremely fast, then the total time

will be dominated by cycles.

� Constraint checks: The total number of the maximum number of constraint checks

at each cycle until a solution is found. More specifically, at each cycle, we iden-

tify a bottleneck agent which performs the most constraint checks, and sum up all

those maximum numbers of constraint checks over all cycles. Note that the bottle-

neck agent may vary at each cycle. In a synchronized distributed system, while the

local computation of constraint checks can vary among agents, the whole amount

of computation at each cycle is dominated by the bottleneck agents. Thus, we

use this measurement as a main indicator for the time consumed for computation

43

until a solution is found. If communication delay is insignificant, the total time

for conflict resolution will be dominated by constraint checks.

In the DCSP research community, cycles is used as a major metric for performance

evaluation since the amount of local computation and communication that each agent

solves mostly remains same in the most of previous DCSP approaches [Bessière et al.,

2001; Fernàndez et al., 2003; Modi, 2003; Silaghi et al., ; Yokoo and Hirayama, 1998;

Zhang et al., 2003]: the difference is in the protocol for passing values and control-

ling backtracking. Furthermore, it is often assumed that the local computation time is

insignificant. However, there are two shortcomings for cycles as follows:

� Local computation overhead: For the hardware with limited computing power,

the time for local computation may not be ignored, and there can be a variation in

local computation which depends on the number of constraint checks (as shown

in Figure 4.1-(a)).

� Message communication overhead: While cycles assumes that uniform time is

taken at each communication phase, the time for message communication often

depends on the size/number of messages to communicate. Figure 4.1-(b) shows

that there exists a difference between AWC strategy and LCDCSP strategies in

message size which may affect the communication time.

Despite these shortcomings, it is still important to view results in terms of cycles for

two reasons. One is a practical reason. This is the technique of measurement used in

the DCSP community, and and it is important to present results using cycles to make the

results accessible and acceptable by that community. Second, as shown in Section 4.3.3,

under certain conditions, cycles could be a reasonable approximations for measurement.

44

0

1000

2000

3000

4000

5000

6000

Domain 1 Domain 2 Domain 3

C
on

st
ra

in
t

ch
ec

ks

AWC strategy
LCDCSP strategy

0

5

10

15

20

25

Domain 1 Domain 2 Domain 3

M
es

sa
ge

 s
iz

e
to

 c
om

m
un

ic
at

e

AWC strategy
LCDCSP strategy

(a) Constraint checks (b) Message size

Figure 4.1: Difference between AWC strategy and LCDCSP strategy in constraint
checks and message size per cycle for different domains (based on empirical results
in Section 4.3)

1 The next section presents an analytical model for run-time measurement which takes

into account various message processing/communication overhead in different comput-

ing/networking environments.

Recently, the issue of run-time measurement (including the validity of cycles) was

discussed as a key topic in the panel discussion at the IJCAI 2003 workshop on Dis-

tributed Constraint Reasoning. There was an intense debate over how to measure run-

time performance. Many DCSP researchers who participated in the panel discussion

were not able to provide a convincing measurement method (that can be universally

accepted by the DCSP research community). How to devise accurate, yet feasible and

practical, evaluation metrics that generalize across domains remains as an open question

which may require extensive efforts and novel techniques.

1Furthermore, for a certain distributed system where communication is based on a synchronized clock,
cycles provides a reasonable performance measurement. For instance, agents in some sensornet systems
communicate only at specific times with a fixed interval to save energy for communication [Elson, 2003].
If the interval is � seconds, the total run-time will be ����	
� � seconds.

45

cycle

computation communication

communication delay

process
received
message

process
message
to send

constraint
checks

cycle

computation communication

communication delay

process
received
message

process
message
to send

constraint
checks

Figure 4.2: Model of runtime

4.2 Analytical Model for Run-time

As shown in Figure 4.2, the local computation processed by an agent at each cycle con-

sists of processing received messages, performing constraint checks, and determining

which message to send for its neighbors. The run-time taken by an agent for a cycle

is the sum of the local computation time and the communication time for the agent’s

outgoing messages. In this thesis, I present an analytical model that enable the estima-

tion of run-time from the data collected from the experimentation on a synchronized

distributed system. The following terms are defined for the model:

� �
� : number of incoming messages for an agent � at cycle �

� �
� ���: size of �
� incoming message for an agent � at cycle �

� �(l): computation time to process one incoming message (whose size is ')

� �
� : number of constraint checks by an agent � at cycle �

� �: computation time to perform a single constraint check

� �
� : number of outgoing message for an agent � at cycle �

�
� : size of an outgoing message for an agent � at cycle �

� ����: computation time to process an outgoing message (whose size is �)

� � �#�: communication time to transmit an outgoing message (whose size is #)

46

In a synchronous distributed system, at each cycle, agents synchronously start their

local computation and message communication at the same time. Thus, the run-time for

a cycle is dominated by an agent which requires maximum time for its local computation

and message communication.

� Run-time for a cycle � (����) = �!
����(local computation time of an agent i at

cycle k + communication time of an agent i at cycle k) where �� is a set of agents.

The local computation time and the communication time of an agent � at cycle � are

given by the following equations:

� Local computation time of an agent i at cycle k (�

�) =
���

�

�������

� ����� (time for

processing received messages) + �
� � � (time for performing constraint checks) +

�
� ���
� � (time for processing outgoing messages) 2

� Communication time of an agent i at cycle k (�
�) = �
� �� �

� � (time for transmit-

ting a message whose size is
� for �
� times)

Finally, the total run-time is given by summing up the run-time (����) for each

cycle:

� Total run-time =
��

�������� where (is the number of cycles until a solution is

found.

While the above performance model aims to provide a metric which takes into

account message processing/communication overhead (based on message size/number),

2If an agent uses a broadcasting method to transmit its message to multiple neighbors, � �� � �. Oth-
erwise (an agent sends the same message separately to each neighbor), � �� � the number of neighbors of
an agent i. In this thesis, broadcasting is not assumed. Instead, agents sends the same message multiple
times for each neighbor as was done in DARPA ANTS testbed hardware (a specific message receiving
channel is assigned for each sensor) [Lesser et al., 2003].

47

it is flexible enough to subsume the existing method of performance measurement (Sec-

tion 4.1) as follows:

� Constraint checks corresponds to the total run-time (defined above) where � � �,

���� � ���� � � (message processing cost is zero), and �
� � � (communication

cost is zero).

� Cycles corresponds to the total run-time under the assumption that � � � (the cost

for constraint checks is zero), ���� � ���� � � (message processing cost is zero),

and �
� � � (a constant communication time which is independent of message size

and number).

While there was an attempt to provide an analytical model for DCSP run-time mea-

surement [Modi, 2003], the model takes into account only message number. Therefore,

as the first analytical model for the performance measurement in DCSP which takes

into account the overhead based on message size and number, the above model could

provide a useful method for performance measurement to the DCSP community. Fur-

thermore, as shown below, the model shows interesting results as the parameters for

message processing/communication overhead vary.

4.3 Analysis of Locally Cooperative Strategy Perfor-

mance

Section 4.3.2 provides an overview of the experimental setting and results. Section 4.3.3

presents the impact of the analytical model on the performance improvement by the

48

locally cooperative strategies. Section 4.3.4 shows further analysis for how the perfor-

mance of the strategies changes in different computing/networking environments. Sec-

tion 4.3.5 addresses the scalability issue of the locally cooperative strategies. Finally,

Section 4.3.6 shows the dominance relation among the strategies, motivating the part 2

of this thesis.

Note that, for the performance analysis, the locally cooperative strategies are embed-

ded as value ordering heuristics in the AWC algorithm. Henceforth, for brevity, the

locally cooperative strategy embedded in AWC is referred as LCDCSP strategy (Locally

Cooperative DCSP strategies). The min-conflict strategy without extra communica-

tion of local information (originally used in the AWC algorithm [Yokoo and Hirayama,

1998]) is referred as AWC strategy.

4.3.1 Experimental Settings

While we focus on the domain where agents’ interaction topology is regular, there can

be variations (e.g., problem hardness) in different problem settings that arise within

the domain. In this section, we provide various problem settings controlled by several

parameters (described below). Systematic changes in the parameters generate a wide

variety of problem settings, and enable us to evaluate the performance of the strategies

(defined in Chapter 3 of this thesis) and find their communication vs. computation trade-

offs in different situations. Here, parameter selection is motivated by the experimental

investigation in the CSP and DCSP literature [Cheeseman et al., 1991; Hirayama et al.,

2000; Hogg and Williams, 1994] where problem characteristics (e.g, the hardness of

problems) depend on the following:

49

1. Graph density: Ratio of constraints out of all possible constraints. If there are �

variables, it specifies how many constraints are given to a problem out of ��� �

��)	 constraints.

2. Constraint tightness: Ratio of allowed value pairs for each constraint. If each

variable has (values, it specifies the number of allowed value pairs out of (�

value pairs.

3. Domain size: The number of values for each variable.

We also add additional parameters based on the properties of the domains of inter-

est. For instance, we make a variation in the percentage of local constraints (explained

below) which corresponds to how many targets exist in sensor networks domain.

First, regarding the graph density, since we focus on regular graphs where each

agent’s relation with its neighboring agents is uniform, we vary the graph density by

changing the number of neighboring agents as follows (the description applies to every

agent except for boundary agents):

1. Hexagonal topology: Each agent is surrounded by three agents (separated by 120

degrees).

2. Grid topology: Each agent (located in a vertex of square lattice) is surrounded by

four neighboring agents (separated by 90 degrees).

3. Triangular topology: Each agent is surrounded by eight neighboring agents (sep-

arated by 45 degrees).

The purpose of trying three different regular graphs is to investigate the impact on

performance by the degree of connectivity (number of interactions for each agent):

50

connectivity matters since the computation overhead from extra communication can

increase or decrease depending on the number of neighboring agents. Furthermore,

the above topologies are applied to real applications such as sensor networks [Lesser et

al., 2003] and micro-air-vehicles for surveillance [Gordon et al., 1999].

Second, given a topology (among the three topologies above), we make variations

in constraint tightness. Even for the same topology, the constraint tightness has a great

impact on the hardness of problems. For instance, if most of value pairs are allowed,

agents can easily find a solution since each value has a high possibility of being com-

patible with others. Note that, for conflict resolution in multiagent systems, there are

two types of constraints: external constraints and local constraints as described in Sec-

tion 3.1.1. Therefore, to analyze the effect from each constraint, we distinguish external

constraints from local constraints in defining the constraint tightness. That is, separate

constraint tightness is specified as follows:

1. External constraint tightness: Given an external constraint, for a value in an

agent’s domain, the percentage of compatibility with neighboring agents’ values

is defined. The percentage varies from 30% to 90% with intervals of 30% (30%,

60%, 90%).

� Note that 0% case and 100% case are not tried

– For 0% case, there is no solution: strategies with extra communication

can easily find that there is no solution by constraint propagation.

– For 100% case, problems are trivial (every value assignment is a solu-

tion).

2. Local constraint: Given a local constraint, a portion of agents’ original domains

is not allowed. We make the following two variations in terms of local constraint.

51

� The percentage of locally constrained agents changes from 0% to 100% (0%,

30%, 60%, 90%, 100%).

� Given a local constraint, the portion of allowed values varies from 25% to

75% with intervals of 25% (25%, 50%, 75%). Note that 0% and 100% are

not tried since 0% case gives agents empty domain and 100% case has no

effect of having a local constraint.

Third, we make a variation in domain size to investigate how strategies’ performance

and trade-offs are affected by the domain size. It has been shown that, given the same

graph density and constraint tightness, the hardness of problems may vary depending on

the number of domain values [Cheeseman et al., 1991].

� Domain size: The number of domain values varies from 10 to 80 (10, 40, 80).

While the number may vary depending on domains, the main purpose of this vari-

ation is to check how different domain sizes have an impact on the performance

and trade-offs of the strategies.

Given the above variations, the total number of settings is 351. 3 For a given prob-

lem setting, the performance of strategies is measured on 35 problem instances which

are randomly generated by the problem setting (defined with the above parameters): 35

3When the ratio of locally constrained agents is 0%, the local constraint compatibility does not matter
since no agent has a local constraint. Except for the case with 0% ratio of locally constrained agents,
there exist 324 problem settings = 3 topologies� 3 external constraint compatibilities� 4 percentages of
locally constrained agents (30% � 90%) � 3 local constraint compatibilities � 3 domain sizes. For the
0% ratio case, there exist 27 problem settings = 3 topologies � 3 external constraint compatibilities � 1
percentages of locally constrained agents (30%� 90%)� 3 domain sizes. Therefore, the total number of
problem settings is 351 (= 324 + 27).

52

problem instances are tried for statistical significance. 4 For each problem setting, sev-

enteen strategies (sixteen strategies defined in my thesis plus the original AWC strategy

5) are tried for each problem instances. Thus, the total number of experimental runs is

208,845 (�
���
�� ��). 6 Here, the number of agents is 512. Finally, to check the

scalability of our conflict resolution strategies, we also vary the number of agents for

selected problem settings (e.g., a setting where the min-conflict strategy or a strategy

based on extra communication shows the best performance) as follows:

� Number of agents: Given a topology, the number of agents varies from 64 to 1024

(64, 128, 256, 512, 1024). In our domains of interest such as sensor networks

and distributed spacecraft, the number of agents in hundreds is considered to be

large-scale. For instance, in distributed spacecraft domain, a future large-scale

mission assumes 44 � 104 spacecraft to investigate the Earth’s magnetosphere

[Angelopoulos and Panetta, 1998].

4.3.2 Overview of Experimental Results

This section provides an overview of the experimentation proposed in Section 4.3.1, and

presents in which problem settings LCDCSP strategies show big speedups.

4In general, the sample size of 35 provides statistically significant data with p-value � 0.1 in com-
paring the results from two different strategies. (from e-Handbook of Statistical Methods published by
National Institute of Standards and Technology available at http://www.itl.nist.gov/div898/handbook/).
Given a parameter such as the percentage of compatible value pairs (defined by external constraint tight-
ness above), different problem instances can be generated since different set of value pairs can be allowed
under the same percentage.

5For the sixteen locally cooperative strategies,

� is used as a flexibility base. Note that the original
AWC strategy is min-conflict strategy without extra communication of local information.

6Total run-time of the 208,845 experiments takes 21 days on a Linux machine with 4 Pentium-4 2GHz
processors and 4 GBytes memory. Note that, to conduct the experiments within a reasonable amount of
time, the number of cycles was limited to 1000 for each run (a run was terminated if this limit exceeded).

53

Number of Number(percentage) of problem
cycles(�) problem settings for different speedup ((fold)

settings (� 	 	 � (� � � � (�
 (�

� � 	�� 298 221 (74.2%) 72 (24.2%) 1 (0.3%) 4 (1.3%)
	�� � � � ��� 17 3 (17.6%) 5 (29.4%) 3 (17.6%) 6 (35.3%)

�
 ��� 36 29 (80.5%) 6 (16.7%) 0 (0%) 1 (2.8%)

Total 351 253 (72.1%) 83 (23.6%) 4 (1.1%) 11 (3.1%)

Table 4.1: Overview of problem hardness and speedup by LCDCSP strategies

Overview of Speedup by LCDCSP Strategies

In this section, I first present an initial set of results for the speedup by LCDCSP strate-

gies (Table 4.1). Then, in the latter half of section, I provide further analysis that shows

LCDCSP strategies significantly improve performance particularly in harder problems

rather than easier ones.

Table 4.1 provides an overview for the variation in problem hardness among the

problem settings (defined in Section 4.3.1) and an initial perspective for the speedup

achieved by LCDCSP strategies against the AWC strategy. For Table 4.1, given a setting,

average cycles (until a solution is found) is computed over the 35 problem instances

which are randomly generated in the setting. Henceforth, cycles for a problem setting

indicates the average cycles of 35 problem instances in the setting.

The second column in Table 4.1 shows the number of problem settings in different

range of cycles. The results in the second column shows that there is a significant vari-

ation in the problem hardness of the problem settings. 7 298 problem settings out of

the total 351 problem settings (defined in Section 4.3.1) requires less than 200 cycles.

17 problem settings (out of 351 settings) takes between 200 and 500 cycles and, for

7Appendix B.1 presents the detailed information on cycles for all the 351 problem settings, and Table
B.1 in Appendix B.2 shows detailed distribution of problem hardness.

54

the remaining 36 problem settings, it takes more than 500 cycles on average to find a

solution.

Table 4.1 also provides the number (percentage) of problem settings with different

speedups achieved by the best LCDCSP strategy in a given setting. Table 4.1 shows

that LCDCSP strategies show at least more than two fold speedup in 28% problem

settings overall. Furthermore, for a certain group of problem settings (where cycles

ranges between 200 and 500), more than eight fold speedup is achieved by LDCSP

strategies in a significant range of problem settings.

Here, a larger speedup could be shown in the problem settings where cycles is more

than 500 (�
 ���) and LCDCSP strategies show more than two fold speedup since

the cycle limit is set as 1000: AWC strategy takes more than 1000 cycles for majority

of problem instances in a given setting (while the best LCDCSP strategy in the setting

does not exceed the cycle limit). Note that we cannot provide definitive analysis for 37

problem settings in the grey cell of Table 4.1 (where cycles is more than 500 (�
 ���)

and LCDCSP strategies show less than two fold speedup) since both AWC strategy and

LCDCSP strategies do not terminate in 1000 cycles. 8

While Table 4.1 presents an overview of the speedup by LCDCSP strategies, it is

useful to investigate the results in Table 4.1 in more detail to understand how speedups

change on individual problem instances. Figure 4.3 shows prototypical performance

results for individual problem instances. In Figure 4.3, the horizontal axis is the number

of problem instances, and the vertical axis plots the number of cycles taken until a

solution is found for each problem instance. (Problem instances are ordered by their

problem hardness which is decided by the performance of the AWC strategy on the

8Table B.2 in Appendix B.2 lists the 29 problem settings.

55

instances.) Black and grey columns indicate the number of cycles taken by the AWC

strategy and the best LCDCSP strategy respectively.

Figure 4.3-(a) & (b) show that the speedup by LCDCSP strategies does not come

from only easier problem instances. Surprisingly, the speedup could be higher on harder

problem instances than on all the instances in a given problem setting: the speedup for

easier instances is lower than the speedup for harder instances.

0

200

400

600

800

1000

1200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Problem instances

C
yc

le
s

AWC

Smc-Smc

0

50

100

150

200

250

300

350

400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Problem instances

C
yc

le
s

AWC

Slow-Shigh

(a) Problem setting with average (b) Problem setting with average
three fold speedup ten fold speedup

Figure 4.3: Example: Speedup for individual problem instances (��� means
���������	��
 strategy)

Figure 4.4-(a) & (b) provide further analysis for the speedup by LCDCSP strate-

gies in the problem settings where more than two fold speedup is achieved by LCDCSP

strategies. For Figure 4.4, problem instances are grouped together (regardless of prob-

lem settings) by the performance (cycles) of the baseline strategy (the AWC strategy).

Figure 4.4-(a) shows how much speedup is achieved by LCDCSP strategies for a set of

problem instances with different problem hardness. As shown in Figure 4.4-(a), a big

speedup by LCDCSP strategies is achieved when a given problem instance is difficult to

solve (taking a large number of cycles by the AWC strategy): as the problem instances

get more difficult, the speedup increases.

56

0

5

10

15

20

25

N < 25 25 < N <
50

50 < N <
100

100 < N <
300

300 < N <
500

500 < N <
700

700 < N <
900

N > 900

Cycle (N) range

Sp
ee

du
p

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600 700 800 900 1000

Problem instances based on original AWC cycle

H
ow

 m
an

y
fo

ld
 d

if
fe

re
nc

e
in

 c
yc

le
s

(a) Speedup for problem instances (b) Speedup for individual problem
grouped by problem hardness instances
(based on AWC performance) (based on AWC performance)

Figure 4.4: Speedup for problem instances with different problem hardness: Checking
whether speedup comes from easier or harder problem instances

To check whether such a speedup comes from only a few exceptional cases (while

LCDCSP strategies do not provide performance improvement overall), Figure 4.4-(b)

shows the scattered graph of speedups for individual problem instances. The results

in Figure 4.4-(b) indicates that LCDCSP strategies show performance improvement for

majority of problem instances across different problem hardness: while there is a vari-

ation in performance improvement, the speedups do not come from only a few excep-

tional cases. The results in Table 4.1 and Figure 4.4 show that LCDCSP strategies show

performance improvement (with more than two fold speedup) in a significant range

of problem settings (28% problem settings overall), and, within each problem setting,

LCDCSP strategies provide more than an order of magnitude speedup in particular for

harder problem instances.

57

In Which Problem Setting LCDCSP Strategies Show High Performance Improve-

ment?

While it is difficult to crisply define problem settings where different levels of speedups

(based on average cycles) are achieved, in this section, I will attempt to provide some

categorization of the problem settings where high speedups are achieved by LCDCSP

strategies over the AWC strategy in terms of cycles. Note that this categorization is not

exhaustive, and focuses on problem settings (not on individual problem instances). The

result in Figure 4.4 already shows that, when individual problem instances appear to

become difficult, LCDCSP strategies outperform the AWC strategies.

To get a broad view of performance improvement by LCDCSP strategies, Figure

4.5 shows the maximum speedup by LCDCSP strategies for a set of problem settings

grouped by external constraint compatibility and topology. 9 Each data point (a 3D

column) in Figure 4.5 includes multiple settings with different local constraint compat-

ibility, the ratio of locally constrained agents, and domain size under the same external

constraint compatibility and topology. The results in Figure 4.5 show the followings:

� When external constraint compatibility is low (e.g., 30%), more than an order of

magnitude speedup can be achieved at each topology. The speedup is greater as

the graph density decreases (from triangular topology to hexagonal topology).

� With the external constraint compatibility of 60%, a big speedup is shown only in

the grid topology. When the graph density is either low (hexagonal topology) and

high (triangular topology), LCDCSP strategies do not show such a big speedup.

9The maximum speedup for a set of problem settings is the greatest speedup among the speedups in
the problem settings. For each problem setting, speedup is based on the average cycles on the 35 problem
instances of the setting by the AWC strategy and the best LCDCSP strategy.

58

Hexagonal

Grid

Triangular
30%

60%

90%

0

10

20

30

40

50

Maximum
speedup in

the problem
setting

Topology
External constraint

compatibility

Figure 4.5: Maximum speedup in the problem settings classified by external constraint
compatibility and topology

� When external constraint compatibility is 90%, the speedup is relatively small

since the problem settings with 90% external constraint compatibility is easier

than other settings (taking less than 30 cycles in general) so that there is no big

difference in cycles between the AWC strategy and LCDCSP strategies.

Local constraint Domain Ratio of locally Speedup at Each Topology
compatibility size constrained agents Hexagonal Grid Triangular

25% 10 30%, 60%, 90% 11 37 44
others 2 5 3

25% 40 60%, 90% 2 7 1
others 2 2 1

25% 80 60%, 90% 2 14 4
others 2 5 3

50% 10, 40, 80 0 � 100% 2 4 3
75% 10, 40, 80 0 � 100% 3 5 4

Table 4.2: Maximum speedup in the problem settings where external constraint compat-
ibility is 30%

Table 4.2 and 4.3 provide further analysis for the problem settings with a big speedup

when external constraint compatibility is 30% for each topology and 60% in the grid

59

Local constraint Domain Ratio of locally Speedup
compatibility size constrained agents

25% 10 0 � 100% 2
25% 40 90% 11

others 3
25% 80 0 � 100% 4
50% 10, 40, 80 0 � 100% 4
75% 10, 40, 80 0 � 100% 4

Table 4.3: Maximum speedup in the problem settings where topology is grid, and exter-
nal constraint compatibility is 60%

topology. Each cell in Table 4.2 and 4.3 shows the maximum speedup in the subgroup

of problem settings classified by local constraint compatibility, domain size, and the

ratio of locally constrained agents. While there can be a few exceptions, Table 4.2 and

4.3 provide the following results:

� When external constraint compatibility is low (30%),

– For each topology, high performance improvement is achieved when local

constraint compatibility is low (25%) and domain size is small (10).

� A big speedup by LCDCSP strategies is shown except for the cases

where, in terms of local constraints, agents are either totally uncon-

strained (0%) or totally constrained (100%).

� For grid topology, a big speedup is also shown when domain size is large

(80), and the ratio of locally constrained agents is moderate (60%) or

high (90%). Note that, when all agents are locally constrained (100%),

no speedup is shown.

� When external constraint compatibility is moderate (60%) in grid topology,

– High performance improvement is achieved when local constraint compati-

bility is low (25%) and domain size is moderate (40).

60

� A big speedup by the best locally cooperative strategy is shown when

the ratio of locally constrained agents is high (90%). However, note that,

when the ratio is 100%, there is no big speedup since all the problems

in the setting are easy regardless of strategies to be applied (Figure B.13

in Appendix B.1).

0

50

100

150

200

250

300

350

400

450

500

0% 30% 60% 90% 100%

percentage of locally constrained agents

cy
cl

es

AWC
Smc-Smc
Sall-Sall
Slow-Shigh
Slow-Slow

0

200

400

600

800

1000

1200

0% 30% 60% 90% 100%

percentage of locally constrained agents

cy
cl

es

AWC
Smc-Smc
Sall-Sall
Slow-Shigh
Slow-Slow

(a) Hexagonal topology; Domain size 10 (b) Grid topology; Domain size 10

0

200

400

600

800

1000

1200

0% 30% 60% 90% 100%

percentage of locally constrained agents

cy
cl

es

AWC
Smc-Smc
Sall-Sall
Slow-Shigh
Slow-Slow

0

100

200

300

400

500

600

700

800

900

1000

0% 30% 60% 90% 100%

percentage of locally constrained agents

cy
cl

es

AWC
Smc-Smc
Sall-Sall
Slow-Shigh
Slow-Slow

(a) Triangular topology; Domain size 10 (b) Grid topology; Domain size 80

Figure 4.6: Example: Problem settings where external constraint compatibility is 30%
and local constraint compatibility is 25%

Figure 4.6 and 4.7 show some prototypical cases where an order of magnitude

speedup is achieved by LCDCSP strategies (including the problem settings represented

61

0

50

100

150

200

250

0% 30% 60% 90% 100%

percentage of locally constrained agents

cy
cl

es

AWC
Smc-Smc
Sall-Sall
Slow-Shigh
Slow-Slow

Figure 4.7: Example: Problem settings where topology is grid, external constraint com-
patibility 60%, local constraint compatibility 25%, and domain size 40

as grey cells in Table 4.2 and 4.3). 10 In Figure 4.6 and 4.7, the horizontal axis indicates

the ratio of locally constrained agents and the vertical axis is the number of cycles taken

by each strategy. The lower a data point of a strategy appears, the better performance

the strategy shows. The results in Figure 4.6 and 4.7 show the followings:

� No single LCDCSP strategy dominates across all problem settings.

– Therefore, given a problem setting, selecting the right strategy for the setting

is essential to maximize the speedup by LCDCSP strategies, which motivates

the second part of my thesis (performance modeling). 11

� The most locally cooperative strategy (��		 � ��) is not the best.

10While all the 16 locally cooperative strategies were tried on the problem settings described in Sec-
tion 4.3.1, for expository purpose, the results of five locally cooperative strategies (the AWC strategy,
���������	��
 � ���������	��
, ��		 � ��		, �	�� � �
��
, and �	�� � �	��) are shown in Figure 4.6
and 4.7. Note that using these five locally cooperative strategies does not change the conclusion from the
work in this thesis.

11Section 4.3.6 provides further information about the dominance relation among strategies.

62

� It is not always the case that more information communication leads to improved

performance (in some cases, LCDCSP strategies do not show performance

improvement).

4.3.3 Performance in Run-time Analytical Model

In this section, I present how the performance results (e.g., speedup) changes with the

analytical run-time model in Section 4.2 compared with the results based on cycles. To

illustrate which property affects the change in performance by the run-time model, I

also provide detailed results for some problem settings where LCDCSP strategies show

a big speedup over the AWC strategy (Table 4.4)

cycles
External Local Domain Ratio of Best

Topology constraint constraint size locally AWC LCDCSP
compati- compati- const- strategy strategy

bility bility rained
agents

1 Hexagonal 30% 25% 10 30% 452 43 (11)
2 Hexagonal 30% 25% 10 60% 302 31 (10)
3 Grid 30% 25% 10 60% 377 10 (37)
4 Grid 30% 25% 80 60% 395 27 (14)
5 Grid 60% 25% 40 90% 208 20 (11)
6 Triangular 30% 25% 10 30% 475 11 (44)

Table 4.4: Problem settings with more than an order of magnitude speedup by LCD-
CSP strategies based on cycles: numbers in parenthesis (the last column) the speedup
achieved by the best LCDCSP strategy

While there is a large degree of freedom in selecting the parameters for the run-time

model, the parameters specified in this section assumes a realistic domain where mes-

sage communication overhead dominates local computation cost and message process-

ing overhead is relatively smaller than communication overhead (but cannot be ignored).

63

12 In defining the parameters for such a domain, two different properties for message

processing and communication overhead are considered as follows:

� Property 1: Message processing/communication overhead mainly depends on the

size of messages to process/communicate.

– A general case where the amount of information to send/receive is propor-

tional to the real-time taken to process/communicate messages.

� Property 2: Message processing/communication overhead mainly depends on the

number of messages to process/communicate.

– Message is processed as a bundle (e.g., the processing time for one bit is

same with that for one word), and message communication delay is dom-

inated by message contention for each communication trial (message con-

tention is less related with message size).

Next, we show the performance results (i.e., speedup by LCDCSP strategies) from

the run-time model given property 1 and property 2 respectively.

Message Size as a Main Factor for Message Processing & Communication Over-

head

For a domain where message size is a main factor for message processing and commu-

nication overhead, parameters for the run-time model are set as follows:

� ��'� � ' � �� � and ���� � �� �� �

12In a prototype networked sensor (e.g., Berkeley Motes [Hill et al., 2000] which has 4 MHz CPU),
message processing takes tens or hundreds microseconds for a single bit. Furthermore, for a typical
WINS (Wireless Integrated Networked Sensors) architecture, communication rate is assumed to be 1 �
100 Kbps [Pottie and Kaiser, 2000]: sending a bit takes milliseconds or hundreds micro seconds without
any message contention.

64

– Message processing is assumed to be slower than a constraint check by two

order of magnitude. To simulate such a difference, � is set as 100 or 1000.

� � �#� � #� �� �

– To simulate the situation where communication overhead dominates local

computation cost, � is set as 1000 or 10000.

Note that further variation with different � and � is presented in Section 4.3.4. Table

4.5 shows the speedup by the best LCDCSP strategy for the problem settings shown in

Table 4.4 given different � and �. Detailed information of the run-time for each problem

setting computed from the run-time model is shown in Appendix B.3.1. In Table 4.5,

the speedup based on the run-time model for different � and � is less than the speedup

based on cycles. That is, the performance of LCDCSP strategies based on the run-time

model appear to be worse than the performance based on cycle.

Speedup by LCDCSP strategies
Based on Based on run-time model

Case cycles � � ��� � � ��� � � ���� � � ����
� � ���� � � ����� � � ���� � � �����

1 11 7 7 7 7
2 10 9 9 8 9
3 37 21 21 20 21
4 14 4 7 5 7
5 11 7 8 7 8
6 44 33 33 31 33

Table 4.5: Speedup change in run-time model

The decrease in speedup with the run-time model is due to the fact that LCDCSP

strategies have larger message size to process/communicate and more constraint checks

(for computing flexibility towards neighboring agents) than the AWC strategy. Table 4.6

and 4.7 show the average message size and number of constraint checks for bottleneck

65

agents which affect the run-time in the model proposed in Section 4.2 when when � �

��� and � � �����. The results with other other values of � and � (in Appendix B.4.1)

are similar with those shown in Table 4.6 and 4.7.

Note that case 4 in Table 4.6 and 4.7 shows the largest difference between the AWC

strategy and the best LCDCSP strategy in both message size and the number of con-

straint checks. The case 4 is for the problem setting where domain size (80) is larger than

other cases (10 or 40). As domain size increases, the difference in message size and con-

straint checks between the AWC strategy and LCDCSP strategies also increases, leading

to significant decrease in speedup for LCDCSP strategies. Furthermore, as graph den-

sity increases (i.e., as the number of neighbors increases), the difference in message size

and constraint checks between the AWC strategy and LCDCSP increases. For instance,

comparing case 1 (hexagonal topology: 3 neighbors) and case 5 (triangular topology: 8

neighbors) in Table 4.6 and 4.7, the high density setting (case 5) has larger difference in

message size and constraint checks.

Average message size to process Average message size to transmit
Cases AWC strategy Best LCDCSP AWC strategy Best LCDCSP

strategy strategy

1 4.5 7.4 3.0 4.8
2 4.4 6.8 3.0 4.2
3 6.9 18.3 4.0 11.0
4 5.8 27.0 4.0 17.4
5 5.2 12.5 4.0 7.1
6 14.0 37.2 7.9 22.3

Table 4.6: Message size of AWC and the best LCDCSP strategy when � � ��� and
� � �����

While cycles is independent of message size, the run-time model takes into account

the overhead from the increased message size for LCDCSP strategies. Therefore, the

speedup based on the run-time model is lower than the speedup based on cycles. Table

66

Average number of constraint checks
Cases AWC strategy Best LCDCSP strategy

1 28 40
2 24 28
3 30 46
4 379 5579
5 82 341
6 68 115

Table 4.7: Number of constraint checks of AWC and the best LCDCSP strategy when
� � ��� and � � �����

Number(percentage) of problem
cycles(�) settings for different speedup ((fold)

(� 	 	 � (� � � � (�
 (�

� � 	�� 279 (93.6%) 18 (6.0%) 1 (0.3%) 0 (0%)
	�� � � � ��� 5 (29.4%) 4 (23.5%) 4 (23.5%) 4 (23.5%)

�
 ��� 29 (80.5%) 6 (16.6%) 0 (0%) 1 (2.7%)

Table 4.8: Speedup by LCDCSP strategies when � � ��� and � � �����

4.8 shows the number (percentage) of problem settings with different speedups by LCD-

CSP strategies. For the 298 problem settings where cycles is less than 200, compared

with the results in Table 4.1, the number (percentage) of problem settings with two or

more speedup significantly decreases from 77 (25.8%) to (19) 6.3%. However, for the

61 problem settings with cycles more than 200, the decrease in the number (percentage)

of problem settings with two or more speedup is relatively small: from 21 (39.6%) to

(19) 35.8%. That is, for harder problem settings, LCDCSP strategies has less impact by

the message processing/communication overhead.

Figure 4.8 shows how speedups change with this run-time model from the perspec-

tive of problem instances. To make a comparison, the problems are grouped by problem

hardness (based on AWC performance in cycles) as is done in Figure 4.4. While the

magnitude of speedup decreases, as problems get harder, big speedups are achieved by

LCDCSP strategies and such speedups are shown in the majority of problem instances.

67

0

3

6

9

12

15

N < 25 25 < N <
50

50 < N <
100

100 < N <
300

300 < N <
500

500 < N <
700

700 < N <
900

N > 900

Cycle (N) range

Sp
ee

du
p

0%

20%

40%

60%

80%

100%

N < 25 25 < N <
50

50 < N <
100

100 < N <
300

300 < N <
500

500 < N <
700

700 < N <
900

N > 900

Cycle (N) range

P
er

ce
nt

ag
e

of
 p

ro
bl

em
 in

st
an

ce
s

w
he

re
 c

oo
pe

ra
ti

ve

st
ra

te
gi

es
 p

er
fo

rm
 b

et
te

r

(a) Speedup for problem instances (b) Percentage of problem instances
grouped by problem hardness where LCDCSP strategies perform
(based on AWC performance) better than AWC

Figure 4.8: Speedup for problem instances with different problem hardness: Checking
whether speedup comes from easier or harder problem instances

Message Number as a Main Factor for Message Processing & Communication

Overhead

For a domain where message number is a main factor for message processing and com-

munication overhead, parameters for the run-time model are set as follows (note that

message processing & communication time is independent of message size):

� ��'� � �� � and ���� � �� �

– Message processing is assumed to be slower than a constraint check by two

order of magnitude. To simulate such a difference, � is set as 100 or 1000.

� � �#� � �� �

– To simulate the situation where communication overhead dominates local

computation cost, � is set as 1000 or 10000.

68

Speedup by LCDCSP strategies
Based on Based on run-time model

Case cycles � � ��� � � ��� � � ���� � � ����
� � ���� � � ����� � � ���� � � �����

1 11 9 10 9 10
2 10 10 10 9 10
3 37 37 37 38 37
4 14 6 12 9 13
5 11 10 10 9 10
6 44 46 44 54 47

Table 4.9: Speedup change in run-time model

Table 4.9 shows the speedup by the best LCDCSP strategy for the problem settings

shown in Table 4.4 given different � and �. Detailed information of the run-time for

each problem setting computed from the run-time model is shown in Appendix B.3.2.

In Table 4.9, the speedup based on the run-time model for different � and � is very

similar with the speedup based on cycles in general. That is, the performance of LCD-

CSP strategies based on the run-time model appear to be equal to (or, for some cases,

interestingly better than) the performance based on cycle.

In contrast, for the run-time model where message size is a main factor for mes-

sage processing and communication overhead (Table 4.5), the speedup based on the

run-time model decreases in most cases (compared with the speedup based on cycles).

The difference in speedup change between the run-time model with different properties

(size-based message processing & communication overhead vs. number-based message

processing & communication overhead) is due to the following:

� For a domain where message size is a main factor for message processing and

communication overhead,

69

– LCDCSP strategies may have larger message size depending on domain size

and graph density while the AWC strategy has fixed message size (a selected

value).

� For a domain where message number is a main factor for message processing and

communication overhead,

– While incoming message number may vary depending on the number of

neighboring agents which have value change in the previous cycle, the num-

ber of messages to communicate is fixed as the number of neighbors (that

is decided by graph density). As shown in Table 4.10, the difference in

incoming message numbers is very small. Therefore, the AWC strategy and

LCDCSP strategies are likely to have similar number of messages to process

and communicate.

Average message number to process Average message number to transmit
Cases AWC strategy Best LCDCSP AWC strategy Best LCDCSP

strategy strategy

1 4.5 4.7 3.0 3.0
2 4.5 4.8 3.0 3.0
3 6.9 6.5 4.0 4.0
4 5.8 5.4 4.0 4.0
5 5.2 5.7 4.0 4.0
6 14.0 12.7 8.0 8.0

Table 4.10: Message size of AWC and the best LCDCSP strategy when � � ��� and
� � �����

Table 4.10 and 4.11 show the average message number and number of constraint

checks for bottleneck agents when when � � ��� and � � �����. Results with other

values of � and � (which are similar with the results in Table 4.10 and 4.11) are pre-

sented in Appendix B.4.2.

70

Average number of constraint checks
Cases AWC strategy Best LCDCSP strategy

1 28 85
2 24 41
3 30 95
4 380 7743
5 83 488
6 68 235

Table 4.11: Number of constraint checks of AWC and the best LCDCSP strategy when
� � ��� and � � �����

While Table 4.11 shows large difference in constraint checks between the AWC

strategy and LCDCSP strategies, Table 4.10 shows that, for each setting, there is little

difference in message size for the strategies. Therefore, when the message processing

or communication overhead dominates (the difference in constraint checks becomes

insignificant), the difference between the AWC strategy and LCDCSP strategies depends

on the difference in cycles because of little difference in message size. Note that a

significant speedup decrease (from 14 to 6) occurs only at the problem setting of case 4

in Table 4.9 where there is a big difference in constraint checks (case 4 at Table 4.11)

and message processing & communication overhead is less dominant (� � ��� and

� � ����).

Number(percentage) of problem
cycles(�) settings for different speedup ((fold)

(� 	 	 � (� � � � (�
 (�

� � 	�� 262 (87.9%) 32 (10.7%) 2 (0.7%) 2 (0.7%)
	�� � � � ��� 4 (23.5%) 4 (23.5%) 3 (17.6%) 6 (35.3%)

�
 ��� 29 (80.6%) 6 (16.7%) 0 (0%) 1 (2.8%)

Table 4.12: Speedup by LCDCSP strategies when � � ��� and � � �����

Table 4.8 shows the number (percentage) of problem settings with different speedups

by LCDCSP strategies. For the 298 problem settings where cycles is less than 200, while

71

the number of problem settings with two or more speedup decreases from 77 (25.8%)

to 36 (12.1%), the decrease is smaller than the decrease in Table 4.8 (where message

processing/communication overhead is based on message size). Furthermore, for the

problem settings with cycles more than 200, the distribution of problem settings with

different speedups is almost similar with the distribution in Table 4.1 (which is based on

cycles).

Figure 4.9 shows how speedups change with this run-time model from the perspec-

tive of problem instances. To make a comparison, the problems are grouped by problem

hardness (based on AWC performance in cycles) as is done in Figure 4.4. The results

in Figure 4.9 are almost same with those in Figure 4.4. That is, for harder instances,

LCDCSP strategies show big speedups and such speedups are shown in the majority of

problem instances.

0

5

10

15

20

25

N < 25 25 < N <
50

50 < N <
100

100 < N <
300

300 < N <
500

500 < N <
700

700 < N <
900

N > 900

Cycle (N) range

Sp
ee

du
p

0%

20%

40%

60%

80%

100%

N < 25 25 < N <
50

50 < N <
100

100 < N <
300

300 < N <
500

500 < N <
700

700 < N <
900

N > 900

Cycle (N) range

P
er

ce
nt

ag
e

of
 p

ro
bl

em
 in

st
an

ce
s

w
he

re
 c

oo
pe

ra
ti

ve

st
ra

te
gi

es
 p

er
fo

rm
 b

et
te

r

(a) Speedup for problem instances (b) Percentage of problem instances
grouped by problem hardness where LCDCSP strategies perform
(based on AWC performance) better than AWC

Figure 4.9: Speedup for problem instances with different problem hardness: Checking
whether speedup comes from easier or harder problem instances

72

The results in Table 4.12 and Figure 4.9 show that, for harder problem set-

tings/instances, LCDCSP strategies have little impact by the message process-

ing/communication overhead, which can be explained as follows:

� While cycles is independent of message size, the run-time model (which is also

independent of message size) depends on a property (message number) for which

the AWC strategy and LCDCSP strategies has little difference. The difference in

constraint checks becomes insignificant when message processing or communi-

cation overhead is dominant.

Therefore, when message processing and communication overhead is mainly

decided by message number (not message size) and the message process-

ing/transmission overhead is dominant (the difference in constraint checks is not signifi-

cant), cycles can be a reasonable measurement to compare the performance of strategies

in particular for harder problem settings.

4.3.4 Performance Variation in Different Computing & Networking

Environments

Section 4.3.3 assumes the case where communication overhead dominates the local

computation overhead. However, there could be cases with different computing and

networking environments. (e.g., communication overhead may be ignored since sensors

are equipped with high-bandwidth communication devices). This section provides per-

formance results in such different environments by changing the parameters for message

processing overhead and communication overhead.

73

While the parameter setting is not focused on specific hardware/networking environ-

ments, the purpose of this investigation is to check how the speedup (achieved by LCD-

CSP strategies) changes in various situations. To simulate various environments with

different message processing and communication overhead, the parameters for message

processing/communication overhead vary as follows:

� For a domain where message size is a main factor for message processing and

communication overhead,

– ��'� � ' � �� � and ���� � �� �� �

� � varies from 0 to 10000 (� = 0, 0.01, 0.1, 0.5, 1, 5, 10, 100, 1000,

10000)

– � �#� � #� �� �

� � varies from 0 to 10000 (� = 0, 0.01, 0.1, 0.5, 1, 5, 10, 100, 1000,

10000)

� For a domain where message number is a main factor for message processing and

communication overhead,

– ��'� � �� � and ���� � �� �

� � varies from 0 to 10000 (� = 0, 0.01, 0.1, 0.5, 1, 5, 10, 100, 1000,

10000)

– � �#� � �� �

� � varies from 0 to 10000 (� = 0, 0.01, 0.1, 0.5, 1, 5, 10, 100, 1000,

10000)

When message processing/communication overhead is zero (� � � � �), the

speedup depends on the constraint checks: communication time is zero and the local

74

computation time for bottleneck agents is decided by how many constraint checks are

performed (regardless of how many messages are processed). However, when mes-

sage processing/communication overhead is non-zero (�� � � �), communication and

message-processing time is taken into account by the run-time models.

Figure 4.10, 4.11, and 4.12 show the variation in performance results depending on

the change of � and �. These three settings (listed below) are prototypical examples that

show an interesting phenomenon with the variation of � and � as shown below.

� Figure 4.10: Hexagonal topology where the external constraint compatibility is

30%, the local constraint compatibility is 25%, the domain size is 10, and the

ratio of locally constrained agents is 30%.

� Figure 4.11: Grid topology where the external constraint compatibility is 60%,

the local constraint compatibility is 25%, the domain size is 40, and the ratio of

locally constrained agent is 90%.

� Figure 4.12: Triangular topology where the external constraint compatibility is

30%, the local constraint compatibility is 25%, the domain size is 10, and the

ratio of locally constrained agents is 90%.

Figure 4.10-(a) shows the variation in the speedup by the best LCDCSP strategy in

a given setting based on the run-time model where message processing/communication

overhead is based on message size. In contrast, Figure 4.10-(b) is from the run-time

model where message processing/communication overhead is based on message num-

ber. Cycles for both the AWC strategy and the LCDCSP strategy is shown in Figure

75

0

0.1

1

10

1000

0

0.1

1

10

1000 0

1

2

3

4

5

6

Speedup

Communication overhead

Processing
overhead

0

0.1

1

10

1000

0

0.1

1

10

1000 0

1

2

3

4

5

6

7

8

9

10

Speedup

Communication overhead

Processing
overhead

(a) Message processing & communication (b) Message processing & communication
overhead based on message size overhead based on message number

0
50

100
150
200
250
300
350
400
450
500

AWC Slow-Slow

strategy

cy
cl

es

0

0.5

1

1.5

2

constraint
checks

message size
to process

message size
to transmit

L
C

D
C

SP
 o

ve
rh

ea
d

0

0.5

1

1.5

2

constraint
checks

message
number to

process

message
number to
transmit

L
C

D
C

SP
 o

ve
rh

ea
d

(c) cycles (d) LCDCSP overhead (e) LCDCSP overhead
in message size in message number

Figure 4.10: Speedup variation: hexagonal topology; external constraint compatibility
30%; local constraint compatibility 25%; domain size 10; Ratio of locally constrained
agents 30%

4.10-(c). Figure 4.10-(d) & (e) show the overhead by the LCDCSP strategy (i.e., com-

pared with the AWC strategy, how many fold constraint checks/message-size/message-

number per cycle is increased by the LDCSP strategy). 13 Figure 4.10-(a) & (b) show

the following results:

13Note that the increase in average message size per cycle by the LCDCSP strategy is less than two
fold because LCDCSP strategies do not need to communicate large messages at every cycle (only selected
values are communicated after constraint propagation ends).

76

� As message processing or communication overhead increases (as message pro-

cessing or communication overhead becomes dominant), the speedup by the LCD-

CSP strategy also increases.

– In Figure 4.10-(d) & (e), the overhead by the LCDCSP strategy in message

size or number is smaller than the overhead in constraint checks. As message

processing/communication overhead increases (as the factors with less over-

head for the LCDCSP strategy gets dominant), the speedup for the LCDCSP

strategy increases. The LCDCSP strategy shows speedup despite of message

processing/communication overhead for the LCDCSP strategy because of a

large gain in cycles (shown in Figure 4.10-(c)).

Note that there is a difference in the magnitude of the speedups depending on run-

time models (as shown in Section 4.3.3). While the speedup in Figure 4.10-(a) with

the highest message processing overhead (� � �����) and communication overhead

(� � �����) is about 6 fold, the speedup in Figure 4.10 (b) with the same parameter

setting is about 9 fold which is closer to the speedup (11 fold) based on cycles. This

is because the relative overhead for the LCDCSP strategy in message number shown in

Figure 4.10-(e) (compared with constraint-checks overhead) is smaller than the relative

overhead in message size shown in Figure 4.10-(d).

Figure 4.11 also shows the similar results: as message processing or communication

overhead increases, the speedup by the best LCDCSP strategy also increases. One thing

to notice is that, in Figure 4.11-(d) & (e), the difference between the overhead in con-

straint checks and the overhead in message size/number is greater than the difference

in Figure 4.10-(d) & (e). This is because the domain size (40) of the problem setting

for Figure 4.11 is greater than the domain size (10) for Figure 4.10. This difference

leads to large variation in speedups depending on message processing/communication

77

0

0.1

1

10

1000

0

0.1

1

10

1000
0

1

2

3

4

5

6

7

Speedup

Communication overhead

Processing
overhead

0

0.1

1

10

1000

0

0.1

1

10

1000
0

2

4

6

8

10

12

Speedup

Communication overhead

Processing
overhead

(a) Message processing & communication (b) Message processing & communication
overhead based on message size overhead based on message number

0

50

100

150

200

250

AWC Slow-Slow

strategy

cy
cl

es

0

2

4

6

8

constraint
checks

message size to
process

message size to
transmit

L
C

D
C

SP
 o

ve
rh

ea
d

0

2

4

6

8

constraint
checks

message num to
process

message num to
transmit

L
C

D
C

SP
 o

ve
rh

ea
d

(c) cycles (d) LCDCSP overhead (e) LCDCSP overhead
in message size in message number

Figure 4.11: Speedup variation: grid topology; external constraint compatibility 60%;
local constraint compatibility 25%; domain size 40; Ratio of locally constrained agents
90%

overhead. For instance, in Figure 4.10-(a), when message processing/communication

overhead increases from 0 to 10000, the speedup changes from four-fold to six-fold. In

contrast, in Figure 4.11-(a), the speedup changes from two-fold to six-fold.

While Figure 4.10 and 4.11 show that message processing/communication over-

head and the speedup by the best LCDCSP strategy is positively correlated, Figure

4.12-(a) shows the opposite phenomenon. In Figure 4.12-(a), as message process-

ing/communication overhead increases, the speedup by the best LCDCSP strategy

78

0

0.1

1

10

1000

0

0.1

1

10

1000
0

2

4

6

8

10

12

14

Speedup

Communication overhead

Processing
overhead

0

0.1

1

10

1000

0

0.1

1

10

1000
0

2

4

6

8

10

12

14

Speedup

Communication overhead

Processing
overhead

(a) Message processing & communication (b) Message processing & communication
overhead based on message size overhead based on message number

0

5

10

15

20

25

30

35

40

AWC Slow-Shigh

strategy

cy
cl

es

0

1

2

3

4

constraint
checks

message size to
process

message size to
transmit

L
C

D
C

SP
 o

ve
rh

ea
d

0

1

2

3

constraint
checks

message num to
process

message num to
transmit

L
C

D
C

SP
 o

ve
rh

ea
d

(c) cycles (d) LCDCSP overhead (e) LCDCSP overhead
in message size in message number

Figure 4.12: Speedup variation: triangular topology; external constraint compatibility
30%; local constraint compatibility 25%; domain size 10; Ratio of locally constrained
agents 90%

decreases. Figure 4.12-(d) shows that the relative overhead from message size is greater

than the overhead from constraint checks.

� Since the domain size is small (10) and 90% agents are locally constrained, most

of agents has restricted domain (whose size is less than three), leading to smaller

number of constraint checks for LCDCSP strategies. In contrast, since the graph

density is higher (eight neighboring agents in triangular topology), each agent

needs to process/communicate more messages.

79

However, the run-time model based on message number (Figure 4.12-(b)) is not

affected by such a change in message size overhead. As shown in Figure 4.12-(e),

the overhead from message number is lower than the overhead from constraint checks.

Therefore, as message processing/communication overhead gets dominant, the speedup

by the best LCDCSP strategy increases.

4.3.5 Scalability of LCDCSP Strategies

This section shows how the performance improvement by LCDCSP strategies changes

as the number of agents varies. While this section does not provide exhaustive results

for LCDCSP performance in the 351 problem settings (defined in Section 4.3.1) with

different number of agents, the focus of this section is to get a general prospect for

the scalability of LCDCSP strategies in particular for harder problem settings. Figure

4.13 shows the performance of LCDCSP strategies in the problem settings (listed in

Table 4.4) where the best LCDCSP strategy provides more than an order of magnitude

speedup over the AWC strategy. In Figure 4.13, the horizontal axis is the number of

agents and the vertical axis plots the number of cycles taken by each strategy. Each data

point is averaged over 35 problem instances randomly generated in a given setting.

Figure 4.13 shows that the problem hardness increases as the number of agents

increases. Overall, when the number of agents is small (e.g., 64), the speedup by the best

LCDCSP strategy is not significant since each strategy does not take a large number of

cycles to solve given problems instances. However, as the number of agents increases,

higher speedups are shown by the best LCDCSP strategy. While there is a variation in

speedups depending on problem settings, the speedups by the best LCDCSP strategy

in the problem settings with 512 agents are not eliminated at the problem settings with

1024 agents.

80

0

100

200

300

400

500

600

700

800

64 128 256 512 1024

Number of agents

C
yc

le
s

AWC
Smc-Smc
Sall-Sall
Slow-Shigh
Slow-Slow

0

100

200

300

400

500

600

64 128 256 512 1024

Number of agents

C
yc

le
s

AWC
Smc-Smc
Sall-Sall
Slow-Shigh
Slow-Slow

(a) Case 1 (b) Case 2

0

50

100

150

200

250

300

350

400

450

500

64 128 256 512 1024

Number of agents

C
yc

le
s

AWC
Smc-Smc
Sall-Sall
Slow-Shigh
Slow-Slow

0

100

200

300

400

500

600

700

800

900

1000

64 128 256 512 1024

Number of agents

C
yc

le
s

AWC
Smc-Smc
Sall-Sall
Slow-Shigh
Slow-Slow

(b) Case 3 (c) Case 4

0

50

100

150

200

250

64 128 256 512 1024

Number of agents

C
yc

le
s

AWC
Smc-Smc
Sall-Sall
Slow-Shigh
Slow-Slow

0

100

200

300

400

500

600

700

64 128 256 512 1024

Number of agents

C
yc

le
s

AWC
Smc-Smc
Sall-Sall
Slow-Shigh
Slow-Slow

(d) Case 5 (e) Case 6

Figure 4.13: LCDCSP performance in different number of agents for selected cases
(problem settings shown in Table 4.4)

81

4.3.6 Motivation for Strategy Selection

Figure 4.6 and 4.7 show that no single strategy dominates across different domains.

Therefore, for maximum speedup, we need to predict the right strategy in a given

domain. However, for strategy selection, there is a question to be answered:

� Is there any strategy which performs best or relatively well with marginal differ-

ence between the strategy and the best strategy in a given setting?

0%

20%

40%

60%

80%

100%

Sall-Sall Slow-
Slow

Slow-
Shigh

Smc-Smc

Strategies

P
er

ce
nt

ag
e

of
 s

et
ti

ng
s

w
it

h
be

st
 p

er
fo

rm
an

ce

0

1

2

3

4

Sall-Sall Slow-Slow Slow-Shigh Smc-Smc

Strategies

D
eg

ra
da

ti
on

 c
om

pa
re

d
w

it
h

be
st

 s
tr

at
eg

y
if

 n
ot

 t
he

 b
es

t

(a) Percentage of problem settings where (b) Performance degradation by each
where each strategy dominates strategy when it is not the best

Figure 4.14: Percentage of problem settings where an LCDCSP strategy dominates and
how much worse it is if not the best (mc: min-conflict strategy)

If there exists such a strategy, it may not be necessary to predict the right strategy

since we can apply the strategy in different problem settings. For instance, an LCDCSP

strategy ��		���		 performs very well across different problem settings shown in Figure

4.6 and 4.7. Thus, ��		 � ��		 could be used for fast conflict resolution in any problem

setting described in Section 4.3.1. However, a strategy is not always the best and, when

it is not the best strategy, there exists significant difference between the strategy and

the best strategy in a given setting. Figure 4.14-(a) shows the percentage of problem

settings (out of 351 problem settings) where a strategy dominates, and Figure 4.14-(b)

82

0

200

400

600

800

1000

Setting 1 Setting 2 Setting 3

Problem settings

C
yc

le
s AWC

Best LCDCSP
Sall-Sall

0.E+00

8.E+06

2.E+07

2.E+07

3.E+07

4.E+07

Setting 1 Setting 2 Setting 3

Problem settings

R
un

-t
im

e
es

ti
m

at
io

n

AWC
Best LCDCSP
Sall-Sall

Cycles Run-time model

Figure 4.15: Performance comparison between the best strategy and ��		 � ��		 in the
problem settings where ��		���		 is not the best (mc: min-conflict strategy): In run-time
model, time unit � indicates the time for a single constraint check.

shows how many fold the strategy is worse on average (based on cycles) than the best

strategy in the problem settings where it is not the best.

Here, ��		 � ��		 is the best strategy only for 41% of problem settings. Furthermore,

when ��		���		 is not best, it shows more than two fold degradation. Figure 4.15 shows

the difference between the best strategy and ��		 � ��		 in cycles (Figure 4.15-(a)) and

the run-time estimation with � � ��� and � � ����� (Figure 4.15-(b)) (the parameters

used in Section 4.3.3) for some selected settings where ��		 � ��		 is worse.

As shown in Figure 4.15, there is a significant difference (e.g., more than 600 cycles)

between ��		���		 and the best strategy in a given setting. Therefore, to gain maximum

speedup with LCDCSP strategies, we need to predict the right LCDCSP strategy in a

given problem setting. In the part 2 of this thesis, we will present novel performance

modeling techniques for strategy selection.

83

Part II

Distributed POMDP-based

Performance Models for Cooperative

Conflict Resolution Strategies

84

Chapter 5

Performance Analysis

Chapter 4 shows that, given large-scale multiagent systems, predicting the right strategy

to adopt in a given domain is essential to maximize the speedup of conflict resolution

convergence, and the critical factor for strategy performance is in the long tail part where

a small number of conflicts exist (explained in Section 5.1.3). Here, we provide formal

models for performance analysis and the mapping of DCSP onto the models, and present

the results of performance prediction.

5.1 Distributed POMDP-based Model

As a formal framework for strategy performance analysis, we use a distributed POMDP

model called MTDP (Multiagent Team Decision Process) [Pynadath and Tambe, 2002].

The MTDP model has been proposed as a framework for multiagent analysis. Dis-

tributed POMDP-based model is an appropriate formal framework to model strategy

performance in DCSP since it has distributed agents and the agentView (other agents’

communicated values, etc.) in DCSP can be modeled as observations. In DCSP, the

exact state of a system is only partially observable to an agent since the information

that the agent receives is limited to its neighboring agents. Therefore, there is strong

correspondence between DCSP and distributed POMDP as shown in Table 5.1. While

we focus on the MTDP model in this paper, other distributed POMDP models such as

DEC-POMDP [Bernstein et al., 2000] could be used.

85

DCSP Distributed POMDP

Distributed variables Distributed agents
Communicated values of other agents Observations
Value ordering strategy (e.g., ��) Action
Fixed strategy combination (e.g., �	�� � �����) Local policy

Table 5.1: Correspondence between DCSP and distributed POMDP

Here, we illustrate the actual use of the MTDP model in analyzing DCSP strategy

performance. The MTDP model provides a tool for varying key domain parameters to

compare the performance of different DCSP strategies, and thus select the most appro-

priate strategy in a given situation. We first briefly introduce the MTDP model. Refer to

[Pynadath and Tambe, 2002] for more details.

5.1.1 MTDP model

The MTDP model involves a team of agents operating over a set of world states during a

sequence of discrete instances. At each instant, each agent chooses an action to perform

and the actions are combined to affect a transition to the next instance’s world state.

The current state is not fully observed/known and transitions to new world states are

probabilistic. Each agent gets its own observations to compute its own beliefs, and the

performance of the team is evaluated based on a joint reward function over world states

and combined actions.

More formally, an MTDP for a team of agents, �, is a tuple, �

����� *���� +�� ��� , �. � is a set of world states. �� �
�

����� is a set of com-

bined domain-level actions where �� is the set of agent �’s actions. * controls the effect

of agents’ actions in a dynamic environment: * ��� !� ��� � *���
�� � ����
 � �� �

� �

!�. �� is a set of combined observations where �� is the set of observations for agent �.

Observation function, +� specifies a probability distribution over the observations of a

86

team of agents � at a given state after performing a joint action: +� �
�

���+� where

+���� !� -� � *���
 � -��
 � �� �
��
� � !�. The observability for a world state by a

team of agents (�) is classified as follows:

� Collectively partial observability: A general case where no assumption is made

on the observations.

� Collectively observability: A unique world state is determined by �’s joint obser-

vation. �- � ��� �� � � such that ��� �� �� *���

� � -��
 � ��� � �.

� Individual observability: A unique world state is determined by each individual

agent’s observation. �- � ��� �� � � such that ��� �� �� *���

� � -��
 � ��� �

�.

For each agent, its belief state is derived from the observations. �� �
�

��� is the

set of possible combined belief states where �� is the set of possible belief state for an

agent �. , � � � �� � � is a reward function over states and joint actions. A policy

(.�) in the MTDP model maps agents’ belief states to their actions: .� � �� � ��.

5.1.2 Mapping from DCSP to MTDP

In a general mapping, the first question is how to select the right state representation

for the MTDP. One typical state representation could be a vector of the values for all

the variables in a DCSP. However, this representation leads to a huge state space. For

instance, if there are 10 variables (agents) and 10 possible values per variable, the num-

ber of states is ����. To avoid this combinatorial explosion in state space, we use an

abstract state representation in the MTDP model. In particular, as described in Chap-

ter 3, each agent’s local state can be abstractly characterized as being in a good or

87

nogood state. Good state represents either the case where there is no constraint viola-

tion or the case where a constraint violation can be resolved locally (good case in Figure

3.2). Nogood state represents the nogood case in Figure 3.2 where a constraint violation

cannot be resolved locally. We use this abstract characterization in our MTDP model.

Henceforth, the good state and the nogood state are denoted by / and � respectively.

The initial state of the MTDP is a state where all the agents are in / state since, in

DCSP, an agent finds no inconsistency for its initial values until it receives the values of

its neighboring agents. The world state is the product of individual agents’ states (e.g.,

�/, /, � , /, /� for five agents). There is also a special terminal state in which all the

constraint violations are resolved.

In this mapping, the reward function , is considered as a cost function. The joint

reward (cost) is proportional to the total number of agents in the � state since we focus

on the overall performance, not the performance of individual agents. This reward is

used for strategy evaluation based on the fact that the better performing strategy has

less chance of forcing agents into the � state than other strategies: as a DCSP strategy

performs worse in a given problem setting, more agents will be in the � states.

The locally cooperative strategies (such as �	��, �����, ��		, and ���������	��
 defined

in Section 3.2.2) are mapped onto actions for agents in the MTDP model. A fixed DCSP

strategy combination (e.g., �	�� � �����) provides a local policy for each agent in the

MTDP model, e.g., the �	�� � ����� strategy implies that each agent selects action �	��

when its local state is / (good), and action ����� when its local state is � (nogood). The

state transition in the MTDP model is controlled by the joint action of a team of agents.

The transition probabilities can be derived from the simulation on DCSP. Since DCSP

strategies are mapped onto MTDP policies, we compare strategies by evaluating their

corresponding policies in the MTDP model. Policy evaluation can be done by value

88

iteration method. Note that, while policy evaluation computes values for all states in a

MTDP, strategies are compared only with the initial state values under their correspond-

ing policies. Our initial results from policy evaluation in this model match the actual

experimental strategy performance results shown before (Chapter 4). Thus, the model

could potentially form a basis for predicting strategy performance in a given domain.

In the AWC algorithm, each agent receives observations only about the states of its

neighboring agents and its current state as well. Thus, the world is not individually

observable but rather it is collectively observable (in the terminology of Pynadath and

Tambe [Pynadath and Tambe, 2002]). In an individually observable world where each

agent can individually observe the current world state, an MTDP can be reduced to an

MDP. Refer to the theorems in [Pynadath and Tambe, 2002] for detailed reduction. In

contrast, in a collectively observable world, if each agent can collect observations from

all the others by communicating with them, an agent can identify the current world state

with combined observations. However, in our investigation, agents only communicates

their local constraints only with neighboring agents (note that it is not the case that infor-

mation is propagated to all neighboring agents using multiple hops). Since agents cannot

collect the information of all the other agents, the MTDP we have cannot be reduced to

a single MDP. Initially, we assume that the observations from local communication are

perfect (without message loss in communication). This assumption can be relaxed in

our future work with unreliable communication.

5.1.3 Building Block

While the abstract representation in the mapping above can reduce the problem space,

for a large-scale multiagent system, if we were to model belief states of each agent

regarding the state of the entire system, the problem space would be enormous even

89

with the abstract representation. For instance, the number of states (including a terminal

state) in the MTDP model for the system with 512 agents would be 	�����: each agent

can be either / or � . To further reduce the combinatorial explosion, we use small-scale

models, called building blocks. As we show in the rest of this Chapter, this building

block based approach enables efficiency in computation (by significant reduction of

search space) and reusability of building blocks in different domains.

To model the performance of conflict resolution strategies in the experiments (pre-

sented in Chapter 3), each building block represents the local situation among five agents

in the 2D grid configuration. In the problem domains for the experiments shown in

Chapter 4, each agent’s local situation depends on whether it has a unary local con-

straint or not: each agents can be either constrained under a local constraint (
) or

unconstrained (0). Figure 5.1 illustrates some exemplar building blocks for the domain

used in the experiments. For instance, block 1 (Figure 5.1.a) represents a local situation

where all the five agents are constrained (
) while block 2 (Figure 5.1.b) represents a

local situation where an agent in the left side is unconstrained (0) but the other four

agents are locally constrained (
).

Note that, when the percentage of locally constrained agents is high, most of build-

ing blocks would be the block 1 (Figure 5.1.a) and a small portion of building blocks

would be like the block 2, block 3, and block 4 (Figure 5.1.b, 5.1.c, and 5.1.d). As

the percentage of locally constrained agents decreases, more building blocks include

unconstrained agents (0) like block 5 and block 6 (Figure 5.1.e and 5.1.f).

In each building block, as shown in Figure 5.2, a middle agent (��) is surrounded

by four neighboring agents (��, ��, ��, ��). Thus, the state of a building block can

be represented as a tuple of local states ���, ��, ��, ��, ��� (e.g., �/, /, /, /, /�

if all the five agents are in the good (/) state). There are totally 33 states (including a

90

C

C

CCC

C

C

CCU

C

C

CUC

(a) Block 1 (b) Block 2 (c) Block 3

C

C

UCC

C

U

CCU

U

C

CCU

(d) Block 4 (e) Block 5 (f) Block 6

Figure 5.1: Building block example

terminal state) in a building block of the MTDP model (e.g., �/, /, /, /, /�, �/,

/, /, /, ��, �/, /, /, � , /�, etc), and the initial state of a building block is �/,

/, /, /, /�. Here, agents’ actions will cause a transition from one state to another.

For instance, if agents are in a state �/, /, /, /, /� (Figure 5.2-a) and all the agents

choose the action �����, there is a certain transition probability that the next state will be

�/, /, � , /, /� (Figure 5.2.b) when only the third agent is forced into a nogood (�)

state. However, there may be a transition to �/, /, /, � , /� (Figure 5.2.c) if only the

fourth agent enters into the � state.

The novelty of our building block decomposition technique is three fold, compared

with the MDP and POMDP decomposition techniques in the literature [Dean and Lin,

91

A2(G)

A1(G)

A3(G) A4(G)

A5(G)

G

GG

G

N G G N

G

G

(a) (b) (c)

Figure 5.2: Example of states in a building block

1995; Hauskrecht et al., 1998; Parr, 1998; Pineau et al., 2001]: First, rather than exploit-

ing geometric clusters within a domain (suitable in a single-agent POMDP), building-

blocks exploit the multiagent nature of the domain — the decomposition is based on

clustering agents with close interactions with each other; Second, wee are focused on

evaluating policies rather than searching for optimal policies; Third, observability con-

ditions within a building block can be exploited to further reduce the complexity of

policy evaluation (proved in Section 5.2.1). Furthermore, building blocks can be reused

in different domains which have some commonalities.

Finally, one may argue that these small-scale models are not sufficient for the perfor-

mance analysis of the whole system since they represent only local situations. However,

as seen in the long tail distribution shown in Figure 5.3, 5.4, 5.5, and 5.6 (in the follow-

ing subsection), the key factor in determining the performance of strategies is in the long

tail where only a small number of agents are in conflicts. Therefore, the performance

of strategies are strongly related to the local situation where a conflict may or may not

be resolved depending on the local agents’ actions. That is, without using a model for

the whole system, small scale models for local interaction can be sufficient for perfor-

mance analysis. More importantly, composition techniques as introduced below show

how larger scale models can be developed.

92

Long tail distribution in Convergence

The key factor in determining the performance of strategies is in the long tail where

only a small number of agents are in conflicts. Figure 5.3 shows the number of aver-

age conflicts at each cycle for two different strategies, �	�� � ����� and ���������	��
 �

���������	��
, with � � as their flexibility base for problem instances where 90% of

agents are locally constrained in the high flexibility setting. Note that the average

speedup difference in cycles in the problem setting was 7-fold. As shown in Figure

5.3, in the beginning of conflict resolution, both strategies show similar performance in

resolving conflicts.

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350

Cycle

N
um

be
r

of
 c

on
fl

ic
ts

Slow-Shigh

Smin-conflict-Smin-conflict

Figure 5.3: Long-tail distribution example for the case with 90% locally constrained
agents in high flexibility setting

However, the performance difference appears in the long tail part. While �	�� �

����� quickly solves a given problem, ���������	��
 � ���������	��
 has a long tail with

a small number of conflicts remaining unresolved. Figure 5.4 also shows such long

tail distribution for two strategies �	�� � ����� and ���������	��
 � ���������	��
 given

problem instances with 90% locally constrained agents in the low flexibility setting: on

average, they showed more than 10-fold difference in conflict resolution performance.

93

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

0 50 100 150 200 250

Cycle

N
um

be
r

of
 c

on
fl

ic
ts

Slow-high

Smin-conflict-Smin-conflict

Figure 5.4: Long-tail distribution example for the case with 90% locally constrained
agents in low flexibility setting

0

50

100

150

200

250

300

0 50 100 150 200

Cycle

N
um

be
r

of
 c

on
fl

ic
ts

Slow-high

Slow-Slow

Figure 5.5: Long-tail distribution example for the case with 10% locally constrained
agents in high flexibility setting

Figure 5.5 compares another pair of strategies, �	�� � ����� and �	�� � �	��, (that show

a 6 fold average speedup) in the same setting with Figure 5.3. Figure 5.6 also shows the

long tail distribution for ����������� and ���������	��
����������	��
 when 10% agents

are locally constrained in the low flexibility setting. This type of long tail distribution

has been also reported in many constraint satisfaction problems [Gomes et al., 2000].

94

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

0 50 100 150 200

Cycle

N
um

be
r

of
 c

on
fl

ic
ts

Shigh-high

Smin-conflict-Smin-conflict

Figure 5.6: Long-tail distribution example for the case with 10% locally constrained
agents in low flexibility setting

5.1.4 Building Block Composition for Performance Analysis

While the building blocks are the basis for performance analysis, we need to deal with

multiple building blocks that can exist in a given domain. Each building block has a

different impact on conflict resolution convergence. It is expected that the local interac-

tion in a single building block does not totally determine the performance of strategies,

but the interactions between building blocks have a great impact on the strategy per-

formance. In this section, we propose four methods of building block composition to

evaluate MTDP policies (mapping of DCSP strategies) as follows:

� Single block: For a given domain, a single building block is selected to represent

the domain. For instance, when 90% of agents are locally constrained, block 2

(Figure 5.1.b) is selected as a representative block since most of agents are locally

constrained (
) in the problem setting. For the case of 60% locally constrained

agents, block 6 (Figure 5.1.f) is selected instead of block 1. The performance of a

strategy is evaluated based on the value of an initial state (�/, /, /, /, /�) for

a single representative building block.

95

� Simple sum: For a given domain which has multiple building blocks, we compute

the value of each building block’s initial state. Performance evaluation of a policy

is based on the summation of the initial states’ values of the multiple building

blocks in the domain. Individual building blocks are selected to mirror the local

constrainedness ratio. For instance, in the case of 90% locally constrained agents,

block 1 (Figure 5.1.a), block 2 (Figure 5.1.b), block 3 (Figure 5.1.c), and block 4

(Figure 5.1.d) are selected: the local constrainedness ratio in these building blocks

varies from 100% to 80%, but it is as close to 90% as possible. Thus, when 90% of

agents are locally constrained agents, block 1, 2, 3, and 4 in Figure 5.1 are chosen

and strategies are compared with the sum of initial state values for the selected

four building blocks (block 1, 2, 3, and 4).

� Weighted sum: Given multiple building blocks, for each building block, we com-

pute the ratio of the building block in the domain and the value of its initial state.

Thus, in contrast with “simple sum” method, it is the combination of building

blocks that should mirror the ratio in a given domain. Performance evaluation of

a policy is based on the weighted sum of initial states’ values where the weight

is the ratio of each building block in a given domain. The detailed procedure is

shown in Figure 5.7. For instance, in the case of 90% locally constrained agents,

block 1, 2, 3, and 4 (four building blocks selected above) have weights 0.4, 0.2,

0.2, and 0.2 respectively.

� Interaction: Given a set of building blocks, their local interaction influences the

starting state of neighboring building blocks since neighboring building blocks

may share the same agent. For instance, in a 2D grid configuration, two building

blocks can be connected via an agent which, henceforth, is called a docking point

as shown in Figure 5.8. The joint action in a building block may lead to a specific

96

Input: for a given domain,

– joint policy: .

– building blocks in the domain: �� � � � �

– weight for each building block: -� � � � -

Output:

– policy evaluation value (��!') for the given joint policy .
/* this will be used to compare strategy performance */

Procedure compute weighted sum

1. ��!' = � /* initialize policy evaluation value */

2. for � = 1 to � do

– do value iteration for �� under policy . /* compute values for every state */

– assign the initial state value to ��

3. for � = 1 to � do

– ��!' = ��!' + -� � ��

4. return ��!'

Figure 5.7: Weighted sum method

state that influences the initial state of its neighboring agent. As illustrated in

Figure 5.9, block 2 (Figure 5.1.b) and block 3 (Figure 5.1.c) may interact side

by side so that the rightmost
 agent of block 2 shares the same state with the

leftmost
 agent of block 3. The joint action under a given policy in block 2

may force an agent in a docking point to enter into the nogood (�) state, and let

block 3’s starting state have � in its leftmost agent. With the interaction between

these two building blocks, the policy of block 2 influences the probability that the

initial local state of the leftmost
 agent of block 3 starts in � state. Without such

interaction, it would always start in the / state.

97

C

U C

C

C Block 3

C

C C

C

U
Block 2

docking point

Figure 5.8: Docking point between two building blocks

C

C C

C

U

Block 2

C

U C

C

C

Block 3

interaction
via docking
point

G

G N

G

G

Block 2 state

G

G G

G

N

Block 3 starting state

influence on
neighboring
block's state

Starting
local state

Figure 5.9: Interaction between building blocks

In contrast, the previous two methods (sum and weighted sum) are based on

the value of the initial state �/, /, /, /, /� of each building block without

taking interactions between building blocks into account. However, since building

blocks interact with each other, their starting state is not always �/, /, /, /,

/�. As shown in the long tail distribution of constraint violation (Figure 5.3),

the performance difference depends on how a conflict is resolved in a building

block or propagated to another building block, and how the propagated constraint

98

violation is resolved in the neighboring building block also has an impact on the

performance.

Figure 5.10 shows the detailed procedure of the interaction method. Here, we

assume that we have building blocks in an arrangement of one block (a trigger

building block) in the center with other � blocks surrounding it: the trigger build-

ing block is assumed to have initial constraint violation. For instance, to analyze

the conflict resolution strategies in our experimental setting with 2D grid configu-

ration, a trigger building block is surrounded by four neighboring blocks to create

an effect of a grid.

Note that, for the interaction method, we don’t have arbitrary degrees of freedom.

Not every combination of building blocks is feasible since the building blocks must

actually dock at the proper points. For instance, block 1 (Figure 5.1.a) cannot be directly

connected to block 2 (Figure 5.1.b) at the 0 node as illustrated in Figure 5.11. This is

because the docking point does not match: the block 1 only has
 nodes, and has

no matching 0 node. The combination also has to maintain the percentage of locally

constrained agents. For instance, when 90% of agents are locally constrained, the ratio

of
 agents in a building block combination must be 90%.

As we change from the first method (single block) to the fourth method (interaction),

we gradually increase the complexity of composition. The accuracy of the performance

prediction with those methods is presented in the next section. Here, note that the focus

of our building block composition is not on computing the optimal policy, but it remains

on matching the long-tailed phenomenon shown in Figure 5.3. Thus, our interactions

essentially imply that neighboring blocks affect each other in terms of the values of the

policies being evaluated, but we are not computing optimal policies that cross building

block boundaries.

99

Input: for a given domain,

– a trigger building block �� and its neighboring building blocks: ��, ��, � � � � �

– joint policy: .

Output:

– policy evaluation value (��!') for the given joint policy .
/* this will be used to compare strategy performance */

Procedure interaction

1. ��!' = 0 /* initialize policy evaluation value for interaction method */

2. for � = 0 to � do

– do value iteration for �� under policy . � � � � � � � � � �1�
/* compute values of all states in �� */

3. ��!' = ��’s initial state value /* �� is a trigger building block */

4. for � = 1 to � do

– compute the probability that ��’s joint action forces the agent in a docking
point with �� to enter into the nogood (�) state

– assign the probability to "�

5. for � = 1 to � do

– for building block ��, find a state � where a docking point agent is in � state
and other agents are in / state (��’s starting state forced by ��)

– assign the value of � to ��
/* values of all ��’s states (including �) are already computed at the value
iteration step above (marked with 1)*/

– eval = eval + "� � ��

6. return ��!'

Figure 5.10: Interaction method

5.2 Performance Prediction

To check whether the MTDP based model can effectively predict the performance

of strategies, four methods of building block composition (defined in Chapter 5.1.4)

are applied for performance analysis, and the performance evaluation results from the

100

C

C C

C

C

Block 1

C

C C

C

U

Block 2

No match

Figure 5.11: Building block docking points

MTDP model are compared with the real experimental results presented in Chapter 3.

Before showing the performance analysis results, we present the complexity of DCSP

strategy performance evaluation. The complexity analysis presented below shows that

observability conditions within a building block can be exploited to further reduce the

complexity of policy evaluation, which makes our building block based approach more

useful in practice by saving computation overhead.

5.2.1 Complexity of Performance Evaluation

The policy evaluation for a finite horizon MTDP is a computationally expensive problem

since the action is indexed by observation history. In the worst case, the computational

complexity of evaluating a single policy is +���������� �: ��� and ��� are the number of

states and observations respectively. However, in the environment where a given policy

is based only on agents’ local states, we prove that evaluating the policy becomes the

evaluation of a time homogeneous Markov chain, which leads to low computation over-

head. To elaborate on the proof, we first introduce the following definitions, followed

by a theorem that proves the MTDP reduction to a Markov chain:

� Markov Chain ([Puterman, 1994]): Let �	� � � � �� �� � � � � be a sequence

of random variables which assume values in a discrete (finite or countable) state

101

space �. The sequence is called a Markov Chain if *�	��� � ���� � 	� �

��� 	��� � ����� � � � � 	� � ��� � *�	��� � ���� � 	� � ��� for �
 � and

�
 � �� � � � � �.

� Time Homogeneous Markov Chain ([Puterman, 1994]): A Markov Chain is

homogeneous if, for �
 � and �"� 2 � �, *�	��� � " � 	� � 2� does not

depend on �.

� Local state ���

– ��� � ��� � ��� � � � � � ����
: the subset of features of the world state that

affect the observation of an agent �.

– A world state � � � in MTDP is
�

��� '�� where '�� � ���.

� Local observability: each individual’s observation uniquely determines its local

state.

– �- � ��� �'�� � ��� such that '�� �� '�, *���

� � - � ��

� � '��� � �.

Based on the above definitions, we show the proof that, under certain assumptions,

an MTDP reduces to a Markov chain, leading to significant computation cost savings.

� Theorem 2: Given a MTDP � ����� *���� +�� ��� , �, given a fixed policy,

the MTDP reduces to a time homogeneous Markov chain with � if the following

assumptions hold:

– Assumption 1: the environment is locally observable;

– Assumption 2: the domain level policy .�� is a function of �’s current local

state ('�� � ���) only.

102

– Proof sketch: Assume a sequence of random variables for states �,

�	�� 	�� � � � �. First, we show that the conditional probability distribu-

tion of 	
�� depends on only 	
: that is, *�	
�� � �
�� � 	
 �

�
� 	
�� � �
��� � � � � 	� � ��� � *�	
�� � �
�� � 	
 � �
� where

"� 2� �� � �� � � � � � � �.

Given that the world is Markovian, the probability distribution of 	
�� can

be computed by *�	
�� � �
�� � 	
 � �
� !� where the ! is the joint

action such that ! �
�

��� !� where !� is agent �’s individual action selected

at state �
��.

Note that the action !� is selected by �’s domain-level policy .�� � �� � �.

At state �
, �’s belief state is its observation history � ��
� ��

�
� � � � � ��

� �

where ��
� is �’s observation at the �
� state.

Since !� � .���� ��
� ��

�
� � � � � ��

� ��,

*�	
�� � �
�� � 	
 � �
� !�

� *�	
�� � �
�� � 	
 � �
�
�

��� !��

� *�	
�� � �
�� � 	
 � �
�
�

��� .���� ��
� ��

�
� � � � � ��

� ���

Because of assumption 1 (local state uniquely decided by observation) and

2 (action decided by current local state only), .���� ��
� ��

�
� � � � � ��

� �� �

.���'�

� � where '�
� is �’s local state at state �
 that is uniquely decided by �

� .

103

Here, the above expression is transformed to

*�	
�� � �
�� � 	
 � �
�
�

��� .���'�

� ��

� *�	
�� � �
�� � 	
 � �
�
�

��� '�

� � since the policy .�� is fixed

� *�	
�� � �
�� � 	
 � �
� because
�

��� '�

� � �

Therefore, the conditional probability distribution of 	
�� depends on only

	

Now, to prove that the Markov chain is time homogeneous, we show that the

transition between 	
�� and 	
 is independent of the index �.

�"� 2 � � and ���� � �, *�	
�� � " � 	
 � 2� � *�	��� � " �

	� � 2� � * �2� !� "� where * is defined in the MTDP and ! is decided by

state 2 as shown above.

Therefore, the Markov chain is time homogeneous, and the reduction from

an MTDP to a time homogeneous Markov chain is proved.

The above theorem shows that the performance evaluation of the DCSP strategies

defined in Chapter 3 can be reduced to the evaluation of a Markov chain because the

DCSP strategies and the environment for them satisfy the required assumptions for the

above theorem 2 as follows:

� DCSP strategies are based on only local state (whether an agent is in the good (/)

or the nogood (�) state).

104

– E.g., �	�������� indicates that �	�� strategy is applied for / state and �����

strategy for � state.

� The environment is locally observable since each agent can find its own state

based on its value and communicated values (observation) of neighboring agents.

Thus, performance evaluation of the DCSP strategies can be done in +������ where

��� is the number of states in a given MTDP since their corresponding policies can be

evaluated by the same method of value determination for MDP: value determination in

MDP can be done in +������ by solving a system of linear equations where the number

of variables is the number of states [Littman et al., 1995].

5.2.2 Analysis of Performance Prediction

While there can be various problem domains, in this initial investigation, we focus on

the following problem setting:

� Grid topology with domain size of 40 and local constraint compatibility of 25%

1. External constraint compatibility of 60% (henceforth, this setting is referred

as high flexibility setting)

2. External constraint compatibility of 30% (henceforth, this setting is referred

as low flexibility setting)

For both the high flexibility setting and the low flexibility setting, we focus on two special

cases where the percentages of locally constrained agents are 60% and 90% respectively

1. Among the possible strategies defined in Chapter 3, we focus on the strategies with

1Note that we do not perform analysis in the 0% case since there is no significant performance differ-
ence in the case

105

� � as a flexibility base that were selected in Chapter 4 for expository purpose: �	�� �

�	��, �	�� � �����, ����� � �	��, ����� � �����, and ���������	��
 � ���������	��
. Note

that all of these strategies are enhanced with extra communication of local information.

Thus, we compare four building block composition methods described in Section 5.1.4

for the above five strategies in the following four cases:

� Case 1: when 60% agents are locally constrained in the low flexibility setting.

� Case 2: when 90% agents are locally constrained in the low flexibility setting.

� Case 3: when 60% agents are locally constrained in the high flexibility setting.

� Case 4: when 90% agents are locally constrained in the high flexibility setting.

Figure 5.12 shows the results when 60% agents are locally constrained in the low

flexibility setting. Figure 5.12-(a) (top) shows the experimental results in the case and

Figure 5.12-(b) (bottom) shows the performance evaluation from the MTDP model using

the interaction composition method. In the performance evaluation, the lower value

means the better performance (indicating that less number of cycles will be taken until a

solution is found). Figure 5.12-(a) and (b) show that the performance prediction results

match to the real experimental results in the problem setting considered here: the pat-

terns of column graphs in Figure 5.13-(a) and (b) correspond to each other. That is,

the strategies (�	�� � ����� and ����� � �����) that showed better performance in the

experiments are expected to perform better than the others according to the performance

prediction. Figure 5.13, 5.14, and 5.15 also show the performance prediction results in

different domains using the interaction method of building block composition. The per-

formance prediction results from the interaction method show that the MTDP based

model evaluation can distinguish better performing strategies from worse performing

ones in different problem domains.

106

(a) experimental results

0

50

100

150

200

250

Slow-Slow Slow-Shigh Shigh-Slow Shigh-Shigh Smc-Smc

strategy (mc: min-conflict)

cy
cl

es

(b) performance evaluation

0
10
20
30
40
50
60
70
80
90

Slow-Slow Slow-Shigh Shigh-Slow Shigh-Shigh Smc-Smc

strategy (mc: min-conflict)

ev
al

ua
ti

on

Figure 5.12: Performance prediction in low flexibility setting with 60% locally con-
strained agents using interaction method

107

(a) experimental results

0

50

100

150

200

Slow-Slow Slow-Shigh Shigh-Slow Shigh-Shigh Smc-Smc

strategy (mc: min-conflict)

cy
cl

es

(b) performance prediction

0
10
20
30
40
50
60
70
80
90

Slow-Slow Slow-Shigh Shigh-Slow Shigh-Shigh Smc-Smc

strategy (mc: min-conflict)

ev
al

ua
ti

on

Figure 5.13: Performance prediction in low flexibility setting with 90% locally con-
strained agents using interaction method

108

low flexibility low flexibility high flexibility high flexibility
setting with setting with setting with setting with
60% locally 90% locally 60% locally 90% locally
constrained constrained constrained constrained
agents agents agents agents

Single block 0.57 0.80 0.74 0.97
Simple sum 0.69 0.96 0.40 0.89
Weighted sum 0.70 0.96 0.38 0.89
Interaction 0.88 0.97 0.79 0.96

Table 5.2: Correlation between experimental results and performance evaluation for four
cooperative strategies and min-conflict strategy

low flexibility low flexibility high flexibility high flexibility
setting with setting with setting with setting with
60% locally 90% locally 60% locally 90% locally
constrained constrained constrained constrained
agents agents agents agents

Single block 0.67 0.67 0.63 0.68
Simple sum 0.91 0.97 -0.26 0.68
Weighted sum 0.92 0.97 -0.32 0.68
Interaction 0.98 0.95 0.80 0.74

Table 5.3: Correlation between experimental results and performance evaluation for
only cooperative strategies without min-conflict strategy

While the interaction method shows matching results, a question remains to be

answered for whether the other composition methods of building blocks can provide

the same power of performance prediction as the interaction method does. Figure 5.16,

5.17, 5.18, and 5.19 show the policy evaluation results from four different methods (sin-

gle block, simple sum, weighted sum, and interaction) in the four different cases. Table

5.2 shows the correlation between the experimental results and the performance evalu-

ation for the five strategies to compare (four cooperative strategies and the min-conflict

strategy). Table 5.3 shows the correlation between the experimental results and the

109

performance evaluation for four locally cooperative strategies (to check how well each

method can distinguish the locally cooperative strategies.

Note that the correlation measures how much positive relationship exists between

the number of cycles (experimental results) and the evaluation values from the MTDP

based model. While high correlation does not directly indicate that strategies’ ranking

in the experimental results will match to the ranking in evaluation values, it implies

that the evaluation value can clearly distinguish better performing strategies from worse

performing strategies. For instance, with a high correlation value, two strategies that

perform better than the others but show a very little difference between them may not

have a big difference in their evaluation values. However, the two better performing

strategies will be distinguished from other worse performing strategies in terms of eval-

uation value from the MTDP-based model.

Table 5.2 shows that interaction method has higher correlation values than other

methods. While the single block method shows a little better correlation in one case,

methods other than the interaction method are far from matching to the real experimental

results. Note that both simple sum and weighted sum methods show worse correlations

in two cases. Furthermore, according to table 5.3 (that shows the correlation between

locally cooperative strategies), both simple sum and weighted sum methods show nega-

tive correlation in one case, which means that they are not reliable in predicting the strat-

egy performance. Only the composition method that considers the interaction between

building blocks shows the best prediction results.

These results illustrate that the MTDP model can be used to predict the right strategy

to apply in a given situation (possibly with less computation overhead). That is, given

a new domain, agents can analyze different strategies with the simple MTDP model

and select the right strategy for the new domain without running a significant number

110

(a) experimental results

0

20

40

60

80

100

120

Slow-Slow Slow-Shigh Shigh-Slow Shigh-Shigh Smc-Smc

strategy (mc: min-conflict)

cy
cl

es

(b) performance prediction

0

10

20

30

40

50

60

Slow-Slow Slow-Shigh Shigh-Slow Shigh-Shigh Smc-Smc

strategies (mc: min-conflict)

ev
al

ua
ti

on

Figure 5.14: Performance prediction in high flexibility setting with 60% locally con-
strained agents

111

(a) experimental results

0

50

100

150

200

250

300

350

400

Slow-Slow Slow-Shigh Shigh-Slow Shigh-Shigh Smc-Smc

strategy (mc: min-conflict)

cy
cl

es

(b) performance prediction

0
10
20
30
40
50
60
70
80
90

Slow-Slow Slow-Shigh Shigh-Slow Shigh-Shigh Smc-Smc

strategy (mc: min-conflict)

ev
al

ua
ti

on

Figure 5.15: Performance prediction in high flexibility setting with 90% locally con-
strained agents

112

0

20

40

60

80

100

120

140

160

180

Single block Simple sum Weighted sum Interaction

composition methods

ev
al

ua
ti

on
Slow-Slow
Slow-Shigh
Shigh-Slow
Shigh-Shigh
Smc-Smc

Figure 5.16: Composition method comparison in low flexibility setting with 60% locally
constrained agents (mc: min-conflict)

0

10

20

30

40

50

60

70

80

90

Single block Simple sum Weighted sum Interaction

Composition method

ev
al

ua
ti

on

Slow-Slow
Slow-Shigh
Shigh-Slow
Shigh-Shigh
Smc-Smc

Figure 5.17: Composition method comparison in low flexibility setting with 90% locally
constrained agents (mc: min-conflict)

113

0

20

40

60

80

100

120

140

Single block Simple sum Weighted sum Interaction

composition methods

ev
al

ua
ti

on
Slow-Slow
Slow-Shigh
Shigh-Slow
Shigh-Shigh
Smc-Smc

Figure 5.18: Composition method comparison in high flexibility setting with 60%
locally constrained agents (mc: min-conflict)

0

10

20

30

40

50

60

70

80

90

Single block Simple sum Weighted sum Interaction

Composition method

ev
al

ua
ti

on

Slow-Slow
Slow-Shigh
Shigh-Slow
Shigh-Shigh
Smc-Smc

Figure 5.19: Composition method comparison in high flexibility setting with 90%
locally constrained agents (mc: min-conflict)

114

of problem instances for each strategy. Furthermore, this approach will enable agents

to flexibly adapt their strategies to changing circumstances. More generally, this result

indicates a promising direction for performance analysis in DCSP, and potentially other

multiagent systems.

5.2.3 Efficiency of Building Block Based Approach

low flexibility low flexibility high flexibility high flexibility
setting with setting with setting with setting with
60% locally 90% locally 60% locally 90% locally
constrained constrained constrained constrained
agents agents agents agents

Building 731.0 736.0 659.0 650.0
block
Running 13676.4 6072.0 6285.6 9552.0
test cases

Table 5.4: Comparison of runtime (sec) to select the best strategy

In this section, we show the efficiency of building block based approach by compar-

ing the runtime of the following two methods in a given domain:

� Interaction method

� Running 30 sample problem instances 2

Note that this is not to compare the possible benefit (e.g., time saving) from using the

interaction method in a real system after performance analysis since we do not assume

future usage of a selected strategy (e.g., how long or how many times the system will

operate using the selected strategy). Instead, we focus on the computation overhead to

select the best strategy using the two approaches. In Table 5.4, the second row shows the

230 is the minimum number of instances for statistical significance in general.

115

runtime (sec) of the interaction method to find the best strategy among the five strategies

(selected for expository purpose in the previous section) in four different settings: �	���

�	��, �	�� � �����, ����� � �	��, ����� � �����, and ���������	��
 � ���������	��
.

low flexibility low flexibility high flexibility high flexibility
setting with setting with setting with setting with
60% locally 90% locally 60% locally 90% locally
constrained constrained constrained constrained
agents agents agents agents

Time (���) 682.0 736.0 659.0 650.0
Correlation 0.80 0.60 0.26 0.39

Table 5.5: Time and accuracy results with small-scale test runs

The third row in Table 5.4 shows the runtime of running each strategy on 30 sample

problem instances. Runtime comparison clearly shows that the building block based

approach significantly saves the computation overhead in selecting the best strategy:

there exists more than 10 fold difference which may grow as the number of agents or

strategies to consider increases. Here, a question to be answered is as follows:

� Can small-scale test runs provide accurate performance prediction with signifi-

cantly less time?

In Table 5.5, the second row shows the computation overhead of small-scale test

runs (running 30 sample problem instances where the number of agents is 64), and

the third row shows the correlation between the original experimental results and the

(experimental) results in the small-scale test runs.

While the computation overhead in Table 5.5 is similar with the overhead of build-

ing block approach (interaction method) in Table 5.4, the correlation which indicates

the accuracy of performance prediction is very low overall. problem settings. That is,

116

small-scale test runs cannot provide accurate performance prediction. Therefore, the

distributed POMDP based model with building block approach can be of practical use

in predicting the best performing strategy given a domain.

117

Chapter 6

Related Work

In this chapter, we will present related works on multiagent conflict resolution, perfor-

mance estimation, and decomposition for MDP and POMDP, and discuss how they are

related to my thesis work.

6.1 Multiagent Conflict Resolution Techniques

Researchers have investigated various techniques for multiagent conflict resolution

such as constraint satisfaction [Liu and Sycara, 1993; Sadeh and Fox, 1996; Sathi

and Fox, 1989], argumentation-based negotiation [Chu-Carroll and Carberry, 1995;

Sycara, 1988], and auction [Walsh and Wellman, 1998; Hunsberger and Grosz, 2000].

In this section, before presenting previous works in those areas, we first introduce DCSP

research in general.

6.1.1 General DCSP Techniques

Yokoo, Durfee, Ishida, and Kuwabara pioneered the area of asynchronous DCSP algo-

rithms by developing asynchronous backtracking (ABT) algorithm which is a dis-

tributed, asynchronous version of a backtracking algorithms [Yokoo et al., 1992]. In

the ABT algorithm, the priority of variables/agents is determined and each agent com-

municates its tentative value assignment to neighboring agents. An agent changes its

assignment if its current value assignment is not consistent with the assignment of higher

118

priority agents. If there exists no consistent value, an agent generates a new constraint

(called nogood), and communicates it to a higher priority agent: thus, the higher priority

agent changes its value.

Yokoo developed the asynchronous weak-commitment algorithm in which the prior-

ity order of agents changes dynamically during search [Yokoo, 1995]. When an agent

cannot find a consistent value with higher priority agents, the agent comes to have the

highest priority. As a result, when agents make non-solution value assignments, they can

revise them without exhaustive search. Later, Yokoo and Hirayama extended the asyn-

chronous weak-commitment algorithm to deal with multiple variables per agent [Yokoo

and Hirayama, 1998].

Inspired by a breakout algorithm [Morris, 1993] in centralized CSP, Yokoo and

Hirayama developed the distributed breakout algorithm which is not a complete algo-

rithm but improves the performance over the asynchronous backtracking algorithm in

critically difficult graph coloring problems [Yokoo and Hirayama, 1996]. In the algo-

rithm, each agent tries to minimize the number of constraint violation by exchanging

its current value and the possible amount of its improvement (decrease of the violation

number) among neighboring agents. Only the agent that can maximally reduce the vio-

lation number is given the right to change its value. Recently, Zhang and Wittenburg

re-investigated this distributed break algorithm [Zhang and Wittenburg, 2002]. They

showed that, for an acyclic graph, the distributed breakout algorithm is complete. How-

ever, in the worst case, the algorithm never terminates for cyclic graphs. They proposed

stochastic approach to overcome the problem in cyclic graphs.

In the above approaches, when a deadend is detected, a new constraint is created

and communicated among agents. A different approach which does not require such

new constraint creation is the distributed backtracking algorithm [Hamadi et al., 1998].

119

In the distributed backtracking algorithm, agents maintain partial ordering by which

each agent knows which agents are its children or parents in the ordering. When no

value satisfies the constraints with children agents, an agent notifies its lowest parent

that tries another value. Bessière et al. developed a dynamic version of this distributed

backtracking algorithm where the ordering of agents change dynamically [Bessière et

al., 2001].

The DCSP algorithms described above assume the case where access to variables is

restricted only to agents that own the variable, but the information about constraints are

shared among relevant agents. In contrast, Silaghi et al. developed a DCSP algorithm

(called asynchronous aggregation search) for the case where constraints are private but

variables can be manipulated by any agent [Silaghi et al., 2000]. In the asynchronous

aggregation search, the basic search mechanism is based on asynchronous backtracking,

but agents exchange information about aggregated valuations for variable combination

(instead of individual values) by using Cartesian product representation.

Our locally cooperative strategies (described in Chapter 3) can be seen as value

ordering heuristics in DCSP. By incorporating extra local constraint communication,

the locally cooperative strategies could increase the performance of the above DCSP

algorithms other than the distributed backtracking algorithm which have fixed value

ordering and the asynchronous aggregation search where local constraints are private.

6.1.2 DCSP Agent Ordering

While our locally cooperative strategies are akin to value ordering heuristics in DCSP, in

the DCSP literature, value ordering heuristics have been largely uninvestigated. Instead,

some researchers have developed techniques for agent ordering as follows.

120

Collin et al. first investigated the feasibility of DCSP and showed that ordering of

agents is necessary to converge in DCSP [Collin et al., 1991]. In the asynchronous

commitment algorithm by Yokoo [Yokoo, 1995], agents ordering changes dynamically

based on the principle of “constrained agent first”: where an agent cannot find a consis-

tent value, it becomes the highest agent.

Armstrong and Durfee investigated various heuristics to determine efficient agent

ordering [Armstrong and Durfee, 1997]. They showed that the best agent ordering is

based on the cumulative difficulty of finding assignments to agents’ local variables,

and less costly heuristics sometimes perform better than others depending on constraint

structure. They also applied genetic algorithm to learn weights for combined heuristics,

which led to the best performance.

Silaghi et al. proposed a general heuristic for agent ordering in asynchronous dis-

tributed search [Silaghi et al., 2001]: agents propose orders by communicating ordering

messages and resolve inconsistency in the orders with history (number of past conflicts

for variables). Since our investigation of the locally cooperative strategies is based on

the reasoning about how to vary the degree of cooperativeness to different agents. Agent

ordering is a key base for such variation in cooperativeness. Combining efficient value

ordering strategies and agent ordering techniques will further enhance the performance

of DCSP based conflict resolution.

6.1.3 CSP-based Conflict Resolution Approach

Sathi and Fox applied constraint satisfaction approach to resolve conflicts in resource

allocation [Sathi and Fox, 1989]. Agents’ objectives are represented as constraints

together with their associated utilities. When a conflict occurs, agents modify their

individual solutions or constraints until a joint compromise is reached. Three operators

121

(composition, reconfiguration and relaxation) are used to modify the current solutions

or constraints. However, in the modification, these operators do not take other agents’

local constraints into account as our locally cooperative strategies do.

Sadeh and Fox also applied constraint satisfaction techniques to resolve conflicts in

job shop scheduling problems which are known to be NP-complete [Sadeh and Fox,

1996]. To reduce the size of search space for the problem, they investigated the method

to select the order in which variables are instantiated and values are tried for each vari-

able. Their value ordering exploits domain knowledge in computing the probability

that a solution will have resource contention in the future. While our strategies defined

in Section 3 can be seen as local information-based value ordering heuristics in DCSP

(Distributed Constraint Satisfaction Problems), the heuristic by Sadeh and Fox requires

global information and has been applied only to centralized problem solving.

Liu and Sycara developed DCSP-based conflict resolution mechanism for distributed

scheduling problems [Liu and Sycara, 1993; 1996]. In the mechanism, each resource is

assigned to a resource agent which enforces capacity constraints on resources, and each

job is assigned to an order agent which maintains temporal constraints on jobs. They

developed value ordering heuristics to decide which activities to move for conflict res-

olution: the order agent selects a new activity based on the cost of replacing activities

and the resource agent shifts activities to minimize the amount of time shift. While their

approach improved performance over the min-conflict heuristic in small scale schedul-

ing tasks, agent’s decision is based on local information and the coordination between

agents (e.g., decision for which agent to revise its activities) is managed by a central

agent which has only contention ratio information of the agents, which does not guar-

antee completeness. In contrast, our cooperative strategies are focused on improving

122

the performance of conflict resolution convergence to a complete solution in large scale

applications.

Darr et al. investigated interval-based DCSP in concurrent engineering design prob-

lems. However, they focused on maintaining consistency which reduces design space

by eliminating non-solution space. While they also investigated decomposibility tech-

nique for backtracking-free search, their investigation focuses on maintaining consis-

tency by communicating legal intervals for agents’ domains [D’Ambrosio et al., 1996;

Darr and Birmingham, 1994]. In contrast, we focus on the strategy to exploit the com-

municated information. Furthermore, their experimentation is limited only into a small-

scale elevator configuration problem.

6.1.4 Learning Coordination Strategies

Significant works in multiagent learning are focused on learning to select the right coor-

dination strategy [Matos et al., 1998; Prasad and Lesser, 1997; Excelente-Toledo and

Jennings, 2002]. Prasad and Lesser developed a learning algorithm by which agents

learn to choose appropriate, situation specific strategies from a set of available strategies

[Prasad and Lesser, 1997]. In the learning phase, agents store meta-level information

about a given situation and the performance for each strategy. After learning is com-

plete, agents select a strategy based on the similarity between the current situation and

past cases. The strategies in their work focus on the type of information exchange (e.g.,

whether an agent local information is communicated to all agents or previously commit-

ted agents) rather than the reasoning about which action or plan to choose.

Excelente-Toledo and Jennings investigated reinforcement learning techniques for

multiagent coordination [Excelente-Toledo and Jennings, 2002]. They applied Q-

learning, a reinforcement technique, since it does not require an exact model of the

123

environment. In their approach, agents learn which coordination mechanism to choose

given a certain task which requires cooperation from others. Here, the coordination

mechanisms are in an abstract form (a tuple of cost and time) without explicit descrip-

tion of which actions are involved in a strategy.

While the above learning approaches were applied to cooperative agents, Matos,

Sierra, and Jennings used a genetic algorithm approach for agents to learn which strategy

to use in a competitive environment [Matos et al., 1998]. Here, a strategy is a function to

determine how agents change their values to negotiate in a market. Agents learn which

strategy (function) to use in a given situation (e.g., a specific type of seller or buyer).

The goal of learning strategies is related to our goal of choosing the right strategy.

However, one key difference is that the learning work focuses on enabling each agent

to select a strategy. Instead, our focus is on a complementary goal of trying to predict

the overall performance of the entire multiagent system given a set of strategies. Fur-

thermore, the learning approach has a scalability issue. In a large scale system, learning

may not converge (within an appropriate time) in particular when agents learn simulta-

neously.

6.1.5 Other Conflict Resolution Approaches

Sycara developed an argumentation-based negotiation system called PERSUADER, a

program to resolve labor disputes [Sycara, 1988]. Negotiation is performed to resolve

goal conflicts through compromise which involves cycles of proposal generation and

goal relaxation. Case-based reasoning and preference analysis is used to generate argu-

ments. Agents’ utilities associated with each of the conflicting goals are used to rank

possible compromises without knowing private information of the other agents.

124

While Sycara’s negotiation system is for non-cooperative domains, Chu-Carroll and

Carberry also investigated dialogue based negotiation system in a collaborative envi-

ronment [Chu-Carroll and Carberry, 1995]. In their system, agents reason about which

information to share to resolve goal conflicts under uncertainty. While these negotia-

tion systems were successfully applied for conflict resolution in both cooperative and

non-cooperative systems, such negotiation systems have been used for small size appli-

cations (often with two agents) and have not been applied to large scale systems.

Jung and Tambe also developed an argumentation-based negotiation system, called

CONSA, for multiagent conflict resolution in cooperative environments [Tambe and

Jung, 1999]. CONSA (COllaborative Negotiation System based on Argumentation) is

focused on exploiting the benefits of argumentation in a team setting where collaborative

agents do not need to hide information. In their approach, conflict resolution is cast as

a team problem, so that the teamwork knowledge developed in the multiagent literature

[Tambe, 1997] can be exploited. They provided novel argumentation strategies in a

team setting such as improving the quality of teammate’s arguments by providing more

concrete justifications.

Walsh and Wellman proposed market-based approach for decentralized scheduling

which used bidding mechanism to allocate resources [Walsh and Wellman, 1998]. Self-

interested bidders and a central auctioneer continue the cycle of revising bids until no

agent chooses to revise its bid. While market-based approach is inherently for compet-

itive environment with self-interested agents, it has been also applied for cooperative

agents.

Hunsberger and Grosz applied combinatorial auction mechanism for collaborative

planning [Hunsberger and Grosz, 2000]. Multiple agents bid for a group activity con-

sidering their commitments to their own tasks and new opportunities for their team.

125

Given conflicting multiple bids, a central agent computes the best combination of the

bids. These market-based approaches require minimal communication overhead (only

bid communication) and agents’ decision making is only based on each agent’s local

information because of privacy. In contrast, our work is based on local communication

of agents’ private constraints which increases speedup in conflict resolution convergence

without significantly increasing the communication overhead.

Chia, Neiman, and Lesser investigated agent coordination issues in a distributed

dynamic scheduling system for airport ground service [Chia et al., 1998]. They investi-

gated the lack of coordination among agents that can exist even when agents have com-

plete global information about resources. It was shown that, when agents are not able to

model the global resource state and possible activities of other agents, scheduling can-

not be done effectively. They classified two types of actions, poaching and distraction,

that result from such lack of coordination, and provided remedial methods to address

the problems.

Vaughan, St�y, Sukhatme, and Mataric investigated conflict resolution among mul-

tiagents on embedded systems [Vaughan et al., 2000]. They demonstrated the utility of

an aggressive competition to reduce interference and increase efficiency in a multi-robot

system. Given a resource conflict, each robot compares its own level of aggression with

that displayed by others; if smaller, it yield the resource. In a realistic multi-robot trans-

port task, this aggressive signaling strategy showed better performance than previous

anti-interference techniques.

126

6.2 Performance Estimation in Constraint Satisfaction

Problems

Researchers have investigated performance prediction for different heuristics in central-

ized constraint satisfaction problems. There are two approaches in the investigation.

First, they estimate the size of search space for a given heuristic [Allen and Minton,

1996; Knuth, 1975; Lobjois and Lemaitre, 1998]. Second, probabilities for decreas-

ing or increasing the number of conflicts are computed to compare different heuristics

[Minton et al., 1992; Musick and Russell, 1992].

6.2.1 Cost Estimation by Estimating Search Space Size

Allen and Minton provided a sampling method to select the best heuristic by estimating

the cost of different heuristics in a given domain [Allen and Minton, 1996]. By running

different heuristics for a very short period of time, they estimated the number of con-

straint checks for a node and the branching factor of a search tree. Using the estimation,

they computed the total expected number of constraint checks which corresponds to the

time until a solution is found in centralized constraint satisfaction problems.

Lobjois and Lemaitre developed a performance prediction method for branch and

bound algorithm [Lobjois and Lemaitre, 1998]. Their method is based on Knuth’s sam-

pling method which estimates the efficiency of a backtracking program on a particular

instance by iteratively generating random paths in a search tree [Knuth, 1975]. In apply-

ing Knuth’s method for branch and bound algorithm, they fixed an upperbound which

changes in a real search, leading to inaccuracy in some cases. While these approaches

127

have been applied to centralized CSP, they are not feasible in DCSP since multiple

agents asynchronously explore the search space for a given problem instance. 1

6.2.2 Probabilistic Analysis of Heuristics

Minton et al. provided a mathematical analysis for when min-conflict heuristic performs

better than random value selection [Minton et al., 1992]. They showed that, given a cer-

tain number of constraint violation (#), the probability of decreasing (or increasing) the

violation number by min-conflict heuristic, *����� (*�����), depends on the violation

number #. The ratio *�����)*����� for a heuristic provides a useful indication of the

heuristic performance: the greater, the better performance. Their analysis indicates that

min-conflict heuristic performs well in sparsely-connected graphs.

Musick and Russell developed a method to predict the total amount of time taken

by the min-conflict heuristic [Musick and Russell, 1992]. They built a Markov Chain

where state is represented with the number of constraint violation. Transition (whether

violation number increases or decreases by one) probabilities between states were based

on the mathematical analysis by Minton et al [Minton et al., 1992]. Using the Markov

chain, they computed the expected number of steps (value changes) given a certain

number of current violations.

These investigations have contributed to theoretical foundation for heuristic perfor-

mance analysis in centralized CSP. However, there has been no theoretical investigation

for such performance analysis in DCSP literature, and the applicability of the above

approaches is limited due to their simplifying assumptions such as (i) each agent has the

same domain and external constraints, (ii) there is only one unique solution, and (iii)

1Note that DCSP is not dividing a search space into subproblems. Thus, we cannot apply such an
approach that divides a problem and adds the estimated cost for each subproblem.

128

only one variable changes its value at one time. In particular, the third assumption does

not apply to DCSP since, in most advanced DCSP algorithms including AWC, agents

change their variables’ values simultaneously.

6.3 MDP and POMDP Decomposition

In the MDP and POMDP literature, researchers have investigated decomposition tech-

niques to deal with a large state space which is exponential in the number of state vari-

ables [Dean and Lin, 1995; Hauskrecht et al., 1998; Parr, 1998; Pineau et al., 2001].

Basic approach is to divide a given problem (with a large state space) into subprob-

lems, solve the subproblems independently, and merge the solution of each subproblem.

Often, the merged solutions is an approximation to a real optimal solution.

Dean and Lin investigated methods that decompose global planning problems into a

number of local problems and combine the local solution to generate a global solution

[Dean and Lin, 1995]. They presented algorithms that decompose planning problems

into smaller problems given an arbitrary partition of the state space. One issue is how

to compute the value of a state which may transit into another subproblem for certain

actions (for a local problem, the state transition and cost in the other local problems

are not known). They applied an iterative approximation technique to converge to an

optimal solution.

Parr presented two approaches to decomposing and solving large Markov decision

problems, a complete decoupling method and a partial decoupling method [Parr, 1998].

In the complete decoupling method, a policy cache is created for each region. For every

possible outer space state, there exists a near optimal policy (called 3-optimal policy) in

the cache, and the combination of those near optimal policy is guaranteed to produce a

global policy with a certain error bound. In the partial coupling method, to remedy the

129

large computational overhead of the complete coupling method, it starts from imperfect

policies that may not be 3-optimal, but the policy cache is updated to reduce errors when

the Bellman error exceeds for each state.

While the above approaches exploit state decomposition, Hauskrecht et al. proposed

a hierarchical model with macro-actions (action abstraction) [Hauskrecht et al., 1998].

Inspired by the idea of planning with macro-actions by Precup, Sutton, and Singh [Pre-

cup et al., 1998], they defined an abstract MDP model by treating macro-actions as

local policies in certain regions and restricting states only to boundary states of regions

in the original space. Optimal macro-actions are computed with this abstract MDP

model. They also showed the reusability of macro-actions in different domains which

have some commonalities (e.g., maze with similar structure).

Compared with hierarchical decomposition works on MDP, there has been little

work on extending it to POMDP. Recently, Pineau et al. provided a hierarchical

approach to reduce problem space in POMDP by partitioning action space into spe-

cialized groups of related actions [Pineau et al., 2001]. In their application domain

(mobile robotic assistant), the space of actions is naturally decomposed into a hierarchy

of actions depending on the actions’ applicability in different situations: for instance,

navigation (e.g., move, turn, etc.) and interaction (e.g., speak, display, etc.) Based on

the action hierarchy, a POMDP is transformed into a collection of smaller POMDPs:

each sub-POMDP independently learns a policy with only relevant actions.

While the above works are related to our building block based approach in com-

position subproblem solutions, we are really interested in applying these composition

techniques for performance modeling, not finding an optimized policy. For instance,

our techniques are heavily influenced by the need to capture the long-tailed phenomena

in conflict resolution.

130

Chapter 7

Conclusion and Future Work

The research in this dissertation is motivated by practical concerns in collaborative

multiagent systems. Distributed, collaborative agents are promising to play an impor-

tant role in large-scale multiagent applications such as distributed sensors, distributed

spacecraft, and robot teams for surveillance. In such large scale systems, conflicts

are inevitable even among collaborative agents over shared resources, joint plans, or

task assignments since no single agent can have complete knowledge of the world.

An agent’s action/plans/resource choice based on local information conflicts with other

agents’ choices which are also based on limited information of their own.

Since agents need to resolve conflicts in a distributed manner without global

knowledge (because of drawbacks in centralized conflict resolution such as computa-

tion/communication bottle neck, fault tolerance, etc.), conflict resolution is a fundamen-

tal challenge in multiagent systems. As shown in Chapter 2, fast conflict resolution is

required in many multiagent applications since the delay in conflict resolution can lead

to significant system performance degradation. In this chapter, we will review our major

techniques for fast conflict resolution and conclusions presented in previous chapters of

this thesis. Remaining questions for future work and possible approaches to deal with

them will follow.

131

7.1 Locally Cooperative Strategies

Given a large group of agents, selecting the right action, plan, or resource to resolve con-

flicts, i.e., selecting the right conflict resolution strategy, can have a significant impact

on their performance (e.g., speed of conflict resolution convergence to a complete solu-

tion). Our fist contribution in this thesis is the development of novel conflict resolution

strategies based on the notion of local cooperativeness. The new strategies (defined in

Chapter 3) significantly increase the speedup of conflict resolution convergence, com-

pared with an original state-of-the-art DCSP conflict resolution algorithm. As noted in

Chapter 1, they are based on the following hypothesis:

� “While most constraint-based or market-based approaches for conflict resolution

have focused on minimal communication, in a cooperative team setting, some

extra local communication can significantly increase the speedup of conflict reso-

lution convergence.”

Communication of local information enables agents to take into account the situa-

tion of neighboring agents in selecting their choice of actions, plans, or resources. Local

cooperativeness is measured by how much flexibility (number of action/plan/resource

choices) is given to neighboring agents. We formalized different locally cooperative

strategies by varying the degree of cooperativeness to neighboring agents and imple-

mented the strategies in DCSP framework.

For the investigation of strategy performance, we develop a run-time model since

an existing popular performance measurement does not take into account the overhead

from extra communication in our approach. The issue of run-time measurement is a

key topic in DCSP research community and the run-time model presented in this thesis

is the first approach that takes into account the overhead from increased message size

132

and number with extra communication. Systematic experimental investigation shows

the following results: (from the tests in 351 problem settings with 208,845 experimental

runs)

� Strategies based on extra communication can indeed speed up the conflict resolu-

tion convergence in a significant range of problem settings, particularly for harder

problems with more than an order of magnitude difference in run-time (compared

with the best published DCSP technique, AWC [Yokoo and Hirayama, 1998]).

– The overhead from increased message processing and communication with

extra communication is not overwhelming, and do not cause serious degra-

dation in conflict resolution convergence.

� It is not always the case that more information communication leads to improved

performance (in some cases, strategies with extra communication perform worse

than a strategy that does not communicate local information).

� The strategy that provides maximum flexibility to all neighboring agents is not

always the best.

� No single strategy dominates the other strategies across all domains (a strategy

that performs the best in one domain setting can be an order of magnitude slower

than another strategy in a different setting).

Furthermore, based on systematic experimentation, we provide categorization of

domains where high speedups can be achieved by the strategies with extra communi-

cation. Given a domain, such categorization can provide a guidance for whether to

apply our approach or not.

133

The research in this thesis has implications in many different settings. Coordina-

tion or conflict resolution strategies based on resource flexibility have been investigated

in multi-linked negotiation [Zhang and Lesser, 2002], distributed multiagent planning

[Decker and Lesser, 1995; Prasad and Lesser, 1997; von Martial, 1991], and centralized

planning/scheduling [Nareyek, 2001; Sadeh and Fox, 1996; Smith, 1994]. While flex-

ibility in such application does not distinguish agents, the conflict resolution strategies

with different degrees of cooperativeness (presented in Chapter 3) can be applied to the

above applications for faster convergence. Furthermore, the flexibility definition is gen-

eral enough to deal with more complex types of constraints (e.g., valued constraint) so

that flexibility can make a distinction between values that satisfy different constraints.

7.2 Distributed POMDP based Performance Models for

Conflict Resolution Strategies

To gain the maximum speedup in conflict resolution convergence, we need to predict

the right strategy to apply in a given domain. While performance models for conflict

resolution strategies could aid in selecting the right strategy, such models remain largely

uninvestigated in the multiagent literature. Researchers often rely on running sample

problems in a testbed to compare the performance of their strategies, which is very

costly in large scale systems.

As the second contribution of this thesis, we provide innovative performance mod-

eling approach by developing formal models based on a distributed POMDP (partially

observable Markov decision process) framework such as MTDP [Pynadath and Tambe,

2002]. A conflict resolution strategy is mapped onto an MTDP policy, and strategies

are compared by evaluating their corresponding policies. In applying the distributed

134

POMDP-based model to analyze strategy performance in large-scale systems, the most

significant obstacle is the scalability: the search space explodes combinatorially as the

number of states increases.

To address scale-up issues, we used small-scale models (called building blocks) that

represent the local interaction among a small group of agents. We investigated several

ways to combine the building blocks, and compared with performance prediction results

with real experimental results. Combining building blocks by taking into account their

interaction - via agents acting as docking points between building blocks - perform the

best in predicting the performance of conflict resolution strategies: better performing

strategies can be distinguished from worse performing strategies with statistical sig-

nificance. Compared with previous works on MDP and POMDP decomposition, the

novelty of our building block decomposition technique is three fold:

� Rather than exploiting geometric clusters within a domain (suitable in a single-

agent POMDP), building-blocks exploit the multiagent nature of the domain —

the decomposition is based on clustering agents with close interactions with each

other.

� We are focused on evaluating policies rather than searching for optimal policies.

� Observability conditions within a building block can be exploited to further reduce

the complexity of policy evaluation.

Our approach in modeling the performance of conflict resolution strategies points the

way to new tools for strategy analysis and performance modeling in multiagent systems

in general.

135

7.3 Future Work

Given the complex and dynamic nature of multiagent systems, there exists a variety of

challenging problems to explore in multiagent conflict resolution as follows:

1. Uncertainty: In many applications (particularly in harsh or hostile environ-

ments), the information that agents receive has uncertainty since communication

or sensing is not always perfect. For instances, in the distributed sensor domain

(described in Chapter 2), sensor may have a noise in detecting a target or the com-

munication between sensors can be interrupted by enemy’s jamming signals. In

the CSP and DCSP literature, probabilistic approach has been used to deal with

this uncertainty. Recently, Scerri et al. applied probabilistic representation for

tasks (targets to track) in distributed sensor domain [Scerri et al., 2003]: agents

order tasks based on their probabilities and assign resources to most probable

tasks. We are interested in how to make agents reason about flexibility to neigh-

boring agents given uncertainty in neighbors’ local constraints as well as its own

ones.

2. Extension in performance modeling: In the DCSP literature, the impact on

performance by communication has been studied by several researchers. Mam-

men and Lesser investigated how the timing of transmitting subproblem solutions

between agents has an impact on performance solving efficiency [Mammen and

Lesser, 1998]. Fernàndez et al. also modeled the impact of communication delay

on the performance of DCSP algorithms [Fernàndez et al., 2003]. In our ini-

tial performance modeling (Chapter 5), agents instantly communicate their partial

solution and agents’ observation is assumed to be perfect. The decision of when

to communicate can be modeled by adding communication action as was done

136

by Pynadath and Tambe in their helicopter transportation domain [Pynadath and

Tambe, 2002]. Communication delay or message loss can be also modeled with

observation functions. With additional actions and observation functions, we plan

to model conflict resolution strategies in more complex environments in our future

study.

3. Optimization: In our experiments in Chapter 3, we did not assume over-

constrained problems where all the constraints cannot be satisfied at the same

time. However, in many multiagent applications, there could be over-constrained

situations. For instance, in the distributed sensor domain (described in Chapter 2),

a team of sensor agents may not be able to track all the targets if the number of tar-

gets exceeds its tracking capacity. In the DCSP literature, some researchers have

investigated constraint optimization problem as follows: Yokoo and Hirayama

have studied maximizing the number of satisfied constraints [Hirayama and

Yokoo, 1997] and satisfying maximal higher order constraints given a hierarchy of

constraints [Hirayama and Yokoo, 2000]. Recently, Modi et al. developed a com-

plete asynchronous algorithm which is based on Yokoo’s Asynchronous Back-

tracking algorithm [Modi et al., 2003]. Lemaitre and Verfaillie also presented an

incomplete method for valued DCSP [Lemaitre and Verfaillie, 1997].

While all the previous works on distributed constraint optimization above

are based on static agent ordering and value ordering, efficient value ordering

could enhance the speed of finding an optimal solution. For instance, in exploit-

ing branch and bound approach, finding an upper bound early can significantly

save search space. The communication of local constraints could enable agents to

reason about probable upper bound without exhaustive search for all the domain

values. Furthermore, in the case of constraint relaxation, communicating local

137

constraints with their valuations may help to decide which local constraints to

relax.

4. Dynamism: Constraints in multiagent applications can vary with time. For

instance, in the spacecraft domain (described in Chapter 2), constraints may

dynamically change as scientific requests change or unexpected events occur.

If a device fails or shows less performance than expected (e.g., battery power

exhausted earlier than expected), it may add additional constraints that are not

initially taken into account. On the contrary, some requirements may be deleted

as some investigations are completed. Then, given the dynamism of constraints,

plans or task assignments computed before may not be a solution any more. In

contrast, previously abandoned plans or assignments can be considered as a new

solution in the case of constraint relaxation. This dynamism can be formalized

within the framework of dynamic CSP and DCSP [Mittal and Falkenhainer, 1990;

Verfaillie and Schiex, 1994; Modi et al., 2001]. We plan to investigate the perfor-

mance of different local cooperativeness based strategies in dynamically chang-

ing environments where both external and local constraints are added or deleted

unexpectedly.

In summary, this thesis addresses multiagent conflict resolution problem which is a

fundamental challenge in large scale multiagent applications. We provided novel strate-

gies to enhance the performance of conflict resolution convergence and developed a

distributed POMDP based models to select the right strategy in a given domain. This

thesis also points out several open issues for future investigation.

138

Reference List

[Allen and Minton, 1996] J. Allen and S. Minton. Selecting the right heuristic algo-
rithm: Runtime performance predictors. In Proceedings of Canadian Artificial Intel-
ligence Conference, 1996.

[Angelopoulos and Panetta, 1998] V. Angelopoulos and P.V. Panetta, editors. Science
Closure and Enabling Technologies for Constellation Class Missions. University of
California, Berkeley, 1998.

[Armstrong and Durfee, 1997] A. Armstrong and E.H. Durfee. Dynamic prioritization
of complex agents in distributed constraint satisfaction problems. In Proceedings of
International Joint Conference on Artificial Intelligence, 1997.

[Barrett, 1999] A. Barrett. Autonomy architectures for a constellation of spacecraft.
In Proceedings of International Symposium on Artificial Intelligence Robotics and
Automation in Space, 1999.

[Bernstein et al., 2000] D. S. Bernstein, S. Zilberstein, and N. Immerman. The com-
plexity of decentralized control of mdps. In Proceedings of the International Confer-
ence on Uncertainty in Artificial Intelligence, 2000.

[Bessière et al., 2001] C. Bessière, A. Maestro, and P. Meseguer. Distributed dynamic
backtracking. In Proceedings of the International Workshop on Distributed Con-
straint Reasoning, 2001.

[Boutilier, 1999] Craig Boutilier. Sequential optimality and coordination in multiagent
systems. In Proceedings of the International Joint Conference on Artificial Intelli-
gence, 1999.

[Calder et al., 1993] R. B. Calder, J. E. Smith, A. J. Courtemanche, J. M. F. Mar, and
A. Z. Ceranowicz. Modsaf behavior simulation and control. In Proceedings of the
Conference on Computer Generated Forces and Behavioral Representation, 1993.

[Cheeseman et al., 1991] P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the
really hard problems are. In Proceedings of the International Joint Conference on
Artificial Intelligence, 1991.

139

[Chia et al., 1998] M. Chia, D. Neiman, and V. Lesser. Poaching and distraction in
asynchronous agent activities. In Proceedings of the International Conference on
Multi-Agent Systems, 1998.

[Chu-Carroll and Carberry, 1995] J. Chu-Carroll and S. Carberry. Generating
information-sharing subdialogues in expert-user consultation. In Proceedings of the
International Joint Conference on Artificial Intelligence, 1995.

[Collin et al., 1991] Z. Collin, R. Dechter, and S. Katz. On the feasibility of distributed
coonstraint satisfaction. In Proceedings of the International Joint Conference on
Artificial Intelligence, 1991.

[D’Ambrosio et al., 1996] J. G. D’Ambrosio, T. Darr, and W. P. Birmingham. Hierar-
chical concurrent engineering in a multiagent framework. Cocurrent Engineering:
Research and Applications Journal, 4, 1996.

[Darr and Birmingham, 1994] T. P. Darr and W. P. Birmingham. An attribute-space an
attribute-space representation and algorithm for concurrent engineering. Technical
Report CSE-TR-221-94, Department of Electrical Engineering and Computer Sci-
ence, University of Michigan, Ann Arbor, October 1994.

[Dean and Lin, 1995] T. Dean and S. Lin. Decomposition techniques for planning in
stochastic domains. In Proceedings of the International Joint Conference on Artificial
Intelligence, 1995.

[Decker and Lesser, 1995] K. Decker and V. Lesser. Designing a family of coordination
algorithms. In Proceedings of the International Conference on Multi-Agent Systems,
1995.

[Durfee, 1991] E. H. Durfee. The distributed artificial intelligence melting pot. IEEE
Transactions on Systems, Man, and Cybernetics, 21(6), 1991.

[Durfee, 2001] E. H. Durfee. Distributed problem solving and planning. Lecture Notes
in Computer Science, 2086, 2001.

[Elson, 2003] J. Elson. Time Synchronization in Wireless Sensor Networks. PhD thesis,
School of Engineering, University of California, Los Angeles, 2003.

[Excelente-Toledo and Jennings, 2002] C. Excelente-Toledo and N. Jennings. Learn-
ing to select a coordination mechanism. In Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent Systems, 2002.

[Fernàndez et al., 2003] C. Fernàndez, R. Béjar, B. Krishnarnachari, and C. Gomes.
Communication and computation in distributed csp algorithms. In Proceedings of
International Conference on Principles and Practice of Constraint Programming,
2003.

140

[Ganesan et al., 2002] D. Ganesan, D. Estrin, and J. Heidemann. Dimensions: Why do
we need a new data handling architecture for sensor networks. In Proceedings of the
First Workshop on Hot Topics in Networks (Hotnets-I), 2002.

[Gomes et al., 2000] C. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed phe-
nomenon in satisfiability and constraint satisfaction problems. Journal of Automated
Reasoning, 24, 2000.

[Gordon et al., 1999] D. Gordon, W. Spears, O. Sokolsky, and I. Lee. Distributed spa-
tial control, global monitoring and steering of mobile physical agents. In Proceedings
of IEEE International Conference on Information, Intelligence, and Systems, 1999.

[Grosz, 1996] B. Grosz. Collaborating systems. AI magazine, 17(2), 1996.

[Hamadi et al., 1998] Youssef Hamadi, Christian Bessière, and Joël Quinqueton. Back-
tracking in distributed constraint networks. In Proceedings of the European Confer-
ence on Artificial Intelligence, 1998.

[Haralick and Elliot, 1980] R. M. Haralick and G. L. Elliot. Increasing tree search effi-
ciency for constraint satisfaction problems. Artificial Intelligence, 14:263–313, 1980.

[Hauskrecht et al., 1998] M. Hauskrecht, N. Meuleau, L. P. Kaelbling, T. Dean, and
C. Boutilier. Hierarchical solution of Markov decision processes using macro-
actions. In Proceedings of the International Conference on Uncertainty in Artificial
Intelligence, 1998.

[Hill et al., 2000] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J.
Pister. System architecture directions for networked sensors. In Architectural Support
for Programming Languages and Operating Systems, 2000.

[Hirayama and Yokoo, 1997] K. Hirayama and M. Yokoo. Distributed partial constraint
satisfaction problem. In Proceedings of the International Conference on Principles
and Practice of Constraint Programming, 1997.

[Hirayama and Yokoo, 2000] K. Hirayama and M. Yokoo. An approach to over-
constrained distributed constraint satisfaction problems: Distributed hierarchical con-
straint satisfaction. In Proceedings of the International Conference on Multi-Agent
Systems, July 2000.

[Hirayama et al., 2000] K. Hirayama, M. Yokoo, and K. Sycara. The phase transition
in distributed constraint satisfaction problems: Fist results. In Proceedings of the
International Workshop on Distributed Constraint Reasoning, 2000.

[Hogg and Williams, 1994] T. Hogg and C. P. Williams. The hardest constraint prob-
lems: A double phase transition. Artificial Intelligence, 69:359–377, 1994.

141

[Hunsberger and Grosz, 2000] L. Hunsberger and B. Grosz. A combinatorial auction
for collaborative planning. In Proceedings of the International Conference on Multi-
Agent Systems, 2000.

[Kitano et al., 1999] H. Kitano, S. Tadokoro, I. Noda, H. Matsubara, T. Takahashi,
A. Shinjou, and S. Shimada. Robocup rescue: search and rescue in large-scale
disaster as a domain for autonomous agents research. In Proceedings of the IEEE
International Conference on System, Man, and Cybernetics, 1999.

[Knuth, 1975] D. E. Knuth. Estimating the efficiency of backtrack programs. Mathe-
matics of Computation, 29, 1975.

[Lemaitre and Verfaillie, 1997] M. Lemaitre and G. Verfaillie. A incomplete method
for solving distributed valued constraint satisfaction problems. In Proceedings of the
AAAI Workshop on Constraints and Agents, 1997.

[Lesser et al., 2003] V. Lesser, C. Ortiz, and M. Tambe, editors. Distributed Sensor
Networks: a Multiagent Perspective. Kluwer Publishing, 2003.

[Lesser, 1999] V. Lesser. Cooperative multiagent systems: A personal view of the state
of the art. IEEE Transactions on Knowledge and Data Engineering, 11(1), January
1999.

[Littman et al., 1995] M. Littman, T. Dean, and L. P. Kaelbling. On the complexity of
solving markov decision problems. In Proceedings of the International Conference
on Uncertainty in Artificial Intelligence, 1995.

[Liu and Sycara, 1993] J. S. Liu and K. Sycara. Distributed constraint satisfaction
through constraint partition and coordinated reaction. In Proceedings of the Inter-
national Workshop on Distributed Artificial Intelligence, 1993.

[Liu and Sycara, 1996] J. Liu and K. Sycara. Multiagent coordination in tightly cou-
pled task scheduling. In Proceedings of the International Conference on Multi-Agent
Systems, 1996.

[Liu et al., 1998] T. H. Liu, A. Goel, C. E. Martin, and K. S. Barber. Classification and
representation of conflict in multi-agents systems. Technical Report TR98-UT-LIPS-
AGENTS-01, The Laboratory for Intelligent Processes and Systems, University of
Texas at Austin, 1998.

[Lobjois and Lemaitre, 1998] L. Lobjois and M. Lemaitre. Branch and bound algorithm
selection by performance prediction. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence, 1998.

142

[Mammen and Lesser, 1998] Dorothy L. Mammen and Victor R. Lesser. Problem struc-
ture and subproblem sharing in multi-agent systems. In Proc. of the Intl. Conf. on
Multi-Agent Systems, 1998.

[Matos et al., 1998] N. Matos, C. Sierra, and N.R. Jennings. Determining successful
negotiation strategies: An evolutionary approach. In Proceedings of the International
Conference on Multi-Agent Systems, 1998.

[Mettler and Milman, 1996] E. Mettler and M. Milman. Space interferometer con-
stellation: Formation maneuvering and control architecture. In Proceedings of the
SPIE International Symposium on Optical Science, Engineering, and Instrumenta-
tion, 1996.

[Minton et al., 1990] S. Minton, M. D. Johnston, A. Philips, and P. Laird. Solving
large-scale constraint satisfaction and scheduling problems using a heuristic repair
method. In Proceedings of the National Conference on Artificial Intelligence, 1990.

[Minton et al., 1992] S. Minton, M. Johnston, A. Philips, and P. Laird. Minimizing con-
flicts: a heuristic repair method for constraint satisfaction and scheduling problems.
Artificial Intelligence, 58:161–205, 1992.

[Mittal and Falkenhainer, 1990] S. Mittal and B. Falkenhainer. Dynamic constraint sat-
isfaction problems. In Proceedings of the National Conference on Artificial Intelli-
gence, 1990.

[Modi et al., 2001] P. Modi, H. Jung, M. Tambe, W. Shen, and S. Kulkarni. A dynamic
distributed constraint satisfaction approach to resource allocation. In Proceedings of
the International Conference on Principles and Practice of Constraint Programming,
2001.

[Modi et al., 2003] P. Modi, W. Shen, M. Tambe, and M. Yokoo. An asynchronous
complete method for distributed constraint optimization. In Proceedings of the Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems, 2003.

[Modi, 2003] P. Modi. Distributed Constraint Optimization and its Application. PhD
thesis, School of Engineering, University of Southern California, 2003.

[Morris, 1993] P. Morris. The breakout method for escaping from local minima. In
Proceedings of the National Conference on Artificial Intelligence, 1993.

[Müller and Dieng, 2000] H. J. Müller and R. Dieng, editors. Computational Conflicts
- Conflict Modeling for Distributed Artificial Intelligent Systems. Springer Verlag
Publishers, 2000.

[Musick and Russell, 1992] R. Musick and S. Russell. How long it will take? In Pro-
ceedings of the National Conference on Artificial Intelligence, 1992.

143

[Nareyek, 2001] A. Nareyek. Local-search heuristics for generative planning. In Pro-
ceedings of the Workshop on AI in Planning, Scheduling, Configuration and Design,
2001.

[Neiman et al., 1994] D. Neiman, David Hildum, V. R. Lesser, and T. W. Sandholm.
Exploiting meta-level information in a distributed scheduling system. In Proceedings
of the National Conference on Artificial Intelligence, 1994.

[Parker, 1993] L. E. Parker. Designing control laws for cooperative agent teams. In
Proceedings of the IEEE Robotics and Automation Conference, 1993.

[Parr, 1998] R. Parr. Flexibile decomposition algorithms for weakly coupled Markov
decision problems. In Proceedings of the International Conference on Uncertainty
in Artificial Intelligence, 1998.

[Peshkin et al., 2000] L. Peshkin, K. Kim, N. Meuleau, and L. P. Kaelbling. Learning
to cooperate via policy search. In Proceedings of the International Conference on
Uncertainty in Artificial Intelligence, 2000.

[Pineau et al., 2001] J. Pineau, N. Roy, and S. Thrun. A hierarchical approach to
POMDP planning and execution. In Proceedings of the ICML Workshop on Hier-
archy and Memory in Reinforcement Learning, 2001.

[Pottie and Kaiser, 2000] G. J. Pottie and W. J. Kaiser. Wireless integrated network
sensors. Communications of the ACM, 43(5), 2000.

[Prasad and Lesser, 1997] N. Prasad and V. Lesser. The use of meta-level information
in learning situation-specific coordination. In Proceedings of the International Joint
Conference on Artificial Intelligence, 1997.

[Precup et al., 1998] D. Precup, R. S. Sutton, and S. Singh. Theoretical results on
reinforcement learning with temporally abstract behaviors. In Proceedings of the
Advances in Neural Information Processing Systems, 1998.

[Puterman, 1994] M. L. Puterman. Markov Decision Processes. John Wiley & Sons,
1994.

[Pynadath and Tambe, 2002] D. Pynadath and M. Tambe. The communicative multia-
gent team decision problem: analyzing teamwork theories and models. Journal of
Artificial Intelligence Research, 2002.

[Rana, 2000] O. Rana. Performance management of mobile agent systems. In Proceed-
ings of the International Conference on Autonomous Agents, 2000.

144

[Rickel and Johnson, 1997] J. Rickel and W. L. Johnson. Pedagogical agents for
immersive training environments. In Proceedings of the International Conference
on Autonomous Agents, 1997.

[Sadeh and Fox, 1996] N. M. Sadeh and M. S. Fox. Variable and value ordering heuris-
tics for the job shop scheduling constraint satisfaction problem. Artificial Intelli-
gence, 86(1), 1996.

[Sathi and Fox, 1989] A. Sathi and M. S. Fox. Constraint-directed negotiation of
resource reallocations. In L. Gasser and M. N. Huhns, editors, Distributed Artifi-
cial Intelligence (Vol. II). Kaufmann, San Mateo, CA, 1989.

[Scerri et al., 2001] P. Scerri, D. Pynadath, and M. Tambe. Adjustable autonomy in
real-world multi-agent environments. In Proceedings of the International Conference
on Autonomous Agents, 2001.

[Scerri et al., 2003] P. Scerri, P. Modi, W. Shen, and M. Tambe. Are multiagent algo-
rithms relevant for robotics applications? a case study of distributed constraint algo-
rithms. In ACM Symposium on Applied Computing, 2003.

[Silaghi et al.,] M. Silaghi, D. Sam-Haroud, and B. Faltings. Consistency maintenance
for abt.

[Silaghi et al., 2000] M. Silaghi, D. Sam-Haroud, and B. Faltings. Asynchronous
search with aggregations. In Proceedings of the National Conference on Artificial
Intelligence, 2000.

[Silaghi et al., 2001] M. Silaghi, D. Sam-Haroud, and B. Faltings. Polynomial-space
and complete multiply asynchronous search with abstraction. In Proceedings of the
International Workshop on Distributed Constraint Reasoning, 2001.

[Smith, 1994] S. Smith. Opis: A methodology and architecture for reactive scheduling.
In Intelligent Scheduling. Morgan Kaufman, San Francisco, 1994.

[Sycara, 1988] K. Sycara. Resolving goal conflicts via negotiation. In Proceedings of
the National Conference on Artificial Intelligence, 1988.

[Tambe and Jung, 1999] M. Tambe and H. Jung. The benefits of arguing in a team. AI
Magazine, 20(4), 1999.

[Tambe et al., 2000] M. Tambe, D. Pynadath, N. Chauvat, A. Das, and G. Kaminka.
Adaptive agent integration architectures for heterogeneous team members. In Pro-
ceedings of the International Conference on Multi-Agent Systems, 2000.

[Tambe, 1997] M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence
Research, 7:83–124, 1997.

145

[Tessier et al., 2000] C. Tessier, L. Chaudron, and H. J. Muller, editors. Conflicting
Agents. Kluwer Academic Publishers, 2000.

[Vaughan et al., 2000] R. T. Vaughan, K. Stoy, G. S. Sukhatme, and M. J. Mataric.
Go ahead, make my day: Robot conflict resolution by aggressive competition. In
Proceedings of the International Conference on Simulation of Adaptive Behavior,
2000.

[Verfaillie and Schiex, 1994] G. Verfaillie and T. Schiex. Solution reuse in dynamic
constraint satisfaction problems. In Proceedings of the National Conference on Arti-
ficial Intelligence, 1994.

[von Martial, 1991] F. von Martial. Coordinating plans of autonomous agents. Lecture
Notes in Computer Science, 610, 1991.

[Walsh and Wellman, 1998] W. Walsh and M. Wellman. A market protocol for decen-
tralized task allocation. In Proceedings of the International Conference on Multi-
Agent Systems, 1998.

[Xuan and Lesser, 2002] P. Xuan and V. Lesser. Multi-agent policies: from central-
ized ones to decentralized ones. In Proceedings of the International Conference on
Autonomous Agents, 2002.

[Xuan et al., 2001] P. Xuan, V. Lesser, and S. Zilberstein. Communication decisions in
multi-agent cooperation: Model and experiments. In Proceedings of the International
Conference on Autonomous Agents, 2001.

[Yokoo and Hirayama, 1996] M. Yokoo and K. Hirayama. Distributed breakout algo-
rithm for solving distributed constraint satisfaction problems. In Proceedings of the
International Conference on Multi-Agent Systems, 1996.

[Yokoo and Hirayama, 1998] M. Yokoo and K. Hirayama. Distributed constraint sat-
isfaction algorithm for complex local problems. In Proceedings of the International
Conference on Multi-Agent Systems, 1998.

[Yokoo et al., 1992] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Distributed
constraint satisfaction for formalizing distributed problem solving. In Proceedings of
the IEEE International Conference on Distributed Computing Systems, 1992.

[Yokoo et al., 1998] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The dis-
tributed constraint satisfaction problem: Formalization and algorithms. IEEE Trans-
actions on Knowledge and Data Engineering, 10(5):673–685, 1998.

[Yokoo, 1995] M. Yokoo. Asynchronous weak-commitment search for solving dis-
tributed constraint satisfaction problems. In Proceedings of the International Confer-
ence on Principles and Practice of Constraint Programming, 1995.

146

[Yokoo, 2000] M. Yokoo. Distributed Constraint Satisfaction: Foundations of Cooper-
ation in Multi-Agent Systems. Springer-Verlag, 2000.

[Zhang and Lesser, 2002] X. Zhang and V. Lesser. Multi-linked negotiation in multi-
agent system. In Proceedings of the International Joint Conference on Autonomous
Agents and Multiagent Systems, 2002.

[Zhang and Wittenburg, 2002] W. Zhang and L. Wittenburg. Distributed breakout revis-
ited. In Proceedings of the National Conference on Artificial Intelligence, 2002.

[Zhang et al., 2003] W. Zhang, G. Wang, Z. Xing, and L. Wittenburg. Low overhead
algorithms for distributed constraint problems in sensor networks. In V. Lesser,
C. Ortiz, and M. Tambe, editors, Distributed Sensor Networks: a Multiagent Per-
spective. Kluwer Publishing, 2003.

147

Appendix A

Comparison between the DCSP

Approach in This Thesis and Globally

Aware DCSP Approach

In the wide spectrum of different levels of non-local awareness, this thesis focuses on a

fixed level of non-local awareness where each agent collects local information only from

its neighboring agents. For brevity, this level of non-local awareness (which is the level

of awareness applied in this thesis) is referred as level-1 awareness. The advantage of

level-1 awareness can be shown in comparing it with one extreme case (in the spectrum

of different non-local awareness levels) where each agent has global awareness (the local

information of all the agents in a given multiagent system).

0.E+00

2.E+06

4.E+06

6.E+06

8.E+06

1.E+07

1.E+07

1.E+07

256 512 1024

Number of agents

m
es

sa
ge

 s
iz

e
to

 p
ro

ce
ss

Level-1 awareness
Global awareness

0.E+00

1.E+06

2.E+06

3.E+06

4.E+06

5.E+06

6.E+06

7.E+06

8.E+06

256 512 1024

Number of agents

co
ns

tr
ai

nt
 c

he
ck

s

Level-1 awareness
Global awareness

(a) Message size to process (b) Constraint checks

Figure A.1: Message size and constraint checks per agent: Assume that each agent
(whose domain size is 40) has four neighbors (in 2D grid topology).

148

Figure A.1 shows message sizes to process and the number of constraints checks

per agent for level-1 awareness and global awareness until a solution is found, varying

the number of agents. 1 As shown in Figure A.1-(a) and (b), the message sizes and the

constraint checks per agent exponentially grow in the case of global awareness while

level-1 awareness does not cause such an exponential increase.

In domains of interest where agents have limited computing power (and a bounded

energy source), maintaining global awareness has disadvantages since extra hardware

(e.g., an additional memory device) may be required to process a large number of mes-

sages and the huge number of constraint checks can cause high energy consumption.

1For level-1 awareness, the message sizes and constraint checks are based on real experimentation
(test runs on 35 problem instance with the strategies with level-1 awareness proposed in this thesis). In
contrast, for global awareness, the message sizes are computed by � ��� ��� ������� � where
N (= A � B) is the number of agents and D is a domain size: � �� is the size of domain information
for all agents and ��� � � � �� ��� is the size of (binary) constraint information. Constraint checks
for global awareness are estimated by the time complexity of an arc-consistency technique. Since an
advanced arc-consistency technique has time complexity of ����� �, the number of constraint checks
for the global awareness case is assumed to be �������� where � � �.

149

Appendix B

Experimental Results

This appendix presents the results with all the 16 strategies in the experimental setting

described in Chapter 3 (Section 3.2.3). Only six strategies were shown for expository

purpose in Chapter 3. Each graph is followed by the data table for the graph. Note that

the conclusions presented in Chapter 3 (shown below) were based on the results with all

16 strategies (not just on the results from six selected strategies):

B.1 Detailed Peformance Results

0%
30%

60%
90%

100%

30%

60%

90%
0

50

100

150

200

250

300

350

400

450

500

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30%
60%

90%
100%

30%

60%

90%
0

5

10

15

20

25

30

35

40

45

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%

90%
0

0

0

1

1

1

1

1

2

2

2

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.1: Hexagonal topology; local constraint compatibility 25%; domain size 10

0%
30%

60%
90%

100%

30%

60%

90%
0

10

20

30

40

50

60

70

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30%
60%

90%
100%

30%

60%

90%
0

5

10

15

20

25

30

35

40

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30%
60%

90%
100%

30%

60%

90%
0

0

0

1

1

1

1

1

2

2

2

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.2: Hexagonal topology; local constraint compatibility 50%; domain size 10

150

0%
30%

60%
90%

100%

30%

60%

90%
0

10

20

30

40

50

60

70

80

90

100

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30%
60%

90%
100%

30%

60%

90%
0

5

10

15

20

25

30

35

40

45

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%

90%
0

1

1

2

2

3

3

4

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.3: Hexagonal topology; local constraint compatibility 75%; domain size 10

0%
30%

60%
90%

100%

30%

60%

90%
0

5

10

15

20

25

30

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30%
60%

90%
100%

30%

60%

90%
0

2

4

6

8

10

12

14

16

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%

90%
0

1

1

2

2

3

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.4: Hexagonal topology; local constraint compatibility 25%; domain size 40

0%
30%

60%
90%

100%

30%

60%

90%
0

2

4

6

8

10

12

14

16

18

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30%
60%

90%
100%

30%

60%

90%
0

2

4

6

8

10

12

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%

90%
0

0

0

1

1

1

1

1

2

2

2

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.5: Hexagonal topology; local constraint compatibility 50%; domain size 40

0%
30%

60%
90%

100%

30%

60%

90%
0

2

4

6

8

10

12

14

16

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30%
60%

90%
100%

30%

60%

90%
0

2

4

6

8

10

12

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%

90%
0

0

0

1

1

1

1

1

2

2

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.6: Hexagonal topology; local constraint compatibility 75%; domain size 40

151

0%
30%

60%
90%

100%

30%

60%

90%
0

5

10

15

20

25

30

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30%
60%

90%
100%

30%

60%

90%
0

2

4

6

8

10

12

14

16

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%

90%
0

1

1

2

2

3

3

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.7: Hexagonal topology; local constraint compatibility 25%; domain size 80

0%
30%

60%
90%

100%

30%

60%

90%
0

2

4

6

8

10

12

14

16

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30%
60%

90%
100%

30%

60%

90%
0

2

4

6

8

10

12

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%

90%
0

0

0

1

1

1

1

1

2

2

2

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.8: Hexagonal topology; local constraint compatibility 50%; domain size 80

0%
30%

60%
90%

100%

30%

60%

90%
0

2

4

6

8

10

12

14

16

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30%
60%

90%
100%

30%

60%

90%
0

2

4

6

8

10

12

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%

90%
0

0

0

1

1

1

1

1

2

2

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.9: Hexagonal topology; local constraint compatibility 75%; domain size 80

0%
30%

60%
90%

100%

30%

60%

90%
0

100

200

300

400

500

600

700

800

900

1000

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%
90%

0

100

200

300

400

500

600

700

800

900

1000

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%
90%

0

5

10

15

20

25

30

35

40

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.10: Grid topology; local constraint compatibility 25%; domain size 10

152

0%
30%

60%
90%

100%

30%

60%

90%
0

100

200

300

400

500

600

700

800

900

1000

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30%
60%

90%
100%

30%

60%

90%
0

50

100

150

200

250

300

350

400

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%

90%
0

1

2

3

4

5

6

7

8

9

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.11: Grid topology; local constraint compatibility 50%; domain size 10

0%
30%

60%
90%

100%

30%

60%

90%
0

100

200

300

400

500

600

700

800

900

1000

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30%
60%

90%
100%

30%

60%

90%
0

100

200

300

400

500

600

700

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%

90%
0

1

2

3

4

5

6

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.12: Grid topology; local constraint compatibility 75%; domain size 10

0%
30%

60%
90%

100%

30%

60%

90%
0

50

100

150

200

250

300

350

400

450

500

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30%
60%

90%
100%

30%

60%

90%
0

50

100

150

200

250

300

350

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%
90%

0

2

4

6

8

10

12

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.13: Grid topology; local constraint compatibility 25%; domain size 40

0%
30%

60%
90%

100%

30%

60%

90%
0

20

40

60

80

100

120

140

160

180

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30%
60%

90%
100%

30%

60%

90%
0

20

40

60

80

100

120

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%

90%
0

1

1

2

2

3

3

4

4

5

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.14: Grid topology; local constraint compatibility 50%; domain size 40

153

0%
30%

60%
90%

100%

30%

60%

90%
0

10

20

30

40

50

60

70

80

90

100

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30%
60%

90%
100%

30%

60%

90%
0

10

20

30

40

50

60

70

80

90

100

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%

90%
0

1

1

2

2

3

3

4

4

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.15: Grid topology; local constraint compatibility 75%; domain size 40

0%
30%

60%
90%

100%

30%

60%

90%
0

50

100

150

200

250

300

350

400

450

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30%
60%

90%
100%

30%

60%

90%
0

20

40

60

80

100

120

140

160

180

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%
90%

0

2

4

6

8

10

12

14

16

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.16: Grid topology; local constraint compatibility 25%; domain size 80

0%
30%

60%
90%

100%

30%

60%

90%
0

50

100

150

200

250

300

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30%
60%

90%
100%

30%

60%

90%
0

20

40

60

80

100

120

140

160

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%

90%
0

1

1

2

2

3

3

4

4

5

5

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.17: Grid topology; local constraint compatibility 50%; domain size 80

0%
30%

60%
90%

100%

30%

60%

90%
0

20

40

60

80

100

120

140

160

180

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30%
60%

90%
100%

30%

60%

90%
0

20

40

60

80

100

120

140

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%

90%
0

1

1

2

2

3

3

4

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.18: Grid topology; local constraint compatibility 75%; domain size 80

154

0% 30% 60% 90% 100%

30%

60%
90%

0

100

200

300

400

500

600

700

800

900

1000

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%
90%

0

100

200

300

400

500

600

700

800

900

1000

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%
90%

0

5

10

15

20

25

30

35

40

45

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.19: Triangular topology; local constraint compatibility 25%; domain size 10

0% 30% 60% 90% 100%

30%

60%
90%

0

100

200

300

400

500

600

700

800

900

1000

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%
90%

0

100

200

300

400

500

600

700

800

900

1000

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%

90%
0

1

1

2

2

3

3

4

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.20: Triangular topology; local constraint compatibility 50%; domain size 10

0% 30% 60% 90% 100%

30%

60%
90%

0

100

200

300

400

500

600

700

800

900

1000

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%
90%

0

100

200

300

400

500

600

700

800

900

1000

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%

90%
0

0

0

1

1

1

1

1

2

2

2

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.21: Triangular topology; local constraint compatibility 75%; domain size 10

0% 30% 60% 90% 100%

30%

60%
90%

0

100

200

300

400

500

600

700

800

900

1000

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%
90%

0

100

200

300

400

500

600

700

800

900

1000

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%

90%
0

1

1

2

2

3

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.22: Triangular topology; local constraint compatibility 25%; domain size 40

155

0% 30% 60% 90% 100%

30%

60%
90%

0

100

200

300

400

500

600

700

800

900

1000

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%
90%

0

100

200

300

400

500

600

700

800

900

1000

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%

90%
0

1

1

2

2

3

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.23: Triangular topology; local constraint compatibility 50%; domain size 40

0% 30% 60% 90% 100%

30%

60%
90%

0

100

200

300

400

500

600

700

800

900

1000

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%
90%

0

100

200

300

400

500

600

700

800

900

1000

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%

90%
0

1

1

2

2

3

3

4

4

5

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.24: Triangular topology; local constraint compatibility 75%; domain size 40

0% 30% 60% 90% 100%

30%

60%
90%

0

100

200

300

400

500

600

700

800

900

1000

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%
90%

0

100

200

300

400

500

600

700

800

900

1000

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%

90%
0

1

1

2

2

3

3

4

4

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.25: Triangular topology; local constraint compatibility 25%; domain size 80

0% 30% 60% 90% 100%

30%

60%
90%

0

100

200

300

400

500

600

700

800

900

1000

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%
90%

0

100

200

300

400

500

600

700

800

900

1000

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%

90%
0

1

1

2

2

3

3

4

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.26: Triangular topology; local constraint compatibility 50%; domain size 80

156

0% 30% 60% 90% 100%

30%

60%
90%

0

100

200

300

400

500

600

700

800

900

1000

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%
90%

0

100

200

300

400

500

600

700

800

900

1000

Cycles

Ratio of locally constrained agents

External
constraint
tightness

0% 30% 60%
90%

100%

30%

60%

90%
0

1

1

2

2

3

3

Speedup

Ratio of locally constrained agents

External
constraint
tightness

(a) AWC strategy (b) Best LCDCSP strategy (c) Speedup

Figure B.27: Triangular topology; local constraint compatibility 75%; domain size 80

157

B.2 Detailed Problem Hardness and Speedup by LCD-

CSP Strategies

Cycles (�) Number of problem settings

� � �� 237
�� � � � ��� 38
��� � � � 	�� 23
	�� � � �
�� 6

�� � � � ��� 6
��� � � � ��� 5
��� � � � ��� 2
��� � � � ���
��� � � �
��

�� � � � ���
�
 ��� 34

Table B.1: Distribution of problem hardness

External Local Domain Ratio of
Topology constraint constraint size locally const-

compatibility compatibility rained agents

Grid 30% 25% 10 10%
75% 10 30%

Triangular 30% 25% 10 0%
40 0% � 100%
80 0% � 30%

50% 10 0% � 60%
40 0% � 100%
80 0% � 90%

75% 10 0% � 100%
40 0% � 100%
80 0% � 100%

Table B.2: Non-definitive problem settings where both AWC and LCDCSP srategies
exceed the cycle limit

158

cy
cle

s (
N)

of

 se
tti

ng
s

of

 se
tti

ng
s f

or
 d

iff
er

en
t s

pe
ed

up
 (K

) b
y

lo
ca

lly
 co

op
er

ati
ve

 st
ra

teg
ies

in
 th

e c
yc

le
ra

ng
e

K
 <

 2
2 ≤

 K
 <

3
3 ≤

 K
< 4

4 ≤
 K

 <
5

5 ≤
 K

< 6
6 ≤

 K
 <

7
7 ≤

 K
 <

8
8 ≤

 K
< 9

9 ≤
 K

 <
10

N
<

50
11

3
10

8
5

50
 ≤

 Ν
 <

10
0

2
1

1
10

0 ≤
 Ν

 <
20

0
20

0 ≤
 Ν

 <
30

0
30

0 ≤
 Ν

 <
40

0
1

1
40

0 ≤
 Ν

 <
50

0
1

50
0

≤ Ν
 <

60
0

60
0 ≤

 Ν
 <

70
0

70
0

≤ Ν
 <

80
0

80
0 ≤

 Ν
 <

90
0

N
≥

90
0

(a
) H

ex
ag

on
al

To
po

lo
gy

cy
cle

s (
N)

of

 se
tti

ng
s

of

 se
tti

ng
s f

or
 d

iff
er

en
t s

pe
ed

up
 (K

) b
y

lo
ca

lly
 co

op
er

ati
ve

 st
ra

teg
ies

K
 <

 2
2 ≤

 K
 <

3
3 ≤

 K
< 4

4 ≤
 K

 <
5

5 ≤
 K

< 6
6 ≤

 K
 <

7
7 ≤

 K
 <

8
8 ≤

 K
< 9

9 ≤
 K

 <
10

N
<

50
66

45
16

4
1

50
 ≤

 Ν
 <

10
0

19
13

4
1

1
10

0 ≤
 Ν

 <
20

0
15

7
1

2
3

1
1

20
0 ≤

 Ν
 <

30
0

5
1

1
2

30
0 ≤

 Ν
 <

40
0

4
1

1
40

0 ≤
 Ν

 <
50

0
3

3
50

0
≤ Ν

 <
60

0
60

0 ≤
 Ν

 <
70

0
1

70
0

≤ Ν
 <

80
0

80
0 ≤

 Ν
 <

90
0

N
≥

90
0

4
2

2
(b

) G
rid

 T
op

ol
og

y

cy
cle

s (
N)

of

 se
tti

ng
s

of

 se
tti

ng
s f

or
 d

iff
er

en
t s

pe
ed

up
 (K

) b
y

lo
ca

lly
 co

op
er

ati
ve

 st
ra

teg
ies

K
 <

 2
2 ≤

 K
 <

3
3 ≤

 K
< 4

4 ≤
 K

 <
5

5 ≤
 K

< 6
6 ≤

 K
 <

7
7 ≤

 K
 <

8
8 ≤

 K
< 9

9 ≤
 K

 <
10

N
<

50
58

36
19

3
50

 ≤
 Ν

 <
10

0
17

11
4

1
1

10
0 ≤

 Ν
 <

20
0

8
1

6
20

0 ≤
 Ν

 <
30

0
1

1
30

0 ≤
 Ν

 <
40

0
1

1
40

0 ≤
 Ν

 <
50

0
1

50
0

≤ Ν
 <

60
0

1
1

60
0 ≤

 Ν
 <

70
0

70
0

≤ Ν
 <

80
0

80
0 ≤

 Ν
 <

90
0

N
≥

90
0

30
26

3
1

(c
) T

ria
ng

ul
ar

 to
po

lo
gy

Figure B.28: Number of problem settings for different speedup

159

B.3 Run-time and Speedup for the Exemplar Problem

Settings with High Performance Improvement

B.3.1 Run-time and Speedup When Message Size is a Major Factor

for Message Processing/Communication Overhead

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

1.6E+07

1.8E+07

alpha=100;beta=1000 alpha=100;beta=10000 alpha=1000;beta=1000 alpha=1000;beta=10000

message processing/transmission overhead

ru
n-

ti
m

e

AWC Slow-Slow

0

2

4

6

8

10

12

cycles-based alpha=100;beta=1000 alpha=100;beta=10000 alpha=1000;beta=1000 alpha=1000;beta=10000

messasge processing/transmission overhead
sp

ee
du

p

(a) Run-time (b) Speedup

Figure B.29: Run-time and speedup for AWC strategy and the best LCDCSP strat-
egy with different message processing/communication overhead: hexagonal topology;
external constraint compatibility 30%; local constraint compatibility 25%; domain size
10; Ratio of locally constrained agents 30% (case 1 in Table 4.4)

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

alpha=100;beta=1000 alpha=100;beta=10000 alpha=1000;beta=1000 alpha=1000;beta=10000

message processing/transmission overhead

ru
n-

ti
m

e

AWC Slow-Shigh

7

7.5

8

8.5

9

9.5

10

cycles-based alpha=100;beta=1000 alpha=100;beta=10000 alpha=1000;beta=1000 alpha=1000;beta=10000

messasge processing/transmission overhead

sp
ee

du
p

(a) Run-time (b) Speedup

Figure B.30: Run-time and speedup for AWC strategy and the best LCDCSP strat-
egy with different message processing/communication overhead: hexagonal topology;
external constraint compatibility 30%; local constraint compatibility 25%; domain size
10; Ratio of locally constrained agents 60% (case 2 in Table 4.4)

160

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

1.6E+07

1.8E+07

alpha=100;beta=1000 alpha=100;beta=10000 alpha=1000;beta=1000 alpha=1000;beta=10000

message processing/transmission overhead

ru
n-

ti
m

e
AWC Slow-Shigh

0

5

10

15

20

25

30

35

40

cycles-based alpha=100;beta=1000 alpha=100;beta=10000 alpha=1000;beta=1000 alpha=1000;beta=10000

messasge processing/transmission overhead

sp
ee

du
p

(a) Run-time (b) Speedup

Figure B.31: Run-time and speedup for AWC strategy and the best LCDCSP strategy
with different message processing/communication overhead: grid topology; external
constraint compatibility 30%; local constraint compatibility 25%; domain size 10; Ratio
of locally constrained agents 60% (case 3 in Table 4.4)

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

1.6E+07

1.8E+07

2.0E+07

alpha=100;beta=1000 alpha=100;beta=10000 alpha=1000;beta=1000 alpha=1000;beta=10000

message processing/transmission overhead

ru
n-

ti
m

e

AWC Sall-Sall

0

2

4

6

8

10

12

14

16

cycles-based alpha=100;beta=1000 alpha=100;beta=10000 alpha=1000;beta=1000 alpha=1000;beta=10000

messasge processing/transmission overhead

sp
ee

du
p

(a) Run-time (b) Speedup

Figure B.32: Run-time and speedup for AWC strategy and the best LCDCSP strategy
with different message processing/communication overhead: grid topology; external
constraint compatibility 30%; local constraint compatibility 25%; domain size 80; Ratio
of locally constrained agents 60% (case 4 in Table 4.4)

161

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

7.0E+06

8.0E+06

9.0E+06

1.0E+07

alpha=100;beta=1000 alpha=100;beta=10000 alpha=1000;beta=1000 alpha=1000;beta=10000

message processing/transmission overhead

ru
n-

ti
m

e
AWC Slow-Shigh

0

2

4

6

8

10

12

cycles-based alpha=100;beta=1000 alpha=100;beta=10000 alpha=1000;beta=1000 alpha=1000;beta=10000

messasge processing/transmission overhead

sp
ee

du
p

(a) Run-time (b) Speedup

Figure B.33: Run-time and speedup for AWC strategy and the best LCDCSP strategy
with different message processing/communication overhead: grid topology; external
constraint compatibility 60%; local constraint compatibility 25%; domain size 40; Ratio
of locally constrained agents 90% (case 5 in Table 4.4)

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

3.0E+07

3.5E+07

4.0E+07

4.5E+07

5.0E+07

alpha=100;beta=1000 alpha=100;beta=10000 alpha=1000;beta=1000 alpha=1000;beta=10000

message processing/transmission overhead

ru
n-

ti
m

e

AWC Slow-Slow

0

5

10

15

20

25

30

35

40

45

50

cycles-based alpha=100;beta=1000 alpha=100;beta=10000 alpha=1000;beta=1000 alpha=1000;beta=10000

messasge processing/transmission overhead

sp
ee

du
p

(a) Run-time (b) Speedup

Figure B.34: Run-time and speedup for AWC strategy and the best LCDCSP strategy
with different message processing/communication overhead: triangular topology; exter-
nal constraint compatibility 30%; local constraint compatibility 25%; domain size 10;
Ratio of locally constrained agents 30% (case 6 in Table 4.4)

162

B.3.2 Run-time and Speedup When Message Number is a Major

Factor for Message Processing/Communication Overhead

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

1.6E+07

1.8E+07

alpha=100;beta=1000 alpha=100;beta=10000 alpha=1000;beta=1000 alpha=1000;beta=10000

message processing/transmission overhead

ru
n-

ti
m

e
AWC Slow-Shigh

0

2

4

6

8

10

12

cycles-based alpha=100;beta=1000 alpha=100;beta=10000 alpha=1000;beta=1000 alpha=1000;beta=10000

messasge processing/transmission overhead

sp
ee

du
p

(a) Run-time (b) Speedup

Figure B.35: Run-time and speedup for AWC strategy and the best LCDCSP strat-
egy with different message processing/communication overhead: hexagonal topology;
external constraint compatibility 30%; local constraint compatibility 25%; domain size
10; Ratio of locally constrained agents 30% (case 1 in Table 4.4)

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

alpha=100;beta=1000 alpha=100;beta=10000 alpha=1000;beta=1000 alpha=1000;beta=10000

message processing/transmission overhead

ru
n-

ti
m

e

AWC Slow-Shigh

0

2

4

6

8

10

12

cycles-based alpha=100;beta=1000 alpha=100;beta=10000 alpha=1000;beta=1000 alpha=1000;beta=10000

messasge processing/transmission overhead

sp
ee

du
p

(a) Run-time (b) Speedup

Figure B.36: Run-time and speedup for AWC strategy and the best LCDCSP strat-
egy with different message processing/communication overhead: hexagonal topology;
external constraint compatibility 30%; local constraint compatibility 25%; domain size
10; Ratio of locally constrained agents 60% (case 2 in Table 4.4)

163

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

1.6E+07

1.8E+07

2.0E+07

alpha=100;beta=1000 alpha=100;beta=10000 alpha=1000;beta=1000 alpha=1000;beta=10000

message processing/transmission overhead

ru
n-

ti
m

e
AWC Slow-Shigh

36.4

36.6

36.8

37

37.2

37.4

37.6

37.8

38

38.2

38.4

cycles-based alpha=100;beta=1000 alpha=100;beta=10000 alpha=1000;beta=1000 alpha=1000;beta=10000

messasge processing/transmission overhead

sp
ee

du
p

(a) Run-time (b) Speedup

Figure B.37: Run-time and speedup for AWC strategy and the best LCDCSP strategy
with different message processing/communication overhead: grid topology; external
constraint compatibility 30%; local constraint compatibility 25%; domain size 10; Ratio
of locally constrained agents 60% (case 3 in Table 4.4)

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

1.6E+07

1.8E+07

2.0E+07

alpha=100;beta=1000 alpha=100;beta=10000 alpha=1000;beta=1000 alpha=1000;beta=10000

message processing/transmission overhead

ru
n-

ti
m

e

AWC Sall-Sall

0

2

4

6

8

10

12

14

16

cycles-based alpha=100;beta=1000 alpha=100;beta=10000 alpha=1000;beta=1000 alpha=1000;beta=10000

messasge processing/transmission overhead

sp
ee

du
p

(a) Run-time (b) Speedup

Figure B.38: Run-time and speedup for AWC strategy and the best LCDCSP strategy
with different message processing/communication overhead: grid topology; external
constraint compatibility 30%; local constraint compatibility 25%; domain size 80; Ratio
of locally constrained agents 60% (case 4 in Table 4.4)

164

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

7.0E+06

8.0E+06

9.0E+06

1.0E+07

alpha=100;beta=1000 alpha=100;beta=10000 alpha=1000;beta=1000 alpha=1000;beta=10000

message processing/transmission overhead

ru
n-

ti
m

e
AWC Slow-Shigh

0

2

4

6

8

10

12

cycles-based alpha=100;beta=1000 alpha=100;beta=10000 alpha=1000;beta=1000 alpha=1000;beta=10000

messasge processing/transmission overhead

sp
ee

du
p

(a) Run-time (b) Speedup

Figure B.39: Run-time and speedup for AWC strategy and the best LCDCSP strategy
with different message processing/communication overhead: grid topology; external
constraint compatibility 60%; local constraint compatibility 25%; domain size 40; Ratio
of locally constrained agents 90% (case 5 in Table 4.4)

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

3.0E+07

alpha=100;beta=1000 alpha=100;beta=10000 alpha=1000;beta=1000 alpha=1000;beta=10000

message processing/transmission overhead

ru
n-

ti
m

e

AWC Slow-Slow

0

10

20

30

40

50

60

cycles-based alpha=100;beta=1000 alpha=100;beta=10000 alpha=1000;beta=1000 alpha=1000;beta=10000

messasge processing/transmission overhead

sp
ee

du
p

(a) Run-time (b) Speedup

Figure B.40: Run-time and speedup for AWC strategy and the best LCDCSP strategy
with different message processing/communication overhead: triangular topology; exter-
nal constraint compatibility 30%; local constraint compatibility 25%; domain size 10;
Ratio of locally constrained agents 30% (case 6 in Table 4.4)

165

B.4 Performance Measurements in Bottleneck Agents

for Selected Problem Settings

B.4.1 Message Size and Constraint Checks of Bottleneck Agents

Average message size to process Average message size to transmit
Cases AWC strategy Best locally AWC strategy Best locally

cooperative strategy cooperative strategy

1 4.5 7.4 3.0 4.8
2 4.4 6.8 3.0 4.2
3 6.9 18.3 4.0 11
4 5.8 27.2 4.0 17.6
5 5.1 12.5 4.0 7.1
6 14.0 37.2 7.9 22.3

Table B.3: Average message size of AWC and the best LCDCSP strategy when � � ���
and � � ����

Average number of constraint checks
Cases AWC strategy Best locally

cooperative strategy

1 28 40
2 24 28
3 30 46
4 379 5849
5 81 341
6 68 115

Table B.4: Average number of constraint checks of AWC and the best LCDCSP strategy
when � � ��� and � � ����

Number(percentage) of problem
cycles(�) settings for different speedup ((fold)

(� 	 	 � (� � � � (�
 (�

� � 	�� 333 (96.2%) 12 (3.5%) 1 (0.3%) 0 (0%)
	�� � � � ��� 5 (29.4%) 5 (29.4%) 4 (23.5%) 3 (17.6%)

�
 ��� 37 (84.1%) 6 (13.6%) 0 (0%) 1 (2.3%)

Table B.5: Distribution of problem hardness and speedup by locally cooperative strate-
gies when � � ��� and � � ����

166

Average message size to process Average message size to transmit
Cases AWC strategy Best locally AWC strategy Best locally

cooperative strategy cooperative strategy

1 4.5 7.4 3.0 4.8
2 4.4 6.8 3.0 4.2
3 6.9 18.3 4.0 11.0
4 5.8 27.0 4.0 17.4
5 5.2 12.5 4.0 7.1
6 14.0 37.2 7.9 22.3

Table B.6: Average message size of AWC and the best LCDCSP strategy when � � ���
and � � �����

Average number of constraint checks
Cases AWC strategy Best locally

cooperative strategy

1 28 40
2 24 28
3 30 46
4 379 5579
5 82 341
6 68 115

Table B.7: Average number of constraint checks of AWC and the best LCDCSP strategy
when � � ��� and � � �����

Number(percentage) of problem
cycles(�) settings for different speedup ((fold)

(� 	 	 � (� � � � (�
 (�

� � 	�� 327 (94.5%) 18 (5.2%) 1 (0.3%) 0 (0%)
	�� � � � ��� 5 (29.4%) 4 (23.5%) 4 (23.5%) 4 (23.5%)

�
 ��� 37 (84.1%) 6 (13.6%) 0 (0%) 1 (2.3%)

Table B.8: Distribution of problem hardness and speedup by locally cooperative strate-
gies when � � ��� and � � �����

167

Average message size to process Average message size to transmit
Cases AWC strategy Best locally AWC strategy Best locally

cooperative strategy cooperative strategy

1 4.5 7.4 3.0 4.8
2 4.4 6.8 3.0 4.2
3 6.9 18.3 4.0 11.0
4 6.2 27.1 4.0 17.1
5 5.2 13.4 4.0 7.0
6 14.0 37.2 7.9 22.2

Table B.9: Average message size of AWC and the best LCDCSP strategy when � � ���
and � � �����

Average number of constraint checks
Cases AWC strategy Best locally

cooperative strategy

1 28 40
2 24 27
3 30 45
4 291 5732
5 72 215
6 68 114

Table B.10: Average number of constraint checks of AWC and the best LCDCSP strat-
egy when � � ���� and � � ����

Number(percentage) of problem
cycles(�) settings for different speedup ((fold)

(� 	 	 � (� � � � (�
 (�

� � 	�� 332 (96.9%) 13 (3.8%) 1 (0.3%) 0 (0%)
	�� � � � ��� 5 (29.4%) 5 (29.4%) 5 (29.4%) 2 (11.8%)

�
 ��� 37 (84.1%) 6 (13.6%) 0 (0%) 1 (2.3%)

Table B.11: Distribution of problem hardness and speedup by locally cooperative strate-
gies when � � ���� and � � ����

168

Average message size to process Average message size to transmit
Cases AWC strategy Best locally AWC strategy Best locally

cooperative strategy cooperative strategy

1 4.5 7.4 3.0 4.8
2 4.4 6.8 3.0 4.2
3 6.9 18.3 4.0 11.0
4 6.2 26.9 4.0 17.1
5 5.2 13.3 4.0 7.1
6 14.0 37.2 7.9 22.3

Table B.12: Average message size of AWC and the best LCDCSP strategy when � �
���� and � � �����

Average number of constraint checks
Cases AWC strategy Best locally

cooperative strategy

1 28 39
2 24 27
3 30 45
4 292 5483
5 72 195
6 68 115

Table B.13: Average number of constraint checks of AWC and the best LCDCSP strat-
egy when � � ���� and � � �����

Number(percentage) of problem
cycles(�) settings for different speedup ((fold)

(� 	 	 � (� � � � (�
 (�

� � 	�� 327 (94.5%) 18 (5.2%) 1 (0.3%) 0 (0%)
	�� � � � ��� 5 (29.4%) 4 (23.5%) 5 (29.4%) 3 (17.6%)

�
 ��� 37 (84.1%) 6 (13.6%) 0 (0%) 1 (2.3%)

Table B.14: Distribution of problem hardness and speedup by locally cooperative strate-
gies when � � ���� and � � �����

169

B.4.2 Message Number and Constraint Checks of Bottleneck

Agents

Average message number to process Average message number to transmit
Cases AWC strategy Best locally AWC strategy Best locally

cooperative strategy cooperative strategy

1 4.5 4.7 3.0 3.0
2 4.4 4.8 3.0 3.0
3 6.9 6.5 4.0 4.0
4 5.8 5.4 4.0 4.0
5 5.2 5.7 4.0 4.0
6 14.0 12.7 8.0 8.0

Table B.15: Average message size of AWC and the best LCDCSP strategy when � �
��� and � � ����

Average number of constraint checks
Cases AWC strategy Best locally

cooperative strategy

1 28 85
2 24 41
3 30 95
4 380 7743
5 83 488
6 68 235

Table B.16: Average number of constraint checks of AWC and the best LCDCSP strat-
egy when � � ��� and � � ����

Number(percentage) of problem
cycles(�) settings for different speedup ((fold)

(� 	 	 � (� � � � (�
 (�

� � 	�� 318 (92.4%) 23 (6.7%) 1 (0.3%) 2 (0.6%)
	�� � � � ��� 4 (23.5%) 4 (23.5%) 4 (23.5%) 5 (29.4%)

�
 ��� 37 (84.1%) 6 (13.6%) 0 (0%) 1 (2.3%)

Table B.17: Distribution of problem hardness and speedup by locally cooperative strate-
gies when � � ��� and � � ����

170

Average message number to process Average message number to transmit
Cases AWC strategy Best locally AWC strategy Best locally

cooperative strategy cooperative strategy

1 4.5 4.7 3.0 3.0
2 4.5 4.8 3.0 3.0
3 6.9 6.5 4.0 4.0
4 5.8 5.4 4.0 4.0
5 5.2 5.7 4.0 4.0
6 14.0 12.7 8.0 8.0

Table B.18: Average message size of AWC and the best LCDCSP strategy when � �
��� and � � �����

Average number of constraint checks
Cases AWC strategy Best locally

cooperative strategy

1 28 85
2 24 41
3 30 95
4 380 7743
5 83 488
6 68 235

Table B.19: Average number of constraint checks of AWC and the best LCDCSP strat-
egy when � � ��� and � � �����

Number(percentage) of problem
cycles(�) settings for different speedup ((fold)

(� 	 	 � (� � � � (�
 (�

� � 	�� 308 (89.5%) 32 (9.3%) 2 (0.6%) 2 (0.6%)
	�� � � � ��� 4 (23.5%) 4 (23.5%) 3 (17.6%) 6 (35.3%)

�
 ��� 37 (84.1%) 6 (13.6%) 0 (0%) 1 (2.3%)

Table B.20: Distribution of problem hardness and speedup by locally cooperative strate-
gies when � � ��� and � � �����

171

Average message number to process Average message number to transmit
Cases AWC strategy Best locally AWC strategy Best locally

cooperative strategy cooperative strategy

1 4.5 4.7 3.0 3.0
2 4.5 4.8 3.0 3.0
3 6.9 6.5 4.0 4.0
4 5.8 5.4 4.0 4.0
5 5.2 5.7 4.0 4.0
6 14.0 12.7 8.0 8.0

Table B.21: Average message size of AWC and the best LCDCSP strategy when � �
���� and � � ����

Average number of constraint checks
Cases AWC strategy Best locally

cooperative strategy

1 28 85
2 24 41
3 30 95
4 380 7743
5 83 488
6 68 235

Table B.22: Average number of constraint checks of AWC and the best LCDCSP strat-
egy when � � ���� and � � ����

Number(percentage) of problem
cycles(�) settings for different speedup ((fold)

(� 	 	 � (� � � � (�
 (�

� � 	�� 318 (92.4%) 23 (6.7%) 1 (0.3%) 2 (0.6%)
	�� � � � ��� 4 (23.5%) 4 (23.5%) 3 (17.6%) 6 (35.3%)

�
 ��� 37 (84.1%) 6 (13.6%) 0 (0%) 1 (2.3%)

Table B.23: Distribution of problem hardness and speedup by locally cooperative strate-
gies when � � ���� and � � ����

172

Average message number to process Average message number to transmit
Cases AWC strategy Best locally AWC strategy Best locally

cooperative strategy cooperative strategy

1 4.5 4.7 3.0 3.0
2 4.5 4.8 3.0 3.0
3 6.9 6.5 4.0 4.0
4 5.8 5.4 4.0 4.0
5 5.2 5.7 4.0 4.0
6 14.0 12.7 8.0 8.0

Table B.24: Average message size of AWC and the best LCDCSP strategy when � �
���� and � � �����

Average number of constraint checks
Cases AWC strategy Best locally

cooperative strategy

1 28 85
2 24 41
3 30 95
4 380 7743
5 83 488
6 68 235

Table B.25: Average number of constraint checks of AWC and the best LCDCSP strat-
egy when � � ���� and � � �����

Number(percentage) of problem
cycles(�) settings for different speedup ((fold)

(� 	 	 � (� � � � (�
 (�

� � 	�� 308 (89.5%) 32 (9.3%) 2 (0.6%) 2 (0.6%)
	�� � � � ��� 4 (23.5%) 4 (23.5%) 3 (17.6%) 6 (35.3%)

�
 ��� 37 (84.1%) 6 (13.6%) 0 (0%) 1 (2.3%)

Table B.26: Distribution of problem hardness and speedup by locally cooperative strate-
gies when � � ���� and � � �����

173

B.5 Performance Variation in Different Computing &

Networking Environments

B.5.1 When Message Size is a Major Factor for Message Processing

& Communication Overhead

0

0.1

1

10

1000

0

0.1

1

10

1000 0

1

2

3

4

5

6

7

8

Speedup

Transmission overhead

Processing
overhead

Figure B.41: Speedup variation: hexagonal topology; external constraint compatibility
30%; local constraint compatibility 25%; domain size 10; Ratio of locally constrained
agents 30%

0

0.1

1

10

1000

0

0.1

1

10

1000 0

1

2

3

4

5

6

7

8

9

Speedup

Transmission overhead

Processing
overhead

Figure B.42: Speedup variation: hexagonal topology; external constraint compatibility
30%; local constraint compatibility 25%; domain size 10; Ratio of locally constrained
agents 60%

174

0

0.1

1

10

1000

0

0.1

1

10

1000 0

5

10

15

20

25

Speedup

Transmission overhead

Processing
overhead

Figure B.43: Speedup variation: grid topology; external constraint compatibility 30%;
local constraint compatibility 25%; domain size 10; Ratio of locally constrained agents
60%

0

0.1

1

10

1000

0

0.1

1

10

1000 0

1

2

3

4

5

6

7

Speedup

Transmission overhead

Processing
overhead

Figure B.44: Speedup variation: grid topology; external constraint compatibility 30%;
local constraint compatibility 25%; domain size 80; Ratio of locally constrained agents
60%

175

0

0.1

1

10

1000

0

0.1

1

10

1000
0

1

2

3

4

5

6

7

8

Speedup

Transmission overhead

Processing
overhead

Figure B.45: Speedup variation: grid topology; external constraint compatibility 60%;
local constraint compatibility 25%; domain size 40; Ratio of locally constrained agents
90%

0

0.1

1

10

1000

0

0.1

1

10

1000
0

5

10

15

20

25

30

Speedup

Transmission overhead

Processing
overhead

Figure B.46: Speedup variation: triangular topology; external constraint compatibility
30%; local constraint compatibility 25%; domain size 10; Ratio of locally constrained
agents 30%

176

B.5.2 When Message Number is a Major Factor for Message Pro-

cessing & Communication Overhead

0

0.1

1

10

1000

0

0.1

1

10

1000 0

1

2

3

4

5

6

7

8

9

10

Speedup

Communication overhead

Processing
overhead

Figure B.47: Speedup variation: hexagonal topology; external constraint compatibility
30%; local constraint compatibility 25%; domain size 10; Ratio of locally constrained
agents 30%

0

0.1

1

10

1000

0

0.1

1

10

1000 0

1

2

3

4

5

6

7

8

9

10

Speedup

Transmission overhead

Processing
overhead

Figure B.48: Speedup variation: hexagonal topology; external constraint compatibility
30%; local constraint compatibility 25%; domain size 10; Ratio of locally constrained
agents 60%

177

0

0.1

1

10

1000

0

0.1

1

10

1000 0

5

10

15

20

25

30

35

40

Speedup

Transmission overhead

Processing
overhead

Figure B.49: Speedup variation: grid topology; external constraint compatibility 30%;
local constraint compatibility 25%; domain size 10; Ratio of locally constrained agents
60%

0

0.1

1

10

1000

0

0.1

1

10

1000 0

2

4

6

8

10

12

14

Speedup

Transmission overhead

Processing
overhead

Figure B.50: Speedup variation: grid topology; external constraint compatibility 30%;
local constraint compatibility 25%; domain size 80; Ratio of locally constrained agents
60%

178

0

0.1

1

10

1000

0

0.1

1

10

1000
0

2

4

6

8

10

12

Speedup

Communication overhead

Processing
overhead

Figure B.51: Speedup variation: grid topology; external constraint compatibility 60%;
local constraint compatibility 25%; domain size 40; Ratio of locally constrained agents
90%

0

0.1

1

10

1000

0

0.1

1

10

1000
0

10

20

30

40

50

60

Speedup

Transmission overhead

Processing
overhead

Figure B.52: Speedup variation: triangular topology; external constraint compatibility
30%; local constraint compatibility 25%; domain size 10; Ratio of locally constrained
agents 30%

179

Appendix C

Computation Cost Saving by Building

Blocks

In Chapter 4 (Section 4.2.1), it was shown that, when a given policy is based on agents’

local states in a locally observable world, the evaluation of an MTDP policy can be

reduced to a Markov chain analysis. While the space reduction significantly decreases

computation cost, given a large state space, the Markov chain analysis still requires

a high computation cost. In this appendix, we show that the building block based

approach further reduces significant amount of computation cost and memory require-

ments, which makes the MTDP based model feasible in practice.

Number of agents 5 10 15 25
in Markov chain

Runtime 101 sec 105 min more than 10 hours —

Table C.1: Comparison of runtime for Markov chain

To show the computation cost saved by building block based approach, we compare

the runtime of Markov chain analysis with different number of agents (Table C.1). Table

C.1 shows that the runtime increases exponentially as the number of agents increases in

a Markov chain 1. For the case with 15 agents, if we apply the building block based

approach, the total time would be around 303 sec (� 101 sec � 3) since the Markov

1For the case with 10 agents, we stopped the process after 10 hours, and the 25 agents case could not
be run because of memory space (explained below)

180

chain with 15 agents can be divided into three building blocks (each building block with

5 agents takes 101 sec). Since the cut off time for 15 agents case is 10 hours, the speedup

from using building blocks is more than 119 (= 10 hours / 303 sec).

In addition to the computation cost saving, the building block based approach gives

a significant efficiency in terms of memories required for the computation. Table C.2

compares the memory space to store the table for state transition probabilities (assuming

that the transition probability is represented in a single-precision floating point data type

which requires 4 bytes). For simplification, a terminal state is not considered. While

the Markov chain with 25 agents requires 4 tera bytes of memory for transition table, if

we apply the building block based approach, the Markov chain can be divided into five

building blocks reducing the space requirement into 20K bytes (= 5 � 4K bytes).

Number of agents Number of world states Memory requirements
in Markov chain

5 	� 4K bytes (= 	� � 	� � �45���)
10 	�� 4M bytes (= 	�� � 	�� � �45���)
15 	�� 4G bytes (= 	�� � 	�� � �45���)
20 	�� 4T bytes (= 	�� � 	�� � �45���)

Table C.2: Memory space for transition table in Markov chain analysis

181

Appendix D

Efficiency of Novel Conflict Resolution

Strategies in Sensor Networks

While an example of DCSP mapping for distributed sensor networks was presented

in Chapter 3 (Section 3.1.2), in this appendix, we provide another illustration in the

distributed sensor domain which lays out our ideas of local constraint communication

and novel conflict resolution strategies using a detailed example.

In the DCSP mapping (Section 3.1.2), each tracker agent is modeled as a variable

whose values are radar sector combinations of sensors controlled by the tracker plus

a special value �� (no target). Following local and external constraints are given to

tracker agents (local and external constraints are numbered for reference purpose):

� External constraint (C1): two tracker agents cannot share any sensor in their val-

ues.

� Local constraint (C2): if a tracker agent is notified of target detection by any

associated sensor, the tracker’s value cannot be �� .

Given conflicts in selecting sensor combinations (with appropriate sectors), the

tracker agents must resolve them as quickly as possible to reduce RMS (root mean

square) error, a major criterion for tracking accuracy, that is measured by the distance

between a target’s real position and its detected position. The RMS error for a tar-

get increases if the target is not tracked at all or tracked with less than three sensors.

182

The following example (Figure D.1) shows how the extra communication of local con-

straints and novel conflict resolution strategies improve performance in convergence in

the DCSP mapping of this sensor domain. The reduction of search space and inter-agent

communication cycles will be presented. For this example, we add time constraints

which requires targets to be tracked in a certain time period. Therefore, the value (sen-

sor combinations) of trackers includes an additional component for the time period (6�):

e.g., � ��������� ������
�
�� ������

�
� � 6� � where �������� indicates sensor �’s sector �.

In the Figure D.1, tracker agents (tarcker1, 2, 3, and 5) have targets (T1, T2, T3,

and T4) in their sensing areas. In addition to the local and external constraints defined

above, tracker agents have the following additional constraints regarding time and the

availability of sensors:

� C3: Each tracker agent must track a target either at 6� or 6�.

� C4: Tracker1 must track its target at 6�.

� C5: Tracker3 must track its target at 6�

� C6: Sensor8 (denoted as �
) is not available since its power is low: this is an

additional temporal local constraint for tracker3.

Local constraints can be represented as explicit specification of available values from

the tracker agents’ domain. Thus, given local constraints, agents’ domains are reduced.

For instance, tracker3 has originally 9 values (�� plus 4 combinations of sensors at 6�

or 6�):

� � ��������� ������
�
�� ������

	
� � 6� �

� � ��������� ������
�
�� ������

� � 6� �

� � ��������� ������
	
�� ������

� � 6� �

183

S1 S2 S3 S4

S5 S6 S7 S8

S9 S10 S11 S12

Tracker1 Tracker2 Tracker3

Tracker4 Tracker5 Tracker6

T1

T4

T2 T3

Relationship between
a target and sensors
that can track the target

Relationship between
a sensor and a tracker
that controls the sensor

Sensor not available

Sensor available

Sensor: i = 1, ..., 12Si

Target: i = 1, ..., 4Ti

Figure D.1: Distributed sensor networks with targets (for simplification, radar sectors
for each sensor is not drawn.)

� � ��������� ������
	
�� ������

� � 6� �

� � ��������� ������
�
�� ������

	
� � 6� �

� � ��������� ������
�
�� ������

� � 6� �

� � ��������� ������
	
�� ������

� � 6� �

� � ��������� ������
	
�� ������

� � 6� �

� ��

From tracker3’s original domain,
� eliminates�� ,
� eliminates 4 values (4 com-

binations of sensors at 6�), and
� eliminates 3 values that includes the sensor8 (�
) that

is not available, (� ��������� ������
�
�� ������

� � 6� �, � ��������� ������

	
�� ������

� � 6� �,

184

and � ��������� ������
	
�� ������

� � 6� �). The three local constraints of tracker3 can be

represented as a single (unary) local constraint:

� Available value set for tracker3 is �� ��������� ������
�
�� ������

	
� � 6� ��

Henceforth, we assume that all the local constraints are represented as unary con-

straints that specify the available values for the tracker agent variables. Furthermore, for

brevity, constraint propagation that was described in Chapter 3 (Section 3.2.1) refers

to the extra communication of local constraint and constraint propagation since the

constraint propagation in DCSP is not feasible without local constraint communication.

In the example above, the original search space before the constraint propagation has

256 value combinations: that is, 4 values for tracker1 (4 combinations of sensors at 6�),

8 values for tracker2 (4 combinations of sensors at �! � or 6�), 1 value for tracker3 (1

sensor combination at 6�), and 8 values for tracker5 (4 combinations of sensors at �! �

or 6�). With constraint propagation, the original search space is reduced to 28 value

combinations: 2 values for tracker1, 2 values for tracker2, 1 value for tracker3, and 7

values for tracker5. Refer to Section D.1 for detailed process of constraint propagation.

This is about 9-fold decrease of search space.

Assume that, given the targets (T1, T2, T3, and T4), trackers select the

following initial values: � ��������� ������
�
�� ������

�
� � 6� � for tracker1, �

��������� ������
�
�� ������

�
� � 6� � for tracker2, � ��������� ������

�
�� ������

	
� � 6� � for

tracker3, �� for tracker4, � ������	�� ������
��
� � ������

��
� � 6� � for tracker5, and ��

for tracker 6. With this initial value assignment, 10 inter-agent communication cycles

are consumed until a solution is found without constraint propagation. In contrast, 3

cycles are consumed with constraint propagation. Section D.2 presents how the Asyn-

chronous Weak Commitment algorithm solves the given problem (as shown in Figure

185

D.1) with the above initialization with and without extra local constraint communica-

tion. In addition to the reduction of search space and inter-agent communication cycles,

the benefit of efficient value ordering heuristics can be seen in Figure D.1. Assume that

only target T1 exists. When a target T1 is detected, tracker1 has 4 choices of sensor

combinations: � ��������� ������
�
�� ������

�
� � 6� �, � ��������� ������

�
�� ������

�
� � 6� �,

� ��������� ������
�
�� ������

�
� � 6� �, and � ��������� ������

�
�� ������

�
� � 6� �. If tracker2

also has to track its target at 6�, while the former two values give one choice for tracker2,

the latter two values give no choice to tracker2 (because, if both �	 and �� are required

for T1, when another target T2 appears in tracker2’s region, tracker2 has only two sen-

sors available). Here, it sounds more reasonable to select a value with more flexibil-

ity towards other agents. This example illustrates the benefit of such a heuristic that

gives more flexibility to others. Indeed, the experimental results (described in the thesis

proposal presentation) show the performance improvement from flexibility-based value

ordering heuristics.

D.1 Search space reduction from local constraint com-

munication and constraint propagation

In this section, we show how constraint propagation reduces the search space of a given

problem. As constraints are propagated, the local constraints (specifying available val-

ues) are changed. For brevity, each sensor is represented only by its index without sector

index. Since only one sector can be activated at one time, a sensor can be included in

only one tracker’s value so that constraint propagation can be achieved by referring

to only sensor index. In the real value assignment, appropriate sector indices will be

186

attached. For instance, tracker1’s value � �� �� � � 6� � indicates � ��������� ������
�
��

�������� � 6� �. The initial local constraints of tracker1, 2, 3, and 5 are as follows.

� Tracker1: Available value set is �� �� 	� � � 6� �,� �� 	� � � 6� �,� �� �� � � 6� �,

� 	� �� � � 6� ��.

– C1 (constraint) eliminates �� , and C6 eliminates 4 values (4 combinations

of sensors at 6�).

� Tracker2: Available value set is �� 	�
� � � 6� �, � 	�
� � � 6� �, � 	� �� � �

6� �, �
� �� � � 6� �, � 	�
� � � 6� �, � 	�
� � � 6� �, � 	� �� � � 6� �,

�
� �� � � 6� ��.

– Tracker2 has only C1 as a local constraint. Thus, it eliminates only�� from

the original domain.

� Tracker3: Available value set is ��
� �� � � 6� �� (4 combinations of sensors at

6� or 6�).

– Tracker3’s local constrains are listed above.

� Tracker5: Available value set is �� �� �� �� � 6� �, � �� �� �� � 6� �, � �� ��� �� �

6� �, � �� ��� �� � 6� �, � �� �� �� � 6� �, � �� �� �� � 6� �, � �� ��� �� � 6� �,

� �� ��� �� � 6� �� (4 combinations of sensors at 6� or 6�).

– Tracker5 has only C1 as a local constraint. Thus, it eliminates only�� from

the original domain.

� Other tracker agents (tracker 4 and 6) retain their original domain values.

Constraint propagation is performed at several iterations until no more domains are

changed. Constraint propagation in DCSP is done as follows. With communicated local

187

constrains, each agent infers the current domain of neighboring agents and eliminates

the values from its own domain that do not have any value in a neighbor’s domain that

can satisfy the external constraint between itself and the neighbor.

1. 1st iteration

� Tracker1 propagates the local constraints from M2 and M5, but all of its

values have a compatible value in the domains of M2 and M5.

� Tracker2 propagates the local constraints from tracker1, 3, and 5. Two values

at 6� are incompatible with tracker1 since they give no choice to tracker1:

� 	�
� � � 6� � and � 	� �� � � 6� �. Four values at 6� are deleted since any

value at the time period 6� is not compatible with tracker3’s unique choice �

� �� � � 6� �. With tracker5, no propagation. Therefore, tracker2’s domain

is reduced to two values: � 	�
� � � 6� � and �
� �� � � 6� �.

� Tracker3 has only one value �
� �� � � 6� � which has a compatible value

with tracker2 and tracker5.

� Tracker5’s value � �� �� �� � 6� � is not compatible with tracker3’s unique

choice. Other values are compatible with at least one value in the domains of

tracker1 and 2. Therefore, M5’s domain is reduced to seven values (original

8 values minus � �� �� �� � 6� �).

2. 2nd iteration

� Two values of tracker1 are compatible with tracker2’s deleted values at 6�.

Now, � �� 	� � � 6� � and � 	� �� � � 6� � give no choice to tracker2.

Therefore, tracker1’s domain is reduced to two values � �� 	� � � 6� � and

� �� �� � � 6� �.

188

3. 3rd iteration

� No more propagation

With constraint propagation, original search space is reduced to 28 (= 	� 	� �� �)

value combinations.

D.2 Comparison of numbers of cycles with and without

constraint propagation

In measuring the number of cycles, we assume that agent communication is done in

a synchronous way. After each cycle, agents simultaneously communicate their val-

ues and priorities. Note that, in AWC, agents need to satisfy the constraint with only

higher agents. If the priorities are same, the order is defined by the alphanumerical

order of indexes. Without constraint propagation, 10 inter-agent communication cycles

are required as follows (priorities are in parentheses). As was done in Section D.1, for

brevity, each sensor is represented only by its index without sector index.

1. Cycle 1

Tracker1(0):� 	� �� � � 6� �, tracker2(0):� 	�
� � � 6� �, tracker3(0):�
� �� � �

6� �, tracker5(0):� �� ��� �� � 6� �

2. Cycle 2

Tracker1(0):� 	� �� � � 6� �, tracker2(0):� 	�
� � � 6� �, tracker3(0):�
� �� � �

6� �, tracker5(0):� �� ��� �� � 6� �

� Tracker2 cannot find a value at 6� to satisfy the constraint with tracker1. It

selects a new value with 6�.

189

3. Cycle 3

Tracker1(0):� 	� �� � � 6� �, tracker2(0):� 	�
� � � 6� �, tracker3(0 � 1):�

� �� � � 6� �, tracker5(0):� �� ��� �� � 6� �

� Tracker3 cannot satisfy the constraints with tracker2 since it is restricted to

6� and the current value is its unique choice. It increases its priority from 0

to 1.

4. Cycle 4

Tracker1(0):� 	� �� � � 6� �, tracker2(0 � 2):� 	�
� � � 6� �, tracker3(1):�

� �� � � 6� �, tracker5(0):� �� ��� �� � 6� �

� Tracker2 finds a conflict with tracker3 (now, tracker3 is higher than

tracker2). It cannot find a value that can satisfy the constraints with tracker1

and tracker3. Let’s assume that it selects a new value to minimize the num-

ber of conflicts: � 	�
� � � 6� � has one conflict with tracker1, not with

tracker3. Tracker2’s priority also increases to 2 (which is ”max priority of

neighbors + 1”).

5. Cycle 5

Tracker1(0 � 3):� �� 	� � � 6� �, tracker2(2):� 	�
� � � 6� �, tracker3(1):�

� �� � � 6� �, tracker5(0):� �� ��� �� � 6� �

� Trakcer1 finds a conflict with tracker2 but it cannot find a value without a

conflict (tracker1 is restricted to 6�). Let’s assume it selects a new value

� �� 	� � � 6� �. While � �� �� � � 6� � is available, we assume the worst

case. Tracker1 increases its priority from 0 to 3.

190

6. Cycle 6

Tracker1(3):� �� 	� � � 6� �, tracker2(2):� 	� �� � � 6� �, tracker3(1):�
� �� � �

6� �, tracker5(0):� �� ��� �� � 6� �

� Tracker2 has a conflict with tracker1. Since tracker2 cannot find a value at

6�, it selects a new value � 	� �� � � 6� � that satisfy the constraint with

tracker1. The value � 	�
� � � 6� � (that was tried at cycle 2) can be avoided

by saving nogoods: nogood is a value combination that cannot be part of any

solution.

7. Cycle 7

Tracker1(3):� �� 	� � � 6� �, tracker2(2):� 	� �� � � 6� �, tracker3(1 � 3):�

� �� � � 6� �, tracker5(0):� �� ��� �� � 6� �

� As in cycle 3, tracker3 cannot satisfy the constraints with tracker2 since it is

restricted to 6�. It increases its priority from 1 to 3.

8. Cycle 8

Tracker1(3):� �� 	� � � 6� �, tracker2(2 � 4):� 	� �� � � 6� �, tracker3(3):�

� �� � � 6� �, tracker5(0):� �� ��� �� � 6� �

� As in cycle 4, tracker2 finds a conflict with tracker3. It cannot find a value

that can satisfy the constraints with tracker1 and tracker3. It selects a new

value � 	� �� � � 6� � that has a conflict with tracker1, but not with tracker3.

For the worse case, � 	�
� � � 6� � is avoided here. tracker2’s priority also

increases to 4.

191

9. Cycle 9

Tracker1(3 � 5):� �� �� � � 6� �, tracker2(4):� 	� �� � � 6� �, tracker3(3 �

5):�
� �� � � 6� �, tracker5(0):� �� ��� �� � 6� �

� Tracker1 finds a conflict with tracker2 but it cannot find a value that does

not conflict with tracker2. Tracker1 selects a new value � �� �� � � 6� � and

increase its priority from 3 to 5.

� If nogood �tracker1:� �� 	� � � 6� �, tracker3:�
� �� � � 6� �� is saved

at cycle 8, tracker3 finds a match between “its current value & known

tracker1’s value” and the nogood. Since tracker3 has no alternative choice,

it increases its priority and creates a nogood �tracker1:� �� 	� � � 6� �� for

tracker1.

� Tracker5 finds a conflict with tracker2 for S7 at 6�. It selects a new value

� �� ��� �� � 6� � that does not have any constraint violation.

10. Cycle 10

Tracker1(5):� �� �� � � 6� �, tracker2(4):� 	�
� � � 6� �, tracker3(3):�
� �� � �

6� �, tracker5(0):� �� ��� �� � 6� �

� tracker2 has a conflict with tracker1 and finds a satisfying value � 	�
� � �

6� �.

In contrast, with propagations, 3 cycles are consumed until a solution is found as

follows. Note that constraint propagation is interleaved with value selection. That is, it

is not pre-processed before search.

1. Cycle 1

Trackr1(0):� 	� �� � � 6� �, tracker2(0):� 	�
� � � 6� �, tracker3(0):�
� �� � �

6� �, tracker5(0):� �� ��� �� � 6� �

192

2. Cycle 2

Tracker1(0):� 	� �� � � 6� �, tracker2(0 � 1):� 	�
� � � 6� �, tracker3(0):�

� �� � � 6� �, tracker5(0):� �� ��� �� � 6� �

� Tracker2 finds a conflict with tracker1. Here, tracker2’s domain is reduced

to �� 	�
� � � 6� �, �
� �� � � 6� ��. While both values cannot satisfy

the constraint with tracker1, tracker2 selects one of two available values and

increases its priority from 0 to 1. Assume that tracker2 selects � 	�
� � �

6� � (selecting �
� �� � � 6� � leads to the same number of cycles).

3. Cycle 3

Tracker1(0):� �� �� � � 6� �, tracker2(1):� 	�
� � � 6� �, tracker3(0):�
� �� � �

6� �, tracker5(0):� �� ��� �� � 6� �

� Tracker1 finds a conflict with tracker2 (now, tracker2 is higher than

tracker1). At this cycle, tracker1’s domain is reduced to �� �� 	� � � 6� �,

� �� �� � � 6� ��. tracker1 selects a new value � �� �� � � 6� � that can

satisfy the constraint with tracker2.

� Tracker5 also finds a conflict with tracker2. It selects a new value, �

�� ��� �� � 6� �, that can satisfy the constraints with its higher agents

(tracker1, tracker2, tracker3). Note that tracker5 eliminated the value �

�� �� �� � 6� � at cycle 1.

This example shows that local constraint communication and constraint propagation

enables agents to find a solution with less number of cycles.

193

