
TOWARD HUMAN-MULTIAGENT TEAMS

by

Nathan Schurr

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the

Requirements for the Degree
DOCTOR OF PHILOSOPHY

(COMPUTER SCIENCE)

December 2007

Copyright 2007 Nathan Schurr

Acknowledgments

I cannot take all of the credit for this. There are many people without which this would not have

been possible. First and foremost, I would like to thank my advisor and mentor Milind Tambe.

He helped my find my way along the treacherous path of the PhD. I am proud to see how much

we both have grown in the process.

In addition, I would like to thank the members of my thesis committee for following my

research, honing my direction and being patient with me: Anne Balsamo, Karen Myers, Michael

Van Lent, Michael Zyda, and Randall Hill. I would also like to thank Isaac Maya and all of the

members of the CREATE research center at USC for supporting my research and allowing me to

form valuable contacts for such an important research application.

I hold a tremendous amount of passion for the application of these ideas, and I would like

to thank the Los Angeles Fire Department for their time and information that helped keep my

research grounded. In particular, I thank Fire Captain Ronald Roemer for his consistent support

in this thesis and valuable input to the DEFACTO system. I would like to thank all of the people

that have contributed to the Omni-Viewer portion of DEFACTO, including but not limited to

Pratik Patil and Ankit Modi. I thank all of the members of staff that helped me wade through the

paperwork and logistics of graduate school at USC.

ii

I would like to thank all of my family for being there for me, for checking up on me and

raising me to be able to handle something like this. I would like to thank Janusz Marecki because

I have never been so prolific as I was with him. I would like to thank Paul Scerri for paving

the way for my research and reaffirming my desire for the tangible. I would like to thank all of

my friends, who are too numerous to name here, but please know that you have served to help

me keep my sanity and make life worth living. And I would especially like to thank all of the

members of the Teamcore Family, both immediate and extended, of which I am proud to belong.

iii

Table of Contents

Acknowledgments . ii

List of Tables . vii

List of Figures . viii

Abstract . xi

Chapter 1 Introduction . 1
1.1 Problem Definition . 2
1.2 Solution Approach . 5
1.3 Overview of Thesis . 8

Chapter 2 Domain and Background . 10
2.1 Human-Multiagent Teams . 10

2.1.1 Inconsistency . 13
2.2 Disaster Response . 14
2.3 Background on Adjustable Autonomy . 18
2.4 Modeling Continuous Time . 19

2.4.1 Markov Decision Process (MDP) . 19
2.4.2 Time-dependent MDPs . 20
2.4.3 CPH Solver . 21

Chapter 3 Related Work . 24
3.1 Training Systems . 24
3.2 Mixed Initiative Planning . 25
3.3 Humans Augmenting Agent/Robot Teams . 27

Chapter 4 DEFACTO System . 30
4.1 Aims of DEFACTO . 30
4.2 System Overview . 31

4.2.1 Omni-Viewer . 32
4.2.2 Proxy: Team Coordination . 34

iv

Chapter 5 Applying Adjustable Autonomy to Teams 39
5.1 Mathematical Model of Strategy Selection . 41

5.1.1 Background on individual strategies . 41
5.1.2 Introduction of team level strategies . 42

5.2 Experiments and Evaluation . 47
5.2.1 Analysis . 49

5.3 New Challenges . 52

Chapter 6 RIAACT: Resolving Inconsistencies with Adjustable Autonomy in Contin-
uous Time . 54
6.1 Disaster Rescue Scenario . 61
6.2 RIAACT . 64

6.2.1 ITMDP Model for Adjustable Autonomy 65
6.2.1.1 ITMDP Model . 71
6.2.1.2 States . 73
6.2.1.3 Actions . 74
6.2.1.4 Rewards . 74
6.2.1.5 Policy . 75

6.2.2 Abstraction . 75
6.2.2.1 Adjustable Autonomy State Abstraction 76

6.2.3 Inconsistency Resolution . 78
6.2.4 Time Dependent Models . 79
6.2.5 ITMDP: Interruptible TMDPs . 80

6.2.5.1 Modeling an ITMDP . 81
6.2.5.2 Efficient planning for ITMDPs by using CPH 83
6.2.5.3 Calculating belief distribution 83
6.2.5.4 Converting the model . 86

6.2.6 Hybrid Coordination . 89
6.2.6.1 Agent Coordination . 89
6.2.6.2 Hybrid Algorithms . 90

6.3 Experiments . 93
6.3.1 Disaster Response Scenario and Testbed Policy Experiments 93
6.3.2 Testbed Policy Experiments . 96
6.3.3 DEFACTO Experiments . 102

Chapter 7 Lessons Learned from Initial Deployment Feedback 113
7.1 Adjustable Autonomy in Practice . 113
7.2 Questioning the Incident Commander . 114
7.3 Perspective . 116
7.4 Fire Behavior . 117
7.5 Gradual Training . 118
7.6 User Intent . 118
7.7 Training Scale . 119
7.8 Quicker Feedback . 120

v

Chapter 8 Conclusion and Vision . 121
8.1 Conclusion . 121
8.2 Vision . 123

Chapter 9 Discussion . 125
9.1 Asimovian Guarantees for Human Agent Teams 126
9.2 On Asimov’s Laws . 128

9.2.1 Definition of Harm . 129
9.2.2 Applying Laws to Teams . 130
9.2.3 Uncertainty . 131

9.3 Operationalizing Asimov’s Laws . 132
9.4 Applying Laws for Guarantees in Disaster Response 134
9.5 Domain Independent . 136
9.6 Remedy . 137

Bibliography . 139

vi

List of Tables

5.1 Total number of allocations given. 50

6.1 Average rewards for reaching the Finish state after executing an Agent decision
that is either consistent (Adc) or inconsistent (Adi) and a Human decision that is
either consistent (Hdc) or inconsistent (Hdi). 94

6.2 Action Durations . 95

6.3 Policies for interruption during the resolve action given a start time to deadline of
8.7 seconds. These values are derived directly from the policies shown in Figure
6.18. 106

9.1 Benefits to team when rejecting orders allows split of team. In top half, team
accepted all human orders, and in bottom half, problematic orders were rejected. 137

vii

List of Figures

2.1 Overview of the characteristics of human-multiagent teams on which this thesis
is focused. 11

2.2 The DEFACTO system displays multiple fires in an urban environment. 15

2.3 Current Training Methods: (a) projected photo and (b) incident commanders at a
table . 16

2.4 Fire Captain Roemer using the DEFACTO training system. 17

2.5 Figure (a) shows an example action, resolve which has a non-exponential action
duration when transferring from Adi to Adc.. Figure (b) shows the model after
the arbitrary action duration distribution is converted to an approximation as a
sum of exponential distributions. Figure (c) shows the final CPH model after all
transitions have undergone uniformization and self-transitions have been added. . 23

4.1 DEFACTO system architecture. 31

4.2 Omni-Viewer during a scenario: (a) Multiple fires start across the campus, (b)
The Incident Commander navigates to quickly grasp the situation, (c) Views a
closer look at one of the fires and assigns a fire engine, (d) The fire engine has
arrived at the fire, (e) The fire has been extinguished. 33

4.3 Proxy Architecture. 35

4.4 Proxy Modules. 35

4.5 TOP example for fighting of a fire that is found in building X. 37

5.1 Model predictions for various users. 46

5.2 Initial team level AA DEFACTO experimental details. 47

5.3 Performance of human test subjects in a human-multiagent team. 47

viii

5.4 Analysis of the effects of the Human on the team. 50

5.5 Number of agents assigned per fire. 50

6.1 Example scenario map with 6 fire engines (agents) to be dispatched to initial fires
located in buildings 1 and 2. Buildings 1 and 2 are seen here beside adjacent
buildings that the fire could potentially spread to. 61

6.2 Initial allocation given by the incident commander. 62

6.3 Alternate allocation determined by the agent team. 62

6.4 Previous model of Adjustable Autonomy for 3 time steps (T=0,1,2): Agent has
autonomy Aa, Human has autonomy Ha, Agent decision Ad, Human decision
Hd, and task finished Finish. Three actions are shown: Trans f er Autonomy,
Decide, and Execute. 66

6.5 Previous model of Adjustable Autonomy updated as a TMDP. 68

6.6 Adjustable Autonomy model that has been augmented to reason about inconsis-
tency (Adi,Adc,Hdi,Hdc) and has also added the resolve action. 69

6.7 RIAACT ITMDP Model: Added the interrupt action. 70

6.8 This figure shows how the resolve action in (a), which is a subsection of the
original RIAACT ITMDP model with an arbitrary action duration distribution is
converted to an approximate sum of exponential distributions for CPH in figure
(b) and how that model is extended to allow for interruptible actions in figure (c). 84

6.9 RIAACT modified to be input into CPH . 86

6.10 This figure compares each of the phase type approximations with the original
Normal(2,1) distribution. 88

6.11 Testbed policy experimental details. 96

6.12 RIAACT Model example policy output of each state (Aa, Ha, Adc, Hdc, Adi,
Hdi) given that the resolve action duration fits a Normal(9,5). 97

6.13 RIAACT Model example interrupt policy for resolve action given that the resolve
action duration fits a Normal(9,5). These graphs represent interrupt policies for
the two transitory states 〈Adi, resolve〉 and 〈Hdi, resolve〉. 99

6.14 The policies for the states Adi and Hdi comparing when the resolve action is
available or not. 100

ix

6.15 The policies for the states Adi and Hdi comparing when the resolve action is
interruptible and not interruptible. 101

6.16 DEFACTO experimental details. 102

6.17 Policy predictions for the dominant action (resolve or execute) when in state Hdi
at a given time to deadline. 105

6.18 Policy predictions for the dominant action (continue or interrupt) when executing
resolve and a given amount that has elapsed since the resolve action began at time
to deadline is 8.7 seconds. 107

6.19 This figure shows the increase in team performance in the DEFACTO simulation
when using RIAACT to implement a resolve action with the ability to interrupt it. 108

6.20 This figure shows the increase in team performance in the DEFACTO simulation
when using RIAACT to implement a resolve action with the ability to interrupt it
versus a resolve that waits until it is completed. 110

6.21 Experiments given a simulated human and varying the probability that resolving
the inconsistency would be useful P(IU). 110

6.22 Experiments given a simulated human and varying the amount of time before
interrupting the resolve of an inconsistency. 112

7.1 Selecting for closer look at a Fire Engine. 115

7.2 Local vs. Global Perspectives in the Omni-Viewer 115

7.3 Improvement in fire visualization . 117

7.4 Improvement in locating resources (fire engines and ambulances) 118

8.1 The MAAF project will include TALON unmanned ground vehicles and AVATAR
autonomous helicopters coordinating with a human controller. 124

9.1 AH for all subjects. 134

9.2 ATH for all subjects. 135

9.3 Number of buildings attacked. 135

x

Abstract

One of the most fundamental challenges of building a human-multiagent team is adjustable au-

tonomy, a process in which the control over team decisions is dynamically transferred between

humans and agents. This thesis studies adjustable autonomy in the context of a human interacting

with a team of agents and focuses on four issues that arise when addressing this team-level ad-

justable autonomy problem in real-time uncertain domains. Firstly, the humans and agents may

differ significantly in their worldviews and their capabilities. This difference leads to inconsis-

tencies in how humans and agents solve problems. Despite such inconsistencies, previous work

has rigidly assumed the infallibility of human decisions. However, in some cases following the

human’s decisions lead to worse human-multiagent team performance. Secondly, it is desirable

for the team to manage the uncertainty of action durations and plan for the optimal action at any

point in time. This is a crucial challenge to address given that these human-multiagent teams

are working in real-time with strict deadlines combined with the particularly uncertain duration

of actions that involve a human. Thirdly, the team needs to be able to plan for the optimal time

to interrupt certain actions. This is due to the fact that actions may take an uncertain amount of

time and the deadline is approaching. The human-multiagent team may benefit from attempting

an action for a given amount of time and interrupting the action if it does not finish in order to

try another action that has a higher expected reward. Fourthly, team-level adjustable autonomy

xi

is an inherently distributed and complex problem that cannot be solved optimally and completely

online.

My thesis makes four contributions to the field in order to address these challenges. First,

I have included, in the adjustable autonomy framework, the modeling of the resolution of in-

consistencies between human and agent view. This diverges from previous work on adjustable

autonomy that traditionally assumes the human is infallible and decisions as rigid, but instead

puts the humans and agents on an equal footing, allowing each to identify possible team perfor-

mance problems. I have developed new resolution adjustable autonomy strategies that recognize

inconsistencies and provide a framework to decide if a resolution is beneficial. Second, in order to

address the challenges brought about by dealing with time, I have modeled these new adjustable

autonomy strategies using TMDPs (Time dependent Markov Decision Problems). This allows for

an improvement over previous approaches, which used a discretized time model and less efficient

solutions. Third, I have introduced a new model for Interruptible TMDPs (ITMDPs) that allows

for an action to be interrupted at any point in continuous time. This results in a more accurate

modeling of actions and produces additional time-dependent policies that guide interruption dur-

ing the execution of an action. Fourth, I have created a hybrid approach that decomposes the

team level adjustable autonomy problem in a separate ITMDP for each team decision. In addi-

tion, team-based logics are used to coordinate and execute the team actions that are present in the

ITMDP.

In addition to developing these techniques, I have conducted experimental evaluations that

demonstrate the contributions of this approach. This has been realized in a system that I have

constructed, DEFACTO (Demonstrating Effective Flexible Agent Coordination of Teams via Om-

nipresence), that incorporates this approach to team-level adjustable autonomy, along with agent

xii

coordination reasoning and a multi-perspective view of the team for the human. DEFACTO has

been applied to an urban disaster response domain and used for incident commander training.

The Los Angeles Fire Department has been supportive and has given valuable feedback that has

shaped the system.

xiii

Chapter 1

Introduction

For roughly a decade, research in the area of multiagent systems has been focusing on enabling

decentralized agents to coordinate together as a team [CAL, 2003; Goodrich et al., 2001; Collins

et al., 1998; Ferguson and Allen, 1998; Fong et al., 2002; Wagner et al., 2004]. Recent advances

have allowed humans to be integrated with the multiagent team in real-time while tackling more

dynamic, unpredictable environments [Clancey et al., 2003; Sellner et al., 2006; Owens et al.,

2006; Goodrich et al., 2007]. In addition, these teams must take into account that, since the world

is so dynamic, there are deadlines for their task completion and decisions must be made quickly.

However, the advent of these new human-multiagent teams introduces many new challenges con-

cerning how the human and agents will interact.

One of the most fundamental challenges of building a human-multiagent team is that of ad-

justable autonomy [Sierhuis et al., 2003; Sellner et al., 2006; Reitsema et al., 2005; Scerri et al.,

2002; Varakantham et al., 2005]. Conventionally, adjustable autonomy refers to the ability of an

agent to dynamically adjust its own autonomy thereby adjusting the amount of control a human

can have over that agent. Given the changing state of the environment and the team, it is benefi-

cial for an agent to be flexible in its autonomy and not be forced to act either with full autonomy

1

or with zero autonomy. The key to adjustable autonomy is when and where to transfer control of

a decision.

As it is described in this thesis, adjustable autonomy is a process in which the control over a

decision1 is dynamically transferred between a human and an agent in order to find the teammate

(agent or human) that is best fit for making the decision. The choice of the best fit teammate

depends on the state of the world, the locality of information among team members, the priority

of the decision, and the availability of the teammate. In addition, all of these factors change

continuously over time and consequently, the best teammate to make a decision may change over

time as well.

This thesis focuses on applying adjustable autonomy to complex, dynamic domains where a

single human must interact with an entire team of agents. Given that human decisions in this con-

text may be imperfect, adjustable autonomy raises a range of novel challenges and contributions

that are outlined below.

1.1 Problem Definition

Given the setting of a single human coordinating with multiple agents, this thesis makes the

following assumptions about the environment in which they act: (i) The team has limited com-

munication channels due in part to the abilities of the human. (ii) Both the agents and the human

have uncertain and incomplete information about the state of the world. (iii) These teams are act-

ing in dynamic, unpredictable domains. (iv) Team decisions have deadlines beyond which they

become irrelevant or unachievable. These assumptions imply a more realistic team setting than

1In the context of adjustable autonomy, a decision refers to any team decision whether it be a decision to perform
an action or make a high-level team strategy decision.

2

what has been traditionally assumed in human-multiagent teams. Given these assumptions, the

problem addressed in the thesis can be stated as follows:

Problem: Team-level adjustable autonomy: Have team decisions be made by the best decision

maker at a given time in order to improve the performance of these new human-multiagent

teams.

In this thesis, I will focus on four primary challenges that intensify for human-multiagent

teams when addressing the problem above:

Firstly, the humans and agents may have inconsistent decisions about what the team should

do, due to their distinct world-views. Their distinct world-views are a result of the limited com-

munication that prevents all information from being communicated to all team members. Despite

such inconsistencies, previous work has rigidly assumed the infallibility of human decisions.

However, in some cases following the human’s decisions lead to worse human-multiagent team

performance. An inconsistency does not necessarily mean that the human is incorrect or that

the agent is incorrect. An agent’s model of the world is uncertain or incomplete and may not

contain some insight that the human has from previous experience. In contrast, the human may

not know the local details that could lead to degradation in team performance. Consequently,

although resolving may take a long time, the human-multiagent team still desires to resolve these

inconsistencies.

Secondly, the human-multiagent team must address the time limits that decisions have in these

domains. After a deadline, the decision has either evolved or become irrelevant, so the team wants

the decision to be made and executed before the opportunity is lost. The team needs to manage

an increasing uncertainty over action duration coupled with the need for precisely timed actions.

3

Uncertainty over time is a crucial factor to consider given that the actions may take more time

than is allowable in the deadlines. This is particularly difficult due to the increase in uncertainty

over the duration of team actions, especially those including the human. The human-multiagent

team must reason about time not only to complete the task, but also the time necessary to resolve

these aforementioned inconsistencies. This challenge suggests that agents carefully plan their

actions taking into account deadlines and uncertain action duration.

Thirdly, because actions make take a long time or have an uncertain duration, actions may be

started and then interrupted. Current methods for planning with deadlines and uncertain action

durations do not allow actions to be interrupted at any point in continuous time. However, given

that each decision has a deadline, a plan (policy) may benefit from being able to leave the current

action and pursue an action that takes less time or even less uncertainty in duration. This challenge

of interruptible actions exists not only in adjustable autonomy, but in many other real world

domains.

Fourthly, it is not feasible to solve team-level adjustable autonomy optimally in real-time.

The planning problem is inherently distributed and incorporates a lot of uncertainty. Thus, this

planning problem cannot be solved both quickly and optimally by any one solution technique.

For example, multiple agents may each have adjustable autonomy processes with the human

occurring simultaneously. This issue arises because of the potential for many transfers of control

or resolving of inconsistencies to arise at once. The human may be overwhelmed by so many

requests at the same time. Also, there may be multiple inconsistencies that pertain to the same

group of decisions and thus must be condensed into one common resolution. In addition, there

may be multiple distinct inconsistencies that are not directly related to each other, yet all of them

need to be resolved. The team must be able to determine which inconsistency to attempt to resolve

4

with the human and at which times. Finally, there is the goal of making the rest of the team aware

of the outcomes of the attempted resolution so that inconsistencies are detected accurately.

These challenges arise, in part, due to the fact that the thesis is making novel assumptions and

consequently solving a novel problem. Previous work in the areas of both mixed initiative and

adjustable autonomy have addressed this general problem of how to have a human and an agent

collaborate. Mixed initiative work has chosen to focus on the human-agent collaboration during

the synthesis of a plan [Myers and Morley, 2003; Ferguson et al., 1996; Horvitz and Apacible,

2003]. These mixed initiative approaches consequently do not have to address issues such as an

approaching deadline or the human not being available. However, this thesis focuses on human-

agent collaboration during the execution of a plan and hence these challenges arise. Adjustable

autonomy tries to address some of these challenges posed by factoring time into the state, but

does so at the price of a huge explosion in state space [Varakantham et al., 2005; Scerri et al.,

2002]. Another drawback to the adjustable autonomy work is that whenever the human or agent

has the autonomy and makes a decision, that decision is final. This limits the team’s ability to

avoid a decision that could degrade performance even if other teammates have an inconsistent

view of the decision.

1.2 Solution Approach

Thesis: Performance of the human multiagent team can be improved by choosing the decision

maker using the following techniques: (i) modeling of inconsistencies and the modeling

of their resolution, (ii) developing plans that are continuous time dependent and factor

in uncertain action durations, (iii) introducing a new model for planning which enables

5

actions to be interrupted at any point during execution, and (iv) decomposing the team-

level adjustable autonomy problem and leveraging the use of a hybrid approach to address

coordination.

My thesis will present an approach for Resolving Inconsistencies with Adjustable Auton-

omy in Continuous Time (RIAACT). RIAACT makes four contributions to the field of human-

multiagent teams in order to address the challenges stated in Section 1.1.

Firstly, RIAACT allows for the recognizing and potential resolving of inconsistencies be-

tween human and agent view. This puts the humans and agents on an equal footing, allowing

each to identify possible team performance problems in the decisions. A key idea from ad-

justable autonomy is the use of adjustable autonomy strategies: plans to flexibly transfer control

of a decision between an agent and a human until a decision is made [Scerri et al., 2002]. I

have developed resolution adjustable autonomy strategies that, once an inconsistency is detected,

provide a framework to decide if a resolution is beneficial. This thesis does not focus on which

method or process of resolution should be implemented. Instead, I focus on the planning problem

given that there is some idea of the uncertain action duration of the chosen resolution method.

Secondly, in order to address the challenges brought about by dealing with time, RIAACT

models team level adjustable autonomy in continuous time. Each adjustable autonomy strategy

can depend on the state and current absolute time by modeling it as a Time-Dependent Markov

Decision Problem (TMDP) [Boyan and Littman, 2000; Li and Littman, 2005; Marecki et al.,

2007]. This TMDP formulation allows for a continuous time policy (space of optimal strategies)

that allows for optimal actions to be prescribed at arbitrary points in time, without the state space

explosion that results from factoring time into the state at fixed discrete intervals. In addition, a

6

TMDP models the uncertainty of action durations (for example the resolving of an inconsistency)

as continuous distributions. This results in a fine-grained model representation and policy, which

enables the team to develop more accurate strategies that are better designed to handle deadlines.

Thirdly, I have developed a new model for Interruptible Time-Dependent Markov Decision

Problems (ITMDPs). This new model allows certain actions to be interrupted at any point in

continuous time. In previous models, an action was either not interruptible or only interruptible

at discrete points in time. As in TMDPs, the interruption can have a duration that follows an

arbitrary distribution. Once the interruption has finished, the destination state is the original state

that the interrupted action was taken from. These ITMDPs allow for more accurate estimation of

action rewards by modeling them as interruptible. In addition, new policies are created that can

determine if interrupting is optimal, given the amount of time that has elapsed since the start of the

action. An example of an interruptible action is the above-mentioned resolving of inconsistencies,

which are beneficial, yet also can take an uncertain amount of time to be completed.

Fourthly, in order to allow the team as a whole to coordinate when giving up or taking of

autonomy over decisions, the team would need to use a distributed MDP, which is prohibitively

expensive computationally (has been shown to be NEXP-complete in the general case [Bernstein

et al., 2000]). RIAACT instead decomposes the team-level adjustable autonomy problem into

three subproblems and solves them each with separate techniques to create a hybrid approach

[Tambe et al., 2005; Nair and Tambe, 2005; Schut et al., 2001; Scerri et al., 2002; Boutilier et al.,

2000]. (i) Developing the space of strategies is accomplished by solving an abstracted single

agent MDP on behalf of the team, using the continuous time methods described previously. (ii)

The communication and coordination is executed using team logic based reasoning. (iii) In ad-

dition, the agent team when trying to allocate a role among the team will employ distributed

7

constraint reasoning. Combining these three techniques into a hybrid approach allows for the

complex team-level adjustable autonomy to occur in real time while aiming to optimize coordi-

nated team performance.

These contributions have been realized in a system that I have constructed, DEFACTO (Demon-

strating Effective Flexible Agent Coordination of Teams through Omnipresence) that incorpo-

rates these adjustable autonomy strategies, along with agent coordination reasoning and a multi-

perspective view of the team for the human. This large-scale research prototype has served to

explore these concepts in order to allow humans and agents to work together. DEFACTO has

been shaped as a training simulation tool for incident commanders and demonstrated to the Los

Angeles Fire Department (LAFD) with positive and helpful feedback. A novel aspect of this the-

sis is its ability to point to the lessons learned from the LAFD feedback and show how they have

influenced the design of DEFACTO and consequently of the human-multiagent team.

1.3 Overview of Thesis

The rest of this thesis will be divided as follows: First, in Chapter 2, the human-multiagent teams

of interest are explained and applied to the disaster response domain, followed by background

information on relevant concepts. Related work is covered in Chapter 3. Chapter 4 describes

the research prototype system, DEFACTO, which has been applied to this domain. Then, in

Chapter 5, I will show how adjustable autonomy applies to human multiagent teams and present

experimental results from testing different team level strategies. Chapter 6 explains RIAACT

and shows how it can enable the human multiagent team to address the challenges of team-level

adjustable autonomy. Chapter 7 points out some of the lessons learned through feedback from the

8

Los Angeles Fire Department. This is followed by a conclusion and a vision of how this thesis is

working towards the future of human multiagent teams (Chapter 8). Next, in Chapter 9, there is

a related discussion of how Isaac Asimov’s Laws of Robotics [Asimov, 1990] can influence the

design of real-world human-multiagent teams.

9

Chapter 2

Domain and Background

In this chapter, I will give details on the exact domain that this thesis is addressing. Also, I

will provide background on some of the existing techniques utilized in this thesis. First, I will

explain the types of human-multiagent teams that this thesis focuses on. Second, I will go more

in depth into disaster response, which is a domain that is of particular interest. Thirdly, I give

a brief background on adjustable autonomy. Fourthly, I provide an explanation of some of the

MDP-based techniques that are used later in this thesis in addition to presenting a leading solution

technique.

2.1 Human-Multiagent Teams

There are many domains where human-multiagent teams are valuable. For example, as illustrated

in [Schurr et al., 2005], multiagent teams can help coordinate teams of fire fighters in rescue

operations during disaster response. Furthermore, they are also being used as helping hand to

humans in an office setting for assisting in various activities like scheduling meetings, collecting

information, managing projects etc. [CAL, 2003; Scerri et al., 2002; Wagner et al., 2004]. In each

of these domains, agents can relieve humans of the routine and mundane tasks and allows them

10

• Environment Characteristics

- Uncertain action durations

- Non-deterministic sequence of world events

- Unable to plan for all possible outcomes

- Decisions have deadlines beyond which they become irrelevant or unachievable

- A potential increase or decrease in team performance will have a strong impact

• Team Characteristics

- Communication restrictions

- Restriction on agent to agent communication due to lack of time

- Restrictions on agent to human communication due to both a lack of time and
limitations of human cognition

- Information gap

- Human has an abstract global view

- Agents have a detailed local view

Figure 2.1: Overview of the characteristics of human-multiagent teams on which this thesis is
focused.

to be more productive and/or successful. Also, agents can replace the need for large amounts of

personnel for activities like training exercises.

While there are a variety of different types of domains that multiagents can be applied to, I

am interested in domains with particular characteristics and consequently particular challenges

that the team must overcome. In addition, these characteristics also shape our solution methods.

Figure 2.1 shows some of the key characteristics of the domains of interest.

This thesis looks at real-world domains where there is not enough time available for the

multiagent team to compute pre-planned optimal decisions. This allows me to focus on some

of the key challenges that humans and agents will face while working together online. Indeed,

this research applies to similar human-multiagent teams that have been developed in projects like

11

COORDINATORS [Wagner et al., 2004] where agents are assisting a military team and CALO

[CAL, 2003] where agents are facilitating a group of coworkers in an office environment.

The area of disaster response is particularly well suited for human-multiagent teams that will

encounter these characteristics. There is a great potential, during a disaster crisis, for agents to

take on some team responsibilities in order to free the humans involved from being unnecessarily

overburdened. Disaster response is a dynamic scenario in which decisions must be made correctly

and quickly because human safety is at risk (large penalties for poor team performance). It is

likely that future disaster response systems will utilize such technology for coordination among

different rescue vehicles.

While human-multiagent teams hold a lot of potential for the future of disaster response,

in the near future, they will greatly benefit the training of fire fighters for the current disaster

response methods by providing a simulated exercise. The simulation is a stand-in for the actual

environmental observations received in the future. The methods mentioned in this thesis for

allowing the human-multiagent team to coordinate will be helpful to both training and deployed

use. Below, I will introduce an application of human-multiagent teams to training of disaster

response personnel.

This thesis is focused on a collection of distributed agents that are collaborating with a single

human towards a common goal(s). In order to accomplish these goals, there are numerous team

decisions that must be made. These decisions must be made despite the challenging character-

istics of both the human-multiagent team and the environment in which the team acts (as shown

in Figure 2.1). The team has limited communication channels, due in part to the abilities of the

human. Both the agents and the human have uncertain and incomplete information about the state

of the world. These teams are acting in dynamic, unpredictable domains. Team decisions have

12

deadlines beyond which they become irrelevant or unachievable. There are often team decisions

that may be made by either a human or an agent, thus creating a need for adjustable autonomy.

The human has the ability to monitor the progress of the team and can provide inputs to the agents

in order to allow the human-multiagent team to perform better. However, the agents may receive

human input that the agents are able to determine as harmful to the team’s performance. The

agents have their own perspective on the performance of the human-multiagent team and may

hold an inconsistent viewpoint to that of the human.

The information gap exists because of a difference in the roles that the human and the agents

have on the team. In addition, the gap exists because of the challenges of coordinating a team

in a dynamic, unpredictable world. The human-multiagent team must coordinate across the re-

strictive human-agent communication channels. There is a limit to the amount, speed and kind

of information that can be passed in either direction. Consequently all of the members of the

human-multiagent team may not know the complete world state.

2.1.1 Inconsistency

An important determinant of team performance in the domains of interest is often the consistency

of team decisions. There are certain real-world assumptions in the domains of focus that cause

consistency to be so important: decisions must be made under critical time pressure, while uncer-

tainty and where there is interdependence between decisions. It becomes very important that the

team resources are consistently focused toward complementary objectives rather than have them

split their resources on conflicting, but near-optimal decisions.

This inconsistency exists as a result of the information gap described previously. This gap

can exist because of a difference in the roles that the human and the agents have on the team. In

13

addition, the gap exists because of the challenges of coordinating a team in a dynamic, unpre-

dictable world. The human-multiagent team must coordinate across the restrictive human-agent

communication channels. There is a limit to the amount, speed and kind of information that can

be passed in either direction. Consequently all of the members of the human-multiagent team

may not know the complete world state.

The human and agents must coordinate and divide team decisions among each of the team-

mates. However, if a human makes a decision that the agent team finds to be inconsistent, the

agent team blindly following that decision can lead to poor team performance. The human-

multiagent team would benefit from resolving the inconsistencies, yet the team cannot commit

to doing so without addressing two challenges. First, because the world is dynamic and oppor-

tunities may change or may even be lost if they are not acted upon before a deadline. Second,

action durations are uncertain, which make them harder to reason about. This new team task of

resolving the inconsistency between a human and an agent is a prime example of a team task that

takes an uncertain amount of time.

2.2 Disaster Response

Techniques for augmenting the automation of routine coordination are rapidly reaching a level

of effectiveness where they can simulate realistic coordination on the ground for large numbers

of emergency response entities (e.g. fire engines, police cars) for the sake of training. We have

constructed DEFACTO (Demonstrating Effective Flexible Agent Coordination of Teams through

Omnipresence) as a high fidelity system for training and simulating of future disaster response.

DEFACTO allows for a human user (fire fighter) to observe a number of fires burning in buildings

14

Figure 2.2: The DEFACTO system displays multiple fires in an urban environment.

in an urban environment, and the human user is also allowed to help assign available fire engines

to the fires (see Figure 2.2).

The DEFACTO system is focused on illustrating the potential of future disaster-response to

large-scale disasters, for example ones that may arise as a result of large-scale terrorist attacks.

DEFACTO is motivated by a scenario of great concern to first responders within Los Angeles

and other metropolitan areas. In particular, it explores a natural or manmade disaster in an urban

area that results in a large-scale disaster on the ground. This scenario leads to multiple fires in

multiple locations with potentially many critically injured civilians. While there are many longer-

term implications of such an attack, we focus on assisting first responders, and, in particular, the

fire fighter “incident commander.” At every disaster response, the incident commander is the

single person that is in charge of monitoring and managing the entire situation. This incident

commander helps facilitate the allocation of resources and helps inform team members of relevant

information.

The incident commander’s main duty during a fire is to shoulder all responsibility for both

the outcome of the response and for the safety of the firefighters. In order to do this, the incident

15

(a) (b)

Figure 2.3: Current Training Methods: (a) projected photo and (b) incident commanders at a table

commander must have constant contact with the firefighters and have a complete picture of the

entire situation. The incident commander must make certain that dangerous choices are avoided

and the firefighters are informed and directed as needed.

Although, the focus of this thesis is on techniques for deployed systems, in the near future a

subset of these techniques can be applied to disaster response training. We had the opportunity

to study the current methods that the Los Angeles Fire Department (LAFD) implements to train

incident commanders. The LAFD uses a projection screen to simulate the disaster (Figure 2.3-

(a)). In addition, the participating incident commander is seated at a desk, directing an assistant

to take notes (Figure 2.3-(b)). Other firefighters remain in the back of the room and communicate

to the incident commander via radios. Firefighters are taken temporarily off duty in order to help

act out these pre-determined scenarios in order to test the incident commander’s abilities.

The LAFD’s current training approach, however, has several limitations. First, it requires a

number of officers to be taken off duty, which decreases the number of resources available to the

city for a disaster during training. Second, the disaster conditions created are not accurate in the

way that they appear or progress. Since the image that the incident commander is seeing is static,

16

Figure 2.4: Fire Captain Roemer using the DEFACTO training system.

there is no information about state or conditions of the fire that can be ascertained from watching

it, which is contrary to the actual scene of a disaster response. Furthermore, the fire’s behavior is

determined by the reports of the acting fire fighters over the walkie-talkie, which at times might

not be a plausible progression of fire in reality. Third, this method of training restricts it to a

smaller scale of fire because of the limited personnel and rigid fire representation.

Therefore, applying DEFACTO to disaster response holds a great potential benefit to the train-

ing of incident commanders in the fire department. DEFACTO would provide intelligent software

agents that simulate first responder tactics, decisions, and behaviors in simulated urban areas and

allow the incident commander (human) to interact. These agents form teams, where each agent

simulates a fire engine, which plans and acts autonomously in a simulated environment. When

using DEFACTO, incident commander trainees have the opportunity to see the disaster and the

coordination/resource constraints unfold so that they can be better prepared when commanding

over an actual disaster. Through interactions with these software agents, an incident comman-

der can evaluate tactics and realize the consequences of key decisions, while responding to such

disasters.

17

Thus, our system aims to enhance the training of the incident commanders (see Figure 2.4).

Our approach allows for training to not be so personnel heavy, because fire fighter actors will

be replaced by agents. By doing this we can start to train incident commanders with a larger

team. Through our simulation, we can also start to simulate larger events in order to push the

greater number of available resources to their limit. Also, by simulating the fire progression,

we can place the Incident commander in a more realistic situation and force them to react to

realistic challenges that arise. However, DEFACTO can also be seen as simulating a futuristic

disaster response where humans are collaborating with a team of autonomous fire engines, each

controlled by an agent.

2.3 Background on Adjustable Autonomy

In this thesis, I focus on a key aspect of the human-multiagent team coordination: Adjustable Au-

tonomy. Adjustable autonomy refers to an agent’s ability to dynamically change its own control,

possibly to transfer this control over a decision to a human [Scerri et al., 2002; Goodrich et al.,

2001; Dorais et al., 1998]. Previous work on adjustable autonomy could be categorized as either

involving a single person interacting with a single agent (the agent itself may interact with others)

or a single person directly interacting with a team [Goodrich et al., 2007; Reitsema et al., 2005;

Owens et al., 2006; Sellner et al., 2006]. In the single-agent single-human category, the concept of

flexible transfer-of-control strategy has shown promise [Scerri et al., 2002]. A transfer-of-control

strategy is a preplanned sequence of actions to transfer control over a decision among multiple

entities. For example, an AH1H2 strategy implies that an agent (A) attempts a decision and if the

agent fails in the decision then the control over the decision is passed to a human H1, and then

18

if H1 cannot reach a decision, then the control is passed to H2. Since previous work focused on

single-agent single-human interaction, strategies were individual agent strategies where only a

single agent acted at a time.

An optimal transfer-of-control strategy optimally balances the risks of not getting a high

quality decision against the risk of costs incurred due to a delay in getting that decision. Flexibility

in such strategies implies that an agent dynamically chooses the one that is optimal, based on the

situation, among multiple such strategies (H1A, AH1, AH1A, etc.) rather than always rigidly

choosing one strategy. The notion of flexible strategies, however, has not been applied in the

context of humans interacting with agent-teams. Thus, a key question is whether such flexible

transfer of control strategies are relevant in agent-teams, particularly in a large-scale application

such as ours.

Throughout this thesis, adjustable autonomy will be referring to the autonomy over a decision.

The general term “decision” will represent any decision that the human-multiagent team must

make in order coordinate and achieve its goals. For example, the decision could be either to

execute an action, reorganize the team structure, or allocate a team plan’s role.

2.4 Modeling Continuous Time

2.4.1 Markov Decision Process (MDP)

A Markov Decision Process (MDP) is a mathematical model for decision making where the

outcomes of actions are stochastic [Puterman, 1994]. A MDP assumes that there is a synchronous

dialog between some world and some decision making entity. At each step of this dialog, the

entity makes a decision which affects the world and then receives an observation which uniquely

19

determines the new state of the world. I shall from now on refer to this entity as an agent.

Formally MDP is a tuple 〈S , A, P,R〉 where S is a set of states of the world, A is a set of agent

actions, P is a transition function and R is a reward function. At each step of the dialog, an agent

that is in some state s ∈ S chooses some action a ∈ A, transitions to a new state s′ ∈ S with

probability P(s, a, s′) and receives a reward of R(s, a, s′).

2.4.2 Time-dependent MDPs

The standard MDP model as described above has a significant drawback when factoring time into

the state s: the state space explodes. In addition, the standard model, each action must take one

time step. Very often in realistic domains there are varying durations for actions and the action

durations are uncertain. The semi-markovian decision model does allow for action durations to

be sampled from a given distribution. However, the policy of a semi-markovian decision model

is not dependent on time, but only state. Consequently, using a semi-markovian approach would

result in an extremely large state space if it were to reason about the policy for each state s over

continuous time.

There has been initial work done on an augmented model of MDPs that are time dependent

[Boyan and Littman, 2000]. This approach deals with only discrete distributions that are slow

to compute, however it produces time-dependent policies. This work has been extended in [Li

and Littman, 2005] to have the model include action durations that are sampled from continuous

distributions and also provided speedups to the model that is referred to as a TMDP (Time-

dependent Markov Decision Process).

The TMDP model addresses a continuous state space that is continuous in one dimension:

time. It does this by allowing the state-space to remain with all discrete variables and have a

20

finite amount of discrete states. However the policy is a continuous time policy that maps each

of the states over absolute time to the optimal action at that time. A more detailed explanation of

the TMDP model appears later in Section 6.2.1.1, where the model is augmented.

Currently, TMDP is the best model to approach planning problems with uncertainty and con-

tinuous time. The TMDP model augments a general MDP with two sources of uncertainty: action

durations and action outcomes. Execution of the policy is considering a deadline, beyond which

reward is no longer able to be earned. The objective of the agent is to maximize its expected total

reward until execution stops at the deadline.

2.4.3 CPH Solver

There has been a significant amount of research recently on methods for solving a TMDP [Feng

et al., 2004; Guestrin et al., 2004; Li and Littman, 2005; Petrik, 2007]. The primary challenge that

any TMDP solver must address is how to perform value iteration over an infinite number of states

because the time dimension is continuous. Each of the techniques leverage the tradeoff between

the algorithm run time and the quality of the solution. They do so by making approximations of

the action duration distributions.

I have chosen to utilize the Continuous Phase (CPH) solver [Marecki et al., 2007] which has

been shown to be the fastest of the TMDP solvers. CPH approximates each action duration dis-

tribution with a phase type distribution, which is a directed graph whose transitions are sampled

from an exponential distribution (for example e−λ1t, e−λ2t, e−λ3t ...). Often, in order to increase

the accuracy of the approximation of a non-exponential distribution, the process adds extra inter-

mediate states, each with exponential transitions. This is the case with a common approximation

technique known as a Coxian. After each action distribution is approximated as one or more

21

exponential distributions, the result is a new model where every transition is an exponential dis-

tribution, albeit with possibly more states.

Figure 2.5-a shows an example action, resolve, which has a non-exponential action duration.

Figure 2.5-b shows the extra states that are added according to a Coxian approximation. However

in this new larger diagram, each transition is now an exponential. As seen in Figure 2.5-b, a phase

type distribution can be modeled by having the action cont. (continue) result in either proceeding

to a future state or self transitioning with a certain probability. Even though extra states have

been created, these intermediate states (Adi1, Adi2, and Adi3) exist to provide an accurate action

duration. They do not represent states in the real world, but instead represent being somewhere

in the middle of the resolve action. In addition, the model undergoes an uniformization process

[Puterman, 1994] that converts all of the transitions (arrows in the diagram) to each have the same

λ, where the transition duration is sampled from e−λt. This results in the altering of the transition

probabilities and adding self-transitions (see Figure 2.5-c). This figure will appear again to be

expanded upon in Figure 6.8.

Once all of the model’s transitions have been converted into uniform phase type distributions,

CPH can achieve a great speedup by using numerical analysis methods to compute its TMDP pol-

icy. Although CPH must often handle more states than other solvers, it achieves faster runtimes

by solving this larger state space analytically.

22

Hdi HdcResolve

Execute Execute

(a) Original resolve action model

Hdi HdcHdi2 Hdi3Hdi1

ExecuteExecute

Resolve cont.cont. cont.

(b) With additional states for approximations

Hdi HdcHdi2 Hdi3Hdi1

ExecuteExecute

Resolve cont.cont. cont.

(c) CPH converted model after uniformization

Figure 2.5: Figure (a) shows an example action, resolve which has a non-exponential action
duration when transferring from Adi to Adc.. Figure (b) shows the model after the arbitrary
action duration distribution is converted to an approximation as a sum of exponential distributions.
Figure (c) shows the final CPH model after all transitions have undergone uniformization and
self-transitions have been added.

23

Chapter 3

Related Work

In this chapter, I will cover three areas of work that are related to this thesis: (i) training systems,

(ii) mixed initiative planning, and (iii) humans augmenting existing teams.

3.1 Training Systems

In the area of military training, there are products like JCATS [Joint Warfighting Center, 2005]

and EPICS [Advanced Systems Technology, 2005]. JCATS represents a self-contained, high-

resolution joint simulation in use for entity-level training in open, urban and subterranean en-

vironments. Developed by Lawrence Livermore National Laboratory, JCATS gives users the

capability to detail the replication of small group and individual activities during a simulated op-

eration. At this point however, JCATS does not incorporate simulated agent teammates. Finally,

EPICS is a computer-based, scenario-driven, high-resolution simulation. It is used by emergency

response agencies to train for emergency situations that require multi-echelon and/or inter-agency

communication and coordination. Developed by the U.S. Army Training and Doctrine Command

Analysis Center, EPICS is also used for exercising communications and command and control

24

procedures at multiple levels. Similar to JCATS however, EPICS does not allow agents to partici-

pate in the simulation. More recently multiagents have been successfully applied to training navy

tactics [van Doesburg et al., 2005] and teams of Uninhabited Air Vehicles [Baxter and Horn, 2005;

Karim and Heinze, 2005]. Our work is similar to these in spirit, however our focus and lessons

learned are based on the training of Incident Commanders in disaster rescue environments. More

importantly, the issues of adjustable autonomy and performance guarantees are emphasized in

our work, since our ultimate long-term goals go beyond training to potential deployment in the

real world.

Another major area is arising by leveraging the strengths of the video game industry and

applying them to training to create a more immersive and enjoyable experience. This area is

beginning to be referred to as “serious games” [Zyda, 2005], but has predecessors in military

training such as the Mission Rehearsal Exercise system [Hill et al., 2001] and battlefield simula-

tions for helicopter pilots [Hill et al., 1997]. More recently full computer and consoles have had

video games released that have very strong training applications such as America’s Army [Zyda

et al., 2005] and Full Spectrum Command [Swartout and van Lent, 2003]. Also, in a very related

project at Carnegie Mellon University, a video game is being used to train fire fighters to handle

hazardous materials [Schell, Spring 2007]. Our work is distinguished from current serious games

because of our emphasis on adjustable autonomy for the interaction.

3.2 Mixed Initiative Planning

Mixed Initiative can be broadly defined as studying the collaboration of a human and a sys-

tem, where either can drive the process or take the lead in the partnership. This being the case,

25

adjustable autonomy can be considered as a specific subproblem of this general research area.

However, mixed initiative systems, as they are approached in current practice, focus on collabo-

ration during the synthesis of plans, whereas adjustable autonomy focuses on collaboration during

the execution of a plan. Consequently mixed initiative work often makes the following assump-

tions: (i) focus on the collaborative process and don’t worry about the human being there, (ii)

the collaboration is occurring in an offline situation with the planning being done by a centralized

system. This thesis in the context of adjustable autonomy makes very different assumptions about

the collaborative process, which alters what kinds of techniques can be use in the collaboration

process. Some very relevant work has been done in allowing a human to give offline guidance for

adjustable autonomy and strategy preference to a team of agents [Myers and Morley, 2003]. An-

other example, in the area of applied trip planning, the TRAINS project [Ferguson et al., 1996],

the later TRIPS [Ferguson and Allen, 1998], and the Collagen system [Rich and Sidner, 1998]

are all instances of this work that fall under the area of mixed initiative planning and implement

a variety of different ways for the human planner to interact. More recently, the PLOW [Allen

et al., 2007] software assistant collaborates with a human to learn a task model.

Because the mixed initiative work has been focused on static generation offline, it could

benefit from the work presented as they move towards online planning. I believe that there is even

further synergy possible with the new RIAACT model and the mixed initiative work. Adjustable

autonomy has previously focused on the dynamic transfer of control between a human-agent

team. With the addition of the resolve action in the RIAACT model, a human and an agent must

resolve an inconsistency in a coordinated fashion. This resolve action can be modeled as a mixed

initiative dialogue where each party is attempting to bridge this information gap. The RIAACT

26

model could reason over time distribution of how long the mixed initiative dialogue will take to

reach a modified plan.

This idea of an ”information gap” is implicitly one of the focuses of mixed initiative systems.

Some areas of mixed initiative research attempt to allow systems that do not have enough domain

knowledge to work alongside domain-expert humans. These humans help to fill in any gaps

through a mixed-initiative dialogue. However, in order for the human to help, the human must be

interrupted by the system. There has been work done that tries to compute the expected cost of

interruption for a user in [Horvitz and Apacible, 2003]. This work focuses on the modeling of the

human in order to guide the interaction with a centralized system and a human. My thesis tries

to solve a related problem. For one, the teams that I am looking at are inherently decentralized

and must collaborate as a cohesive team. In addition, adjustable autonomy is geared toward

plan execution, rather than mixed initiative which primarily concentrates on the challenges of

the synthesis problems such as planning and scheduling. Because of this, mixed initiative is not

concerned with how long the dialogue may take and consequently deadlines. However the work

in this thesis could be enhanced by having a more accurate model of the human.

3.3 Humans Augmenting Agent/Robot Teams

There has also been a lot of work where humans are beginning to interact with agent/robot teams

[Scerri et al., 2003; Crandall et al., 2003; Fong et al., 2002; Goodrich et al., 2001; Varakantham

et al., 2005]. These efforts recognize that humans may not provide a timely response. In part to

alleviate the lack of such timely response, Scerri et al [Scerri et al., 2002] leveraged the notion

27

of adjustable autonomy strategies. Our work already incorporates such strategies, but recog-

nizes that human users may still provide such imperfect or incorrect inputs. There has also been

some work that involves humans interacting with multiagent teams actually leading to perfor-

mance degradation due to imperfect input: In past work [Schurr et al., 2003] illustrated that an

autonomous team of simulated robots performed better than when aided with human inputs (al-

though in some situations the humans were able to improve the simulated robot performance).

However, this work did not address the question of how the simulated robots would recover from

such setbacks.

Some projects that deal with agent interactions with humans have started to focus on the

safety of those humans. Consequently, they have started to look to Asimov’s laws of robotics for

some crucial guarantees. This past work ([Weld and Etzioni, 1994; Gordon, 2000; Pynadath and

Tambe, 2001]) has focused on Asimovian agents but dealt with only the first law (solely against

human harm). More specifically, this previous work only focused on a single law (the first law of

safety) and, in the process, addressed two of the issues I mentioned earlier in Section 9.2: defining

the notion of harm to humans and applying the laws to teams rather than individual agents. The

key novelty of our work is going beyond previous work to consider the second of Asimov’s laws,

and more importantly in recognizing the fundamental role that uncertainty plays in any faithful

implementation of such a law. In particular, Asimov’s second law addresses situations where

an agent or agent team may or may not obey human orders it specifies that in situations where

(inadvertent) harm may come to other humans, agents may disobey an order. However, in the

presence of uncertainty faced either by the agents or the human user about each other’s state or

state of the world, either the set of agents or the human may not be completely certain of their

inferences regarding potential harm to humans. This thesis illustrates that in the presence of such

28

uncertainty, agents must strive to gather additional information or provide additional information.

Given that the information reduces the uncertainty, agents may only then disobey human orders

to avoid harm.

29

Chapter 4

DEFACTO System

This thesis is presented in the context of a disaster response system called DEFACTO. While

this thesis will focus on DEFACTO as a domain, the approach is more generally applicable to

human-multiagent teams, as described in Section 2.1.

In this chapter, I will describe DEFACTO’s architecture in order to better explain the domain

in which the experiments in Chapters 5 and 6 have been run. This system provides a unique

testbed for human-multiagent teams and has potential as both a training tool and a decision sup-

port system. In addition, this architecture will be useful in understanding the hybrid approach

mentioned later in Chapter 6.

4.1 Aims of DEFACTO

I have constructed a new system, DEFACTO (Demonstrating Effective Flexible Agent Coordi-

nation of Teams through Omnipresence). DEFACTO incorporates multiagent teams, 3D visual-

ization and human-interaction reasoning into a unique high fidelity system for training incident

commanders. By providing the incident commander interaction with the coordinating agent team

in a complex environment, the commander can gain experience and draw valuable lessons that

30

Disaster Scenario

Proxy

Proxy

Proxy

Proxy

Team

Omni-Viewer

DEFACTO

Incident
Commander

Figure 4.1: DEFACTO system architecture.

will be applicable in the real world. The DEFACTO system is comprised of three main compo-

nents: (i) Omnipresent Viewer - intuitive interface, (ii) Proxy Framework - for team coordination,

and (iii) Flexible Interaction - between the incident commander and the team.

4.2 System Overview

First, DEFACTO incorporates a viewer that allows for the human to have an omnipresent inter-

action with remote agent teams. We refer to this as the Omni-Viewer (see Figure 4.1), and it

combines two styles of operation: (i) a navigable, high quality 3D visualization of the world and

(ii) a traditional 2D view with a list of possible task allocations that the human may perform.

31

With the Omni-Viewer, human experts can quickly observe on-going agent and world activity,

taking advantage of both the brain’s favored visual object processing skills (relative to textual

search, [Paivio, 1974]), and the fact that 3D representations can be innately recognizable, without

the layer of interpretation required of map-like displays or raw computer logs. The 3D mode en-

ables the human to understand the local perspectives of each agent in conjunction with the global,

system-wide perspective that is obtained in the 2D mode.

Second, DEFACTO utilizes a proxy framework that handles both the coordination and com-

munication for the human-multiagent team (see Figure 4.1). We use coordination algorithms

inspired by theories of teamwork to manage the distributed response [Scerri et al., 2003]. The

general coordination algorithms are encapsulated in proxies, with each team member having its

own proxy and representing it in the team.

Third, we also use the above mentioned proxy framework to implement adjustable autonomy

(AA) between each member of the human-multiagent team. The novel aspect of DEFACTO’s

flexible AA is that we generalize the notion of strategies from single-agent single-human context

to agent-team single-human. In our work, agents may flexibly choose among team strategies

for adjustable autonomy instead of only individual strategies; thus, depending on the situation,

the agent team has the flexibility to limit human interaction, and may in extreme cases exclude

humans from the loop.

4.2.1 Omni-Viewer

Our goal of allowing fluid human interaction with agents requires a visualization system that pro-

vides the human with a global view of agent activity as well as shows the local view of a particular

32

(a) (b) (c)

(d) (e)

Figure 4.2: Omni-Viewer during a scenario: (a) Multiple fires start across the campus, (b) The
Incident Commander navigates to quickly grasp the situation, (c) Views a closer look at one of
the fires and assigns a fire engine, (d) The fire engine has arrived at the fire, (e) The fire has been
extinguished.

agent when needed. Hence, we have developed an omnipresent viewer, or Omni-Viewer 1, which

will allow the human user diverse interaction with remote agent teams. While a global view is

obtainable from a two-dimensional map, a local perspective is best obtained from a 3D viewer,

since the 3D view incorporates the perspective and occlusion effects generated by a particular

viewpoint. The literature on 2D- versus 3D-viewers is ambiguous. For example, spatial learning

of environments from virtual navigation has been found to be impaired relative to studying simple

maps of the same environments [Richardson et al., 1999]. On the other hand, the problem may

be that many virtual environments are relatively bland and featureless. Ruddle points out that

navigating virtual environments can be successful if rich, distinguishable landmarks are present

[Ruddle et al., 1997].
1The Omni-Viewer was developed with the help of the following collaborators: Nikhil Kasinadhuni, Pratik Patil,

Ankit Modi, J. P. Lewis, and Fred Pighin.

33

To address our discrepant goals, the Omni-Viewer incorporates both a conventional map-

like 2D view and a detailed 3D-perspective viewer (Figure 4.2). The global overview shows

events as they are progressing and provides a list of tasks that the agents have transferred to the

human. The user can navigate the same dynamic world view, while allowing for more freedom to

move to desired locations and views. In particular, the user can drop to the virtual ground level,

thereby obtaining the world view (local perspective) of a particular agent. At this level, the user

can “walk” freely around the scene, observing the local logistics involved as various entities are

performing their duties. This can be helpful in evaluating the physical ground circumstances and

altering the team’s behavior accordingly. It also allows the user to feel immersed in the scene

where various factors (psychological, etc.) may come into effect.

4.2.2 Proxy: Team Coordination

A key premise in this work is that intelligent distributed agents will be a key element of a future

disaster response. Taking advantage of emerging robust, high bandwidth communication infras-

tructure, we believe that a critical role of these intelligent agents will be to manage coordination

between all members of the response team. Specifically, we are using coordination algorithms

inspired by theories of teamwork to manage the distributed response [Scerri et al., 2003]. The

general coordination algorithms are encapsulated in proxies, with each team member having its

own proxy and representing it in the team. The current version of the proxies is called Machinetta

[Scerri et al., 2003] and extends the successful Teamcore proxies [Pynadath and Tambe, 2003].

Machinetta leverages BDI (Belief Desire and Intentions) based logic to guide communication

and establish joint commitments to serve the team plans. Machinetta is implemented in Java and

is freely available on the web. Notice that the concept of a reusable proxy differs from many

34

Figure 4.3: Proxy Architecture.

Communication: communication with other proxies

Coordination: reasoning about team plans and communication

State: the working memory of the proxy

Local Adjustable Autonomy: reasoning about whether to act autonomously or pass control to
the team member the proxy represents

RAP Interface: communication with the team member

Figure 4.4: Proxy Modules.

other “multiagent toolkits” in that it provides the coordination algorithms, e.g., algorithms for

allocating tasks, as opposed to the infrastructure, e.g., APIs for reliable communication.

The Machinetta software consists of five main modules, as seen in architecture diagram in

Figure 4.3. Figure 4.4 provides a brief overview of each of the modules. Three of the modules

are domain independent, while the other two are tailored for specific domains. The three domain

independent modules are for coordination reasoning, maintaining local beliefs (state) and local

adjustable autonomy. The domain specific modules are for communication between proxies and

communication between a proxy and a team member. The modules interact with each other only

via the local state with a blackboard design and are designed to be “plug and play.” Thus new

35

adjustable autonomy algorithms can be used with existing coordination algorithms. The coordi-

nation reasoning is responsible for reasoning about interactions with other proxies, thereby im-

plementing the coordination algorithms. The local adjustable autonomy algorithms reason about

the interaction with the team member, providing the possibility for the team member to make any

coordination decision instead of the proxy. It should be noted that the local adjustable autonomy

described here focuses on the delegation of control between a team member and its representative

proxy. This is distinct from the adjustable autonomy that occurs between agent and human team

members, which is the focus of this thesis. It should be noted that this local adjustable autonomy

module is augmented to allow for team-level adjustable autonomy in Chapter 5. This extends the

reasoning about the transfer of control to not only its attached teammate, but other teammates as

well.

Teams of proxies implement team oriented plans (TOPs) [Pynadath et al., 1999] which de-

scribe joint activities to be performed in terms of the individual roles to be performed and any

constraints between those roles. The TOP serves as a reactive plan for the team. Generally, TOPs

are instantiated dynamically from TOP templates at runtime when preconditions associated with

the templates are filled. Typically, a large team will be simultaneously executing many TOPs. For

example, in my disaster response domain, a team would execute a TOP similar to that shown in

Figure 4.5 each time a fire is reported.

The TOPs can also contain constraints between these roles that specify interactions such as

required execution ordering and whether one role can be performed if another is not currently

being performed. For example, given our TOP example above, the roles for Fight Back and Fight

Front can have an AND constraint. This would be very helpful for a large-scale fire that would be

too risky for one fire engine company to fight alone from the front. The AND would force both

36

Simple Team Oriented Program (TOP) Example

Plan Precondition: Fire exists in building X.

Plan Body: Assign fire engines (and personnel) to Fight Fire Roles (move to building and extin-
guish fire).

Role: Fight Front of Fire in building X.

Role: Fight Back of Fire in building X.

Role: Fight Side of Fire in building X.

Plan Postcondition: (Succeed) Fire in building X has been extinguished.

Plan Postcondition: (Fail) Fire in building X has burned building completely down.

Figure 4.5: TOP example for fighting of a fire that is found in building X.

the front and back to have someone assigned and fighting, before a fire engine would act on the

role. Notice that TOPs do not specify the coordination or communication required to execute a

plan; the proxy determines the coordination that should be performed.

Current versions of Machinetta cast the role allocation problem as a Distributed Constraint

Optimization Problem (DCOP) and solve it via the LA-DCOP role allocation algorithm [Scerri

et al., 2005]. LA-DCOP exploits tokens to solve the DCOP. The decision for the agent becomes

whether to assign values represented by tokens it currently has to its variable or to pass the tokens

on. Algorithm 1 shows a portion of the LA-DCOP algorithm that is used for token passing (Token

Monitor). First, the team member can choose the minimum capability the agent should have in

order to assign the value. This minimum capability is referred to as the threshold. The threshold

is calculated once (Algorithm 1, line 6), and attached to the token as it moves around the team.

Second, the agent must check whether the value can be assigned while respecting its local

resource constraints (Algorithm 1, line 9). If the value cannot be assigned within the resource

constraints of the team member, it must choose a value(s) to reject and pass on to other teammates

37

in the form of a token(s) (Algorithm 1, line 12). The agent keeps values that maximize the use of

its capabilities (performed in the MC function, Algorithm 1, line 10).

Algorithm 1 TM(Cap,Resources)
1: V ← ∅
2: while true do
3: msg← getMsg()
4: token← msg
5: if token.threshold = NULL then
6: token.threshold ← CT(token)
7: if token.threshold ≤ Cap(token.value) then
8: V ← V ∪ token.value
9: if

∑
v∈V Resources(v) ≥ agent.resources then

10: out ← V−MC(Values)
11: for all v ∈ out do
12: PO(newtoken(v))
13: Values← Values − out
14: else
15: PO(token) /* threshold > Cap(token.value) */

38

Chapter 5

Applying Adjustable Autonomy to Teams

This chapter reports on experiments with humans in order to explore the effects of applying

adjustable autonomy to the team-level. This will demonstrate some of the new key challenges

that arise and will be addressed later in Chapter 6. An important difference that influences these

new challenges is that autonomy can now be adjusted between human and multiple entities. In

addition, the goal is to improve the human-multiagent team performance, rather than merely to

serve the human.

DEFACTO is an experimental test bed to test transfer-of-control strategies in the context of

human-multiagent teams. One key advance in DEFACTO is that the strategies are not limited to

individual agent strategies, but also enables team-level strategies. For example, rather than trans-

ferring control from a human to a single agent, a team-level strategy could transfer control from

a human to an agent-team. DEFACTO leverages teamwork proxies and consequently each team

member (agent or human) has a representative proxy (for more details see Section 4.2.2). Each

team member combined with its representative proxy can be considered a full-fledged teammate.

In the context of this thesis, adjustable autonomy strategies are implemented by the proxy on

39

behalf of its full-fledged teammate. The techniques presented in this thesis do not require the use

of a proxy architecture, however it facilitates the design and modification of DEFACTO.

Concretely, each proxy is provided with four defined strategy options; the key is to select the

right strategy given the situation. Previously, the adjustable autonomy module would only reason

about strategies that adjust between a team mate and its proxy, however team level adjustable

autonomy focuses on strategies that transfer control to any other teammates. For example, if a

team level strategy would want to leverage strengths of both the agents and the human on the

team, it would combine AT Strategy and H Strategy in order to make the AT H Strategy. The

agent team strategy, AT , keeps control over a decision with the agent team for the entire duration

of the decision. The H strategy always immediately transfers control to the human. AT H strategy

is the conjunction of team level AT strategy with H strategy. This strategy aims to significantly

reduce the burden on the user by allowing the decision to first pass through all agents before

finally going to the user, if the agent team fails to reach a decision. In these strategies, the transfer

occurs after the single agent or the agent team has finished attempting a decision.

There is a large space of possible strategies that can be applied to a human-multiagent team.

In order to try and find the best strategies to use, the autonomy of team members can be reasoned

over using a decision theoretic model. Consequently, the policy that results determines the trans-

fer of control and can be considered the adjustable autonomy strategy. In the next section, I will

present some initial models that are used to reason about team-level adjustable autonomy. At the

end of this chapter, some of the drawbacks to this approach are highlighted. Later, in Chapter 6,

I will present a new technique that addresses these challenges.

40

5.1 Mathematical Model of Strategy Selection

Whereas strategies in Scerri’s work [Scerri et al., 2002] are based on a single decision that is

sequentially passed from agent to agent, here it is assumed that there are multiple homogeneous

agents concurrently working on multiple tasks interacting with a single human user. These as-

sumptions (which fit the domain) are exploited to obtain a reduced version of the model and

simplify the computation in selecting strategies.

5.1.1 Background on individual strategies

A decision, d, needs to be made. There are n entities, e1 . . . en, who can potentially make the

decision. These entities can be human users or agents. The expected quality of decisions made

by each of the entities, EQ = {EQei,d(t) : R → R}ni=1, is known, though perhaps not exactly.

P = {P>(t) : R → R} represents continuous probability distributions over the time that the entity

in control will respond (with a decision of quality EQe,d(t)). The cost of delaying a decision

until time t is denoted as {W : t → R}. The set of possible wait-cost functions is W. W(t) is

non-decreasing and at some point in time, Γ, when the costs of waiting stop accumulating (i.e.,

∀t ≥ Γ,∀W ∈W,W(t) =W(Γ)).

To calculate the expected utility, EU, of an arbitrary strategy, the model multiplies the proba-

bility of response at each instant of time with the expected utility of receiving a response at that

instant, and then sum the products. Hence, for an arbitrary continuous probability distribution if

ec represents the entity currently in decision-making control:

41

EU =

∫ ∞
0

P>(t)EUec,d(t) .dt (5.1)

Since the primary focus of this thesis is in the effects of delay caused by transfer of control,

the expected utility of a decision at a certain instant, EUec,d(t), is decomposed into two terms.

The first term captures the quality of the decision, independent of delay costs, and the second

captures the costs of delay: EUec,dt = EQe,d(t) −W(t). To calculate the EU of a strategy, the

probability of response function and the wait-cost calculation must reflect the control situation at

that point in the strategy. If a human, H1 has control at time t, P>(t) reflects H1’s probability of

responding at t.

5.1.2 Introduction of team level strategies

AT Strategy: Starting from the individual model, team level AT strategy, where the agent team is

denoted as AT , are introduced in the following way: Start with Equation 5.2 for single agent A and

single task d. Obtain Equation 5.3 by discretizing time, t = 1, ...,T and introducing set ∆ of tasks.

Probability of agent A performing a task d at time t is denoted as Pa,d(t). Equation 5.4 is a result

of the introduction of the set of agents AG = a1, a2, ..., ak. Assume the same quality of decision

for each task performed by an agent and that each agent A has the same quality so that EQa,d(t)

reduces to EQ(t). Given the assumption that each agent A at time step t performs one task,∑
d∈∆ Pa,d(t) = 1 which is depicted in Equation 5.5. Then express

∑ak
a=a1

∑
d∈∆ Pa,d(t) ×Wa,d(t) as

the total team penalty for time slice t, i.e, at time slice t, subtract one penalty unit for each not

completed task as seen in Equation 5.6. Assuming penalty unit PU = 1 finally resulting Equation

5.7.

42

EUa,d =

∫ ∞
0

P>a(t) × (EQa,d(t) −W(t)).dt (5.2)

EUa,∆ =

T∑
t=1

∑
d∈∆

Pa,d(t) × (EQa,d(t) −W(t)) (5.3)

EUAT ,∆ =

T∑
t=1

ak∑
a=a1

∑
d∈∆

Pa,d(t) × (EQa,d(t) −Wa,d(t)) (5.4)

EUAT ,∆,AG =

T∑
t=1

(
ak∑

a=a1

EQ(t) −
ak∑

a=a1

∑
d∈∆

Pa,d(t) ×Wa,d(t)) (5.5)

EUAT ,∆,AG =

T∑
t=1

(|AG| × EQ(t) − (|∆| − |AG| × t) × PU) (5.6)

EUAT ,∆,AG = |AG| ×
T∑

t=1

(EQ(t) − (
|∆|

AG
− t)) (5.7)

43

H Strategy: The difference between EUH,∆,AG and EUAT ,∆,AG results from three key obser-

vations: First, the human is able to choose strategic decisions with higher probability, therefore

his EQH(t) is greater than EQ(t) for both individual and team level AT strategies. Second, I hy-

pothesize that a human cannot control all the agents AG at disposal, but due to cognitive limits

will focus on a smaller subset, AGH of agents (evidence of limits on AGH appears later in Fig-

ure 5.4-a). |AGH | should slowly converge to B, which denotes the upper limit of the number of

agents the human can focus on (|AGH |), but never exceeds the total number of agents, AG. Each

function f (AG) that models AGH should be consistent with three properties: i) if B → ∞ then

f (AG)→ AG; ii) f (AG) < B; iii) f (AG) < AG. Third, there is a delay in human decision making

compared to agent decisions. This phenomenon is modeled by shifting H to start at time slice tH .

For tH − 1 time slices the team incurs a cost |∆| × (tH − 1) for all incomplete tasks. By inserting

EQH(t) and AGH into the time shifted utility equation for AT strategy to obtain the H strategy

(Equation 5.8).

AT H Strategy: The AT H strategy is a composition of H and AT strategies (see Equation 5.9).

Essentially, this strategy the whole team of agents will attempt to allocate a particular task and if

not able to, will ask the human for help.

44

EUH,∆,AG = |AGH | ×

T∑
t=tH

(EQH(t)

−(
|∆|

AGH
− (t − tH))) − |∆| × (tH − 1) (5.8)

EUAT H,∆,AG = |AG| ×
tH−1∑
t=1

(EQ(t) − (
|∆|

|AG|
− t))

+|AGH | ×

T∑
t=tH

(EQH(t) − (
|∆| − |AG|
|AGH |

− (t − tH)))) (5.9)

Strategy utility prediction: Given the strategy equations and the assumption that EQH,∆,AG

is constant and independent of the number of agents the graphs representing strategy utilities are

plotted (Figure 5.1). Figure 5.1 shows the number of agents on the x-axis and the expected utility

of a strategy on the y-axis. The focus is on humans with different skills: (a) low EQH , low B

(b) high EQH , low B (c) low EQH , high B (d) high EQH , high B. The last graph representing

a human with high EQH and high B. The curve of AH and AT H appears to be flattening out

to eventually cross the line of AT . Moreover, observe that the increase in EQH increases the

slope for AH and AT H for small number of agents, whereas the increase of B causes the curve to

maintain a slope for larger number of agents, before eventually flattening out and crossing the AT

line.

45

Low B, Low EQh

0
10
20
30
40
50
60
70
80

2 3 4 5 6 7 8 9 10
Number of agents

St
ra

te
gy

 v
al

ue

A H ATH

(a)

Low B, High EQh

0
10
20
30
40
50
60
70
80

2 3 4 5 6 7 8 9 10
Number of agents

St
ra

te
gy

 v
al

ue
A H ATH

(b)

High B, Low EQh

0
10
20
30
40
50
60
70
80

2 3 4 5 6 7 8 9 10
Number of agents

St
ra

te
gy

 v
al

ue

A H ATH

(c)

High B, High EQh

0
10
20
30
40
50
60
70
80

2 3 4 5 6 7 8 9 10
Number of agents

St
ra

te
gy

 v
al

ue

A H ATH

(d)

Figure 5.1: Model predictions for various users.

46

Human - Has a top down view of the whole map with
intensity of fire in each building. Knows task
allocation and geographic location of all agents.
Agents - Each agent is aware of the size, height, and
fire intensity of buildings within a limited radius, how
much water is in its tank, status of only agents that
are fighting the same fire, allocation of all teammates.

Information

To determine which fire engine, if any, should be
allocated to a firefighting role associated with the
team plan to fight a fire in a particular building.

Decision

Fires have been ignited at 3 buildings and will start
increasing in intensity and possibly spread. The
human-multiagent team must coordinate to assign
resources and extinguish as many fires as possible.

Scenario

4,6,10 fire engine agents and 1 real humanTeam

Figure 5.2: Initial team level AA DEFACTO experimental details.

5.2 Experiments and Evaluation

Our DEFACTO system was evaluated through experiments comparing the effectiveness of Ad-

justable Autonomy (AA) strategies over multiple users. In order to provide DEFACTO with a

dynamic rescue domain, we connected it to the previously developed RoboCup Rescue simula-

tion environment [Kitano et al., 1999]. Figure 5.2 explains the details of this set of experiments

0

50

100

150

200

250

300

3 4 5 6 7 8 9 10 11
Number of Agents

B
ui

ld
in

gs
 S

av
ed

A H AH ATH

(a) Subject 1

0

50

100

150

200

250

300

3 4 5 6 7 8 9 10 11
Number of Agents

B
ui

ld
in

gs
 S

av
ed

A H AH ATH

(b) Subject 2

0

50

100

150

200

250

300

3 4 5 6 7 8 9 10 11
Number of Agents

B
ui

ld
in

gs
 S

av
ed

A H AH ATH

(c) Subject 3

Figure 5.3: Performance of human test subjects in a human-multiagent team.

47

that were conducted. The results of our experiments are shown in Figure 5.3, which shows the

results of subjects 1, 2, and 3. Each subject was confronted with the task of aiding fire engines

in saving a city hit by a disaster. For each subject, we tested three strategies, specifically, H, AH

and AT H; their performance was compared with the completely autonomous AT strategy. AH

is an individual agent strategy, tested for comparison with AT H, where agents act individually,

and pass those tasks to a human user that they cannot immediately perform. Each experiment

was conducted with the same initial locations of fires and building damage. For each strategy we

tested, we varied the number of fire engines between 4, 6 and 10. Each chart in Figure 5.3 shows

the varying number of fire engines on the x-axis, and the team performance in terms of numbers

of building saved on the y-axis. For instance, strategy AT saves 50 building with 4 agents. Each

data point on the graph is an average of three runs. Each run itself took 15 minutes, and each user

was required to participate in 27 experiments, which together with 2 hours of getting oriented

with the system, equates to about 9 hours of experiments per volunteer.

Figure 5.3 enables us to conclude the following:

• Human involvement with agent teams does not necessarily lead to improvement in team

performance. Contrary to expectations and prior results, human involvement does not

uniformly improve team performance, as seen by human-involving strategies performing

worse than the AT strategy in some cases. For instance, for subject 3 AH strategy provides

higher team performance than AT for 4 agents, yet at 10 agents human influence is clearly

not beneficial.

• Providing more agents at a human’s command does not necessarily improve the agent team

performance. As seen for subject 2 and subject 3, increasing agents from 4 to 6 given AH

48

and AT H strategies is seen to degrade performance. In contrast, for the AT strategy, the

performance of the fully autonomous agent team continues to improve with additions of

agents, thus indicating that the reduction in AH and AT H performance is due to human

involvement. As the number of agents increase to 10, the agent team does recover.

• No strategy dominates through all the experiments given varying numbers of agents. For

instance, at 4 agents, human-involving strategies dominate the AT strategy. However, at 10

agents, the AT strategy outperforms all possible strategies for subjects 1 and 3.

• Complex team-level strategies are helpful in practice. AT H leads to improvement over H

with 4 agents for all subjects, although surprising domination of AH over AT H in some

cases indicates that AH may also need a useful strategy to have available in a team setting.

5.2.1 Analysis

Since no single strategy dominated and, in fact, performance decreased in certain cases, this

subsection looks further into this phenomenon. In particular, this section focuses on finding the

causes of this dip in performance. Note that this ranges over multiple users, multiple runs, and

multiple strategies. The most important conclusion from these figures is that flexibility is neces-

sary to allow for the optimal AA strategy to be applied. The key question, then, is then how to

select the appropriate strategy for a team involving a human whose expected decision quality is

EQH . In fact, by estimating the EQH of a subject by checking the “H” strategy for small number

of agents (say 4), and comparing to AT strategy, we may begin to select the appropriate strategy

49

Strategy H AH AT H
of agents 4 6 10 4 6 10 4 6 10

Subject 1 91 92 154 118 128 132 104 83 64
Subject 2 138 129 180 146 144 72 109 120 38
Subject 3 117 132 152 133 136 97 116 58 57

Table 5.1: Total number of allocations given.

0

2

4

6

8

10

12

3 4 5 6 7 8 9 10 11
Number of Agents

Ef
fe

ct
iv

e
A

ge
nt

s

Subject 1 Subject 2 Subject 3 A

(a) Agents effectively used (AGH) by the subjects

0

50

100

150

200

250

300

3 4 5 6 7 8 9 10 11
Number of Agents

B
ui

ld
in

gs
 S

av
ed

Subject 1 Subject 2 Subject 3

(b) Performance of strategy H

Figure 5.4: Analysis of the effects of the Human on the team.

for teams involving more agents. In general, higher EQH lets us still choose strategies involv-

ing humans for a larger team. For large teams however, the number of agents AGH effectively

controlled by the human does not grow linearly, and thus AT strategy becomes dominant.

Unfortunately, the strategies including the humans and agents (AH and AT H) for 6 agents

show a noticeable decrease in performance for subjects 2 and 3 (see Figure 5.3). It would be

useful to understand which factors contributed to this phenomenon.

2

2.5

3

3.5

4

3 4 5 6 7 8 9 10 11
Number of Agents

A
ge

nt
s/

Fi
re

AH ATH

(a) Subject 1

2

2.5

3

3.5

4

3 4 5 6 7 8 9 10 11
Number of Agents

A
ge

nt
s/

Fi
re

AH ATH

(b) Subject 2

2

2.5

3

3.5

4

3 4 5 6 7 8 9 10 11
Number of Agents

A
ge

nt
s/

Fi
re

AH ATH

(c) Subject 3

Figure 5.5: Number of agents assigned per fire.

50

Our crucial predictions were that while numbers of agents increase, AGH steadily increases

and EQH remains constant. We believed the dip at 6 agents to be due to either a lower than

expected AGH (agents in focus of human) or EQH (quality of human decision). We first tested

AGH in our domain. The number of effective agents, AGH , is calculated by dividing how many

total allocations each subject made by how many the AT strategy made per agent, assuming AT

strategy effectively uses all agents. Figure 5.4-(a) shows the number of agents on the x-axis

and the number of agents effective used, AGH , on the y-axis; the AT strategy, which is using

all available agents, is also shown as a reference. However, the number of effective agents is

actually about the same in 4 and 6 agents. This would not account for the sharp drop we see in

the performance. We then shifted our attention to the EQH of each subject. One reduction in

EQH could be because subjects simply did not send as many allocations totally over the course of

the experiments. This, however is not the case as can be seen in Table 5.1 where for 6 agents, as

the total number of allocations given is comparable to that of 4 fire engine agents. To investigate

further, we checked if the quality of human allocation had degraded. For our domain, the more

fire engine agents that fight the same fire, the more likely it is to be extinguished and in less time,

which directly relates to a higher EQH in this domain. For this reason, the number of agents that

were tasked to each fire is a good indicator of the quality of allocations that the subject makes

5.4-(b). Figure 5.5 shows the number of agents on the x-axis and the average number of fire

engines allocated to each fire on the y-axis. Thus, we found the cause of the dip in performance

with strategies AH and AT H for 6 agents to be due to a significantly less average fire engines

per task (fire) and therefore lower average EQH , and not due to limits of human cognitive load

(AGH).

51

5.3 New Challenges

This lower average fire engines per task that lead to lower team performance was a result of in-

consistency between the agents and the human. The agent team’s perspective and the human’s

view differed, which resulted in the prioritization of different team tasks. Since both the human

and the agent team were able to make decisions, this resulted in a lower average number of fire

engines assigned to any one fire. This leads to the worse human-multiagent team performance.

The agent team may have been able to detect this potential problem, but current adjustable auton-

omy strategies do not model inconsistency or its resolution. Abstractly, inconsistency is when a

decision that is made by the agent or human is thought to be detrimental for the team by the other

party. The aim of the adjustable autonomy policies is to have the best available decision maker

make a given decision for the team. However, it may be the case that the decision, once made, is

determined to be a poor team decision by the other teammate. Each teammate has its own view

of the world. This inconsistent decision may occur because of the gap in information between

the different teammates. While the distributed team is trying to handle the dynamic world in real-

time, the team cannot transfer all information to all teammates. This is due to total information

sharing being too time consuming and also to the limited attention span of the human.

The inconsistency can serve as an indicator that the human may be making bad decisions for

the team. It cannot be known for sure, since there is uncertainty concerning whether the human

or the agent team has the better decision. Although this did not occur for every possible human-

multiagent team configuration, it is important to avoid this inconsistency if possible. However

determining if the resolution is possible needs to take into account exactly how much time is

52

available to execute a decision. Chapter 6 will address these new challenges that team-level

adjustable autonomy brings.

53

Chapter 6

RIAACT: Resolving Inconsistencies with Adjustable Autonomy in

Continuous Time

A key research area that arises is how to best enable the human-multiagent team to transfer control

of team decisions between human and the agent team, namely team-level adjustable autonomy.

Previously, in Chapter 5, I described experiments where a group of humans and a team of fire

fighter agents collaborated in order to extinguish fires that are quickly spreading through a dense

urban environment. Figure 5.3 presents experiments where 3 human subjects were coordinating

with varying the size of the team and varying the team-level adjustable autonomy strategies (poli-

cies). What these experiments showed was that with 4 and 10 fire engines on the team, humans

were able to provide input that improved the performance of the team. However, when the human

was put on a team with 6 agents, the strategies that included both agents and humans ended up

performing worse than if the agent team were to act without incorporating the human’s input.

Thus, always following a static policy of either always following (in the case of 6 agents) or al-

ways ignoring human advice (in the case of 4 or 10 agents) can lead to worse performance for the

human-multiagent team.

54

A primary challenge is how to not blindly listen or blindly ignore the human’s input while

leveraging the capabilities of both the human and the agents on the team. In the above experi-

ments, there was an inherent difference in the information available between the human and the

agents. The human incident commander has a global perspective on the situation but may be

unaware of local details such as the specific intensity of a particular fire, which the agents may be

well aware of. This led to inconsistencies between the human and the agent decisions. The incon-

sistent human decisions were accepted blindly by the agents. Thus team resources were split that

would have been more effective if leveraged in a coordinated manner. Although the agents are

able to detect these inconsistencies, the solution is not to automatically reject inconsistent human

input. The agents may be incorrect in their assessment due to uncertainty and lack of information.

Consequently, the problem becomes that of how to modify team-level adjustable autonomy

to prevent this degradation in team performance from happening. However there are four key

challenges that arise: First, these aforementioned inconsistencies can occur in many human-

multiagent team domains. The challenge is how to have the human and agents resolve these

possible inconsistencies as they arise. Second is the challenge of factoring a deadline into the

team decisions, given that actions may take an uncertain amount of time. There is a deadline that,

once reached, the state of the world changes and the opportunities that were available evolve or

disappear. This may limit or even prevent the ability for the team to work on the time consum-

ing task of resolving inconsistencies that exist between humans and agents. Also, affecting the

reasoning about the deadline is the uncertainty in both the state of the world and in the duration

of team tasks. Specifically, this new team task of resolving the inconsistency between a human

and an agent takes an uncertain amount of time. Thus, whereas previously we had mentioned

the planning (policy generation) problem for transferring control between agents and humans,

55

we must now extend the planning to include reasoning about potential inconsistency resolution.

Furthermore this planning must take into account deadlines and uncertainty of the duration of

resolution. Third, the team must consider, in its planning, the ability for certain actions to be

interrupted. Actions in many domains are often started and then interrupted if they do not finish

on time or if another action starts to have a higher estimated reward. This allows for uncertain

actions to be attempted for a limited time, while still being able to recover and make a decision be-

fore the deadline. Interruptible actions not only have direct implications for team-level adjustable

autonomy, but for any general domain where an action can be interrupted. However, as discussed

later, actions that are interruptible at many different points in time create novel challenges in plan-

ning. Fourth, in order to be solved optimally for a coordinating team, the team-level adjustable

autonomy problem would be too computationally expensive to solve online. Furthermore, these

four challenges must be addressed repeatedly for each team decision in a large-scale domain.

Previous work has not fully addressed these challenges in adjustable autonomy. Given the

challenge of planning under uncertainty, previous work has often used decision theoretic tech-

niques to solve the adjustable autonomy problem. In particular, these techniques include Markov

Decision Problem (MDP) and Partially Observable MDP (POMDP) based approaches [Scerri

et al., 2002; Varakantham et al., 2005; Marecki et al., 2006]. However, in order to have adjustable

autonomy be flexible enough to change its strategy at different points in time, the state space is

often discretized based on time intervals. This has two primary problems. First, the policy may

only execute actions at a specific discrete interval. If there is a different action that results in

higher expected reward, the policy must wait until the next discrete interval to change its pre-

scribed action and take advantage of this opportunity. Thus if the intervals are longer, then there

is a greater chance of loss of potential reward. Second, in order to have a policy that can choose

56

the best action at many different points in time, there must be a large amount of states to be rea-

soned over. This is due to the creation of a large amount of short discrete intervals so that a policy

may react in this short amount of time and a new state is created at each interval. For example, in

the Electric Elves domain, there were thousands of states in order to reason about the scheduling

of meetings [Scerri et al., 2002]. This same state space explosion is encountered once again when

trying to reason about the interrupting of an action at many different points in time. Such state

space explosion would create significant inefficiency. Another difference is that these previous

approaches assumed that once a decision is made, it should be executed. This does not allow the

team to resolve potential inconsistencies when they occur. Finally, in previous work, the problem

was confined to a single agent and a single human. Consequently, the challenge of adjustable

autonomy involving a team of agents did not arise.

I have developed a new approach that addresses these challenges called RIAACT (Resolving

Inconsistencies with Adjustable Autonomy in Continuous Time). RIAACT provides four contri-

butions to the field of human-multiagent teams (i) modeling of inconsistencies and the modeling

of their resolution, (ii) developing policies (strategies) that are continuous time dependent and

factor in uncertain action durations, (iii) extending current continuous time planning models to

allow for the interrupting of actions, and (iv) decomposing the team-level adjustable autonomy

problem and leveraging the use of a hybrid approach to address coordination.

Firstly, RIAACT extends existing adjustable autonomy policies (strategies introduced in Chap-

ter 5) beyond the initial team member decision and overcome inconsistencies between the human

and the agents by leveraging resolution policies. This allows the agents to avoid a potentially poor

input from the human. Not only does this allow for the agents and human to model explicitly the

duration of resolving their inconsistency, but through the modeling, they can determine for how

57

long to attempt to do so or even whether it is even worth it to attempt. The aim of this thesis is

an overarching framework that must stand above any resolution method that is chosen. I do not

model the resolution process or determine what method is optimal for reaching this resolution,

but instead I focus on planning given the uncertain duration of the resolution.

Secondly, this approach leverages recent work in Time-Dependent Markov Decision Prob-

lems (TMDPs) [Li and Littman, 2005; Marecki et al., 2007; Mausam et al., 2005]. Thus, by

exploiting the latest advances in TMDPs, I have illustrated the feasibility of applying this TMDP

methodology to the adjustable autonomy problem. Also, I have shown concretely how to model

the team-level adjustable autonomy problem within the TMDP framework. This results in both a

feasible and an efficient way to reason about continuous time and uncertainty over time. This new

TMDP formulation allows for a continuous time policy that allows for actions to be prescribed at

arbitrary points in time, without the state space explosion that results from solving with fixed dis-

crete intervals. In addition, uncertain action durations (especially the resolve action) are modeled

by continuous distributions. In order to solve TMDPs, I have leveraged the fastest current TMDP

solution technique [Marecki et al., 2007], which utilizes phase-type approximations of the action

duration distribution in order to use numerical analysis methods for speed ups. This results in a

fine grained model representation and policy, which enables the team to develop more accurate

policies that are better designed to handle deadlines.

Thirdly, a major contribution of this work is to introduce a new model that allows for ac-

tions to be interruptible, referred to as an Interruptible TMDP (ITMDP). Prior work that used

discretized states had the ability to interrupt an action at one of the discrete intervals, but as I

discussed earlier, it paid the price of a massive state space explosion. TMDPs do not have this

state space explosion, yet if an action is able to be interrupted at any point in time, then this can

58

lead to the same state space explosion that TMDP was designed to avoid. In particular, current

TMDP techniques allow for the starting of an action at any point in continuous time, however,

if started, that action must be pursued until completion or else a new state must be created for

each interval in time at which the action may be interrupted. However, this thesis aims to have

actions able to be interrupted at any point in continuous time. This allows for a more accurate

reward estimation and representation of actions as they are in the real world. In an uncertain

world with deadlines, actions are often attempted and then abandoned if they do not complete

with enough time to finish before the deadline. For example, in adjustable autonomy, a human

may be given the autonomy over a decision and starts to make that decision but takes too long.

Then the agent may wish to interrupt that human decision action and make the decision itself.

RIAACT introduces a model in which an interruptible action may be stopped and return to the

previous state, where the interruption follows a given duration distribution. This results not only

in more accurate ITMDP policies for the given states, but also an additional time-dependent pol-

icy for each interruptible action. This new policy prescribes whether to continue or interrupt each

action while it has not completed after a certain amount of elapsed time. The real difficulty in

implementing interruptible actions is to have the interruption be able to occur at any point in

continuous time without an explosion in the state space. At any point in time an interrupt would

be possible, a new state would be needed. RIAACT avoids this state space explosion in ITMDPs

by leveraging properties of existing TMDP solution techniques, which reason over a finite set of

states that represent a continuous state space.

Fourthly, current techniques are not capable of implementing the complete solution to the

team level adjustable autonomy problem in real world scenarios for use during execution. In

order to allow the team as a whole to coordinate when giving up or taking of autonomy over

59

decisions, the team would need to use a distributed MDP, which is prohibitively expensive and has

been shown to be NEXP-complete in the general case [Bernstein et al., 2000]. RIAACT instead

decomposes the team-level adjustable autonomy problem into three subproblems and solves them

each with different, but interacting, techniques that are combined to create a hybrid approach

[Tambe et al., 2005; Nair and Tambe, 2005; Schut et al., 2001; Scerri et al., 2002; Boutilier

et al., 2000]. This approach is called a hybrid because it combines decision theoretic reasoning

(ITMDP) with distributed constraint reasoning and BDI logic-based teamwork approaches that

existed in the Machinetta architecture (as explained in Section 4.2.2). Developing the space

of policies is accomplished by having an agent solving an abstracted single agent ITMDP on

behalf of the team, using the continuous time methods described previously. The actions within

the ITMDP are, in fact, team actions and are executed using these hybrids. For example, if an

inconsistency is detected, then a ITMDP policy determines if a resolve action is beneficial and

if so, how long before the resolution should be interrupted. If the resolve action is attempted,

then the team-communication regarding this resolution is implemented using team logic based

reasoning (see Section 4.2.2). The team then knows about the resolve team action and knows

when it should be interrupted. This hybrid approach allows for the complex team-level adjustable

autonomy to occur in real time due while aiming to optimize coordinated team performance.

In the rest of this chapter, firstly, I will present an illustrative scenario in order to demonstrate

the use of the model. I have leveraged the fastest continuous time solver with quality guarantees

for TMDPs (CPH) by approximating duration distributions with Phase-type distributions made

up of exponential distributions [Marecki et al., 2007]. This has been shown to be solved in a

very short amount of time. Secondly, I have applied RIAACT to the disaster response domain

60

using the DEFACTO incident commander training system. In DEFACTO these new RIAACT

adjustable autonomy policies have been shown to improve performance of the team.

6.1 Disaster Rescue Scenario

1

2

Fire
Station

6 Fire Engines

Initial Fire Ignition Points

Figure 6.1: Example scenario map with 6 fire engines (agents) to be dispatched to initial fires
located in buildings 1 and 2. Buildings 1 and 2 are seen here beside adjacent buildings that the
fire could potentially spread to.

Here, I will instantiate a specific disaster response scenario that fits the general problem def-

inition described earlier in Section 2.1. This will serve as an illustrative scenario for motivation

and will be used again in the experimental results later seen in Section 6.3. This specific scenario

has been chosen because it highlights the situation that led to the dip in performance that was

observed in the experiments of Section 5.2. From these experiments, it became apparent that dis-

agreement between humans and agents on which tasks to prioritize could provide a hint toward a

dip in team performance.

61

1

2

Fire
Station

Engine
1

Engine
2

Engine
3

Engine
4

Engine
6

Engine
5

Figure 6.2: Initial allocation given by the incident commander.

1

2

Fire
Station

Engine
1

Engine
2

Engine
3

Engine
4

Engine
6

Engine
5

Figure 6.3: Alternate allocation determined by the agent team.

The scenario includes 6 fire engines that must address a large scale disaster in which 2 high-

rise buildings in an urban area have caught on fire (see Figure 6.1). These fires are engulfing the

62

buildings quickly and each have the chance of spreading to adjacent buildings. A decision must

be made very quickly about how the team is to divide their limited resources (fire engines) among

the fires.

There are many possible ways to allocate these six fire engine agents to the two fires. In this

scenario, a human has decided to send 4 agents to the fire in building 1, and let the remaining 2

fire engines go and fight the fire in building 2 (see Figure 6.2). This seems logical to the human

because building 1 is closer to the fire station and can be put out sooner so that resources may

later be concentrated on building 2. However, once the agents receive this order from the incident

commander, they determine that team’s performance will degrade. They calculate this based on

building size and fire intensity. Consequently the agent team believes that fire in building 2 is

much more likely to spread than the fire in building 1. The agents believe that more priority

should be given to building 2 (see Figure 6.3).

I will now explain how the challenges mentioned earlier arise in this scenario. First, there

is inconsistency. In particular, Engines 3 and 4 believe that the decision made by the human is

inconsistent with what they believe the team should be doing. Other engines may be aware of

the inconsistency, but the resolution is left to the engines that are the objects of these inconsistent

decisions because they are most aware of their local state. Engines 3 and 4 cannot just reject the

human’s orders, because of their incomplete world state information and their uncertainty of how

the world will progress. Secondly, there is a need to reason over continuous time with uncertain

action durations. These fire engines would like to resolve this inconsistency, however, the reso-

lution may take a long time and the team is acting in a disaster response situation where time is

short. There is a deadline that occurs when the fire begins to spread to adjacent buildings. Thirdly,

interruptions are desired for some actions. It would be beneficial to reason about attempting an

63

inconsistency resolution, but interrupt that action, if the deadline approaches to near. Fourthly,

a hybrid approach is needed. Having both engine 3 and engine 4 attempt to resolve the same

inconsistency is redundant and results in wasted time; but coordinated distributed planning under

uncertainty is extremely computationally expensive. The resolving of the inconsistency may find

that the agents were correct or that the agents were incorrect and should have listened to the hu-

man. In addition, trying to factor in all of the possible outcomes and modeling it as a distributed

MDP would take too long to compute online, even in this small example. Some type of hybrid

approach is necessary to reason about which actions are optimal in continuous time and execute

these team actions in real-time.

6.2 RIAACT

RIAACT is a system that has been designed to address the challenges that arise when address-

ing such a scenario as in the previous section. RIAACT extends and improves the previous

implementation of team-level adjustable autonomy policies in Chapter 5. As mentioned earlier,

the team-level adjustable autonomy problem cannot be mapped over to a distributed MDP and

solved optimally because it would be computationally infeasible. In particular, distributed MDPs

have been shown to be doubly exponential (NEXP-complete) in the general case [Bernstein et al.,

2000]. Consequently, RIAACT is implemented as a hybrid system [Tambe et al., 2005; Nair and

Tambe, 2005; Schut et al., 2001; Scerri et al., 2002; Boutilier et al., 2000] where the team-level

adjustable autonomy problem is decomposed into three subproblems and solves them each with

separate techniques. Within this hybrid, developing the space of policies is accomplished by

solving an abstracted single agent ITMDP on behalf of the team. In the rest of this section, I first

64

describe the TMDP-based approach for adjustable autonomy. Next, I describe how the model is

extended to allow for some actions to be interruptible and present the ITMDP model. Finally, I

return to the hybrid and show how the communication and coordination is executed using team

logic based reasoning as described in Section 4.2.2. In addition, the agent team when trying to

allocate a role among the team will employ distributed constraint reasoning as also described in

Section 4.2.2. This hybrid approach allows for the complex team-level adjustable autonomy to

occur in real time due while aiming to optimize coordinated team performance.

6.2.1 ITMDP Model for Adjustable Autonomy

The RIAACT Model has the overall goal of improving the team performance by allowing either

the human or agent to make team-level decisions, depending on which is best, given the circum-

stances. In the context of this work, team level decisions can range anywhere from the decision

to make an action to the decision to allocate a role to another team member or even to execute

a team plan. From this point forward, I will refer to all of these possible team-level decisions

as simply “decisions.” The focus of RIAACT is a more overarching framework that must stand

above such a resolutions in a time-constrained (deadline) environment where actions, including

resolve actions, take an uncertain amount of time to execute. The work does not focus on the

details of a resolution itself, but should be viewed as planning above the level of any specific

resolution approach that can be adopted. The planner provides a policy for when an inconsis-

tency is detected then under what conditions to engage in resolution, how long to do it, when is it

appropriate to interrupt the resolution and just act, all while in a distributed team setting.

Recent work in adjustable autonomy transfers the control over a decision back and forth

between agent and human [Goodrich et al., 2007; Reitsema et al., 2005; Owens et al., 2006;

65

Sellner et al., 2006]. However in that work, once the decision was made by any party, that

decision was final. That decision would then be executed to its completion. This was also the

case with the team-level adjustable autonomy policies that were introduced earlier in Chapter 5.

Having these decisions be immediately executed, caused the team to have a dip in performance

seen in Figure 5.3.

Aa
T=0

Ad
T=0

Ha
T=0

Hd
T=0

Finish
T=0

Decide

Transfer Autonomy

Execute Execute

Aa
T=1

Ad
T=1

Ha
T=1

Hd
T=1

Finish
T=1

Decide

Transfer Autonomy

Aa
T=2

Ad
T=2

Ha
T=2

Hd
T=2

Finish
T=2

T=0 T=2T=1

DecideDecide

Execute Execute

Figure 6.4: Previous model of Adjustable Autonomy for 3 time steps (T=0,1,2): Agent has au-
tonomy Aa, Human has autonomy Ha, Agent decision Ad, Human decision Hd, and task finished
Finish. Three actions are shown: Trans f er Autonomy, Decide, and Execute.

Figure 6.4 shows the abstracted states of the MDP for solving the adjustable autonomy prob-

lem as it was implemented in previous work [Scerri et al., 2002] and the prior team-level policies

(strategies) that I implemented in Chapter 5. Each dashed-line box represents a discretized time

slice at T=0,1 and 2 respectively. As time is broken into more and more intervals, more states

and transitions will be added. This figure represents a single decision and execution toward a

f inish state, where a reward is earned. Each circle represents a state that the decision can be

in: Agent has autonomy Aa, Human has autonomy Ha, Agent decision Ad, Human decision Hd

or task finished Finish (for more explanation of the states, refer to Section 6.2.2.1). Notice that

66

these states abstract out other features of the world for simplicity of presentation (for example in

a personal assistant meeting scheduling domain, the location of a meeting, number of attendees

etc. would be a part of the state). Also, Figure 6.4 contains the human action decision, since

this policy must be thought of from the perspective of the agent team, that action should also be

considered the agent action wait f or human decision.

Each arrow in the diagram represents a possible action (state transition) and is labeled with

the names of their respective actions: Trans f er Autonomy, Decide, and Execute. In this previous

model, actions take a fixed amount of time that modeled their average duration. However, since

actions can take longer than a single time step interval, some action transitions result in the same

state at the subsequent interval. In the Electric-Elves project and other applications, variable

decision granularity and other techniques were used to attack such a state space explosion, but

they had to fundamentally grapple with this explosion [Scerri et al., 2002].

Previous work has indeed used many more states than those shown in Figure 6.5 to construct

MDPs for adjustable autonomy. For instance, for each time slice t only one Adt state is shown,

however, there can be arbitrarily many different states per time slice (Ad1
t , Ad2

t ... Adn
t) each

with their own reward for execution (where each state differs in other features of the world as

mentioned above). Figure 6.4 represents the policy space over 3 time intervals. One of RIAACT’s

contributions is its abstraction of previous work into general categories of adjustable autonomy

based states. This allows for MDP to retain a manageable number of states while extending the

model to reason about inconsistencies. Further explanation of this abstraction appears later in

Section 6.2.2.1.

Figure 6.5 represents how the previous work shown in Figure 6.4 can be modeled as a Time-

dependent Markov Decision Problem (TMDP). In this new figure, instead of the number of states

67

Aa

Ad

Ha

Hd

Finish

Decide Decide

Transfer Autonomy

Execute Execute

Figure 6.5: Previous model of Adjustable Autonomy updated as a TMDP.

increasing to model the same states over time, single states now have policies that are functions

over time (see Section 2.4.2). In addition, each arrow now represents not a single duration, but

an entire action duration distribution that can be any arbitrary distribution. While I represent Ad

and Hd as individual states, again there may be multiple such states (Ad1, Ad2 ... Adn), but it is

important to note that there are no extra states to represent each time slice as above.

RIAACT wishes to address the inconsistency mentioned in Section 2.1.1. In order to do this, I

assume that there is a certain likelihood, for a given domain, that the local perspective of the agent

will coincide with the global perspective of the human. This is mapped as discrete probability of

consistency P(c, x) and determines the transition probability into the consistent and inconsistent

68

states when teammate x is making a decision. The probability of consistency, P(c, x), may depend

on whether the decision maker is human P(c,H) or an agent P(c, A).

Aa

Adi Adc

Ha

Hdi Hdc

Finish

Decide

Transfer Autonomy

Execute Execute

Resolve Resolve

Decide

Figure 6.6: Adjustable Autonomy model that has been augmented to reason about inconsistency
(Adi,Adc,Hdi,Hdc) and has also added the resolve action.

Figure 6.6 is a diagram showing the addition of reasoning about inconsistency. Now the state

Human Decision (Hd) has been replaced with Human decision consistent (Hdc) and Human

decision inconsistent (Hdi). There is a transition probability associated with consistency of a

human decision, P(c,H) and thus inconsistency as well, 1 − P(c,H). The same changes also

apply to the agent decision action. In addition, there is an action (resolve) that transitions from

an inconsistent state to a consistent state. This action is also modeled as having a certain duration

distribution. As mentioned earlier, I will not focus on the details of the resolve action itself, but

69

rather focus on the overarching planning problem of determining whether to and for how long to

resolve.

Aa

Adi Adc

Ha

Hdi Hdc

Finish

Decide

Transfer Autonomy

Execute Execute

Resolve Resolve

Decide

Interrupt Interrupt

Interrupt

Figure 6.7: RIAACT ITMDP Model: Added the interrupt action.

The RIAACT ITMDP model diagram in Figure 6.7 adds the ability to interrupt the human

decision action and both resolve actions. The interrupt action is drawn again with an arrow

and is also modeled as having a certain action duration distribution. The ITMDP model will be

explained in detail later in Section 6.2.1.1. The key feature of the ITMDP model is that an action

can be interruptible at any point in continuous time, as shown in Figure 6.7 via the arrows labeled

Interrupt.

The general model shown in Figure 6.7 improves on the previous model of adjustable au-

tonomy by (Figure 6.4) in three important aspects: (i) the reasoning about and modeling of the

70

resolving of inconsistencies, (ii) action durations (the arrows in the diagram) are now modeled

by continuous distributions, and (iii) allowing for the interruption of actions in continuous time.

Keep in mind that this model represents possible actions and states for a single team decision.

One of these would be instantiated for each team decision.

6.2.1.1 ITMDP Model

In order to explain the ITMDP, I will first present the components that are leveraged from the

existing TMDP model that it builds upon. The TMDP1 model consists of a tuple of the elements

〈S , A, P,D,R〉 that are defined as follows:

• S - Finite set of discrete states.

• A - Finite set of discrete actions.

• P - Discrete transition table of probabilities for each tuple 〈s, a, s′〉 where executing action

a ∈ A transitions from the starting state s ∈ S to ending state s′ ∈ S

• D - Set of transition duration functions. For all p ∈ P there exists a d(t) where d(t) is the

duration probability distribution function for p = 〈s, a, s′〉. If action a ∈ A is executed

from state s ∈ S at time t, then new state s′ ∈ S will be reached at time t′ with probability

d(t′ − t).

• R - Reward for executing an action a ∈ A from discrete state s ∈ S that results in a transition

to a new discrete state s′ ∈ S at time t, shown as 〈s, a, s′, t〉.
1It should be noted that the original TMDP formulation in [Boyan and Littman, 2000] allows for both absolute

and relative formulations of both duration and reward functions. However the model shown here assumes relative
durations and absolute reward functions.

71

The policy for a TMDP aims to find the expected utility for the optimal action a∗ ∈ A for

each state s ∈ S and absolute time t until deadline, given by 〈s, t〉. This creates a real-time value

function that maps 〈s, t〉 to an expected utility2 shown as U(s, a∗, t) where a∗ is the action with

the maximum total expected utility when taken from discrete state s at time t maximized over all

possible actions in set A.

The new ITMDP model consists of a larger tuple of the elements 〈S , A, P,D,R, S i, Ai, Pi,Di,Ri〉

with a subsection of elements that are defined as stated above. In addition new elements are de-

fined as follows:

• S i - Finite set of discrete transitory states. A transitory state si ∈ S i is derived for each

possible tuple of state-action pairs 〈s, a〉 where s ∈ S is the originating state and a ∈ A is

the action taken from that state.

• Ai - Finite set of interrupt actions. Interrupt actions transition from any transitory state

si ∈ S i to that transitory state’s originating state s ∈ S .

• Pi - Discrete interrupt transition table of probabilities (pi) for each tuple 〈si, ai, s〉 where

executing interrupt action ai ∈ Ai transitions from the transitory state si ∈ S i to originating

state s ∈ S . For an interruptible action pi = 1, and conversely for an non-interruptible

action pi = 0.

• Di - Set of interrupt transition duration functions. For all pi ∈ Pi where pi , 0 there exists

a di(t) where di(t) is the duration probability distribution function for pi = 〈si, ai, s〉. If

interrupt action ai ∈ Ai is executed from transitory state si ∈ S i at time t, then originating

state s ∈ S will be reached at time t′ with probability di(t′ − t).

2How to derive U(s, a∗, t) is not shown here, but refer to [Boyan and Littman, 2000] to see more details.

72

• Ri - Reward for executing an interrupt action ai ∈ Ai from transitory state si ∈ S i that

results in a transition to the originating discrete state s ∈ S at time t, shown as 〈s, a, s′, t〉.

In addition the ”continue” or null action can be represented by < si, null, s′, t > where

s′ ∈ S represents the end state for the transitory state si.

The policy for an ITMDP results not only in the same mapping of 〈s, t〉 to a U(s, a∗, t) for all

s ∈ S as shown above, but also with a mapping of 〈si, t〉 to a U(si, a∗i , t) for all si ∈ S i. The aim of

the ITMDP interrupt policy is to find the maximum expected utility between the interrupt action

ai ∈ Ai versus continuing execution (null) for each state si ∈ S i and absolute time t until deadline,

given by 〈si, t〉. This creates a real-time value function that maps 〈si, t〉 to a U(si, a∗i , t) where a∗i

is either the interrupt action ai or the continuing execution null, whichever yields the maximum

total expected utility when taken from transitory state si at time t.

6.2.1.2 States

Each circle in Figure 6.7 represents the state of the decision, with the additional state distinction

of whether the current decision is consistent or not with the view of the other teammate. This

results in the new states: Agent decision inconsistent Adi, Agent decision consistent Adc, Human

decision inconsistent Hdi and Human decision consistent Hdc. Similar to the previous model

(Figure 6.5), there are also the states where: Agent has autonomy Aa, Human has autonomy Ha,

and the task finished Finish (for more explanation of the states, refer to Section 6.2.2.1). I assume

that each state is fully observable.

73

6.2.1.3 Actions

Arrows again represent the actions that enable state transitions. In order to allow the resolving

on inconsistencies, the new action “resolve” has been added. However, now in RIAACT, much

like the real world, actions do not take a fixed amount of time. Instead, each arrow also has a

corresponding function which maps time to probability of completion at that point in time. For

further explanation of action duration distributions, please refer to Section 2.4.2.

There are four available actions: Trans f er, Decide, Resolve, Execute (as seen in Figure

6.7). Trans f er results in a shift of autonomy between a human and an agent. Decide allows

for a decision to be made and results in a consistent state with probability P(c, A) for an agent or

P(c,H) for a human. Conversely an inconsistent state is reached with probability 1−P(c, A) by an

agent and 1 − P(c,H) by a human. Resolve is an action that attempts to resolve an inconsistency

Adi or Hdi and leads to a consistent state Adc or Hdc, which yields higher rewards. To Execute

a particular decision results in the implementation of that decision toward the f inish state.

6.2.1.4 Rewards

The reward R for a state is only received if that state is reached before the deadline. In previous

adjustable autonomy work, then the decision Ad or Hd would have been made by either party and

assumed to have some average quality or reward R(Ad) or R(Hd). In our effort to try and model

the diverse perspectives that the agents and humans can have, I extended the model to categorize

the decision as either consistent Adc or Hdc or inconsistent Adi or Hdi. It is the case that there

can be a wide variety of both consistent and inconsistent team decisions and the model allows for

that. However, for illustration purposes I have assumed that all possible consistent decisions (for

this particular team decision) made by the agent have an average reward of R(Adc) and that all

74

inconsistent decisions (for this particular team decision) on average provide a reward of R(Adi)

to the team.

6.2.1.5 Policy

The policy prescribes the best action for each state from now until the time of deadline td. The

time of deadline for a particular role is the point at which that role becomes unachievable or

irrelevant. Thus, reasoning about the role further would not provide any benefit.

For every team decision, there is an adjustable autonomy policy between the human and

the agent team. The goal of this policy is to determine the critical point at which a decision

should be delegated (trans f er), when a decision should be made (decide), and when to undergo

inconsistent decision resolution (resolve). Actions involving the human take more uncertain and

varying amounts of time. Thus time becomes crucial for both decision for transfer of control but

also for the duration and even attempt for the resolution of the inconsistencies. The RIAACT

policies that I have developed address both of these.

6.2.2 Abstraction

To address the challenge of scale while trying to maintain an online solution, I have leveraged

state abstractions. Initially, I have abstracted the world state and team state into general states

that pertain to team decisions. More importantly, RIAACT develops a method for abstracting

the states into categories that can be reasoned about online. The categories are divided based

on salient characteristics that are pertinent to team-level adjustable autonomy. In addition, these

categories can be broken into sub-categories to more accurately model the world and, given the

extra time has the potential to give more accurate solutions for RIAACT.

75

6.2.2.1 Adjustable Autonomy State Abstraction

In order to address the size of the state space (even without time factored in), RIAACT models

allows for the states to be abstracted into separate state categories. Each of the categories are

divided based on characteristics that pertain to the general team-level adjustable autonomy prob-

lem. These categories can be reasoned about (and averaged) as a single state, or separated into

sub-categories if more granularity is needed. For instance, the state below of a human decision

that is inconsistent, Hdi, can be expanded out into several possible inconsistencies that may arise,

each with their own average reward, or just be modeled as a single state with a single average

reward. Below are the state categories that a single team decision could be in during a RIAACT

policy:

• Agent has autonomy (Aa) - The agent team has autonomy over the decision. At this point,

the agent team can either transfer control to the human or try to make a decision.

• Human has autonomy (Ha) - Human has the autonomy over the decision. At this point, the

human can either transfer control to an agent or make a decision.

• Agent decision inconsistent (Adi) - This state represents any state in which the agent has

made a decision and the human disagrees with that decision.

• Agent decision consistent (Adc) - This state represents any state in which the agent has

made a decision and the human agrees with that decision.

• Human decision inconsistent (Hdi) - This state represents any state in which the human has

made a decision and the agent believes that the decision will result in substantial decrease

76

in average reward for the team. The agent does this by factoring in its detailed local in-

formation into determining the results of implementing the human decision. There may be

many possible inconsistent states, but for faster calculation, I have abstracted the states out

as an average inconsistent state.

• Human decision consistent (Hdc) - This state represents any state in which the human has

made a decision and the agent believes that the decision will either increase the reward for

the team or does not have enough information to raise an inconsistency about the decision.

There may be many possible consistent states, but for faster calculation, I have abstracted

the states out as an average consistent state.

• Task finished (Finish) - This represents the state where the task has been completed and a

reward has been earned. As stated before, the reward (R(s, a, s′)) depends on the starting

state s, the action a and the ending state s′. Thus, the reward depends on which decision (s)

was executed (a) to get to the Finish state (s′). There is a separate average reward earned

for executing each decision type (Adi, Adc, Hdi, Hdc).

These state categories are used to construct the (I)TMDPs and are shown in Figures 6.4, 6.5,

6.6, and 6.7. By reducing the state space to this manageable state space, the ITMDP is capable of

executing online. In addition the RIAACT model decomposes the distributed ITMDP to a single

ITMDP for each role to be executed by the agent that has the autonomy over that role. Also, this

abstract representation that is given by RIAACT reasons about the benefit of resolution policies

for each role, thereby enhancing the team-level adjustable autonomy.

77

6.2.3 Inconsistency Resolution

The advantage of adding the ability to resolve is that the decision will not be implemented blindly.

Depending on the potential loss of reward and the time available, the decision can be resolved

by bringing new information to light or explaining the problem. This is the new resolve action

that has been introduced in this thesis. Depending on the factors involved, the resolve action can

be attempted for a limited time or even not attempted at all and a total rejection of the decision.

An important aspect to note is that the resolve action is a team action, and the agent team must

coordinate in order to prevent unnecessary or overwhelming resolves from occurring.

There are many different methods of interaction between a human and an agent that could be

implemented in order to resolve. In addition, there are many different orderings of the information

that is communicated in an effort to resolve an inconsistency. RIAACT does not focus on these

issues, but rather focuses on the modeling of the action duration.

Inconsistent State - As mentioned earlier in Section 2.1.1, inconsistency occurs as a result

of the information gap between the agent team and the human. For planning, the likelihood that

this inconsistency will occur is modeled in RIAACT by 1−P(c,H) for the human and 1−P(c, A)

for an agent. Inconsistency is detected during execution by evaluating a decision based on the

abstract world states of the agent team’s capability and the decision’s priority.

Resolve Action - The resolve action is a team action that transitions from an inconsistent

state (Adi or Hdi) to a consistent one (Adc or Hdc). The advantage of being in a consistent state

is that the expected utility of executing a consistent decision is often higher than that of executing

an inconsistent one. In order to be able to react to the approaching deadline, the resolve action is

assumed to be interruptible and implemented as such in the ITMDP model.

78

Transition - RIAACT assumes that all inconsistencies can be resolved, yet it may take vary-

ing amounts of time to do so. This results from the abilities of the ITMDP model to have an

action duration follow a distribution. If an inconsistency is especially difficult to resolve, this is

captured in the action duration distribution being very long.

Reward - In addition, RIAACT reasons about the average reward for successfully completing

(arriving at Finish) the execute action from an inconsistent state versus a consistent one. If the

average rewards of these do not differ substantially, then it might not be beneficial to resolve an

inconsistency when it arises.

One may propose that, instead of inconsistent decisions, the human-multiagent team should

model them as suboptimal decisions. It is correct that the overall aim is to have the team perform

better, however, because of differing perspectives, the human and multiagent team might have

different ideas of which decisions are suboptimal (see Section 2.1.1). In addition, no single

team member knows the complete state of the world and thus there it is difficult to determine

with certainty if a decision is really suboptimal for the team. Furthermore, often the primary

determinant of team performance in our domains of interest is consistency. There are real-world

assumptions that we make about our domains that cause consistency to be so important: decisions

must be made under critical time pressure, while uncertainty and where there is interdependence

between decisions.

6.2.4 Time Dependent Models

In RIAACT, much like the real world, actions do not take a fixed amount of time. Instead, each

action also has a corresponding function which maps time to probability of completion at that

point in time. For further explanation, please see Section 2.4.2.

79

In order to address the challenges brought about by dealing with time, I have modeled these

new adjustable autonomy policies using TMDPs (Time-dependent Markov Decision Problems).

This allows for an improvement over previous approaches, which used a discretized time model

which is either inaccurate or computationally too expensive to solve. The policies introduced

in previous work have significant computational complexity from the immense amount of states

created when factoring in time [Scerri et al., 2002; Varakantham et al., 2005]. Consequently,

they are inappropriate in large-scale complex domains requiring real-time decisions. However,

RIAACT uses continuous time to achieve precise timings for both the transfer of control and

the ending of inconsistency resolution, thus resulting in higher quality solutions and better team

performance.

The model that RIAACT utilizes for continuous time planning with MDPs was developed in

[Boyan and Littman, 2000] and was later extended in [Li and Littman, 2005]. A more detailed

explanation of the TMDP model can be found in Section 2.4.2.

6.2.5 ITMDP: Interruptible TMDPs

In this section, I will explain the details and inner-workings of the ITMDP (Interruptible Time-

Dependent Markov Decision Problem) that I have developed. In addition, I have addressed some

of the challenges that arise when implementing an ITMDP solver. This section will be divided

into four parts: (i) Modeling an ITMDP, (ii) Efficient planning for ITMDPs by using CPH, (iii)

Calculating belief distribution, and (iv) Converting the model.

80

6.2.5.1 Modeling an ITMDP

Although the model of a Time-dependent Markov Decision Problem (TMDP) has the advantage

of outputting a continuous time-dependent policy for each state, there is a drawback to this model:

actions are atomic and uninterruptible. In many domains, action durations may be uncertain.

Consequently, the optimal policy may be to attempt an action for a limited time and then interrupt

that particular action if the deadline is approaching and the action has not completed yet.

RIAACT extends the model to allow for actions to be interrupted at any point in time. The re-

sulting model of an Interruptible Time-dependent Markov Decision Problem (ITMDP) can more

accurately model the expected utility of taking an action by factoring if it can be interrupted at a

later time. As with actions in the TMDP model, the interrupting of an action takes an uncertain

amount of time that follows a given duration distribution. A potential penalty for interrupting an

action is captured in the time that it takes, which may result in the finish state being unreachable

before the deadline. In addition, a reward/cost can be associated with the interrupt action itself.

A formal description of an ITMDP can be seen in Section 6.2.1.1. This ITMDP model has

much broader applications than just adjustable autonomy (and RIAACT). There are often plan-

ning problems in real-world domains where actions are interruptible and should be modeled as

such. For example if there is a group of satellites that are coordinating to observe as many phe-

nomena as possible before the opportunity passes by. There might be a situation where there is a

very small chance that a beautiful meteor shower may be visible from the satellites or another op-

tion is that they take a daily picture of a planet. Now the reward for capturing the meteor shower

might be very high, however the time that it takes for them to appear might last longer than time

available until deadline. The optimal policy for a standard policy would suggest that the satellite

81

should just focus on the planet, however if it reasoned about interruptible actions, then the meteor

shower could be attempted for a limited time and if that did not succeed, then the satellite could

reposition itself to view the planet.

In RIAACT, examples of actions that would benefit from being interrupted are the human

decide action and the resolve that tries to eliminate an inconsistency. If the human has been

given autonomy, but the human is taking too long to make a decision (decide), then the agent

may want to interrupt that action and have autonomy transferred back to the agent so that it can

quickly make a decision. Also, if the resolving of an inconsistency is taking too long, the agent

may wish to end the resolve action and pursue the inconsistent human decision Hdi so that some

reward may be attained before the deadline.

Existing TMDP models allow for uncertain action durations, but once an action has been

taken, it must be maintained until that action has finished. Consequently, the policy that is pro-

duced guides only at what point in time to start a particular action. For example, suppose that

the TMDP policy shows that if an inconsistent human decision Hdi is detected at a point in time

before 2 minutes to deadline, then the optimal action is to resolve in an effort to reach Hdc, oth-

erwise if less than 2 minutes are left until deadline at that point in time when inconsistency is

detected, the optimal action from Hdi should be to execute. When an inconsistency is detected,

there are 2 important questions that must be answered: (i) whether or not a resolve should be

attempted and (ii) if it should be attempted, for how long. The policy currently only answers the

first question, yet the challenge now is to understand when to stop resolving. The goal is to have a

policy that, once an action is taken, recommends over continuous elapsed time either to continue

with the current action or to abort (interrupt).

82

6.2.5.2 Efficient planning for ITMDPs by using CPH

I have chosen to utilize the Continuous Phase (CPH) solver [Marecki et al., 2007] which has been

shown to be the fastest of the time dependent MDP solvers. Background on the CPH solver has

been provided in Section 2.4.3.

A few modifications are performed in order to allow for efficient execution. Figure 6.8 shows

how the resolve action from the ITMDP is modified at first for the CPH solver in subfigure (b) and

then for a policy that allows for the interrupting of actions in subfigure (c). Figure 6.8-a shows

a subsection of the larger ITMDP seen in Figure 6.9. This highlights the resolve action which

attempts to turn the inconsistent decision Hdi into a consistent human decision Hdc. Each of

these diagrams assume that the uniformization process [Puterman, 1994] has already occurred and

all exponential durations are the same. This results in a modification of transition probabilities,

but no addition of extra states or transitions.

By using the model shown in Figure 6.8-c, we are able to use a traditional CPH solver that

has been augmented to allow for an extra action in the middle of execution states (Hdi1, Hdi2,

Hdi3) and compute a new expected utility over these states. Previously, these extra states existed

only for planning about action durations and did not yield a policy, since they don’t represent

actual states in the ITMDP. Instead they represent being in the middle of an action (similar to the

transitory states mentioned in Section 6.2.1.1).

6.2.5.3 Calculating belief distribution

In order to translate this into a policy at execution of an interruptible action, the ITMDP must also

reason about the likelihood of being in each of the intermediate states (Hdi1, Hdi2, or Hdi3). This

is because during execution, the intermediate state cannot be observed. What can be observed

83

Hdi HdcResolve

Execute Execute

(a) Subsection of the original MDP model

Hdi HdcHdi2 Hdi3Hdi1

ExecuteExecute

Resolve cont.cont. cont.

(b) CPH converted model

Hdi HdcHdi2 Hdi3Hdi1

ExecuteExecute

Resolve cont.cont. cont.

interrupt

interrupt

interrupt

(c) CPH with interruptible actions

Figure 6.8: This figure shows how the resolve action in (a), which is a subsection of the original
RIAACT ITMDP model with an arbitrary action duration distribution is converted to an approx-
imate sum of exponential distributions for CPH in figure (b) and how that model is extended to
allow for interruptible actions in figure (c).

84

is that state is somewhere between Hdi and Hdc and in the middle of an action. However, the

time elapsed since the start of an execution is observable and known. Consequently, based on

transition properties of the phase type distributions, a belief distribution can be constructed that

maps time elapsed since the start of the action to a belief state over all intermediate states.

I ran a Monte Carlo simulation in order to quickly obtain the belief distribution over the in-

termediate states. A histogram can be created by running the simulated action (resolve) from

start (Hdi) to finish (Hdc) a number of times and recording for each run at what time each in-

termediate state is reached. Then a belief distribution is created by looking at a certain amount

of elapsed since the action as started (this is earlier collectively referred to as a transitory state)

and evaluating how often on average the agent is in a particular intermediate state. This does not

factor in, the probability that the action has completed, because if the action has completed then

the next state has been reached and the traditional TMDP policy resumes. The action (continue

or interrupt) rewards of the intermediate phases are weighted with the belief distribution of being

in those particular intermediate phases after a certain amount of elapsed time.

Adding interruptible actions to the model results in a time-dependent policy for each state,

as before, but also results in a time dependent policy for what to do during the execution of an

action. This policy has only two available actions: continue (null) and interrupt. The continue

action is not an explicit action, but represents the continuing of the current action. The interrupt

action represents stopping the current action and going back to the previous real world state. For

each interruptible action, there is a new policy created that shows based on how much time has

elapsed since the action was taken, what is the optimal choice: continue or interrupt.

85

6.2.5.4 Converting the model

As explained earlier, non-exponential distributions will be approximated as a sequence of phase-

type exponential functions. In the example scenario shown earlier in Section 6.1, I categorize

actions as either involving a human or being a machine-only action. It is customary to model the

action duration involving a human as having a normal distribution and machine-only actions are

modeled as having an exponential distribution [Younes and Simmons, 2004].

Aa

Adi Adc

Ha

Finish

Decide

Transfer Autonomy

Execute Execute

Resolve Adi
1

Adi
2

Decide

Adi
3

Interrupt

Hdi Hdc
Resolve Hdi

1
Hdi
2

Hdi
3

Interrupt

Ha1

Ha2

Ha3

Interrupt

Figure 6.9: RIAACT modified to be input into CPH

Figure 6.9 shows how Figure 6.7 must be augmented to allow for extra states since CPH can

only take exponential distributions or sums of exponential distributions as input. As mentioned

86

earlier in Section 2.4.3, after all distributions are converted to exponentials, the uniformization

process takes place [Puterman, 1994], which converts all the exponentials to have the same du-

ration, but introduces self-transitions. In order to allow the ITMDP to work with CPH, I had

to uniformize the ITMDP. No extra states are necessary for the process of Trans f er of control,

Execute, and agent Decision because they are machine only (agent only) actions in our scenario.

They only need extra self transitions due to the uniformization. Each of the other actions is ap-

proximated by a sequence of intermediate states with exponential distributions that also have self

transitions. Any number of intermediate states (phases) can be used, although I have chosen to

use 3 phases (as seen in Figure 6.9).

Although Figure 6.9 has added intermediate states that must be reasoned about, it has the

advantage that each state transition (arrow) now represents an exponential function. As mentioned

in Section 2.4.3, the fact that each of these are exponential distributions allow for the substantial

speedups achieved by CPH. The intermediary states are not part of the eventual policy that is

generated: they only represent models of time duration.

I have chosen to approximate the normal distributions with three exponential phases and this

creates three extra states for each of the actions with normal distribution durations (as seen in

Figure 6.9) [Marecki et al., 2007]. In addition, I have chosen to model the normal distribution

with a Coxian approximation. The Coxian is a standard phase-type approximation that only

allows transitions from the current state to either the next intermediate state, the final state, or a

self transition. This allows for an accurate approximation without having exponential numbers of

transitions as the number of phases increases.

Figure 6.10 shows the cumulative distribution function of the Normal(2,1) as compared to the

Coxian approximation with varying numbers of intermediate (extra) phases (2,3,4 and 5). On the

87

(a) 2 Phases (b) 3 Phases

(c) 4 Phases (d) 5 Phases

Figure 6.10: This figure compares each of the phase type approximations with the original Nor-
mal(2,1) distribution.

88

x-axis is the amount of time that has passed and on the y-axis is the cumulative probability that

the execution has completed and the final state has been reached. The original normal distribution

input is shown in the solid line and each of the dashed lines represents the fitted Coxian. RIAACT

allows for any number of intermediate states to be used. Computing the approximation of the

distribution can be done offline, however it is important to choose how many intermediate phases

will be used to approximate. In particular, when choosing how many phases to approximate any

distribution, both accuracy and runtime must be considered. Using more phases may lead to a

closer approximation, however it will also lead to an increase in the amount of states that must

be considered. I have chosen to use a 3 phase approximation as seen in Figure 6.10-b, where the

difference between the input and the fitted distribution does not exceed .05. The improvements

gained from using 4 and 5 phases are minimal, whereas the number of states are increasing and

the runtime will suffer (this phenomenon can be seen in [Marecki et al., 2007]).

6.2.6 Hybrid Coordination

6.2.6.1 Agent Coordination

In order to improve performance and prevent miscoordination, each team member’s proxy will

communicate on the team member’s behalf. There are two primary types of messages that get

communicated between the proxies: (i) related to joint commitments and (ii) for role allocation.

Both of these are in an effort to search the team’s goals and depend on the state of both the world

and the agent team.

If a change is observed in the world state that is significant or relevant to either a joint com-

mitment that the agent is a part of, that new world state is communicated to the other proxies.

This is based on joint intentions framework [Cohen and Levesque, 1990]. If the characteristics of

89

a role has changed such as which team member is performing the role or which team member has

the autonomy of the role, then that updated role is communicated to the other proxies. Agents

communicate in order to jointly commit to a team plan. In addition, if anything occurs affecting

the ending of a plan and it being achieved, irrelevant or unachievable, then that information about

the plan is communicated to the other proxies.

The communication message types are used to help in the filtering or abstraction of messages

so that unimportant messages do not crowd the communication channels. Changes in joint com-

mitments and roles are communicated so that the agents may more accurately reason about the

world and the state of the human-multiagent team.

By employing this agent coordination, the human-multiagent team can avoid having lower

priority or redundant resolve actions from being attempted. For example, there is a team plan

that is instantiated for a resolve action. Consequently the agents are jointly committed to this

team plan and each know about the existing plan. This prevents the agents from unnecessarily

executing their own resolve plan for the same reasons and sending redundant messages to the

human. In addition, multiple agents may be able to detect the same inconsistency, however only

one resolve is necessary. In addition, this prevents the team from over-correcting or thrashing

back and forth with inconsistencies. Furthermore, if many different resolves plans executing in

parallel, the team could overcorrect if they are not made aware of the result of other resolve plans.

6.2.6.2 Hybrid Algorithms

I have explained how an agent can compute an online abstract, decomposed ITMDP, however the

team needs to decide when to compute these and how to coordinate as a team so that the human

is not overwhelmed with resolve actions all at once.

90

Algorithms 2 and 3 represent a hybrid approach since different sections of the algorithms

represent different components of the hybrid. For example, everywhere the policy is mentioned in

these algorithms, this references either the computing or executing of the RIAACT ITMDP policy.

In addition, functions like OfferToHuman and ResolveWithHuman represent team plans that will

be executed in a coordinated fashion using joint commitments and team logics. Furthermore,

the CommunicateToTeammates function represents a logic-based communication policy that will

decide the method of communication and to whom to communicate.

Algorithm 2 is executed once a new, unallocated team decision is created. It begins by lever-

aging Algorithm 1 that I have previously shown which handles the passing of decision tokens

through the team for role allocation. After, no more agents can consider the decision, help is

asked for from the human and an adjustable autonomy/resolution policy should be computed

online as seen in Line 3 of Algorithm 2.

Algorithm 2 TDT(decision)
1: TM(decision) /* Algorithm 1 */

2: if decision.NextAgent = NULL then
3: policy←CITMDP(decision)
4: if policy[AgentHasAutonomy, currentT ime] = trans f er then
5: OTH(decision)
6: while policy[HumanDecisionTransitoryS tate, currentT ime] = continue do
7: msg← getMsg()
8: decisionMade← msg
9: if CCAP(decision.context, decisionMade.context) then

10: policy←CITMDP(decision) /* recompute inaccurate policy */

11: PDM(decisionMade) /* Algorithm 3 */

12: if policy[AgentHasAutonomy, currentT ime] = execute then
13: decision.clearHistory
14: TDT(decision)

If a human is given the autonomy over the decision (see Line 5 of Algorithm 2), then the

agent team waits for a human decision. If the human makes a decision then it is received by an

agent (Line 8 of Algorithm 2). Once it is received, the current context (in terms of team capability

91

and decision priority) is compared to the context of the policy to see if the policy is still accurate

(Line 9). If it is not, then recompute it (Line 10). Then the decision is evaluated using the accurate

policy by executing Algorithm 3 (Line 11 of Algorithm 2). Algorithm 3 determines if the decision

is inconsistent and to determine what to do if an inconsistency needs to be resolved, according to

the policy.

Algorithm 3 PDM(decisionMade)
1: expectedUtilityLoss←CEU(decisionMade)−CEU(current)
2: if expectedUtilityLoss > threshold then
3: if policy[HumanDecisionInconsistent, currentT ime] = resolve then
4: IRP(decisionMade)
5: CTT(resolvePlan)
6: RWH(decisionMade)
7: while policy[ResolveHumanDecisionTransitoryS tate, currentT ime] = continue do
8: msg← getMsg()
9: if msg = newDecision then

10: CTT(newDecision)
11: PDM(newDecision)
12: else
13: if msg = otherResolve then
14: if ORTP(otherResolve) then
15: SRWH(decisionMade)
16: else
17: if msg = otherResolveEnded then
18: PDM(decisionMade)
19: if policy[HumanDecisionInconsistent, currentT ime] = execute then
20: if ACO(decisionMade) then
21: E(current) /* override the human decision */

22: else
23: E(decisionMade) /* execute inconsistent decision*/

24: else
25: E(decisionMade) /* decision is consistent */

26: ERP(decisionMade)

Algorithm 3 determines if there is an inconsistency in Line 2, the original ITMDP policy is

checked in order to find out if the resolution is beneficial or not and if so, for how long. A major

issue that must be addressed is what happens when multiple agents are attempting to resolve at

the same time. This algorithm through the communication (see Lines 5,10) and instantiation of a

team plan (see Line 4) allows the other teammates to be aware of all possible resolves and choose

92

which of the agents’ resolve takes precedence (see Line 14). In this algorithm, precedence is

assumed to be given to the resolve that must finish first, however precedence can be determined

by any method. Once a resolve of another teammate has ended, then the decision is evaluated

again to see if this agent still has an inconsistency that is yet to be resolved (see Lines 17-18).

Depending on the domain and state of the world, the agent may have the ability to override the

human’s inconsistent decision once a resolve action is no longer possible. This is captured in

Line 21 and if the agent does not have the capability to override, then it must execute the human’s

inconsistent decision (see Line 23).

6.3 Experiments

I have conducted two sets of experiments to investigate RIAACT. The first set consists of pol-

icy experiments used to explore the advantages of RIAACT over previous adjustable autonomy

models. The second set applies these policies to a disaster simulation system, DEFACTO. Both

of these experiments use the same motivating scenario as explained earlier in Section 6.1. The

experiments section will be divided as follows: (i) model conversion for the CPH solver, (ii) in-

stantiating the scenario and theoretical experiments, and (iii) DEFACTO simulation experiments.

6.3.1 Disaster Response Scenario and Testbed Policy Experiments

I used the RIAACT model as shown in Figure 6.6. In addition, both the testbed policy and

DEFACTO simulation experiments use the same scenario that was explained in Section 6.1. To

instantiate the scenario for this particular domain, I must assign the action duration functions and

the rewards for given action-state pairs.

93

Reward(S tartingS tate, Action, FinishingS tate) Value
R(Adc, Execute, Finish) 6
R(Adi, Execute, Finish) 5
R(Hdc, Execute, Finish) 10
R(Hdi, Execute, Finish) 7.5

Table 6.1: Average rewards for reaching the Finish state after executing an Agent decision that is
either consistent (Adc) or inconsistent (Adi) and a Human decision that is either consistent (Hdc)
or inconsistent (Hdi).

I assume that this is a very dynamic scenario where the situation is very uncertain. Hence

the probability of consistency is 0.5 for both the human P(c,H) and the agent P(c, A). Table

6.1 shows the rewards for this scenario. As shown in Section 2.4.1, I will express the reward

as Reward(S tartingS tate, Action,NewS tate) . In the disaster response domain, I will measure

the reward in terms of buildings saved compared to the maximum (10) that would catch fire if

not addressed. In order to estimate the reward I assume that in the best case 10 buildings can be

saved, however in the worst case the engines are able to save only 5 buildings with their effort.

I assume that the reward for an agent decision is much less than that of a human. Thus, the

reward of an agent decision that is consistent R(Adc, Execute, Finish) is 6, whereas an agent’s

inconsistent reward R(Adi, Execute, Finish) is on average only 5. The reward of a human decision

that is consistent R(Hdc, Execute, Finish) is assumed to be the maximum value of 10, whereas a

human’s inconsistent reward R(Hdi, Execute, Finish) is assumed to be the median of 7.5.

Table 6.2 shows the action duration distributions for this scenario. For machine processes,

it is customary to assign an exponential function to the action duration [Younes and Simmons,

2004]. Consequently, for actions not involving the input of a human, I assume the action duration

to be a very short duration exponential function with a mean of 0.5 seconds. This includes the

trans f er of autonomy action, the decide action for an agent, and the execute decision action (the

94

Action Type Distribution
Transfer Autonomy to Agent Machine Only Exponential
Transfer Autonomy to Human Machine Only Exponential

Agent Decision Machine Only Exponential
Human Decision (Agent Wait) Human Normal

Resolve Human Decision Human Normal
Resolve Agent Decision Human Normal
Execute Any Decision Machine Only Exponential

Interrupt Resolve Machine Only Exponential

Table 6.2: Action Durations

agents are performing the execution of the fire allocation decision in this scenario). In addition, I

assume the interrupt action to take very little time in this domain and it is also modeled with the

same exponential function with a mean of 0.5 seconds.

The decide action for a human (wait for human decision) and the resolve action involve a hu-

man and the duration will be modeled as a normal distribution. Although a normal distribution is

used here, RIAACT can apply to any arbitrary distribution as it will approximated as a phase type,

as seen in Section 6.2.5.4 above. Depending on how available and how experienced the human

is, the distribution may change. I will keep the human decide action duration at a constant distri-

bution, of a Normal(3,1), which is a normal distribution that has a mean of three and a standard

deviation of one. I will use this notation to later describe normal distributions. I will focus on the

resolve action because it will allow me to demonstrate the distinct benefits of RIAACT: resolving

inconsistencies, developing a continuous time policy, and allowing interruptible actions.

I will first experiment in a simple testbed domain, assuming that the resolve action has dura-

tion distribution of a Normal(9,5). Then I will show experiments with the DEFACTO simulation

where I vary the action duration distribution for the resolve action.

95

Human - Has a top down view of the whole map with
intensity of fire in each building. Knows task
allocation and geographic location of all agents.
Agents - Each agent is aware of the size, height, and
fire intensity of buildings within a limited radius, how
much water is in its tank, status of only agents that
are fighting the same fire, allocation of all teammates.

Information

To determine which fire engine, if any, should be
allocated to a firefighting role associated with the
team plan to fight a fire in a particular building. A
policy for adjusting autonomy and, if an agent detects
an inconsistency with the human’s role allocation
decision, a resolve action is available.

Decision

Fires have been ignited at 2 buildings and will start
increasing in intensity and possibly spread. The
human-multiagent team must coordinate to assign
engines and extinguish as many fires as possible. An
inconsistency occurs if the human makes an
allocation decision to a fire and that agent expects
the decision will result in degradation of performance.

Scenario

Policy only. 6 engine agents and 1 virtual human,
resolve action duration follows a Normal(9,5)
distribution.

Team

Figure 6.11: Testbed policy experimental details.

6.3.2 Testbed Policy Experiments

Figure 6.11 explains the details of this set of experiments that were conducted.

• Experimental Setup - Simple testbed domain to construct a policy. 6 agents, resolve action

duration is Normal(9,5)

• Reason for Experiment -To show the benefits in the theoretical model of (i) continuous

time, (ii) the resolve action, and (iii) interrupt.

• Result of Experiment - Benefits are shown and this confirms the usefulness of the RIAACT

model in the policies.

96

Aa Policy for Resolve Normal(9,5)

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

Time to Deadline

E
x
p

e
ct

e
d

 U
ti

li
ty

Decide
Transfer

(a) Aa

Ha Policy for Resolve Normal(9,5)

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

Time to Deadline

E
x
p

e
ct

e
d

 U
ti

li
ty

Decide
Transfer

(b) Ha

Adc Policy for Resolve Normal(9,5)

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

Time to Deadline

E
x
p

e
ct

e
d

 U
ti

li
ty

Execute

(c) Adc

Hdc Policy for Resolve Normal(9,5)

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

Time to Deadline

E
x
p

e
ct

e
d

 U
ti

li
ty

Execute

(d) Hdc

Adi Policy for Resolve Normal(9,5)

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

Time to Deadline

E
x
p

e
ct

e
d

 U
ti

li
ty

Execute
Resolve

(e) Adi

Hdi Policy for Resolve Normal(9,5)

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

Time to Deadline

E
x
p

e
ct

e
d

 U
ti

li
ty

Execute
Resolve

(f) Hdi

Figure 6.12: RIAACT Model example policy output of each state (Aa, Ha, Adc, Hdc, Adi, Hdi)
given that the resolve action duration fits a Normal(9,5).

97

Figure 6.12 shows an example of a policy where the resolve action duration distribution is a

Normal(9,5). For each general state, the policy shows the optimal action to take and the expected

utility of that action as a function over time. On each x-axis is the amount of time left until the

deadline and on the y-axis is the expected utility. Thus, if any state is reached, then the time

to deadline is referred to and the optimal policy is chosen. For example, if the human has the

autonomy (Ha) and the time to deadline is greater than 3.6 seconds, then the optimal action is to

attempt a human decision. Otherwise, the optimal action is to transfer that decision over to the

agent in order to have the agent make a quicker, but lower average quality decision.

Figure 6.12 a and b shows the benefit of using a continuous time approach to modeling the

adjustable autonomy problem. Figure 6.12-a shows that the dominant action for the agent has

autonomy state, Aa, is to transfer the decision to the human up until 3.93 seconds before the

deadline. On the other hand, Figure 6.12-b shows that the dominant action for the human has

autonomy state Ha is to decide up until 3.6 seconds before the deadline. There are two types

of discrete approaches to compare this continuous approach: many intervals and few intervals.

First, if a policy of comparable accuracy was desired, then the policy would need to at least have

the resolution of 0.1 seconds. Consequently, if the policy were to cover the same 20 second span,

then a total of 200 intervals would be used and 200 states would be need for every single state

in the current policy. This would result in 1,200 states instead of the 6 in our current simplified

model. Second, the discretized approach could alternatively aim to reduce the amount of states

and allow for quicker runtimes. For example, if the time were to have been discretized into 8

separate intervals, the state space would be increased by a factor of 8 instead of 200. However,

the interval from 2.5 to 5.0 would only have one action associated as the optimal action. The

3Note that these values have been rounded to the nearest tenth of a second, however the values are real numbers
that each can have an infinite decimal representation.

98

Policy for During Adi Resolve Started at time to
deadline=8.7

Resolve duration distribution of normal(9,5)

0
1
2
3
4
5
6
7
8
9
10

0 2 4 6 8 10

Time Elapsed

E
x
p

e
ct

e
d

 U
ti

li
ty

Continue
Interrupt

(a) 〈Adi, resolve〉

Policy for During Hdi Resolve Started at time to
deadline=8.7

Resolve duration distribution of normal(9,5)

0
1
2
3
4
5
6
7
8
9
10

0 2 4 6 8 10

Time Elapsed

E
x
p

e
ct

e
d

 U
ti

li
ty

Continue
Interrupt

(b) 〈Hdi, resolve〉

Figure 6.13: RIAACT Model example interrupt policy for resolve action given that the resolve
action duration fits a Normal(9,5). These graphs represent interrupt policies for the two transitory
states 〈Adi, resolve〉 and 〈Hdi, resolve〉.

potential gains from knowing the exact point to switch from Decide to Trans f er as the dominant

action would be missed. No matter which action is chosen as the optimal, there are periods of

time between 2.5 and 5.0 where potential reward would be lost.

Figure 6.12 c and d show only one action because there is only one possible action to take

from a consistent decision, execute. It is shown here in order to display the entire state space

and to give an idea of the expected reward over time of each of the consistent states, Adc and

Hdc. Figure 6.12 e and f show the benefit that is achieved from using the resolve action. Each

point where the resolve action dominates the execute action shows a region of time where the

resolve action provides a benefit. One important new aspect of these interruptible policies is that

the rewards take into account the ability of certain actions to be interrupted. In this case, human

decision (waiting for) and resolve are both actions that can be interrupted.

Figure 6.13 demonstrates the benefit achieved from allowing an action to be interruptible

at any point in continuous time. If the action were not interruptible, then the action inherently

99

Adi Policy for Resolve Normal(9,5)

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

Time to Deadline

E
x
p

e
ct

e
d

 U
ti

li
ty

Execute
Resolve

(a) Adi

Hdi Policy for Resolve Normal(9,5)

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

Time to Deadline

E
x
p

e
ct

e
d

 U
ti

li
ty

Execute
Resolve

(b) Hdi

Figure 6.14: The policies for the states Adi and Hdi comparing when the resolve action is avail-
able or not.

chosen over all execution time would be the continue action (because no other action is available).

Figure 6.13 shows the policies that are created for a resolve action if it were to be started at 8.7

seconds to deadline and still executing resolve in either the Adi (subfigure a) and Hdi (subfigure

b). To express this in terms of the ITMDP model, these are interruption action policies for the

transitory states 〈Adi, resolve〉 and 〈Hdi, resolve〉 respectively (for more on transitory states, see

Section 6.2.1.1). The x-axis here shows time elapsed since the action has started and they y-axis

shows the expected utility of the optimal action (continue or interrupt in this case). The time at

which the interrupt action becomes the optimal action in the policy shows how long to attempt

the resolve action. For example if they were to be both started at 8.7 seconds until deadline, then

the Adi Resolve action should be attempted for 4.7 seconds whereas, if it were the Hdi Resolve

action, then it should be attempted for 5.2 seconds before it should be interrupted. This longer

time before interrupting the resolve action is due to the greater potential benefit from resolving

an inconsistent human decision (7.5 to 10 reward) versus an inconsistent agent decision (5.0 to

6.0 reward).

100

Adi Policy for Resolve Normal(9,5)

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

Time to Deadline

E
x
p

e
ct

e
d

 U
ti

li
ty Execute

Resolve

Resolve without
interrupt

(a) Adi

Hdi Policy for Resolve Normal(9,5)

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

Time to Deadline

E
x
p

e
ct

e
d

 U
ti

li
ty Resolve

Resolve without
interrupt
Execute

(b) Hdi

Figure 6.15: The policies for the states Adi and Hdi comparing when the resolve action is inter-
ruptible and not interruptible.

In order to show the benefit that the resolve action provides, a new set of experiments was

conducted with the exact same parameters except that the resolve action was removed. The results

of this experiment can be seen in Figure 6.14. Since there is no resolve action possible, the policy

for these inconsistent states (Adi and Hdi) is to always execute. I have superimposed the expected

utility that the resolve action provided in previous experiments in order to show the difference.

In these graphs, the x-axis represents the time to deadline and the y-axis represents the expected

utility. As seen in both subfigures a and b, the resolve action provides more improvement if there

is more time available before the deadline because the resolve action takes some time to finish.

I also performed experiments to explore the benefit that the ability to interrupt was providing

to the resolve action. To see the effects of this, in Figure 6.15 I show the policies of both resolve

with interrupt and resolve without interrupt for each of the inconsistent states Adi and Hdi. Again

in these graphs, the x-axis represents the time to deadline and the y-axis represents the expected

utility. As seen in both charts, the standard resolve action (with interrupt) provides a higher

expected reward and alters the point at which the action ceases to be optimal. For example, as

101

Human - Has a top down view of the whole map with
intensity of fire in each building. Knows task
allocation and geographic location of all agents.
Agents - Each agent is aware of the size, height, and
fire intensity of buildings within a limited radius, how
much water is in its tank, status of only agents that
are fighting the same fire, allocation of all teammates,
the duration distribution of the resolve action.

Information

An inconsistency about a role allocation to a fire
arises. The agent must decide, given the time to
deadline, whether to try and resolve the
inconsistency and, if so, for how long until the resolve
should be interrupted.

Decision

The human-multiagent team is coordinating to assign
fire engine agents and extinguish as many fires as
possible. The human has made an agent allocation
decision to a fire and that agent finds this to be
inconsistent (expects a degradation in performance).

Scenario

Application of of Policies to DEFACTO. 6 fire engine
agents and 1 virtual human, resolve action duration
follows varying distributions of Normal(3,1),
Normal(6,4), Normal(9,5), Normal(12,6), and
Normal(12,2).

Team

Figure 6.16: DEFACTO experimental details.

seen in Figure 6.15-b the policy for Adi is to attempt to resolve an inconsistency if it is detected

with at least 14.8 seconds if the action is not interruptible, however the resolve action is beneficial

if the inconsistency is detected with at least 5.2 seconds if the action is interruptible.

6.3.3 DEFACTO Experiments

In addition to running this model on CPH, I have also implemented this in a disaster response

simulation system (DEFACTO). In this case a distributed human-multiagent team works together

to try and allocate fire engines to fires in the best way possible. I utilize the proxy architecture to

facilitate the execution of the policies computed by RIAACT.

102

These experiments have been conducted in the DEFACTO simulation in order to test the

benefits of the RIAACT policy output. Figure 6.16 explains the details of this set of experiments

that were conducted. I have implemented the full policy that RIAACT outputs, however since all

of the key elements that I wish to demonstrate are involved with the resolve action, I will focus

on it. In the scenario that I am using for these experiments, the human has had the autonomy

and has made a decision. However, this decision is found to be inconsistent (Hdi) by at least one

agent and now it runs an ITMDP (following the same transition probabilities as instantiated in the

previous section) to determine two things: 1. whether, at this time, a resolve action is beneficial

and 2. if so, for how long should the resolve action be continued before it is beneficial to interrupt

it and execute the inconsistent human decision Hdi.

• Experimental Setup - Application of model, DEFACTO Simulation System, 6 agents, Sim-

ulated Human, Focuses on inconsistency resolution, resolve action duration is varied be-

tween Normal(3,1), Normal(6,4), Normal(9,5), Normal(12,6), and Normal(12,2). This is

intended to explore the effects of modeling varying resolve durations and how they effect

the policy and eventually the team performance. The deadline is assumed to be the point

in time at which fires spread to adjacent buildings and becomes uncontrollable, which in

the simulation is 8.7 seconds on average. Consequently, in each of these experiments,

the human decision is found to be inconsistent at a time when there is 8.7 seconds until

deadline.

103

• Reason for Experiment -To show the benefits in the application of these policies to the

human-multiagent disaster response scenario. Focusing on inconsistency portion of pol-

icy allows these experiments to show (i) benefit of the resolve action, (ii) advantage of

continuous time policy and (iii) the advantage of being able to interrupt.

• Result of Experiment - Figure 6.17 and Figure 6.18 shows the policies that were computed

and applied to the DEFACTO simulation. These policies determine that if the resolve ac-

tion takes a longer amount of time on average to complete, then the sooner that the action

should be interrupted. This was contrary to my hypothesis that since the resolve action can

be very important to achieving higher reward, the policy would suggest waiting longer to

interrupt for longer durations. These policies were then applied to the DEFACTO simula-

tion and the team’s performance improved (see Figure 6.19). This shows the usefulness of

the RIAACT model in applying to disaster response human multiagent teams.

Figure 6.17 shows the policy output for Hdi (Human decision inconsistent) over time with

the varying distributions. The time to deadline is shown on the x-axis and the expected utility

of the dominant action is shown on the y-axis. For example, looking at subfigure b, the policy

shows that if there is enough time to deadline, a resolve action should be attempted. However,

if the inconsistency is found at any time to deadline that is less than 4.5 seconds, then there is

not enough time to resolve and the inconsistent decision (Hdi) should be executed by the agent

team to achieve at least some reward. In the specific scenario that I have focused on, the time to

deadline when the inconsistency is determined is always 8.7 seconds. If this is the case, then each

of the policies for Hdi shown in Figure 6.17 show the dominant action at 8.7 seconds to deadline

to be resolve.

104

Policy for Hdi
Resolve duration distribution of normal(3,1)

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

Time to Deadline

E
x
p

e
ct

e
d

 U
ti

li
ty

Execute
Resolve

(a) Normal(3,1)

Policy for Hdi
Resolve duration distribution of normal(6,4)

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

Time to Deadline

E
x
p

e
ct

e
d

 U
ti

li
ty

Execute
Resolve

(b) Normal(6,4)

Policy for Hdi
Resolve duration distribution of normal(9,5)

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

Time to Deadline

E
x
p

e
ct

e
d

 U
ti

li
ty

Execute
Resolve

(c) Normal(9,5)

Policy for Hdi
Resolve duration distribution of normal(12,6)

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

Time to Deadline

E
x
p

e
ct

e
d

 U
ti

li
ty

Execute
Resolve

(d) Normal(12,6)

Policy for Hdi
Resolve duration distribution of normal(12,2)

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20

Time to Deadline

E
x
p

e
ct

e
d

 U
ti

li
ty

Execute
Resolve

(e) Normal(12,2)

Figure 6.17: Policy predictions for the dominant action (resolve or execute) when in state Hdi at
a given time to deadline.

105

Given this, each of the policies prescribe to start the resolve action, however the policy also

determines how long an unfinished resolve action should continue before it is beneficial to inter-

rupt it. This is done by using the method described earlier in Section 6.2.5. In addition, the belief

distribution weights over the intermediate states given the amount of time elapsed since the start

of the action is determined using the technique also described earlier in Section 6.2.5.

Once the resolve action has begun at 8.7 seconds, the interrupt policies are computed as

seen in Figure 6.18. Different from previous graphs, the x-axis now represents time elapsed in

seconds. Again on the y-axis is the expected utility of the dominant action (continue or interrupt).

This policy shows that as long as the resolve action has not finished, whether it is beneficial

to interrupt it or not. For example, looking at the policy for Normal(9,5) in subfigure c, it is

beneficial to continue the resolve until 5.2 seconds have passed and at that point, the action

should be interrupted. The following is a table that shows for each distribution at what point in

time it becomes beneficial to interrupt it. These values are then used to complete the team-level

adjustable autonomy policy.

Distribution Normal(Mean,Standard Deviation) Interruption Time (Elapsed)
Normal(3,1) 7.0s
Normal(6,4) 5.6s
Normal(9,5) 5.2s
Normal(12,6) 4.9s
Normal(12,2) 4.8s

Table 6.3: Policies for interruption during the resolve action given a start time to deadline of 8.7
seconds. These values are derived directly from the policies shown in Figure 6.18.

Using the interrupt policies shown in Table 6.3, I conducted experiments where DEFACTO

was run with a simulated human with the given action duration distribution. A simulated human

was used to allow for repeated experiments and to achieve statistical significance in the results.

106

Policy for During Resolve Started at time to
deadline=8.7

Resolve duration distribution of normal(3,1)

0
1
2
3
4
5
6
7
8
9
10

0 2 4 6 8 10

Time Elapsed

E
x
p

e
ct

e
d

 U
ti

li
ty

Continue
Interrupt

(a) Normal(3,1)

Policy for During Resolve Started at time to
deadline=8.7

Resolve duration distribution of normal(6,4)

0
1
2
3
4
5
6
7
8
9
10

0 2 4 6 8 10

Time Elapsed

E
x
p

e
ct

e
d

 U
ti

li
ty

Continue
Interrupt

(b) Normal(6,4)

Policy for During Resolve Started at time to
deadline=8.7

Resolve duration distribution of normal(9,5)

0
1
2
3
4
5
6
7
8
9
10

0 2 4 6 8 10

Time Elapsed

E
x
p

e
ct

e
d

 U
ti

li
ty

Continue
Interrupt

(c) Normal(9,5)

Policy for During Resolve Started at time to
deadline=8.7

Resolve duration distribution of normal(12,6)

0
1
2
3
4
5
6
7
8
9
10

0 2 4 6 8 10

Time Elapsed

E
x
p

e
ct

e
d

 U
ti

li
ty

Continue
Interrupt

(d) Normal(12,6)

Policy for During Resolve Started at time to
deadline=8.7

Resolve duration distribution of normal(12,2)

0
1
2
3
4
5
6
7
8
9
10

0 2 4 6 8 10

Time Elapsed

E
x
p

e
ct

e
d

 U
ti

li
ty

Continue
Interrupt

(e) Normal(12,2)

Figure 6.18: Policy predictions for the dominant action (continue or interrupt) when executing
resolve and a given amount that has elapsed since the resolve action began at time to deadline is
8.7 seconds.

107

When an inconsistency is detected by the agents in an uncertain world, there is a chance that

the agents have raised this inconsistency unnecessarily (false positive). In other words, the agents

do not have a better decision to offer and the resolution will result in the same decision as before,

however now being consistent. In these experiments I assume this probability P(IU) to be 0.5,

however this can be altered along with the average expected reward of the inconsistent state. In

fact, this is varied later in Figure 6.21.

Benefit of RIAACT in DEFACTO

0

1

2

3

4

5

6

7

8

9

10

3,1 6,4 9,5 12,6 12,2

Resolve Action Normal Distribution

B
u

il
d

in
g

s
S

a
v
e
d

Always Accept
Always Reject
RIAACT

Figure 6.19: This figure shows the increase in team performance in the DEFACTO simulation
when using RIAACT to implement a resolve action with the ability to interrupt it.

In order to show the benefit that the resolve action gets from being interruptible, experiments

were performed with running the resolve action until it finishes (see Figure 6.19). The duration

108

is sampled from the same varying normal distributions, shown on the x-axis. Since the progres-

sion of the world in non-deterministic and the distributions can be uncertain, in order to assess

the overall performance, these are averaged over 50 experimental runs. The y-axis shows per-

formance in terms of amount of buildings saved. The Always Accept policy is the equivalent of

previous work in adjustable autonomy where a decision was assumed to be final. The Always

Reject policy performs similarly due to the rejection of good human decisions. The RIAACT

policy improves over both of these static policies.

Figure 6.19 also shows that as the resolve action duration increases, the benefit gained from

using RIAACT decreases. This is due to the approaching deadline and the decreased likelihood

that the resolve will be completed in time. Although, the difference in performance for the

Normal(12,2) case may be the smallest, the results show statistical significance P < 0.05 (P =

0.0163).

As can be seen from Figure 6.20, the benefit in team performance is not only from having the

resolve action itself, but by allowing it to be interruptible. Again, the x-axis shows the various

distributions tested, and the y-axis shows team performance in terms of number of buildings

saved. The gains are not as present in Normal(3,1) because the action duration is so short that it

need not be interrupted. However, as seen in Normal(9,5), an average of 3.2 more buildings were

saved over an uninterruptible action.

Figure 6.21 shows how the benefits that RIAACT brings are affected by the probability that

the inconsistency that was detected is useful P(IU). Before this was assumed to be 0.5 since the

domain was so uncertain. However, if the probability that the detected inconsistency, if resolved,

leads to a better solution increased to 0.7, as in Figure 6.21-c, the performance of RIAACT

increases. This is due to the fact that the attempted resolve action is more likely to result in higher

109

Benefit of Interrupt in DEFACTO

0

1

2

3

4

5

6

7

8

9

10

3,1 6,4 9,5 12,6 12,2

Resolve Action Normal Distribution

B
u

il
d

in
g

s
S

a
v
e
d

Resolve Without
Interrupt
RIAACT

Figure 6.20: This figure shows the increase in team performance in the DEFACTO simulation
when using RIAACT to implement a resolve action with the ability to interrupt it versus a resolve
that waits until it is completed.

Benefit of RIAACT in DEFACTO with P(IU)=0.3

0

1

2

3

4

5

6

7

8

9

10

3,1 6,4 9,5 12,6 12,2

Resolve Action Normal Distribution

B
u

il
d

in
g

s
S

a
v
e
d

Always Accept
Always Reject
RIAACT

(a) P(IU) = 0.3

Benefit of RIAACT in DEFACTO with P(IU)=0.5

0

1

2

3

4

5

6

7

8

9

10

3,1 6,4 9,5 12,6 12,2

Resolve Action Normal Distribution

B
u

il
d

in
g

s
S

a
v
e
d

Always Accept
Always Reject
RIAACT

(b) P(IU) = 0.5

Benefit of RIAACT in DEFACTO with P(IU)=0.7

0

1

2

3

4

5

6

7

8

9

10

3,1 6,4 9,5 12,6 12,2

Resolve Action Normal Distribution

B
u

il
d

in
g

s
S

a
v
e
d

Always Accept
Always Reject
RIAACT

(c) P(IU) = 0.7

Figure 6.21: Experiments given a simulated human and varying the probability that resolving the
inconsistency would be useful P(IU).

110

performance. However, if P(IU) = 0.3, as in Figure 6.21-a, then the benefits of RIAACT decrease

with respect to Always Accept (previous strategy) until in the Normal(9,5) case, RIAACT can be

seen to do worse. These experiments highlight how the resolve action, and RIAACT in general,

provides performance improvement as long as the estimate of P(IU) is accurate and relatively

high. Otherwise, if the agent team is poor at detecting inconsistencies that will result in better

team performance, then it might be better to not resolve these inconsistencies.

In order to explore the benefit of having these policies expressed in continuous time, I con-

ducted experiments that varied the amount of time that the resolve would wait before being in-

terrupted. Figure 6.22 shows the results from implementing the resolve policy in DEFACTO and

running experiments on a simulated human that has a response time sampled from varying dis-

tributions. They have been averaged over 50 runs. These distributions are listed in the format of

Normal(mean, standard deviation) in minutes. The y-axis shows the average amount of buildings

that were saved. On the x-axis is a varying amount of time that was spent on the resolve action

before interrupting it and executing the inconsistent decision. For example, in the Normal(12,6)

graph, waiting for 6 seconds, the expected amount of buildings saved drops to 8.2 versus the 8.7

buildings saved on average by rather than the 4.8 seconds determined by the RIAACT policy seen

in Figure 6.19. This shows the benefit of being able to give a policy in continuous rather than a

policy with time intervals that would only be able to interrupt at 6 seconds.

The results of these DEFACTO simulation experiments and the earlier testbed sample pol-

icy experiments show the benefits of RIAACT. RIAACT allows for an online hybrid method of

reasoning about team-level adjustable autonomy that improves team performance due to: (i) rea-

soning about the resolving of inconsistencies, (ii) modeling in continuous time, and (iii) planning

for the interruptions of actions.

111

Resolve duration distribution of normal(3,1)

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4

Time in seconds spent on resolve

N
u
m

b
er

 o
f
B
u
ild

in
g
s

S
av

ed

(a) Normal(3,1)

Resolve duration distribution of normal(6,4)

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

Time in seconds spent on resolve

N
u
m

b
er

 o
f
B
u
ild

in
g
s

S
av

ed

(b) Normal(6,4)

Resolve duration distribution of normal(9,5)

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14

Time in seconds spent on resolve

N
u
m

b
er

 o
f
B
u
ild

in
g
s

S
av

ed

(c) Normal(9,5)

Resolve duration distribution of normal(12,6)

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16

Time in seconds spent on resolve

N
u
m

b
er

 o
f
B
u
ild

in
g
s

S
av

ed

(d) Normal(12,6)

Resolve duration distribution of normal(12,2)

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16

Time in seconds spent on resolve

N
u
m

b
er

 o
f
B
u
ild

in
g
s

S
av

ed

(e) Normal(12,2)

Figure 6.22: Experiments given a simulated human and varying the amount of time before inter-
rupting the resolve of an inconsistency.

112

Chapter 7

Lessons Learned from Initial Deployment Feedback

Through our communication with strategic training division of the LAFD (see Figure 2.4), we

have learned a lot of lessons that have influenced the continuing development of our system.

7.1 Adjustable Autonomy in Practice

Our most important lesson learned from talking with the LAFD and seeing their exercises is

that adjustable autonomy correctly maps over to what happens in the actual disaster response.

The adjusting of autonomy is easily seen as the event scales up and down in size and intensity.

For a smaller scale response to, for example, a residential single story house fire, the Incident

Commander will usually make all allocation decisions and thus practice the A strategy. For a

larger scale event, a lot of the burden of most allocations is left to the team and other entities in

the hierarchy, while the Incident Commander is left to concentrate on the bigger picture. In this

case, the Incident commander is notified of a specifically problematic situation, for example not

enough resources to attack a particular fire. This strategy is essentially what we refer to as AT H

in our experiments, in which, the team first tries to assign someone to the fire with the resources

they have, and if not able to then pass it off to the Incident Commander for help. As the situation

113

were to die down and the size of the team were to decrease, more autonomy would be shifted to

the Incident Commander due to an increased ability to make allocations for the team.

It is very helpful to know that these strategies not only are capable of making our agent

teams perform well and interface with the Incident Commander, but that they also reflect similar

strategies that current firefighting teams are using. Domain experts [LAFD, 2001] verify that this

domain requires the flexible interaction strategies between teams and incident commanders.

7.2 Questioning the Incident Commander

Another lesson that relates to our agent design is that we learned how a team on the ground may

possibly not agree with the command (allocation to a fire) given by the Incident Commander.

This will usually be due to the fact that the Incident Commander has a broad global view of the

disaster, whereas the agents each have a more detailed local view. This mismatch in information

can, at times, lead to detrimental team allocations. In an actual disaster response, this is handled

by the allocated team both questioning the order and providing the Incident Commander with the

missing information.

This has led us to consider a team of agents that can disagree with human inputs. This issue

has not been addressed in our implementation as of yet, but it is relevant given the results that will

be presented later in the training exercise experiments. There are experimental settings in which

the team performance would have been improved, had they rejected the Incident Commander’s

input.

114

Figure 7.1: Selecting for closer look at a Fire Engine.

(a) Local Perspective (b) Global Perspective

Figure 7.2: Local vs. Global Perspectives in the Omni-Viewer

115

7.3 Perspective

Just as in multiagent systems, the Incident commander must overcome the challenge of managing

a team, each of whose members possesses only a partial local view. This is highlighted in fighting

a fire by incident commanders keeping in mind that there are five views to every fire (4 sides and

the top). Only by taking into account what is happening on all five sides of the fire, can the

fire company make an effective decision on how many people to send where. Because of this, a

local view (see Figure 7.2(a)) can augment the global view (see Figure 7.2(b)) becomes helpful

in determining the local perspectives of team members. For example, by taking the perspective of

a fire company in the back of the building, the incident commander can be aware that they might

not see the smoke from the second floor, which is only visible from the front of the building. The

incident commander can then make a decision to communicate that to the fire company or make

an allocation accordingly.

The 3D perspective of the Omni-Viewer was initially thought to be an example of a futuristic

vision of the actual view given to the incident commander. But after allowing the fire fighters to

look at the display, they remarked, that they have such views available to them already, especially

in large scale fires (the very fires we are trying to simulate). Often a news helicopter is at the

scene and the incident commander can patch into the feed to display it at the command post.

Consequently our training simulation can already start to prepare the Incident Commander to

incorporate a diverse array of information sources.

116

(a) Old Fire (b) New Smoke

Figure 7.3: Improvement in fire visualization

7.4 Fire Behavior

We also learned how important smoke and fire behavior is to the firefighters in order to affect their

decisions. Upon our first showing of initial prototypes to the Incident Commanders, they looked

at our simulation, with flames swirling up out of the roof (see Figure 7.3(a)). We artificially

increased fire intensity in order to show off the fire behavior and this hampered their ability to

evaluate the situation and allocations. They all agreed that every firefighter should be pulled out

because that building is lost and might fall at any minute! In our efforts to put a challenging fire in

front of them to fight, we had caused them to walk away from the training. Once we start to add

training abilities, such as to watch the fire spread in 3D, we have to also start to be more aware

of how to accurately show a fire that the Incident Commander would face. We have consequently

altered the smoke and fire behavior (see Figure 7.3(b)). The smoke appears less “dramatic” to the

a lay person than a towering inferno, but it provides a more effective training environment.

117

(a) Normal (b) Flat World

Figure 7.4: Improvement in locating resources (fire engines and ambulances)

7.5 Gradual Training

Initially, we were primarily concerned with changes to the system that allowed for a more accurate

simulation of what the Incident Commander would actually see. Alternatively, we have also

added features, not because of their accuracy, but also to aid in training by isolating certain tasks.

Very often in reality and in our simulations, dense urban areas obscure the ability to see where all

of the resources (i.e. fire engines) are and prevent a quick view of the situation (see Figure 7.4(a)).

To this aim, we have added a new mode using the 3D viewer, but having the buildings each have

no height, which we refer to as Flat World (see Figure 7.4(b)). By using this flat view, the trainee

is allowed to concentrate on the allocation of resources, without the extra task of developing an

accurate world view with obscuring high rise buildings.

7.6 User Intent

A very important lesson that we learned from the LAFD, was that the Incident Commander cannot

be given all information for the team and thus the human does not know all about the status of

the team members and vice versa. Consequently, this lack of complete awareness of the agent

118

team’s intentions can lead to some harmful allocations by the human (Incident Commander). In

order for information to be selectively available to the Incident Commander, we have allowed

the Incident Commander to query for the status of a particular agent. Figure 7.1 shows an arrow

above the Fire Engine at the center of the screen that has been selected. On the left, the statistics

are displayed. The incident commander is able to select a particular fire engine and find out

the equipment status, personnel status, and the current tasks that are being performed by the fire

fighters aboard that engine. This detailed information can be accessed if desired by the Incident

Commander, but is not thrown to the screen by all agents, in order to not overwhelm the Incident

Commander.

7.7 Training Scale

In addition, we have also learned of new challenges that we are currently attempting to tackle by

enhancing the system. One of the biggest challenges in order to start simulating a large urban fire

is the sheer scale of the resources that must be managed. According to the fire captains, in order to

respond to a single high rise building with a few floors on fire, roughly 200 resources (fire engines,

paramedics etc.) would need to be managed at the scene. Coordinating such a large number of

agents on a team is a challenge. Also, as the incident scales to hundreds of resources, the Incident

Commander ends up giving more autonomy to the team or else faces being overwhelmed. We

believe that adjustable autonomy will start to play a bigger and more essential roll in allowing for

the Incident Commander to monitor the larger situations.

119

7.8 Quicker Feedback

In recent discussions with officials from the LAFD, they have pointed out that a very distinct

advantage that the simulated training has over their current method is that of quicker feedback.

In traditional training, there will be moments of inactivity and a lot of waiting for an incident

commander to see the impact of their influence on the disaster response. If the simulation is sped

up at this time, they can still see their impact, but much more quickly and can immediately start

to analyze what went well and what went poorly. This allows for training exercises to take less

time and the training objectives to be more evident to the trainee.

120

Chapter 8

Conclusion and Vision

8.1 Conclusion

The focus of my thesis is to enable human-multiagent teams to succeed despite having to address

real-world constraints including time deadlines, computation limits and the distributed nature of

the team. In particular, this thesis focuses on the challenge of applying adjustable autonomy to

these human-multiagent teams, in order to increase the performance of the team.

This thesis overall provides four advances to the field that include: (i) defining the new team-

level adjustable autonomy problem, (ii) performing human experiments to highlight the chal-

lenges of the team-level adjustable autonomy problem, (iii) introducing the RIAACT approach

handle these challenges, and (iv) developing the testbed system DEFACTO in order to explore

human-multiagent teams.

Specifically, I have shown that RIAACT makes four important contributions in order to ad-

dress the challenges of team-level adjustable autonomy. Firstly, I have shown the importance of

121

modeling the resolution of inconsistencies between human and agent view in adjustable auton-

omy. This has led to the creation of new adjustable autonomy strategies that recognize inconsis-

tencies and provide a framework to decide if a resolution is beneficial. Secondly, I have shown

the improvements in modeling these new adjustable autonomy strategies using TMDPs (Time

dependent Markov Decision Problems). This continuous time based solution provides higher

quality solutions while remaining computationally efficient. Thirdly, I have introduced a new

model for Interruptible TMDPs (ITMDPs) that allows for an action to be interrupted at any point

in continuous time. This results in a more accurate modeling of actions and produces additional

time-dependent policies that guide interruption during the execution of an action. Fourthly, I

have developed and implemented a hybrid approach that decomposes the team level adjustable

autonomy problem in a separate ITMDP for each team decision and leverages other techniques

in order to provide a feasible online solution.

Toward these contributions, I have developed a research prototype called DEFACTO (Demon-

strating Effective Flexible Agent Coordination of Teams through Omnipresence) that implements

these approaches. Though DEFACTO has been designed to be used for deployed applications, it

is initially being used as a modeling and simulation tool to improve on current training methods

in the context of an incident commander during disaster response. Experiments have been con-

ducted with DEFACTO that have both actual humans and simulated humans interacting with the

teams of agents. I have given an overview of some of the lessons that were learned as a result in

working directly with the Los Angeles Fire Department. Together, these approaches have served

as beneficial in enabling human-multiagent teams to work together successfully.

122

8.2 Vision

There are many possible directions for future research in the area of human-multiagent teams.

Human-multiagent teams are being deployed in ever expanding real-world domains, which make

the challenges that they bring even more important to address. In Chapter 9, I have placed a

short discussion of some of these issues that these human-multiagent teams will present. In

particular, I explore how Isaac Asimov’s Laws of Robotics can influence the design of these

human-multiagent teams of the future.

In addition, there are many possible future directions for research in the specific area of team-

level adjustable autonomy. One example of this is to explore the area of multihuman-multiagent

teams. This thesis focuses on teams including one human with multiple agents and some of these

insights will be applicable, however new challenges will arise when trying to deal with authority

and hierarchy with multiple humans. The RIAACT approach may even help prepare for the

future where multiple humans will be with the team. I propose that there will be opportunities

to leverage these techniques when dealing with humans with conflicting decisions. The humans

could employ these resolution strategies among themselves and decide how long to attempt to do

so.

Also, a related challenge that will arise is how to approach more heterogeneity in the team, in

both the capabilities of the team member and the information that they have access to. One could

imagine many intermediate steps between the local and global views described in this thesis. This

would create varying information gaps to be addressed.

Another important area of future research is to look at these team-level adjustable auton-

omy issues in the context of other domains. RIAACT specifically can apply to some of the

123

(a) AVATAR helicopter (b) TALON with human controller (c) TALON in camou-
flage

Figure 8.1: The MAAF project will include TALON unmanned ground vehicles and AVATAR
autonomous helicopters coordinating with a human controller.

other projects that I have been closely involved with. For example, the Software for Distributed

Robotics (SDR) project aimed to coordinate a large group of robots (around 100) during a sus-

tained activity of surveillance and continual recharging. The project would have benefited from

allowing the large team and the human user to work closely together and resolve inconsistencies.

For more details on this domain, please refer to [Schurr et al., 2003].

Another closely related current project is the Multiagent Adjustable Autonomy Framework

(MAAF). This project has been developed to support multi-robot, multi-human teams during

tactical maneuvers (see Figure 8.1). This is a very exciting project because it will soon extend

past simulation and start to address the challenges of applying adjustable autonomy to the real

world. Furthermore, it will include a heterogeneous team of unmanned ground vehicles, TALONs

(see Figure 8.1 b and c), and air vehicles, AVATARs (see Figure 8.1-a), along with the human

controller.

I hope that by looking into these future research areas, these new human-multiagent teams

will become important and useful fixtures in our society.

124

Chapter 9

Discussion

In this chapter, I discuss some of the issues that I propose will arise in the future as more human-

multiagent teams are deployed in the real world. I find these new challenges exciting and this area

is overflowing with potential for future research. I believe that a lot of these forward-thinking

research topics can be inspired by or even influenced by some of the science fiction literature

that has begun to explore some of these issues. A prime example of this is the work of Isaac

Asimov. In particular, his books concerning human-robot relations and the Laws of Robotics are

very relevant [Asimov, 1990]. I provide some very initial experiments that serve to show some

of the benefits of casting the general human-multiagent coordination problem in this manner.

In deploying multiagent teams that can function as teammates with humans, it is crucial

to provide some kind of guarantees about their behavior. These multiagent teams have been

designed to perform well on their own and wish to improve performance by interacting with a

human. But there is a risk that the human will unintentionally degrade the team performance.

This can be due to a lack of complete detailed knowledge of the whole team’s situation. The

challenge is then how to provide the guarantees that will make certain that human involvement

will not cause performance to degrade significantly.

125

I propose a method for counteracting potentially harmful human input whereby the agents

communicate locally and determine if local performance will suffer greatly. If that is so, then

the team must let the human know. In this chapter, I will first introduce the Asimovian Laws

as a potential framework for the guarantees. Then I will apply this local method for detecting

degradation and maintaining guarantees to Asimov’s Laws and show some initial results of an

implementation.

9.1 Asimovian Guarantees for Human Agent Teams

In this chapter, I will focus on Asimov’s three laws of robotics from his science-fiction stories

that provide us a starting point for such behavior guarantees. We do not claim that these laws

are the only or the best collection of similar rules. However, the laws outline some of the most

fundamental guarantees for agent behaviors, given their emphasis on ensuring that no harm comes

to humans, on obeying human users, and ensuring protection of an agent. Indeed, these laws

have inspired a great deal of work in agents and multiagent systems already [Weld and Etzioni,

1994; Gordon, 2000; Pynadath and Tambe, 2001]. However, in operationalizing these laws in the

context of multiagent teams, three novel issues arise. First, the key notions in these laws (e.g.

“no harm” to humans) are specified in very abstract terms and must be specified in concrete terms

in implemented systems. Second, while the laws were originally written for interaction of an

individual robot and an individual human, clearly, our systems must operate in a team context.

Third, since, in many realistic domains, agents or humans may not have perfect information about

the world, they must act based on these laws despite information uncertainty and must overcome

their mutual information mismatch.

126

Indeed, as mentioned earlier, researchers have in the past advocated the use of such laws

to provide guarantees in agent systems [Weld and Etzioni, 1994; Gordon, 2000; Pynadath and

Tambe, 2001]. However, previous work only focused on a single law (the first law of safety)

and in the process addressed two of the issues mentioned above: defining the notion of harm to

humans and applying the laws to teams rather than individual agents. The key novelty of our work

is going beyond previous work to consider the second of Asimov’s laws, and more importantly in

recognizing the fundamental role that uncertainty plays in any faithful implementation of such a

law. In particular, Asimov’s second law addresses situations where an agent or agent team may or

may not obey human orders — it specifies that in situations where (inadvertent) harm may come

to other humans, agents may disobey an order. However, in the presence of uncertainty faced

either by the agents or the human user about each others’ state or state of the world, either the set

of agents or the human may not be completely certain of their inferences regarding potential harm

to humans. This chapter illustrates that in the presence of such uncertainty, agents must strive

to gather additional information or provide additional information. Given that the information

reduces the uncertainty, agents may only then disobey human orders to avoid harm.

To the best of our knowledge, this is the first time a concrete implementation has been pro-

vided that addresses the three key issues outlined above in operationalizing Asimov’s laws. As

mentioned earlier, our implementation is focused on that of disaster rescue simulations. The real-

time nature of this domain precludes the use of computationally expensive decision-theoretic

techniques, and instead agents rely on heuristic techniques to recognize situations that may (with

some probability) cause harm to humans.

127

9.2 On Asimov’s Laws1

In 1942, having never had any personal contact with a robot, Isaac Asimov sat down to write his

short story “Runaround” [Asimov, 1990] and in doing so enumerated for the first time his three

laws of robotics:

• First Law: A robot may not injure a human being, or, through inaction, allow a human

being to come to harm.

• Second Law: A robot must obey the orders given it by human beings except where such

orders would conflict with the First Law.

• Third Law: A robot must protect its own existence as long as such protection does not

conflict with the First or Second Law.

Asimov believed these three laws were both necessary and sufficient for human-robot interac-

tion, an idea he set out to illustrate in his series of robot stories. While he believed that enforcing

his three laws would prevent a robot from becoming the nightmarish monster of Frankenstein that

was the fodder of many science fiction stories, Asimov admitted that the operationalization of his

three laws would not be simple or unambiguous. In this chapter, I focus on operationalization

of the first two laws, which requires several key issues be addressed in concretely applying them

to our domains of interest: (i) Providing definition of “harm” so central to the first law; (ii) Ap-

plying these laws in the context of teams of agents rather than individuals; and (iii) Addressing

these laws in the presence of uncertainty in both the agent’s and the human user’s information

about each other and about the world state. Previous work has only focused on the first law, and

thus on techniques to avoid harm via agents’ actions [Gordon, 2000; Pynadath and Tambe, 2001;
1This section was worked on in joint with Emma Bowring and Pradeep Varakantham.

128

Weld and Etzioni, 1994]. This previous work dealt with both a single agent and a team of agents,

but the emphasis remained on the autonomous actions of these agents. In contrast, the second

law emphasizes interactions with humans, and thus its relevance in the context of heterogeneous

systems that involve both humans and multiagent teams, that are of interest in this thesis.

Indeed, among the issues that must be addressed in concretely applying these laws, the first

two — defining harm and applying the laws to teams instead of individuals — are addressed in

previous work (albeit differently from our work). However, the uncertainty of information that the

agents and the human user may suffer from is the novel issue that must be clearly addressed when

addressing the second law. In the following, I provide a more detailed discussion of these three

issues, with an emphasis on the issue of uncertainty. Nonetheless, in contrast with previous work,

this thesis is the first (to the best of my knowledge) that addresses these three issues together in

operationalizing the two laws.

9.2.1 Definition of Harm

What constitutes harm to a human being? Must a robot obey orders given it by a child, by a

madman, by a malevolent human being? Must a robot give up its own expensive and useful

existence to prevent a trivial harm to an unimportant human being? What is trivial and what is

unimportant? pg 455 [Asimov, 1990]

The notion of harm is fundamental to Asimov’s laws. Yet, Asimov himself did not imply that

harm had to be necessarily physical harm to humans. Indeed, in the story “LIAR” harm is purely

mental harm (e.g. someone not getting a promotion they wanted) [Asimov, 1990]. So whereas the

notion of harm as physical harm to humans is obviously relevant in one of our domains mentioned

earlier (disaster rescue), it is also relevant in an office assistant domain, where harm may imply

129

harm to some business (e.g. products not delivered on time) where the office assistant team is

deployed. Indeed, in previous work in software personal assistants that is motivated by Asimov’s

laws [Weld and Etzioni, 1994; Pynadath and Tambe, 2001], the notion of harm includes such

effects as deletion of files or meeting cancellation.

In this chapter, the notion of harm is operationalized as a “significant” negative loss in utility.

So if actions cause a significant reduction in an individual agent’s or team’s utility, then that is

considered as constituting harm. In our disaster rescue simulation domain, such negative utility

accrues from loss of (simulated) human life or property. An example of this can be seen in Figure

5.3 when human inputs are followed by 6 fire engine agents, resulting in more buildings being

burned than if the inputs were ignored.

9.2.2 Applying Laws to Teams

I have dealt entirely with the matter of the interaction between [a] single robot and various human

beings. ... Suppose two robots are involved, and that one of them, through inadvertence, lack of

knowledge, or special circumstances, is engaged in a course of action (quite innocently) that will

clearly injure a human being – and suppose the second robot, with greater knowledge or insight,

is aware of this. pg. 479-480 [Asimov, 1990]

Diana Gordon-Spear’s work on Asimovian agents[Gordon, 2000] addresses teams of agents

that guarantee certain safety properties (inspired by the first law above) despite adaptation or

learning on part of the agent team. The key complications arise because the actions of multiple

agents interact, and thus in preserving such safety property, it is not just the actions of the individ-

ual, but their interactions that must be accounted for, in terms of safety. In our work (particularly

as seen in the disaster response domain of Sections 2.2 and 9.4), similar complexities arise when

130

applying the laws to teams of agents. No single individual may be able to detect harm by itself;

rather the harm may only be detectable when the team of agents is considered as a whole.

9.2.3 Uncertainty

Even a robot may unwittingly harm a human being, and even a robot may not be fast enough to

get to the scene of action in time or skilled enough to take the necessary action. pg 460 [Asimov,

1990]

The second law in essence requires that agents obey human orders unless such orders cause

harm to (other) humans. Thus, this law opens up the possibility that the agent may disobey an

order from a human user, due to the potential for harm. In many previous mixed agent-human

systems, human inputs are considered final, and the agent cannot override such inputs — poten-

tially with dangerous consequences as shown earlier. Asimov’s second law anticipates situations

where agents must indeed override such inputs and thus provides a key insight to improve the

performance of agents and agent teams.

Yet, the key issue is that both the agents and the human users have uncertainty; simply dis-

obeying an order from a human given such uncertainty may be highly problematic. For example,

the agents may be uncertain about the information state of the humans, the intellectual or physical

capability of the human users, and the state of the world, etc. In such situations, agents may be

uncertain about whether the current user order may truly cause (inadvertent) harm to others. It is

also feasible that the human user may have given an order under a fog of uncertainty about the

true world state that the agent is aware of; and in such situations, the agents’ inferences about

harmful effects may be accurate.

131

One of the key insights in this thesis then relates to addressing situations under the second

law where an agent may disobey human orders due to its potential for causing harm to other

humans: given the uncertainty described above, an agent should not arbitrarily disobey orders

from humans, but must first address its own or the human users’ uncertainty. It is only upon

resolution of such uncertainty that the agent may then disobey an order if it causes harm to others.

In addressing the simulated disaster rescue domain, the issue centers on potential uncertainty

that a human user must face. Here, an agent team acting in the simulated disaster-rescue envi-

ronment potentially has more certainty about the world state than the human user does. Unfor-

tunately, the disaster is spreading rapidly, and the agent team may have little time to deliberate

on the uncertain situation, and come up with a detailed policy (as with a POMDP). Instead, the

agent team quickly brings up to the notice of the human user key possible sources of potential

harm due to the human’s order. At this juncture, the human user may be able to reduce his/her

uncertainty about the world state, and thus possibly rectify his/her order.

9.3 Operationalizing Asimov’s Laws

In the initial adjustable autonomy strategy experiments, appropriately obeying the first and second

laws would have improved the situation. Specifically in the second law, the caveat where human

directives should be followed, unless it causes harm to humans, is not being paid attention to.

Instead, as mentioned in Chapter 2, agents blindly obey human commands, which is problematic.

However, as mentioned earlier, in complex domains, there is significant uncertainty. Given such

uncertainty, it is quite feasible for the humans to provide imperfect inputs or orders; yet agents

may not be certain that these orders are in error, due to the uncertainty that they face. Our position

132

is that in order to start constructing teams of agents and humans that perform well, they must not

always take human input as final, yet must only do so after resolving uncertainty.

Given that humans may (unintentionally) provide problematic input, I propose that there are

5 general categories of agents’ reactions to problematic human input. In particular, agents may:

• A. Follow the human input exactly

• B. Ignore the human input completely

• C. Make the human aware of the alleged problem in the input

• D. Make the human aware of the alleged problem in the input and offer non-problematic

option(s)

• E. Limit human input to only pre-defined non-problematic options to be chosen from by

the human

Due to the uncertainty (mentioned in Section 9.2.3), Options A and B become infeasible.

Option A results in suboptimal performance and does not take advantage of the team’s resources

and potential as seen in Chapter 2. Option B may end up in better performance, but not only

results in angry or confused humans, the agents may also be mistaken due to its own uncertainty

and poor performance. Option E can be very difficult for dynamic domains, because there are

so many options to explore and it is challenging to identify the appropriate choices to offer the

human. It is then desirable to engage in some of the dialogue described in Options C or D. Our

aim is to have the joint performance of the agents and humans result in an improvement over

either of them separately, that is to have the agents correct problems of humans and vice versa.

133

AH ALL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

NUMBER OF AGENTS SENT TO BUILDING

P
R

O
B

A
B

IL
IT

Y
 B

U
IL

D
IN

G
 S

A
V

E
D

AH ALL

Figure 9.1: AH for all subjects.

9.4 Applying Laws for Guarantees in Disaster Response

Our goal was to have the agent team be able to detect the problematic input seen in the previous

experiments and then be able to engage in some type of dialogue with the human user. In order to

do this, I continued an in depth analysis of what exactly was causing the degrading performance

when 6 agents were at the disposal of the human user. Figure 5.5 shows the number of agents on

the x-axis and the average amount of fire engines allocated to each fire on the y-axis. AH and AT H

for 6 agents result in significantly fewer average fire engines per task (fire) and therefore lower

average. For example, as seen in Figure 5.5, for the AT H strategy, subject 3 averaged 2.7 agents

assigned to each fire when 4 agents were available, whereas roughly 2.0 agents were assigned to

each fire when 6 agents were available. It seems counterintuitive that when given more agents,

the average number that was assigned to each fire actually went down. Furthermore, this lower

average was not due to the fact that the human user was overwhelmed and making fewer decisions

(allocations). Figures 9.3(a), 9.3(b), and 9.3(c) all show how the number of buildings attacked

134

ATH ALL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

NUMBER OF AGENTS SENT TO BUILDING

P
R

O
B

A
B

IL
IT

Y
 B

U
IL

D
IN

G
 S

A
V

E
D

ATH ALL

Figure 9.2: ATH for all subjects.

0

50

100

150

200

250

300

2 4 6 8 10 12

Number of Agents

B
u

ild
in

g
s

A
tt

ac
ke

d

AH ATH

(a) Subject 1

0

50

100

150

200

250

2 4 6 8 10 12

Number of Agents

B
u

ild
in

g
s

A
tt

ac
ke

d

AH ATH

(b) Subject 2

0

50

100

150

200

250

300

350

2 4 6 8 10 12

Number of Agents

B
u

ild
in

g
s

A
tt

ac
ke

d

AH ATH

(c) Subject 3

Figure 9.3: Number of buildings attacked.

does not go down in the case of 6 agents, where poor performance is seen. Figures 9.1 and 9.2

show the number of agents assigned to a building on the x-axis and the probability that the given

building would be saved on the y-axis. The correlation between these values demonstrate the

correlation between the number of agents assigned and the quality of the decision.

We can conclude from this analysis that the degradation in performance occurred at 6 agents

because fire engine teams were split up, leading to fewer fire-engines being allocated per building

135

on average. Indeed, leaving fewer than 3 fire engines per fire leads to a significant reduction in

fire extinguishing capability.

9.5 Domain Independent

Up until now, the analysis and deduction of what was causing the harm (performance degrada-

tion) was, for the most part, domain dependant. However, I have started to develop some domain

independent methods for detecting a decrease in performance. We cannot view the problem of de-

tecting performance degradation from the perspective of traditional one-on-one tutoring systems,

where an agent has access to the same information as the human trainee and can thus provide

immediate inputs when its inference of what is right contradicts those of the trainee. In our work,

however, agents have access to far more limited, but detailed information that is local, and the

human has access to global but abstracted information. This is especially so, in the long term

where we envision a deployed system in the real-world. Given this dissimilarity of information,

agents can perform a local check to detect if a local evaluation suggests that the performance of

their team has degraded. If local evaluation suggests a degradation beyond a certain bound, then

that may trigger their attempts to resolve the situation with the human user.

In many complex systems, agents use a locally optimal algorithm to perform resource allo-

cation (i.e. allocation of roles to agents). For example, in DEFACTO, as mentioned in Chapter

4, we use LA-DCOP, a locally optimal DCOP (Distributed Constraint Optimization) algorithm

to allocate fire-engines to fires – a globally optimal algorithm is often unusable in such com-

plex dynamic domains. LA-DCOP settles on a local equilibrium when allocating fire-engines to

fires. When human inputs are received, agents may locally check if the quality of the solution

136

Reject Orders to Split? Buildings Damaged Fires Extinguished
No 27 3
No 29 3
No 33 1
Yes 14 5
Yes 18 5
Yes 20 5

Table 9.1: Benefits to team when rejecting orders allows split of team. In top half, team accepted
all human orders, and in bottom half, problematic orders were rejected.

has locally improved. Local improvement is feasible, given that they were at a local equilibrium.

However, if that new local DCOP has a substantially less quality (reward) than the current DCOPs

reward, then the agent must let the human know so that this can be resolved. By resolve, I mean

that either (i) the human is made aware of some local changes and determines to retract the input

or (ii) the human was aware of that local decrease in reward, but sees the overall team performing

better in the long run.

9.6 Remedy

Given this domain independent method for predicting human input to be problematic, I imple-

mented the ability for the agent team to detect if a reallocation is pulling a teammate from a

working group of 3 or more. Once this is detected, there is a high probability that the team per-

formance will be degraded by following the human input. But since there is some uncertainty in

the final outcome, the agents do not blindly follow (Option A from above) or ignore (Option B

from above). Instead they present the possible problem to the human (Option C from above).

In order to evaluate this implementation I set up some initial experiments to determine the

possible benefits of the team being able to reject the splitting of a coordinated subgroup. We

137

used a team comprised of a human user and 6 agents. We used the same map and the same AT H

strategy as were used in previous experiments. Each of these results were from a short (50 time

step) run of the DEFACTO system. The only variable was whether the agents were allowed to

raise objections when given allocation orders to split up. In these experiments, the human user

listened to all agent objections and did not override them. The results of this initial experiment

can be seen in Table 9.1. In Table 9.1, I present results for three problem instances. Performance

is measured by calculating the amount of buildings damaged (less is better) and the number of

fires extinguished (more is better). As seen from the number of buildings damaged, by allowing

the agents to reject some of the human input (see bottom half of Table 9.1), they were able to

more easily contain the fire and not allow it to spread to more buildings.

138

Bibliography

Advanced Systems Technology. Epics - emergency preparedness incident commander simulation.
In http://epics.astcorp.com, 2005.

James F. Allen, Nathanael Chambers, George Ferguson, Lucian Galescu, Hyuckchul Jung, Mary
Swift, and William Taysom. Plow: A collaborative task learning agent. In AAAI, pages 1514–
1519, 2007.

Isaac Asimov. Robot Visions (collection of robot stories). Byron Preiss Visual Publications Inc,
1990.

Jeremy W. Baxter and Graham S. Horn. Controlling teams of uninhabited air vehicles. In Pro-
ceedings of the fourth international joint conference on Autonomous agents and multiagent
systems (AAMAS), 2005.

D. S. Bernstein, S. Zilberstein, and N. Immerman. The complexity of decentralized con-
trol of MDPs. In Proceedings of the Sixteenth Conference on Uncertainty in Artificial
Intelligence(UAI-00), pages 32–37, 2000.

Craig Boutilier, Raymond Reiter, Mikhail Soutchanski, and Sebastian Thrun. Decision-theoretic,
high-level agent programming in the situation calculus. In Proceedings of the Seventeenth
National Conference on Artificial Intelligence (AAAI-00), pages 355–362, 2000.

J. Boyan and M. Littman. Exact solutions to time-dependent MDPs. In NIPS, pages 1026–1032,
2000.

CALO: Cognitive Agent that Learns and Organizes. CALO http://www.ai.sri.com/project/CALO,
http://calo.sri.com, 2003.

William J. Clancey, Maarten Sierhuis, Charis Kaskiris, and Ron van Hoof. Advantages of brahms
for specifying and implementing a multiagent human-robotic exploration system. In Proceed-
ings of the Sixteenth International Florida Artificial Intelligence Research Society Conference,
pages 7–11, 2003.

Philip R. Cohen and Hector J. Levesque. Intention is choice with commitment. Artificial Intelli-
gence, 42(2–3):213–261, 1990.

J. Collins, C. Bilot, M. Gini, and B. Mobasher. Mixed-initiative decision-support in agent-based
automated contracting. In Proceedings of the International Conference on Autonomous Agents
(Agents), 1998.

139

Jacob W. Crandall, Curtis W. Nielsen, and Michael A. Goodrich. Towards predicting robot team
performance. In SMC, 2003.

G. Dorais, R. Bonasso, D. Kortenkamp, P. Pell, and D. Schreckenghost. Adjustable autonomy for
human-centered autonomous systems on mars. In Mars, 1998.

Z. Feng, R. Dearden, N. Meuleau, and R. Washington. Dynamic programming for structured
continuous MDPs. In UAI, 2004.

G. Ferguson and J. Allen. Trips : An intelligent integrated problem-solving assistant. In Pro-
ceedings of Fifteenth National Conference on Artificial Intelligence (AAAI), pages 567–573,
1998.

G. Ferguson, J. Allen, and B. Miller. Trains-95 : Towards a mixed-initiative planning assistant. In
Proceedings of the Third Conference on Artificial Intelligence Planning Systems, pages 70–77,
1996.

Terrence Fong, Charles Thorpe, and Charles Baur. Multi-robot remote driving with collaborative
control. IEEE Transactions on Industrial Electronics, 2002.

M. Goodrich, D. Olsen, J. Crandall, and T. Palmer. Experiments in adjustable autonomy. In IJCAI
Workshop on Autonomy, Delegation and Control: Interacting with Intelligent Agents, 2001.

Michael A. Goodrich, Timothy W. McLain, Jeffrey D. Anderson, Jisang Sun, and Jacob W. Cran-
dall. Managing autonomy in robot teams: observations from four experiments. In Proceedings
of the Second ACM SIGCHI/SIGART Conference on Human-Robot Interaction, HRI, pages
25–32, 2007.

Diana F. Gordon. Asimovian adaptive agents. Journal of Artificial Intelligence Research (JAIR),
13:95–153, 2000.

C. Guestrin, M. Hauskrecht, and B. Kveton. Solving factored mdps with continuous and discrete
variables, 2004.

R. Hill, J. Gratch, W. L. Johnson, C. Kyriakakis, C. LaBore, R. Lindheim, S. Marsella, D. Mi-
raglia, B. Moore, J. Morie, J. Rickel, M. Thiebaux, L. Tuch, R. Whitney, J. Douglas, and
W. Swartout. Toward the holodeck: integrating graphics, sound, character and story. In
AGENTS ’01: Proceedings of the fifth international conference on Autonomous agents, pages
409–416. ACM Press, 2001.

Randall W. Hill, Johnny Chen, Jonathan Gratch, Paul Rosenbloom, and Milind Tambe. Intelligent
agents for the synthetic battlefield: A company of rotary wing aircraft. In Proceedings of
Innovative Applications of Artificial Intelligence (IAAI), 1997.

Eric Horvitz and Johnson Apacible. Learning and reasoning about interruption. In ICMI ’03:
Proceedings of the 5th international conference on Multimodal interfaces, pages 20–27, New
York, NY, USA, 2003. ACM Press.

US JFCOM Joint Warfighting Center. Jcats - joint conflict and tactical simulation. In
http://www.jfcom.mil/about/fact jcats.htm, 2005.

140

Samin Karim and Clint Heinze. Experiences with the design and implementation of an agent-
based autonomous uav controller. In Proceedings of the fourth international joint conference
on Autonomous agents and multiagent systems (AAMAS), 2005.

Hiroaki Kitano, Satoshi Tadokoro, Itsuki Noda, Hitoshi Matsubara, Tomoichi Takahashi, Atsushi
Shinjoh, and Susumu Shimada. Robocup rescue: Search and rescue in large-scale disasters as
a domain for autonomous agents research. In IEEE SMC, volume VI, pages 739–743, Tokyo,
October 1999.

LAFD. High-rise incident command system. In Los Angeles Fire Department, 2001.

L. Li and M. Littman. Lazy approximation for solving continuous finite-horizon MDPs. In AAAI,
pages 1175–1180, 2005.

Janusz Marecki, Zvi Topol, Sven Koenig, and Milind Tambe. Coordinators autonomy module.
In Coordinators Project Technical Report, 2006.

Janusz Marecki, Sven Koenig, and Milind Tambe. A fast analytical algorithm for solving markov
decision processes with real-valued resources. In Proceedings of the Twentieth International
Joint Conference on Artificial Intelligence (IJCAI-07), January 2007.

Mausam, Emmanuel Benazera, Ronen I. Brafman, Nicolas Meuleau, and Eric A. Hansen. Plan-
ning with continuous resources in stochastic domains. In IJCAI, pages 1244–1251, 2005.

Karen L. Myers and David N. Morley. Policy-based agent directability. In Agent Autonomy (ed.,
Henry Hexmoor, Cristiano Castelfranchi and Rino Falcone). Kluwer Academic Publishers,
2003.

Ranjit Nair and Milind Tambe. Hybrid bdi-pomdp framework for multiagent teaming. Journal
of Artificial Intelligence Research (JAIR), 23:367–420, 2005.

Sean Owens, Paul Scerri, Robin Glinton, Bin Yu, and Katia Sycara. Synergistic integration of
agent technologies for military simulation. In AAMAS ’06: Proceedings of the fifth interna-
tional joint conference on Autonomous agents and multiagent systems, pages 1443–1444, New
York, NY, USA, 2006. ACM Press.

A. Paivio. Pictures and words in visual search. Memory & Cognition, 2(3):515–521, 1974.

M. Petrik. An analysis of laplacian methods for value function approximation in mdps. In IJCAI,
pages 2574–2579, 2007.

M. Puterman. Markov decision processes. John Wiley and Sons, New York, 1994.

D. V. Pynadath and M. Tambe. Automated teamwork among heterogeneous software agents and
humans. Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS), 7:71–100, 2003.

D V. Pynadath and Milind Tambe. Revisiting asimov’s first law: A response to the call to arms.
In Intelligent Agents VIII Proceedings of the International workshop on Agents, theories, ar-
chitectures and languages (ATAL’01), 2001.

141

David V. Pynadath, Milind Tambe, Nicolas Chauvat, and Lawrence Cavedon. Toward team-
oriented programming. In Proceedings of Agent Theories, Architectures, and Languages Work-
shop, pages 233–247, 1999.

J. Reitsema, Wendell Chun, Terrence W Fong, and Randy Stiles. Team-centered virtual interac-
tive presence for adjustable autonomy. In American Institute of Aeronautics and Astronautics
(AIAA) Space 2005, September 2005. AIAA-2005-6606.

Charles Rich and Candace L. Sidner. COLLAGEN: A collaboration manager for software inter-
face agents. User Modeling and User-Adapted Interaction, 8(3-4):315–350, 1998.

A. Richardson, D. Montello, and M. Hegarty. Spatial knowledge acquisition from maps and from
navigation in real and virtual environments. Memory and Cognition, 27(4):741–750, 1999.

R. Ruddle, S. Payne, and D. Jones. Navigating buildings in desktop virtual environments: Exper-
imental investigations using extended navigational experience. J. Experimental Psychology -
Applied, 3(2):143–159, 1997.

P. Scerri, D. Pynadath, and M. Tambe. Towards adjustable autonomy for the real world. Journal
of Artificial Intelligence Research, 17:171–228, 2002.

P. Scerri, D. V. Pynadath, L. Johnson, P. Rosenbloom, N. Schurr, M. Si, and M. Tambe. A
prototype infrastructure for distributed robot-agent-person teams. In AAMAS, 2003.

Paul Scerri, Alessandro Farinelli, Stephen Okamoto, and Milind Tambe. Allocating tasks in
extreme teams. In Proceedings of the international joint conference on Autonomous agents
and multiagent systems (AAMAS), 2005.

Jesse Schell. Haz-Mat Hotzone. In http://www.etc.cmu.edu/projects/hazmat/, Spring 2007.

Nathan Schurr, Paul Scerri, and Milind Tambe. Impact of human advice on agent teams: A
preliminary report. In Workshop on Humans and Multi-Agent Systems at AAMAS, 2003.

Nathan Schurr, Janusz Marecki, Paul Scerri, J. P. Lewis, and Milind Tambe. The DEFACTO
System: Training Tool for Incident Commanders. In The Seventeenth Innovative Applications
of Artificial Intelligence Conference (IAAI), 2005.

Martijn Schut, Michael Wooldridge, and Simon Parsons. Reasoning about intentions in uncertain
domains. In ECSQARU ’01: Proceedings of the 6th European Conference on Symbolic and
Quantitative Approaches to Reasoning with Uncertainty, pages 84–95, London, UK, 2001.
Springer-Verlag.

Brennan Peter Sellner, Frederik Heger, Laura Hiatt, Reid Simmons, and Sanjiv Singh. Coordi-
nated multi-agent teams and sliding autonomy for large-scale assembly. Proceedings of the
IEEE - Special Issue on Multi-Robot Systems, 94(7):1425 – 1444, July 2006.

M. Sierhuis, J. Bradshaw, A. Acquisti, R. Hoof, R. Jeffers, and A. Uszok. Human-agent teamwork
and adjustable autonomy in practice. In In Proceedings of the seventh International Symposium
on AI, Robotics and Automation in Space. Nara, Japan, 2003., 2003.

142

William Swartout and Michael van Lent. Making a game of system design. Communications of
ACM, 46(7):32–39, 2003. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/792704.792727.

M. Tambe, E. Bowring, H. Jung, G. Kaminka, R. Maheswaran, J. Marecki, P. J. Modi, R. Nair,
S. Okamoto, J. P. Pearce, P. Paruchuri, D. Pynadath, P. Scerri, N. Schurr, and P. Varakantham.
Conflicts in teamwork: hybrids to the rescue. In AAMAS ’05: Proceedings of the fourth in-
ternational joint conference on Autonomous agents and multiagent systems, pages 3–10. ACM
Press, 2005.

Willem A. van Doesburg, Annerieke Heuvelink, and Egon L. van den Broek. Tacop: A cognitive
agent for a naval training simulation environment. In Proceedings of the fourth international
joint conference on Autonomous agents and multiagent systems (AAMAS), 2005.

P. Varakantham, R. Maheswaran, and M. Tambe. Exploiting belief bounds: Practical pomdps
for personal assistant agents. In Proceedings of the fourth international joint conference on
Autonomous agents and multiagent systems (AAMAS), 2005.

Thomas Wagner, John Phelps, Valerie Guralnik, and Ryan VanRiper. COORDINATORS: Coordi-
nation Managers for First Responders. In Third International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 2004.

D. Weld and O. Etzioni. The first law of robotics: A call to arms. In AAAI, Seattle, Washington,
1994. AAAI Press.

H. Younes and R. Simmons. Solving generalized semi-MDPs using continuous phase-type distri-
butions. In Proceedings of the Nineteenth National Conference on Artificial Intelligence AAAI,
pages 742–747, 2004.

Michael Zyda. From visual simulation to virtual reality to games. IEEE Computer, September
Issue, 2005.

Michael Zyda, Alex Mayberry, Jesse McCree, and Margaret Davis. From viz-sim to vr to games:
How we built a hit game-based simulation. In Organizational Simulation: From Modeling and
Simulation to Games and Entertainment, 2005.

143

