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Abstract

Security is a global concern. Real-world security problems range from domains such as the pro-

tection of ports, airports, and transportation from terrorists to protecting forests, wildlife, and

fisheries from smugglers, poachers, and illegal fishermen. A key challenge in solving these secu-

rity problems is that security resources are limited; not all targets can be protected all the time.

Therefore, security resources must be deployed intelligently, taking into account the responses

of adversaries and potential uncertainties over their types, priorities, and knowledge. Stackelberg

Security Games (SSG) have drawn a significant amount of interest from security agencies by

capturing the strategic interaction between security agencies and human adversaries. SSG-based

decision aids are in widespread use (both nationally and internationally) for the protection of

assets such as major ports in the US, airport terminals, and wildlife and fisheries.

My research focuses on addressing uncertainties in SSGs — one recognized area of weakness.

My thesis provides innovative techniques and significant advances in addressing these uncertain-

ties in SSGs. First, in many security problems, human adversaries are known to be boundedly

rational, and often choose targets with non-highest expected value to attack. I introduce novel

behavioral models of adversaries which significantly advance the state-of-the-art in capturing the

adversaries’ decision making. More specifically, my new model for predicting poachers’ behav-

ior in wildlife protection is the first game-theoretic model which takes into account key domain

challenges including imperfect poaching data and complex temporal dependencies in poachers’

behavior. The superiority of my new models over the existing ones is demonstrated via exten-

sive experiments based on the biggest real-world poaching dataset, collected in a national park in

Uganda over 12 years. Second, my research also focuses on developing new robust algorithms

which address uncertainties in real-world security problems. I present the first unified maximin-

based robust algorithm — a single algorithm — to handle all different types of uncertainties

explored in SSGs. Furthermore, I propose a less conservative decision criterion; minimax regret,

x



for generating new, candidate defensive strategies that handle uncertainties in SSGs. In fact, min-

imax regret and maximin can be used in different security situations which may demand different

robust criteria. I then present novel robust algorithms to compute minimax regret for addressing

payoff uncertainty.

A contribution of particular significance is that my work is deployed in the real world; I have

deployed my robust algorithms and behavioral models in the PAWS system, which is currently

being used by NGOs (Panthera and Rimba) in a conservation area in Malaysia.
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Chapter 1

Introduction

Security is a critical concern around the world. Real-world security problems include protect-

ing ports, airports, and other critical national infrastructure from terrorists, protecting wildlife,

fishery, and forests from poachers, illegal fisherman and smugglers, as well as problems of drug

interdiction, prevention of urban crimes, and cyber-physical security (Figure 1.1). A common

and important challenge that arises in all of these security problems is that security agencies have

limited security resources and cannot completely protect all the targets at all times. Therefore,

it is important for security agencies to effectively allocate these limited resources to protect the

targets, taking into account the importance of the targets, the responses of the adversaries, and

potential uncertainties over the types, priorities, and knowledge of the adversaries.

Defender-attacker SSGs have drawn great attention in providing a practical game-theoretic

model for security problems (Brown, Carlyle, Salmerón, & Wood, 2006; Conitzer, 2012; Basil-

ico, Gatti, & Amigoni, 2009) and have found application in a number of real-world domains (Tsai,

Kiekintveld, Ordonez, Tambe, & Rathi, 2009; Tambe, 2011; Shieh, An, Yang, Tambe, Baldwin,

DiRenzo, Maule, & Meyer, 2012). SSGs are a class of Stackelberg games where a defender acts

as a leader and an adversary acts as a follower (Von Stengel & Zamir, 2004; Tambe, 2011). While

the defender attempts to allocate her limited resources to protect a set of important targets, the ad-

versary plans to attack one such target. SSGs are commonly used in real-world security domains

because they captures the fact that the defender first commits to a mixed strategy assuming that

the adversary can observe that strategy; then, the adversary takes his action.

1



(a) Ferry protection (b) Port protection (c) Wildlife protection

Figure 1.1: Real-world security domains

1.1 Problem Addressed

Standard SSGs require perfect knowledge about the game and unrealistic assumptions such as:

(i) a perfectly rational adversary, who always maximizes his expected value; (ii) prior knowledge

of the adversary’s payoff values that quantitatively express the adversary’s preference over differ-

ent targets; and (iii) that the defender’s strategy is always executed perfectly and is always fully

observed by the adversary. However, these assumptions are not ideal for solving real-world secu-

rity problems. For example, adversary payoff values can be extremely difficult to assess and are

generally characterized by significant uncertainty. As a result, defensive strategies based on these

limiting assumptions may not be robust to uncertainties existing in real-world security settings.

Thus, it is critical to take into account a variety of uncertainties in security games in order to ob-

tain effective patrolling strategies for the defender. There are in fact several research challenges

w.r.t addressing uncertainties in SSGs that we need to resolve.

First, in real-world security problems, such as airport and flight security or wildlife protection,

the defender (security agencies) must conduct patrols to protect important targets (e.g., terminal,

flight, wildlife) against the adversary (e.g., terrorists, poachers). In order to be able to do this

effectively, it is important for the defender to be able to anticipate which targets the adversary

is going to attack. In many security problems, human attackers are known to be boundedly

rational, and often choose targets with non-highest expected value to attack. While existing

behavioral models rely on expected utility to infer the adversary’s behavior (McFadden, 1972;

McKelvey & Palfrey, 1995), these models may not be well-suited to security domains such as

wildlife protection in which the adversary’s decision making involves multiple complex domain

2



features. This challenge raises an important question of how to incorporate all important complex

domain features into reasoning about the adversary’s behavior.

Furthermore, while existing behavioral models in SSGs have been applied to predicting

poachers’ behavior in wildlife protection (Yang, Ford, Tambe, & Lemieux, 2014; Fang, Stone, &

Tambe, 2015; Fang, Nguyen, Pickles, Lam, Clements, An, Singh, Tambe, & Lemieux, 2016; Kar,

Fang, Fave, Sintov, & Tambe, 2015), there remain several open research challenges in wildlife

protection which need to be resolved. Notably, existing behavioral models in SSGs were devel-

oped with standard SSGs in mind, and are more appropriate for predicting adversaries’ behavior

in infrastructure security games than in the wildlife setting. In fact, understanding the limits of

these models when applied to wildlife protection is an important step which could help in im-

proving the prediction accuracy of poachers’ behavior. In particular, previous behavioral models

make several limiting assumptions, including (a) all poaching signs (e.g., snares) are perfectly

observable by the rangers; (b) poachers’ activities in one time period are independent of their

activities in previous or future time periods; (c) the number of poachers is known. To understand

the limiting nature of these assumptions, consider the issue of observability. The rangers’ capa-

bility of making observations over a large geographical area is limited. In other words, there may

still be poaching activities happening in areas where rangers did not find any poaching sign. Fur-

thermore, it is critical to incorporate aspects which may affect the poachers’ behavior such as the

time dependency of the poachers’ activities. Lastly, the rangers are unaware of the total number

of poachers in the park (prior information required for existing behavioral models). Therefore, it

is important to build new behavioral models of poachers which overcome these limitations.

In addition to research on behavioral modeling to address the adversary’s bounded rationality,

there is another major line of research which focuses on developing robust algorithms to com-

pute an optimal strategy for the defender under uncertainties. Unfortunately, all previous work

in robust optimization in SSGs compartmentalizes the uncertainties. For example, while some

research has focused exclusively on uncertainty over the defender’s assessment of the adversary’s

payoffs (Kiekintveld, Islam, & Kreinovich, 2013), other work has focused exclusively on uncer-

tainty over the defender’s execution of the provided strategy and the adversary’s surveillance of

this strategy (Yin, Jain, Tambe, & Ordonez, 2011), and yet other exclusively on the uncertainty

given the adversary’s bounded rationality (Jiang, Nguyen, Tambe, & Procaccia, 2013; Pita, Jain,
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Ordonez, Tambe, Kraus, & Magori-Cohen, 2009). The lack of a unified framework implies that

existing algorithms suffer losses in solution quality when handling uncertainties in real-world

security situations – where multiple types of uncertainties may exist simultaneously. In addition,

insights for improving performance are not leveraged across these compartments; again leading

to losses in solution quality or efficiency. These limitations of existing robust algorithms lead

to an important need to develop a unified robust framework that can handle multiple types of

uncertainties.

Moreover, previous work in security games only focuses on robust techniques such as the

maximin method (Kiekintveld et al., 2013; Yin et al., 2011; Jiang et al., 2013); we lack an alter-

native less-conservative robust criterion for addressing uncertainties in SSGs. In fact, different

robust criteria may be appropriate for different security uncertainty settings. Therefore, develop-

ing new robust algorithms based on different robust criteria is neccessary, allowing security policy

makers to flexibly select a robust solution which is well-suited for their security domains. Last

but not least, while security agencies can use available resources to elicit information w.r.t un-

certain elements (e.g., payoffs) to reduce uncertainties, how to efficiently exploit these elicitation

resources given that the resources are limited remains an open important research question.

1.2 Main Contributions

My research focuses on providing innovative techniques and significant advances for addressing

the challenges of uncertainties in real-world security problems, including 1) uncertainty in the

adversary’s payoff; 2) uncertainty related to the defender’s strategy; and 3) uncertainty in the

adversary’s rationality. My key research contributions include:

• new behavioral models of adversaries (e.g., terrorists and poachers) in real-world security

domains built using both real-world and laboratory data.

• new robust planning algorithms for security agencies based on maximin and minimax regret

methods developed for a variety of domain uncertainty settings.
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1.2.1 Modeling Adversary Decision Making

As the first contribution, I introduce a new behavioral model, LensQR, which predicts a stochas-

tic distribution of the adversary’s responses over the targets (Nguyen, Yang, Azaria, Kraus, &

Tambe, 2013). Essentially, LensQR is built upon two existing well-known models in liturature:

the Quantal Response behavioral model (McKelvey & Palfrey, 1995; McFadden, 1972) and the

Lens model (Brunswik, 1952). The advantage of the new LensQR model lies in facilitating an

easy way to combine all domain features in reasoning the adversary’s behavior. I conducted exten-

sive human subject experiments using both Amazon Turk workers and security experts wherein

the attacking data is collected and used to learn the model. LensQR is then used to model the

adversary when computing the optimal patrolling strategy for the defender. The experimental

results demonstrate the superiority of LensQR over existing approaches, including Quantal Re-

sponse. Furthermore, LensQR is preliminarily evaluated in the wildlife protection domain by

testing its ability to predict real poacher behavior. In wildlife protection, the rangers conduct

patrols within a designated area to protect wildlife from poaching, which can be represented as a

SSG problem in which the rangers play as the defender and the poachers are the attacker. I use

real-world wildlife/poaching data collected in Queen Elizabeth National Park (QENP) in Uganda

to evaluate the prediction accuracy of LensQR. The results show that LensQR outperforms the ex-

isting bounded rationality models. Finally, LensQR has been incorporated into the PAWS system

which is currently deployed in Malaysia (Fang et al., 2016).

While LensQR is shown to be the best model in capturing the poachers’ behavior compared

to existing behavioral models in SSG, LensQR, which mainly focuses on standard SSGs, still

faces several limitations when applied for wildlife protection as mentioned in Section 1.1. As

the second contribution, I improve the LensQR behavioral model and integrate this new ver-

sion of LensQR (called LensQR-Poacher) into the CAPTURE system — a new predictive anti-

poaching tool for wildlife protection (Nguyen, Sinha, Gholami, Plumptre, Joppa, Tambe, Driciru,

Wanyama, Rwetsiba, Critchlow, & Beale, 2016). The new LensQR model of poachers provides

significant advances over previous models from behavioral game theory and conservation biol-

ogy. It accounts for: (i) the rangers’ imperfect detection of poaching signs; (ii) complex temporal

dependencies in the poachers’ behaviors; (iii) lack of knowledge of the number of poachers.

LensQR-Poacher’s prediction accuracy is extensively evaluated based on a detailed analysis of

5



the largest dataset of real-world defender-adversary interactions. This dataset is collected by

rangers in QENP over 12 years and consists of thousands of poaching signs and years of rangers’

past patrols. The experimental results show that LensQR-Poacher is superior to existing models

in predicting the poachers’ behavior, demonstrating the advances of LensQR-Poacher over the

previous state-of-the-art models. Furthermore, I present a new game-theoretic algorithm for com-

puting the rangers’ optimal patrolling assuming the poachers’ behavior follows LensQR-Poacher.

Specifically, I provide a new game-theoretic algorithm for single/multiple-step patrolling plans

wherein the poachers’ actions are recursively explored in multiple time steps. To that end, the

CAPTURE tool with the LensQR-Poacher model will be tested in Uganda in 2016.

1.2.2 Robust Algorithms for Optimizing Defender Strategy

My research also focuses on developing new robust algorithms which address uncertainties in

real-world security problems. The current state-of-the-art has provided only compartmental-

ized robust maximin-based algorithms that handle uncertainty exclusively either in the defender’s

strategy or in the adversary’s payoff or in the adversary’s rationality, leading to potential failures

in real-world scenarios where a defender often faces multiple types of uncertainties. As the third

contribution, I present the first unified maximin-based algorithm, URAC, to handle all different

types of uncertainties explored in SSGs (Nguyen, Jiang, & Tambe, 2014). URAC has two key

novel ideas. First, despite the existence of simultaneous, multiple, inter-dependent uncertainties,

the resulting multi-dimensional uncertainty space can be converted into a uni-dimensional un-

certainty space of the adversary actions only. This dimensional conversion reduces significantly

the complexity of finding the worst-case scenario for the defender due to uncertainties. Second,

the allocation strategy space of the defender can be clustered into a finite number of sub-spaces

such that any defender strategy within each sub-space leads to the same uncertainty set of adver-

sary actions. This space partition allows us to overcome the challenge of infinitely (and certainly

infeasibly) iterating all possible defender strategies (where each strategy has a different corre-

sponding set of adversary actions) to find the optimal one. Instead, given the space partition, the

problem of computing an optimal strategy for the defender which is robust to uncertainties can

be decomposed into a finite number of sub-problems, each of which finds a sub-optimal strat-

egy within the corresponding defender strategy sub-space. Every sub-problem is represented as
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a linear program which can be solved in polynomial time. Finally, URAC finds the optimal al-

location strategy as the best solution among all the sub-optimal ones across all sub-problems.

Based on URAC, I then introduce approximate scalable robust algorithms which explore intrinsic

properties of uncertainty space to handle uncertainties in large-scale security games.

Furthermore, as the fourth contribution, I develop several different regret-based robust algo-

rithms to handle payoff uncertainty in both non-zero-sum and zero-sum games against perfectly

and boundedly rational adversaries (Nguyen, Yadav, An, Tambe, & Boutilier, 2014; Nguyen,

Fave, Kar, Lakshminarayanan, Yadav, Tambe, Agmon, Plumptre, Driciru, Wanyama, & Rwet-

siba, 2015). Previous work in security games only focuses on robust techniques such as the

maximin method; we lack an alternative less-conservative robust criterion for addressing uncer-

tainties in SSGs. I propose a less conservative decision criterion; Minimax regret for generating

new, candidate defensive strategies that handle uncertainties in SSGs. I then present novel robust

algorithms to compute minimax regret for addressing payoff uncertainty. Minimax Regret is a ro-

bust approach for handling uncertainty, finding the solution which minimizes the maximum regret

(i.e., solution quality loss) with respect to a given uncertainty set. A key challenge is that there

are an infinite number of possible payoffs within the range of uncertainty, leading to intractable

computation. My idea is to use incremental payoff generation; I start by solving a relaxed mini-

max regret problem given a small set of payoff samples. Then new payoff samples are iteratively

generated and added into the current set of samples until the optimal solution is obtained. Finally,

I develop the first elicitation strategies (based on minimax regret) that optimize the defender’s

efforts in assessing payoffs, allowing reduction in uncertainty of those parameters. To that end,

my regret-based algorithm is extended and integrated in the PAWS system to generate patrolling

strategies used by rangers in a protected area in Malaysia (Fang et al., 2016).

1.3 Overview of Thesis

My thesis is organized as follows. Chapter 2 introduces fundamental background materials neces-

sary for the research presented in the thesis. Chapter 3 provides an overview of the related work.

Chapter 4 presents the new behavioral model which integrates the Lens utility function into the

Quantal Response model to further improve the model performance in predicting the adversary’s
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behaviors in SSGs. Chapter 5 investigates the new behavioral model of poachers in wildlife pro-

tection, which addresses intrinsic domain challenges that existing behavioral models in SSGs

failed to handle. Chapter 6 explains the unified robust maximin-based algorithms for computing

an optimal patrolling strategy for the defender which is robust to multiple types of uncertainties.

Chapter 7 introduces the new robust algorithms which is based on minimax regret for addressing

the challenge of payoff uncertainty in generating an optimal patrolling strategy for the defender.

Chapter 8 presents the new regret-based algorithms which are applied to generating patrolling

strategies for rangers in wildlife protection in different security settings of uncertainties. Finally,

chapter 9 concludes the thesis and presents possible future directions.
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Chapter 2

Background

In this chapter, I will provide a general background of Stackelberg games, Bayesian Stackelberg

games as well as the standard solution concept, Strong Stackelberg equilibrium, for solving these

games. I then describe a restricted class of Stackelberg games for security, which is called Stack-

elberg security games. I follow up with introducing motivating domain examples of real-world

security problems . Finally, I present baseline algorithms for solving Stackelberg security games.

2.1 Stackelberg Games

Stackelberg games refer to a class of leader-follower games in which the leader commits to a

strategy first while the follower can observe the leader’s strategy and then optimally responds by

maximizing his expected utility. In this thesis, I refer to the leader as “she” while the follower

as “he” for explanatory purpose. Table 2.1 shows the payoff matrix of a Stackelberg game; the

row player is the leader and the column player is the follower. This example was first introduced

by (Conitzer & Sandholm, 2006) to illustrate the advantage of being a leader. In this Stackelberg

game, each player has two actions: (L1, L2) for the leader and (F1, F2) for the follower. For each

pair of actions, each player will receive a payoff (i.e., the first number is the leader payoff and

the second is the follower payoff). For example, if the leader takes action L1 while the follower

chooses action F2, the leader receives a payoff of 4 while the follower obtains a payoff of 0.

If the two players move simultaneously, the Nash equilibrium for this game is when the leader

plays L1 and the follower plays F1. In this case, the leader and the follower receives a payoff

of 2 and 1 respectively. On the other hand, if the row player moves first, she can choose action
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F1 F2

L1 2, 1 4, 0

L2 1, 0 3, 1

Table 2.1: An example of a simple Stackelberg game
L2 to obtain a higher payoff. Specifically, since the follower now observes that the leader takes

action L2, the best action for the follower is to play action F2. As a result, the leader receives a

payoff of 3 (which is higher payoff than in the case of simultaneous moves) while the follower

gets a payoff of 1. Furthermore, if the leader chooses a mixed strategy of playing the two actions

(L1, L2) with equal probability of 0.5, then the follower will play F2. In this case, the leader will

obtain an expected utility of 4× 0.5 + 3× 0.5 = 3.5.

More generally, the leader has a set of N l actions: L1, L2, . . . , LN l and the follower has a set

of Nf actions: F1, F2, . . . , FNf . Each action is considered as a pure strategy for the two players.

A mixed strategy for the leader, x = {xi} for i = 1, 2, . . . , N l, is a probability distribution over

the N l actions, where xi is the probability that the leader takes action Li. W.r.t the follower,

it is sufficient to only consider pure strategies for the follower when computing the Stackelberg

equilibria (Conitzer & Sandholm, 2006). The payoff matrix of the game can be determined based

on joint-pure strategies of the two players. I denote by (lij , fij) the payoffs that the leader and

the follower receive respectively if the leader commits to the action Li and the follower takes

action Fj . Then, the expected utility the leader receives for playing a mixed strategy x when

the follower chooses an action Fj is computed as U l(x, j) =
∑

i xilij . On the other hand, the

follower obtains an expected utility of Uf (x, j) =
∑

i xifij .

2.1.1 Bayesian Stackelberg Games

In Bayesian Stackelberg games, there are multiple types of followers, each has his own payoff

matrix. This game-theoretic model allows modeling the diversity of potential adversaries in real-

world security domains. Essentially, a Bayesian Stackelberg game is a leader-follwer Stackelberg

game in which there is a leader and a follower whose type is randomly drawn from a certain

probability distribution over a set of follower types {1, 2, . . . ,Λ}. Specifically, each follower type

λ is associated with a probability pλ which represents the likelihood that this type may occur. In a

Bayesian Stackelberg game, the leader commits to a mixed strategy given a prior knowledge over

the distribution of follower types. For each type of the follower, we can denote by (lλ
ijλ
, fλ
ijλ

)
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the payoffs that the leader and the follower receive respectively when the leader commits to the

action Li and the follower chooses action F λ
jλ

. In addition, we denote by j = {j1, j2, . . . , jΛ} a

vector of actions (or pure strategies) by all types of the followers. As an extension of Stackelberg

games, in Bayesian Stackelberg games, the leader’s expected utility for playing a mixed strategy

x when the follower chooses an action F λ
jλ

if he is of type λ for all λ = 1, 2, . . . ,Λ is computed as

the expected utility over all follower types, which is formulated as: U l(x, j) =
∑

λ p
λ
∑

i xil
λ
ijλ

.

On the other hand, for each follower type, λ, his expected utility is Uf
λ
(x, jλ) =

∑
i xif

λ
ijλ

.

2.1.2 Strong Stackelberg Equilibrium

One of the most commonly used solution concept in Stackelberg games is Strong Stackelberg

equilibrium (SSE) which assumes that the follower is a best-response player (who maximizes

his expected utility) and breaks tie in favor of the leader (Breton, Alj, & Haurie, 1988). An-

other type of Stackelberg equilibrium is called “weak” Stackelberg equilibrium which assumes

that the follower will choose the worst strategy for the leader (Breton et al., 1988) among all the

best responses. While a SSE always exists, a “weak” Stackelberg equilibrium may not. Further-

more, when ties exist, the leader can always obtain a favorable outcome by arbitrarily selecting

an strategy which is close to the SSE strategy, causing the follower to strictly prefer a certain

strategy which benefits the leader. In fact, since a SSE always exists, this solution concept is

also commonly adopted in recent works of applying Stackelberg games for solving security prob-

lems (Paruchuri, Pearce, Marecki, Tambe, Ordonez, & Kraus, 2008; Kiekintveld, Jain, Tsai, Pita,

Ordez, & Tambe, 2009). Formally, a SSE can be defined as follows:

Definition 1. Given a Bayesian Stackelberg game with payoff matrice {(lλ
ijλ
, fλ
ijλ

)} for all fol-

lower types λ = 1, 2, . . . ,Λ and probability distribution p over the follower types, a pair of

strategies (x, j) forms a SSE if and only if:

• The leader plays a best response:

U l(x, j(x)) ≥ U l(x′, j(x′)), ∀x′

• The follower players a best response:

Uf
λ
(x, jλ(x)) ≥ Ufλ(x, jλ), ∀jλ
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• The follower breaks tie in favor of the leader:

U lλ(x, jλ(x)) ≥ U lλ(x, jλ), for all λ and jλ is a best response to x.

2.1.3 Stackelberg Security Games

In Stackelberg security games (SSG), there is a defender who attempts to optimally allocate her

limited security resources to protect a set of targets against an adversary attempting to attack one

of the targets (Tambe, 2011). In SSGs, the defender commits to a mixed strategy first while the

attacker can observe the defender’s strategy and then take an action based on that observation

(Von Stengel & Zamir, 2004; Korzhyk, Conitzer, & Parr, 2010). A pure strategy of the defender

is an assignment of her limited resources to a subset of targets and a mixed strategy of the de-

fender refers to a probability distribution over all possible pure strategies. The defender’s mixed

strategies can be represented as a marginal coverage vector over the targets (i.e., the coverage

probabilities with which the defender will protect each target) (Korzhyk et al., 2010).

Denote by x the defender’s strategy. Specifically, xi refers to the marginal probability that

the defender protects target i for i = 1 . . . N where N is the number of targets. The defender

can assign R resources to targets arbitrarily, as long as at most one resource is on each target

(Kiekintveld et al., 2013; Yin et al., 2011). The resulting set of feasible marginal probabilities is

X = {x : 0 ≤ xi ≤ 1,
∑

i xi ≤ R}. In SSGs, if the adversary attacks target i, he will receive

a reward Rai if the defender is not protecting that target, otherwise, he will receive a penalty

P ai . Conversely, the defender will receive a penalty P di in former case and a reward Rdi in latter

case. Given that the defender chooses strategy x and the adversary chooses to attack target i, the

expected utility of the adversary, Uai (x), and the defender, Udi (x), are then respectively equal to

Uai (x) = xiP
a
i + (1− xi)Rai (2.1)

Udi (x) = xiR
d
i + (1− xi)P di (2.2)

Finally, denote by y ∈ Y the adversary’s strategy where Y = {y ∈ RN : yi ≥ 0,
∑

i yi = 1} is

the feasible region of the adversary’s strategy, i.e., yi is the probability that the adversary attacks

target i. The expected utility of the defender can be computed as
∑

i yiU
d
i (x).
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2.2 Motivating Domain: Los Angeles International Airport

This section provides an overview of the terminal protection problem at the Los Angeles Interna-

tional Airport (LAX) which is a motivating security domain for my human subject experiments

(as explained later). LAX is the largest destination airport in the United States that serves around

a hundred million passengers every year. Any terrorist attack to the airport could cause a large

number of deaths as well as severe damages to critial infrastructure, hurting national and interna-

tional economies. In order to protect the airport, the LAX police use a variety of defense methods,

including vehicular checkpoints, police units which patrol the roads to the terminals as well as

patrol inside the terminals with canines, and security screening for passengers.

Figure 2.1: LAX checkpoints

The ARMOR system (Assistant for Randomized Monitoring over Routes) (Jain, Tsai, Pita,

Kiekintveld, Rathi, Tambe, & Ordóñez, 2010), which is based on Stackelberg security games,

was built which aims at optimizing security resource allocation at LAX. Essentially, the system

focuses on two of the security methods at LAX: (1) placing vehicle checkpoints on inbound roads

to the LAX terminals and (2) scheduling patrols at the LAX terminals for canine units. The num-

bers of available vehicle checkpoints and canine units are limited and therefore, it is critical to

optimally randomize the allocation of these security resources. Modeling this problem as a SSG,
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(a) Ranger patrol (b) Poaching snare

Figure 2.2: Rangers conduct patrols over the park while poachers use snares to catch animals
the LAX police is the defender who protects terminals while terrorists are considered as the ad-

versary that attempts to attack one of the terminals. Furthermore, there are totally eight different

terminals at LAX with very different physical size, passenger loads and international/domestic

flights, etc. Thus, each terminal can be represented as a target with different payoff values.

2.3 Motivating Domain: Wildlife Protection

Figure 2.3: The Queen Elizabeth Na-

tional Park (QENP) in Uganda

Another major motivating domain for my research is

the problem of wildlife protection. Wildlife protection

is a global concern. Many species such as tigers and

rhinos are in danger of extinction as a direct result of

illegal harvesting (i.e., poaching). The removal of these

and other species from the landscape threatens the func-

tioning of natural ecosystems, hurts local and national

economies, and has become an international security

concern due to the unregulated profits of poachers flow-

ing to terrorist organizations (on Foreign Affairs, 2015).

To prevent wildlife poaching, conservation organiza-

tions attempt to protect wildlife parks with well-trained

park rangers. In each time period (e.g., one month),

park rangers conduct patrols within the park area to pre-

vent poachers from capturing animals either by catching

14



the poachers or by removing animals traps laid out by the poachers (Figure 2.2). During the

rangers’ patrols, poaching signs are collected and then can be used together with other domain

features (e.g., animal density) to predict the poachers’ behavior (Critchlow, Plumptre, Driciru,

Rwetsiba, Stokes, Tumwesigye, Wanyama, & Beale, 2015; Fang et al., 2016). In essence, learn-

ing the poachers’ behavior, anticipating where poachers often go for poaching, is critical for the

rangers to generate effective patrols. (Montesh, 2013; Secretariat, 2013).

Previous work in security games has modeled the problem of wildlife protection as a SSG in

which the rangers play in a role of the defender while the poachers are the attacker (Yang et al.,

2014; Fang et al., 2015, 2016; Kar et al., 2015). The park area can be divided into a grid where

each grid cell represents a target (Figure 2.3). The rewards and penalties of each target w.r.t the

rangers and poachers can be determined based on domain features such as animal density, terrain

slope, and distance to roads/rivers/villages, etc.

2.4 Baseline Solvers

In this section, I describe three baseline algorithms to compute the optimal strategy for the de-

fender: 1) one algorithm computes a SSE assuming that the adversary is perfectly rational; 2) the

other algorithm provides a robust defense strategy which bounds the utility loss of the defender

for any potential deviation of the adversary’s response from the optimal action (i.e., adversary is

boundedly rational); and 3) the third algorithm focuses on addressing the worst-case scenaro of

the boundedly rational adversary’s response.

2.4.1 Compute Strong Stackelberg Equilibrium

The key assumption in Strong Stackelberg Equilibrium is that the adversary is a perfectly ratio-

nal player who attempts to maximize his expected utility. The problem of finding the optimal
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patrolling strategy for the defender against a perfectly rational attacker can be represented as the

following Mixed Integer Linear Program (MILP):

max
x∈X,h,γ

γ (2.3)

s.t. γ ≤ Udi (x) + (1− hi)M, ∀i (2.4)

r ≥ Uai (x), ∀i (2.5)

r ≤ Uai (x) + (1− hi)M, ∀i (2.6)∑
i

hi = 1, hi ∈ {0, 1} (2.7)

where γ is the utility that the defender receives for playing the strategy x and r is the highest

expected utility for the adversary over all the targets given the strategy x. The variables h = {hi}

are binary variables which indicates whether the adversary attacks target i (h1 = 1) or not (hi =

0). Here, M is a very large constant which is chosen such that constraints (2.4) and (2.6) are

only effective when hi = 1. Constraint (2.4) ensures that the defender will receive the expected

utility at target i if the adversary attacks that target. Moreover, constraints (2.5–2.7) enforce that

the adversary will attack the target with highest expected utility. To that end, this MILP can be

solved using any linear solver (e.g., CPLEX).

2.4.2 Compute Robust Optimal Defender Strategy

In many real-world security problems, the adversary is known to be boundedly rational; that is

the adversary tends to deviate from the optimal action—he usually chooses a non-optimal target

to attack. As a result, researchers have been pursuing alternative approaches to handle adversarys

bounded rationality in SSGs. One leading approach is to apply robust optimization techniques to

compute an optimal robust strategy for the defender. MATCH (Pita, John, Maheswaran, Tambe,

& Kraus, 2012) is an exemplar of this robust approach. Essentially, MATCH computes a robust

defender strategy by guaranteeing a bound on the defender’s loss in her expected value if the

adversary deviates from his optimal choice. More specifically, the defender’s loss is constrained

to be no more than a factor of β times the adversary’s loss in his expected value. The key param-

eter β describes how much the defender is willing to sacrifice when the adversary deviates from
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the optimal action. Keeping this constraint in mind, MATCH attempts to compute an optimal

patrolling strategy for the defender based on the following MILP:

max
x∈X,h,η,γ

γ (2.8)

s.t.

N∑
i=1

hi = 1, hi ∈ {0, 1} , ∀i (2.9)

0 ≤ η − Uai (x) ≤M(1− hi) (2.10)

γ − Udi (x) ≤M(1− hi) (2.11)

γ − Udi (x) ≤ β [η − Uai (x)] , ∀i (2.12)

where γ is the defender’s utility that MATCH attempts to maximize and η is highest expected

utility for the adversary over all the targets. In particular, h = {hi} are binary variables which

indicate whether the adversary attacks target i (hi = 1) or not (hi = 0). Constraints (2.9–2.10)

enforces that the adversary will attack the best target with highest expected utility (i.e., hi = 1).

Constraint (2.11) ensures that the defender receives the expected utility at target i if the adversary

attacks that target. Finally, constraint (2.12) is the most important constraint which ensures that

the defender’s utility loss is no more than a factor of β times the adversarys loss in his expected

value if the adversary deviates from the optimal action.

2.4.3 Compute Maximin Optimal Defender Strategy

Maximin is a standard robust algorithm which focuses on the assumption that the adversary will

choose any target to attack. Essentially, Maximin attempts to maximize the defender’s expected

utility under the worst-case scenario of an attack by solving the following optimization problem:

max
x

γ (2.13)

s.t. γ ≤ Udi (x), ∀i. (2.14)

where γ is the defender’s utility that we want to maximize and constraint (2.14) enforces that the

adversary will attack the target which provides the lowest expected utility for the defender.
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2.5 Modeling Adversary Bounded Rationality

In addition to the robust approach, the second leading approach to address the adversary’s

bounded rationality is integrating models of human (adversary) decision making into the game-

theoretic algorithms. One key method to evaluate the performance of behavioral models in pre-

dicting the adversary’s decision making is via conducting human subject experiments.

2.5.1 The Quantal Response Behavioral Model

In SSGs, the adversary’s bounded rationality is often modeled via behavior models such as Quan-

tal Response (McFadden, 1972; McKelvey & Palfrey, 1995). In particular, the BRQR algorithm

(Yang, Kiekintveld, Ordonez, Tambe, & John, 2011) subscribes to modeling human decision

making; it computes an optimal strategy for the defender assuming that the adversary’s response

follows the QR model. The QR model predicts a stochastic distribution of the adversary re-

sponse: the greater the expected value of a target the more likely the adversary will attack that

target. Specifically, QR predicts the probability that the adversary will attack a target i as follows:

yi =
eλU

a
i (x)∑

j e
λUaj (x)

(2.15)

QR’s key parameter λ represents the level of rationality in adversary’s response: as λ increases,

the predicted response by the QR model converges to the optimal action of the adversary. For

example, when λ = 0, the adversary attacks each target following the uniform distribution. On

the other hand, when λ = +∞, the adversary is perfectly rational.

Finally, based on QR, the BRQR algorithm attempts to compute an optimal patrolling strategy

for the defender given that the adversary’s response follows QR. This computation can be done

by solving the following optimization problem:

max
x∈X

∑
i

eλU
a
i (x)∑

j e
λUaj (x)

Udi (x) (2.16)

(2.17)

2.5.2 Human Subject Experiments
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Figure 2.4: Game Interface

In order to evaluate the prediction accuracy of

behavioral models in SSGs, the most common

approach is to conduct human subject exper-

iments. A simulated online SSG, called “The

guards and treasures” has previously been used

as the platform for human subject experiments

(Yang et al., 2011; Pita et al., 2012). I also use

it in my experiments. The game is designed

to simulate the security scenario at the LAX

airport, which has eight terminals that can be

targeted in an attack. Figure 2.4 shows the in-

terface of the game. Before playing the game,

all the subjects are given detailed instructions

about how to play. In each game, the subjects are asked to select one target to attack, given the

following information: subject’s reward and penalty at each target, the probability that a target

will be covered by the guard, and the reward and penalty of the defender at each target.

The parameters of behavioral models (e.g., λ of QR) are then estimated based on responses

of human subjects in the experiments. Finally, given the estimated parameters, the behavioral

models are integrated into computing an optimal patrolling strategy for the defender. The human

subject experiments are also conducted to evaluate the solution quality of the defender’s generated

strategies.
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Chapter 3

Related Work

3.1 Adversary Behavioral Modeling

In real-world security problems, the adversary’s decision may be governed by his bounded ratio-

nality (March, 1978; Conlisk, 1996) due to effects such as task complexity and the interplay be-

tween emotion and cognition, which may cause him to deviate from the optimal action. In SSGs,

different behavioral models have been proposed to capture the attacker’s behavior. The Quantal

Response model (QR) is one of the most popular behavioral models which attempts to predict a

stochastic distribution of the attacker’s responses (McFadden, 1972; McKelvey & Palfrey, 1995).

In general, QR predicts the probability that the attacker will attack each target with the intuition

that the higher expected utility of a target, the more likely that the attacker will choose that target.

In addition to QR, Prospect Theory (Kahneman & Tversky, 1979) is another decision theory that

is used to model the decision making of human adversaries (Yang et al., 2011). Recent work has

followed up with extending QR and Prospect theory to predict the adversary’s behavior in differ-

ent security domains such as wildlife protection (Kar et al., 2015) and prevention of opportunistic

crimes (Abbasi, Short, Sinha, Sintov, Zhang, & Tambe, 2015).

Recent research has therefore focused on developing algorithms for handling adversary

bounded rationality in SSGs using human behavior model. In particular, BRQR (Yang et al.,

2011) is a leading algorithm which subscribes to modeling human decision making; it com-

putes an optimal strategy for the defender assuming that the adversary’s response follows QR. In

contrast, instead of using a behavior model, a recent model-free algorithm MATCH (Pita et al.,

2012) computes a robust defender strategy by guaranteeing a bound on the defender’s loss in her
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expected value if the adversary deviates from his optimal choice. A comparison of these two

algorithms by (Pita et al., 2012), involving 104 simulated security settings, showed that MATCH

significantly outperforms BRQR. This result leads to an open research question on whether there

is any value in modeling the adversary’s behavior in security games.

In addition to QR, there are other lines of research which focus on building models of crim-

inal behavior in urban crime (De Bruin, Cocx, Kosters, Laros, Kok, et al., 2006; Nath, 2006;

Oatley, Ewart, & Zeleznikow, 2006; Zhang, Sinha, & Tambe, 2015) or opponent behavior in

poker (Ganzfried & Sandholm, 2011; Southey, Bowling, Larson, Piccione, Burch, Billings, &

Rayner, 2012). However, these models are specifically designed for these domains, which rely

on the complete past crime/game data as well as intrinsic domain characteristics. Another line

of research focuses on adversarial plan recognition (Avrahami-Zilberbrand & Kaminka, 2014),

which can be applied for computer intrusion detection and detection of anomalous activities, etc.

This line of work does not learn model parameters as well as do any patrol planning.

3.2 Solutions for Wildlife Protection

Previous work focuses on computing the optimal patrolling strategy for the rangers given that

poachers’ behavior is predicted based on existing adversary behavioral models (Yang et al., 2014;

Fang et al., 2015, 2016; Kar et al., 2015). However, these models make several limiting assump-

tions, including (a) all poaching signs (e.g., snares) are perfectly observable by the rangers; (b)

poachers’ activities in one time period are independent of their activities in previous or future time

periods; (c) the number of poachers is known. To understand the limiting nature of these assump-

tions, consider the issue of observability. The rangers’ capability of making observations over a

large geographical area is limited. For example, the rangers usually follow certain paths/trails to

patrol; they can only observe over the areas around these paths/trails which means that they may

not be able to make observations in other further areas. In addition, in areas such as dense forests,

it is difficult for the rangers to search for snares. As a result, there may be still poaching activities

happening in areas where rangers did not find any poaching sign. Therefore, relying entirely on

the rangers’ observations would lead to an inaccurate prediction of the poachers’ behavior, hin-

dering the rangers’ patrol effectiveness. Furthermore, when modeling the poachers’ behavior, it
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is critical to incorporate important aspects that affect the poachers’ behavior including time de-

pendency of the poachers’ activities and patrolling frequencies of the rangers. Lastly, the rangers

are unaware of the total number of attackers in the park.

In ecology research, while previous work mainly focused on estimating the animal density

(MacKenzie, Nichols, Lachman, Droege, Andrew Royle, & Langtimm, 2002), there are a few

works which attempt to model the spatial distribution of the economic costs/benefits of illegal

hunting activities in the Serengeti national park (Hofer, Campbell, East, & Huish, 2000) or the

threats to wildlife and how these change over time in QENP (Critchlow et al., 2015). However,

these models also have several limitations. First, the proposed models do not consider the time

dependency of the poachers’ behaviors. These models also do not consider the effect of the

rangers’ patrols on poaching activities. Furthermore, the prediction accuracy of the proposed

models is not measured. Finally, these works do not provide any solution for generating the

rangers’ patrolling strategies with a behavioral model of the poachers.

3.3 Robust Stackelberg Games

Maximin-based method. Maximin-based algorithms for addressing uncertainties in SSGs focus

on maximizing the defender’s utility against the worst case of uncertainties. All previous works

following this approach attempt to compartmentalize uncertainties and apply different algorithms

to only address a particular type of uncertainty. One simple robust algorithm for dealing with

uncertainty in the adversary’s bounded rationality is Maximin, which assumes that the adversary

can choose any arbitrary strategy Given Maximin can generate extremely conservative strategies,

BRASS (Pita et al., 2009) provided an advance to handle uncertainty due to adversary bounded

rationality: BRASS assumes that the adversary can attack any targets which provide within ε of

the maximum expected utility for the adversary where ε is a given constant.

A later robust algorithm, RECON (Yin et al., 2011), shifted focus away from bounded ra-

tionality. RECON only deals with uncertainty in the defender’s execution and the adversary’s

observation. Kiekintveld et al,, on the other hand, proposed a new robust algorithm called ISG

which only focused on uncertainty in the adversary’s payoffs (Kiekintveld et al., 2013). The most
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recent algorithm, monotonic maximin (Jiang et al., 2013), attempts to deal with uncertainty ex-

clusively in the adversary’ bounded rationality. In particular, it attempts to generalize the Quantal

Response model of bounded rationality which was proposed in behavioral economics and has

been applied to SSGs. In many cases such as counter-terrorism domains, the defender does not

have sufficient data on the adversary’s behaviors to accurately estimate the parameters of QR

models. Instead, monotonic maximin assumes that the adversary can choose any strategy that has

the following monotonicity property (which is satisfied by all known variants of QR models): the

higher the expected utility of a target, the more likely the adversary will attack that target.

The above discussion summarizes major thrusts to handle robustness in SSGs as reported in

the literature that I unify in my work. Recent research has explored addressing other types of

uncertainties (An, Brown, Vorobeychik, & Tambe, 2013; An, Tambe, Ordonez, Shieh, & Kiek-

intveld, 2011), but these have yet to provide robust algorithms. Furthermore, my work is exactly

focused on trying to remedy such salami-slicing of handling of uncertainty.

Minimax regret-based method. Minimax regret is a less conservative and powerful robust

method for handling uncertainties. In particular, it attempts to minimize the maximum “regret”

or distance in terms of the utility loss of a decision (e.g., defender’s strategy) from the actual

optimal decision for any instance within the uncertainty. Minimax regret has been used in a

variety of settings, including game-theoretic ones, especially those involving utility function un-

certainty (Salo & Hamalainen, 2001; Boutilier, Patrascu, Poupart, & Schuurmans, 2006; Hyafil

& Boutilier, 2004; Renou & Schlag, 2010). It has also proven to be a very effective driver of

preference elicitation (Braziunas & Boutilier, 2010; Boutilier, 2013).

3.4 Bayesian Stackelberg Games

Bayesian game is a model of probabilistic uncertainty in games (Harsanyi, 1967), and has been

applied to SSGs for modeling the adversary’s payoff, the adversary’s observation and the de-

fender’s execution, (Kiekintveld, Marecki, & Tambe, 2011; Yin & Tambe, 2012a). Furthermore,

(Yin & Tambe, 2012a) handles a combination of such uncertainties in SSGs by discretizing this

continuous uncertainty space and solving the resulting Bayesian Stackelberg games with discrete
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follower types. Thus, its solution quality depends on the number of samples. Additionally, (Yin

& Tambe, 2012a) does not integrate uncertainty due to adversary’s bounded rationality.
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Chapter 4

Modeling Attacker Decision Making

Researchers have been pursuing alternative approaches to handle adversary’s bounded rational-

ity in SSGs (Pita, Jain, Tambe, Ordóñez, & Kraus, 2010; Yang et al., 2011; Pita et al., 2012).

Two competing approaches have emerged to address human bounded rationality in SSGs. One

approach integrates models of human decision-making into algorithms for computing an optimal

strategy for the defender; the other adopts robust optimization techniques to intentionally avoid

adversary modeling. The BRQR algorithm (Yang et al., 2011), based on modeling adversary

decision-making with the Quantal Response (QR) (McKelvey & Palfrey, 1995) model, leads to

significantly better defender strategies than any previous leading contenders. However, the more

recent robust algorithm MATCH (Pita et al., 2012) outperforms BRQR. It is indeed surprising

that despite the long history of modeling success of QR, MATCH still performs better, even when

significant amount of data were used to tune the key parameter in QR and no tuning was done to

MATCH’s key parameter.

Thus, there is now an important open question of whether there is any value in adversary mod-

eling in SSGs. My first contribution in answering this question builds on the significant support

for QR (Haile, Hortacsu, & Kosenok, 2008; Choi, Gale, & Kariv, 2012): I hypothesize that QR’s

stochastic response is crucial in building a human decision-making model. Where I part company

with the original QR model, however, is in its assumption that human stochastic response is based

on expected value. Instead, I propose a new model based on integration of a novel Lens model

into QR, called the LensQR model.1 I show that the LensQR model, given learned parameters

(from limited data), has superior predictive power compared to the QR model. I then derive the
1The new model is original called SUQR; I adopt the new name LensQR in recognition of its two key components:

the Lens utility and the QR model. The resulting algorithm, SU-BRQR, is also updated with the new name LensBRQR.
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LensBRQR algorithm, similar to BRQR, to compute the defender strategy assuming the adver-

sary response follows the LensQR model. I evaluate LensBRQR’s performance by conducting

two sets of experiments using an online game with Amazon Mechanical Turk (AMT) workers

and show that: (i) LensBRQR significantly outperforms MATCH in previously used settings; (ii)

LensBRQR usually outperforms (and always performs at least as well as) improved versions of

MATCH such as ones offering it the same Lens functions or tuning its key parameter.

LensBRQR’s parameters were learned from previously available (albeit limited) game data;

I now test LensBRQR in domains without the benefit of such a-priori data. Indeed, while some

domains of SSG -based application, e.g., deterring fare evasion (Yin, Jiang, Johnson, Tambe,

Kiekintveld, Leyton-Brown, Sandholm, & Sullivan, 2012) or forest protection (Johnson, Fang, &

Tambe, 2012), could provide significant amounts of data to tune LensBRQR, would I be better

off with MATCH or other algorithms in applications that do not? My second contribution an-

swers this question by conducting experiments with security intelligence experts, where I do not

have any previous modeling data. These experts, who serve as proxies for real-world adversaries,

serve in the best Israeli Intelligence Corps unit or are alumna of that unit, and are found to be

more rational than the AMT workers. Against these experts, LensBRQR with its earlier learned

parameters, significantly outperforms both an algorithm assuming perfect adversary rationality

(Paruchuri et al., 2008) and (to a more limited extent) MATCH. Finally, my third contribution

tests LensBRQR in a new large game with AMT workers. I show that LensBRQR with previ-

ously learned parameters still outperforms MATCH; and learning from more data, LensBRQR

performance can be further improved.

4.1 The LensQR Model

Essentially, the new LensQR model is based on a novel integration of the Brunswik Lens model

into QR. The Lens model is a well-known model which has been extensively used to study human

judgements accross different decision-making domains such as medicine, business, education,

and psychology over five decades (Karelaia & Hogarth, 2008; Kaufmann & Athanasou, 2009;

Grove & Meehl, 1996; Dawes, Faust, & Meehl, 1989). Previous studies of the Lens model show
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that linear models can provide good high-level representations of human judgements. Essen-

tially, the Lens model suggests that human judgments depend on a linear combination of multiple

observable features. Recall that in an SSG, the information presented to the human subject for

each choice includes (Section 2.5.2): the marginal coverage on target i (xi); the subject’s re-

ward and penalty (Rai ,P ai ); the defender’s reward and penalty (Rdi , P di ). Therefore, based on the

Lens model, I measure the utility of an attacker as a linear combination of these three important

attributes, which can be formulated as follows:

Ûai = w1xi + w2R
a
i + w3P

a
i (4.1)

where (w1, w2, w3) are the model parameters which indicate the importance of the corresponding

features w.r.t the attacker’s decision making. The novelty of applying the Lens model is that I

can combine the values (rewards/penalty) and probabilities. While unconventional at first glance,

as shown later, this model actually leads to higher prediction accuracy than the classic expected

value function. A possible explanation for that is that humans might be driven by simple heuris-

tics in their decision making. Indeed, several studies in other research domains have demonstrated

the prediction power of simple combination of features (Meehl, 1963; Dawes, 1979) while com-

plex models could possibly lead to over-fitting issues (Meehl, 1963). Other alternatives to this

3-feature Lens utility function are feasible, e.g., including all the information presented to the

subjects (Ûai = w1xi + w2R
a
i + w3P

a
i + w4R

d
i + w5P

d
i ), which I discuss later.

I modify the QR model by replacing the classic expected value function with the Lens func-

tion, leading to the LensQR model. In the LensQR model, the probability that the adversary

chooses to attack target i, yi, is given by:

yi =
eλÛ

a
i∑

j e
λÛaj

=
eλ(w1xi+w2Rai +w3Pai )∑
j e

λ(w1xj+w2Raj+w3Paj )
(4.2)

Given that the attacker’s responses follows LensQR, the problem of finding the optimal strat-

egy for the defender can therefore be formulated as follows:

max
x

N∑
i=1

yi

[
xiR

d
i + (1− xi)P di

]
s.t.

N∑
i=1

xi ≤ K, 0 ≤ xi ≤ 1 (4.3)

27



where K is the number of security resources. Here, the objective is to maximize the defender’s

expected value given that the adversary chooses to attack each target with a probability according

to the LensQR model. Constraint (4.3) ensures that the coverage probabilities on all the targets

satisfy the resource constraint. Given that this optimization problem is similar to BRQR, I use

the same approach as BRQR to solve it (Yang et al., 2011). I refer to the resulting algorithm as

LensBRQR.

4.1.1 Learning LensQR Parameters

Without loss of generality, I set λ = 1. I employ Maximum Likelihood Estimation (MLE)

(Hastie, Tibshirani, & Friedman, 2009) to learn the parameters (w1, w2, w3). Given the defender

strategy x and K samples of the players’ choices, the log-likelihood of (w1, w2, w3) is given by:

logL(w1, w2, w3|x) =
K∑
k=1

log [yik(w1, w2, w3|x)]

where ik is the target that is chosen in sample k and yik (w1, w2, w3|x) is the probability that the

adversary chooses the target ik. Let Ki be the number of subjects attacking target i. Then the

log-likelihood function can be reformulated as follows:

logL(w1, w2, w3|x) =
N∑
i=1

Ki log [yi(w1, w2, w3|x)]

Combining with Equation 4.2, I obtain:

logL(w1, w2, w3|x) (4.4)

= w1

(
N∑
i=1

Kixi

)
+ w2

(
N∑
i=1

KiR
a
i

)
+ w3

(
N∑
i=1

KiP
a
i

)
−K log

(
N∑
i=1

ew1xi+w2Rai +w3Pai

)

In essence, logL(w1, w2, w3|x) is a concave function: I can show that the Hessian matrix

of logL(w1, w2, w3|x) is negative semi-definite. Thus, this function has an unique local max-

imum point and I can hence use a convex optimization solver to compute the optimal weights

(w1, w2, w3), e.g., fmincon in Matlab.

4.1.2 Prediction Accuracy of the LensQR Model

As in some real-world security environments, I would want to learn parameters of my LensQR

model based on limited data. To that end, I used a training set of five payoff structures and two
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Table 4.1: Prediction Accuracy
QR 3-parameter LensQR 5-parameter LensQR
8% 51% 44%

algorithms MATCH and BRQR (10 games in total) from (Pita et al., 2012) to learn the parameters

of the Lens utility function and the alternatives. In total, 33 human subjects played these 10 games

using the setting of 8 targets and 3 guards from my on-line game. The parameters that I learnt are:

(w1, w2, w3)=(−9.85, .37, .15) for the 3-parameter LensQR function; and (w1, w2, w3, w4, w5)

= (−8.23, .28, .12, .07, .09) for the 5-parameter function.

I ran a Pearson’s chi-squared goodness of fit test (Greenwood & Nikulin, 1996) in a separate

test set which includes 100 payoff structures in (Pita et al., 2012) to evaluate the prediction accu-

racy of the two proposed models as well as the classic QR model. The test examines whether the

predicted distribution of the players’ choices fits the observation. I set λ = .76 for QR model, the

same as what was learned in (Yang et al., 2011). The percentages of the payoff structures that fit

the predictions of the three models (statistical significance α = 0.05) are displayed in Table 4.1.

The table clearly shows that the new LensQR model (with the Lens utility function in Equation

4.1 predicts the human behavior more accurately than the classic QR model. In addition, even

with more parameters, the prediction accuracy of the 5-parameter LensQR model does not im-

prove. Given this result and my 3-parameter model demonstrated superiority (as I will show in

my Experiments section), I leave efforts to further improve the LensQR model for future work.

4.2 Improving MATCH

Since LensQR better predicts the distribution of the subjects’ choices than the classic QR, and as

shown later, LensBRQR outperforms MATCH, it is natural to investigate the integration of the

Lens utility function into MATCH. In particular, I replace the expected value of the adversary with
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Lens utility function. Therefore, the adversary’s loss caused by his deviation from the optimal

solution is measured with regard to the Lens utility function.

max
x,h,η,γ

γ (4.5)

s.t.

N∑
i=1

xi ≤ R, 0 ≤ xi ≤ 1, ∀t (4.6)

N∑
i=1

hi = 1, hi ∈ {0, 1} , ∀i (4.7)

0 ≤ η − (w1xi + w2R
a
i + w3P

a
i ) ≤M(1− hi) (4.8)

γ −
[
xiR

d
i + (1− xi)P di

]
≤M(1− hi) (4.9)

γ −
[
xiR

d
i + (1− xi)P di

]
≤ β [η − (w1xi + w2R

a
i + w3P

a
i )] , ∀i (4.10)

I refer to this modified version as LensMATCH, which is shown in Equations (4.5)-(4.10), that

attempts to maximize the defender’s expected value. In particular, hi represents the adversary’s

target choice, η represents the maximum Lens utility for the adversary. In addition, γ represents

the expected value for the defender if the adversary responds optimally andM is a large constant.

Constraint (4.8) finds the optimal strategy (target) for the adversary. In constraint (4.9), the

defender’s expected value is computed when the attacker chooses his optimal strategy. The key

idea of LensMATCH is in constraint (4.10). Essentially, it guarantees that the loss of the de-

fender’s expected value caused by adversary’s deviation is no more than a factor of β times the

loss of the adversary’s subjective utility.

Selecting β for MATCH: In MATCH, the parameter β is the key that decides how much the

defender is willing to lose if the adversary deviates from his optimal strategy. Pita et al. set β

to 1.0, leaving its optimization for future work. I propose a method to estimate β based on the

LensQR model which is outlined in Algorithm 1.

In this method,K values of β are uniformly sampled within the range (0, MaxBeta). For each

sampled value of β, the optimal strategy x for the defender is computed using MATCH. Given

this mixed strategy x, the defender’s expected value, γ, is computed assuming that the adversary

will respond stochastically according to the LensQR model. The β leading to the highest defender

expected value is chosen. In practice, I set MaxBeta to 5, to provide an effective bound on the

defender loss, given that penalties/rewards of both players range from −10 to 10; and K to 100,
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Algorithm 1: SELECTING β

1 Initialize γ∗ ← −∞;
2 for k = 1 to K do
3 β ← Sample([0,MaxBeta], k), x← MATCH(β);
4 γ ←

∑
i yiU

d
i ;

5 if γ ≥ γ∗ then
6 γ∗ ← γ, β∗ ← β;
7 end
8 end
9 return (β∗, γ∗);

which gives a grid size of 0.05 for β for the range of (0, 5). I refer to the algorithm with carefully

selected β as MATCHBeta.

4.3 Experimental Results

The tested algorithms in my experiments include: LensBRQR, MATCH, LensMATCH, MATCH-

Beta, LensMATCHBeta, i.e., MATCH embedded with both Lens utility and selecting β, and

DOBSS, i.e., a robust algorithm against perfectly rational opponents.

4.3.1 Results with AMT Workers, 8-target Games

My first experiment compares LensBRQR against MATCH and its improvements, in the setting

where I learned the parameters of the LensQR model, i.e., the 8-target and 3-guard game with the

AMT workers. In this 8-target game setting, for each game, my reported average is over at least

45 human subjects. The experiments were conducted on the AMT system. When two algorithms

are compared, I ensured that identical human subjects played both on the same payoff structures.

Participants were paid a base amount of US $1.00. In addition, each participant was given a

bonus based on their performance in the games to motivate them. Similar to (Pita et al., 2012)’s

work, I ensured that players were not choosing targets arbitrarily by having each participant play

two extra trivial games (i.e., games in which there is a target with the highest adversary reward

and lowest adversary penalty and lowest defender coverage probability). Players’ results were

removed if they did not choose that target.

I generated the payoff structures based on covariance games in GAMUT (Nudelman, Wort-

man, Shoham, & Leyton-Brown, 2004). In covariance games, I can adjust the covariance value
31



r ∈ [−1, 1] to control the correlation between rewards of players. I first generate 1000 payoff

structures with r ranging from -1 to 0 by 0.1 increments (100 payoff structures per value of r).

Then, for each of the 11 r values, I select 2 payoff structures ensuring that the strategies gen-

erated by each candidate algorithm (e.g., LesBRQR and versions of MATCH) are not similar to

each. One of these two has the maximum and the other has the median sum of 1-norm distances

between defender strategies generated by each pair of the algorithms. This leads to a total of 22

payoff structures. By selecting the payoffs in this way, I explore payoff structures with different

levels of the 1-norm distance between generated strategies so as to obtain accurate evaluations

with regard to performance of the tested algorithms. I evaluate the statistical significance of my

results using the bootstrap-t method (Wilcox, 2002).

4.3.1.1 LensBRQR vs MATCH

This section evaluates the impact of the new subjective utility function via a head-to-head com-

parison between LensBRQR and MATCH. In this initial test, the β parameter of MATCH was

set to 1.0 as in (Pita et al., 2012). Figure 4.1a first shows all available comparison results for

completeness (without regard to statistical significance). More specifically, I show the histogram

of the difference between LensBRQR and MATCH in the average defender expected reward over

all the choices of the participants. The x-axis shows the range of this difference in each bin and

the y-axis displays the number of payoff structures (out of 22) that belong to each bin. For exam-

ple, in the third bin from the left, the average defender expected value achieved by LensBRQR is

higher than that achieved by MATCH, and the difference ranges from 0 to 0.4. There are 8 pay-

offs that fall into this category. Overall, LensBRQR achieves a higher average expected defender

reward than MATCH in the 16 out of the 22 payoff structures.

In Figure 4.1b, the second column shows the number of payoffs where LensBRQR outper-

forms MATCH with statistical significance (α = .05). The number of payoff structures where

MATCH is better than LensBRQR with statistical significance is shown in the fourth column. In

the 22 payoff structures, LensBRQR outperforms MATCH 13 times with statistical significance

while MATCH defeats LensBRQR only once; in the remaining 8 cases, no statistical significance

is obtained either way. This result stands in stark contrast to (Pita et al., 2012)’s result and directly

answers the question I posed at the beginning of this paper: there is indeed value to integrating
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Figure 4.1: LensBRQR vs MATCH, AMT workers, 8 targets
models of human decision making in computing defender strategies in SSGs, but use of LensQR

rather than traditional QR models is crucial.

Table 4.2: Performance comparison, α = .05
LensMATCH MATCHBeta LensMATCHBeta

MATCH 3, 11 1, 6 1, 8
LensBRQR 8, 2 8, 2 5, 3

4.3.1.2 LensBRQR vs Improved MATCH

In Table 4.2, I compare MATCH and LensBRQR against the three improved versions of MATCH:

LensMATCH, MATCHBeta, and LensMATCHBeta (i.e., MATCH with both the Lens utility

function and the selected β) when playing my 22 selected payoff structures. Here, I only re-

port results that hold with statistical significance (α = .05). The first number in each cell in Table

4.2 shows the number of payoffs (out of 22) where the row algorithm obtains a higher average

defender expected reward than the column algorithm; the second number shows where the col-

umn algorithm outperforms the row algorithm. For example, the second row and second column

shows that MATCH outperforms LensMATCH in 3 payoff structures with statistical significance

while LensMATCH defeats MATCH in 11. Table 4.2 shows that the newer versions of MATCH
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achieve a significant improvement over MATCH. Additionally, LensBRQR retains a significant

advantage over both LensMATCH and MATCHBeta. For example, LensBRQR defeats Lens-

MATCH in 8 out of the 22 payoff structures with statistical significance, as shown in Table 4.2;

in contrast, LensMATCH is better than LensBRQR only twice.

Although LensBRQR in this case does not outperform LensMATCHBeta to the extent it does

against MATCH (i.e., LensBRQR performs better than LensMATCHBeta only 5 times with sta-

tistical significance while LensMATCHBeta is better than LensBRQR thrice (Table 4.2)), Lens-

BRQR remains the algorithm of choice for the following reasons: (a) LensBRQR does perform

better than LensMATCHBeta in more cases with statistical significance; (b) selecting the β pa-

rameters in LensMATCHBeta can be a significant computational overhead for large games given

that it requires testing many values of β. Thus, I could just prefer LensBRQR .

4.3.2 Results with New Experimental Scenarios

All previous experiments are based on the 8-target and 3-guards game, which were motivated

by the LAX security scenario (Tambe, 2011). In addition, the games have been played by AMT

workers or college students. To evaluate the performance of the LensQR model in new scenarios,

I introduce two new experimental settings: in one the experiments are conducted against a new

type of human adversary, i.e., security intelligence experts; and in the other, I change the game to

24 targets and 9 guards.

4.3.2.1 Security Intelligence Experts, 8-target games

In this section, I evaluate my algorithm with security intelligence experts who serve in the best

Israeli Intelligence Corps unit or are alumna of that unit. My purpose is to examine whether

LensBRQR will work when I so radically change the subject population to security experts. I use

the same 22 payoff structures and the same Lens utility function as in the previous experiment

with AMT workers. Each result below is averaged over decisions of 27 experts.

LensBRQR vs DOBSS. DOBSS (Paruchuri et al., 2008) is an algorithm for optimal defender

strategies against perfectly rational opponents. DOBSS performed poorly in 8-target games

against AMT workers(Pita et al., 2010; Yang et al., 2011). However, would DOBSS perform

better in comparison to LensBRQR against security experts? My results show that LensBRQR is
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Figure 4.2: LensBRQR vs MATCH, security experts
better than DOBSS in all 22 tested payoff structures; 19 times with statistical significance. Thus,

even these experts did not respond optimally (as anticipated by DOBSS) against the defender’s

strategies.

LensBRQR vs MATCH. Figure 4.2a shows that LensBRQR obtains a higher expected defender

reward than MATCH in 11 payoff structures against my experts. Furthermore, LensBRQR per-

forms better than MATCH in 6 payoff structures with statistical significance while MATCH is bet-

ter than LensBRQR only in 3 payoff structures with statistical significance (Figure 4.2b). These

results still favor LensBRQR over MATCH, although not as much as when playing against AMT

workers (as in Figure 4.1).

Nonetheless, what is crucially shown in this section is that changing the subject population

to security experts does not undermine LensBRQR completely; in fact, despite using parameters

from AMT workers, LensBRQR is still able to perform better than MATCH. I re-estimate the

parameters of the Lens function using the data of experts. The result is: w1 = −11.0, w2 = 0.54,

and w3 = 0.35. This result shows that while the experts evaluated all the criteria differently

from the AMT workers they gave the same importance level to the three parameters. Because of

limited access to experts, I could not conduct experiments with these re-estimated parameters; I

will show the impact of such re-estimation in my next experimental setting.
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Bounded Rationality of Human Adversaries. I now compare the AMT workers and security

experts using the traditional metric of “rationality level” of the QR model. To that end, I revert to

the QR-model with the expected value function to measure how close these players are to perfect

rationality. In particular, I use QR’s λ parameter as a criterion to measure their rationality. I use

all the data from AMT workers as well as experts on the chosen 22 games in previous experiments

to learn the λ parameter. I get λ = 0.77 with AMT workers and λ = 0.91 with experts. This

result implies that security intelligence experts tend to be more rational than AMT workers (the

higher the λ, the closer the players are to perfect rationality). Indeed, in 34 of 44 games, experts

obtains a higher expected value than AMT workers. Out of these, their expected value is higher

than AMT workers 9 times with statistical significance while AMT workers is higher only once

(α = .05). Nonetheless, the λ for experts of 0.91 suggests that the experts do not play with

perfect rationality (perfect rational λ =∞).

4.3.2.2 AMT Workers, 24-target Games

In this section, I focus on examining the performance of the algorithms in large games, i.e., 24

targets and 9 defender resources. I expect that the human adversaries may change their behaviors

because of tedious evaluation of risk and benefit for each target. Two algorithms were tested:

LensBRQR, MATCH. I first run experiments with the new Lens utility function learned previ-

ously using the data of the 8-target game.

LensBRQR vs MATCH with Parameters Learned from the 8-target Games. Figure 4.3a

shows that LensBRQR obtains a higher average defender expected value than MATCH in 14 out

of 22 payoff structures while MATCH is better than LensBRQR in 8 payoff structures. These

averages are reported over 45 subjects. In addition, as can be seen in Figure 4.3b, LensBRQR

performs better than MATCH with statistical significance 8 times while MATCH outperforms

LensBRQR 3 times. While LensBRQR does perform better than MATCH, its superiority over

MATCH is not as much as it was in previous 8-target games.

I can hypothesize based on these results that the learned parameters of the 8-target games

do not predict human behaviors as well in the 24-target games. Therefore, I re-estimate the

values of the parameters of the Lens utility function using the data of the previous experiment

in the 24-target games. The training data contains 388 data points. This re-estimating results in
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Figure 4.3: LensBRQR vs MATCH, 24 targets, original
w1 = −15.29, w2 = .53, w3 = .34. Similar to the experts case, the weights in 24-target games

are different from the ones in 8-target games but their order of importance is the same.

LensBRQR vs MATCH with Re-estimated Parameters. In this experiment, I evaluate the

impact of the new Lens utility function with the re-estimated parameters on the performance

of LensBRQR in comparison with MATCH. Figure 4.4a shows that LensBRQR outperforms

MATCH in 18 payoff structures while MATCH defeats LensBRQR in only 4 cases. Moreover,

it can be seen in Figure 4.4b that LensBRQR defeats MATCH with statistical significance 11

times while MATCH defeats LensBRQR only once with statistical significance. In other words,

the new weights of the Lens utility function indeed help improve the performance of LensBRQR.

This result demonstrates that a more accurate Lens utility function can help improve LensBRQR’s

performance.
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Figure 4.4: LensBRQR vs MATCH, 24 targets, re-estimated
4.4 Summary

This chapter demonstrates the importance of modeling human adversary decision making in SSGs

using a novel integration of the Lens utility function with the Quantal Response model. The re-

sulting new behavioral model is called LensQR. Through extensive experiments, the chapter pro-

vides the following contributions: (i) I show that my LensBRQR algorithm, which involves the

new LensQR behavioral model, significantly outperforms both MATCH and its improved ver-

sions; (ii) I are the first to present experimental results with security intelligence experts, and find

that even though the experts are more rational than AMT workers, LensBRQR performs better

than its competition against the experts; (iii) I show the advantage of LensBRQR in a new game

setting and demonstrate that additional data can further boost the performance of LensBRQR over

MATCH.
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Chapter 5

Preventing Poaching in Wildlife Protection

As mentioned in Chapter 3, previous work has began to apply SSGs for wildlife protection (Yang

et al., 2014; Fang et al., 2015, 2016), wherein existing behavioral models in SSGs are used to

predict the poachers’ behavior. However, since these models (including LensQR introduced in

the previous chapter) were developed with standard SSGs in mind, they have several limiting

assumptions when applying for predicting poachers’ behavior, such as (a) all poaching signs are

perfectly observable by the rangers; (b) poachers’ activities in one time period are independent

of their activities in previous or future time periods; (c) the number of poachers is known. In this

chapter, I introduce a new behavioral model of the poachers which addresses all these limitations.

5.1 Overview

Recently, an SSG-based patrolling decision-aid called PAWS has been deployed to protect

wildlife in south-east Asia (Fang et al., 2016). PAWS focuses on generating effective patrols

for the rangers, taking into account the complex topographic conditions of Asian forests. Despite

its successful application, PAWS is known to suffer from several limitations. First, PAWS relies

on my behavior model, LensQR, which is shown to have several limiting assumptions when ap-

plying in wildlife protection (Fang et al., 2016). Second, since LensQR has traditionally only

relied on three or four domain attributes in its modeling, it has not been able to provide a de-

tailed analysis of the impact of environmental and terrain features on poacher behavior, and thus

such analysis of real-world data has been lacking in the literature. Third, richer adversary models

would also require new patrol generation algorithms that improve upon what is used in PAWS.
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To that end, I have built a new predictive anti-poaching tool, CAPTURE (Comprehensive

Anti-Poaching tool with Temporal and observation Uncertainty REasoning) which attempts to

address all aforementioned limitations in PAWS while providing the following three key contri-

butions. My first area of contribution relates to CAPTURE’s addressing LensQR’s limitations in

modeling adversary behavior. More specifically, CAPTURE introduces a new behavioral model

which takes into account the rangers’ imperfect detection of poaching signs, called LensQR-

Poacher. Additionally, LensQR-Poacher incorporates the dependence of the poachers’ behavior

on their activities in the past into the component for predicting the poachers’ behavior. Moreover,

I adopt logistic models to formulate the two components of LensQR-Poacher. This enables cap-

turing the aggregate behavior of attackers without requiring a known number of poachers. Finally,

CAPTURE considers a richer set of domain features in addition to the three/four features used

in LensQR in analyzing the poachers’ behavior. Second, I provide two new heuristics to reduce

the computational cost of learning adversary models in CAPTURE, namely parameter separa-

tion and target abstraction. The first heuristic divides the set of model parameters into separate

subsets and then iteratively learns these subsets of parameters separately while fixing the values

of the other subsets. This heuristic decomposes the learning process into less complex learning

components which help in speeding up the learning process with no loss in accuracy. The second

heuristic of target abstraction works by leveraging the continuous spatial structure of the wildlife

domain, starting the learning process with a coarse discretization of forest area and gradually us-

ing finer discretization instead of directly starting with the most detailed representation, leading

to improved runtime overall.

My third contribution lies in computing the optimal patrolling strategy of the rangers given the

new behavioral model. Specifically, I provide a new game-theoretic algorithm for single/multiple-

step patrolling plans wherein the poachers’ actions (which follow the LensQR-Poacher model)

are recursively explored in multiple time steps. Finally, I extensively evaluate the prediction

accuracy of my new LensQR-Poacher model based on a detailed analysis of the largest dataset

of real-world defender-adversary interactions collected by rangers in Queen Elizabeth National

Park (QENP) over 12 years. In fact, this is the largest such study in the security games literature.

The experimental results show that my model is superior to existing models in predicting the
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poachers’ behavior, demonstrating the advances of my model over the previous state-of-the-art

models. CAPTURE will be tested in Uganda in early 2016.

5.2 Poacher Behavioral Learning

Security agencies protecting wildlife have a great need for tools that analyze, model and predict

behavior of poachers. Such modeling tools help the security agencies gain situational awareness,

and decide general strategies; in addition, these agencies also find it useful to have patrol planning

tools that are built based on such models. The key here is that in wildlife protection areas around

the world, these security agencies have collected large amounts of data related to interactions

betIen defenders (patrollers) and adversaries (poachers). In my work, I focus on QENP (Yang

et al., 2014; Critchlow et al., 2015), where in collaboration with the Wildlife Conservation Society

(WCS) and Uganda Wildlife Authority (UWA), I have obtained 12 years of ranger-collected data

(that is managed in database MIST/SMART).

In CAPTURE, I introduce a new hierarchical behavioral model, LensQR-Poacher, to pre-

dict the poachers’ behavior in the wildlife domain, taking into account the challenge of rangers’

imperfect observation. Overall, the new model consists of two layers. One layer models the prob-

ability the poachers attack each target wherein the temporal effect on the poachers’ behaviors is

incorporated. The next layer predicts the conditional probability of the rangers detecting any

poaching sign at a target given that the poachers attack that target. These two layers are then inte-

grated to predict the rangers’ final observations. In the LensQR-Poacher model, I incorporate the

effect of the rangers’ patrols on both layers, i.e., how the poachers adapt their behaviors according

to rangers’ patrols and how the rangers’ patrols determine the rangers’ detectability of poaching

signs. Furthermore, I consider the poachers’ past activity in reasoning about future actions of

the poachers. I also include different domain features to predict either attacking probabilities or

detection probabilities or both.

5.2.1 LensQR-Poacher: Hierarchical Behavioral Model

I denote by T the number of time steps, N the number of targets, and K the number of domain

features. At each time step t, each target i is associated with a set of feature values xt,i =
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Figure 5.1: Dependencies among LensQR-Poacher modeling elements
{xkt,i} where k = 1 . . .K and xkt,i is the value of the kth feature at (t, i). In addition, ct,i is

defined as the coverage probability of the rangers at (t, i). When the rangers patrol target i in

time step t, they have observation ot,i which takes an integer value in {−1, 0, 1}. Specifically,

ot,i = 1 indicates that the rangers observe a poaching sign at (t, i), ot,i = 0 means that the

rangers have no observation and ot,i = −1 when the rangers do not patrol at (t, i). Furthermore,

I define at,i ∈ {0, 1} as the actual action of poachers at (t, i) which is hidden from the rangers.

Specifically, at,i = 1 indicates the poachers attack at (t, i); on the other hand, at,i = 0 means the

poachers did not attack at (t, i). In this work, I only consider the situation of attacked or not (i.e.,

at,i ∈ {0, 1}); the case of multiple-level attacks is left for future work. Moreover, I mainly focus

on the problem of false negative observations, meaning that there may still exist poaching activity

at locations where the rangers found no sign of poaching. I make the reasonable assumption that

there is no false positive observation, meaning that if the rangers found any poaching sign at a

target, the poachers did attack that target. In other words, I have p(at,i = 1|ot,i = 1) = 1 and

p(ot,i = 1|at,i = 0) = 0.

The graphical representation of the new LensQR-Poacher model is shown in Figure 5.1

wherein the directed edges indicate the dependence betIen elements of the model. The grey

nodes refer to known elements for the rangers such as domain features, the rangers’ coverages

and observations while the white nodes represent the unknown elements such as the actual actions

of poachers. The elements (λ,w) are model parameters which I will explain later.
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My new LensQR-Poacher graphical model is a significant advance over previous models from

behavioral game theory, such as QR/LensQR, and similarly models from conservation biology

(Hofer et al., 2000; Critchlow et al., 2015). First, unlike LensQR/QR which consider poachers

behavior to be independent betIen different time steps, I assume that the poachers’ actions at,i

depends on the poachers’ activities in the past at−1,i and the rangers’ patrolling strategies ct,i.

This is because poachers may tend to come back to the areas they have attacked before. Sec-

ond, LensQR-Poacher considers a much richer set of domain features {xkt,i} that have not been

considered earlier but are relevant to my domain, e.g., slope and habitat. Third, another advance

of CAPTURE is modeling the observation uncertainty in this domain. I expect that the rangers’

observations ot,i depend on the actual actions of the poachers at,i, the rangers’ coverage prob-

abilities ct,i and domain features {xkt,i}. Finally, I adopt the logistic model (Bishop, 2006) to

predict the poachers’ behaviors; one advantage of this model compared to LensQR/QR is that it

does not assume a known number of attackers and models probability of attack at every target

independently. Thus, given the actual action of poachers, at−1,i, at previous time step (t − 1, i),

the rangers’ coverage probability ct,i at (t, i), and the domain features xt,i = {xkt,i}, I aim at

predicting the probability that poachers attack (t, i) as follows:

p(at,i = 1|at−1,i, ct,i,xt,i) =
eλ
′[at−1,i,ct,i,xt,i,1]

1 + e
λ′[at−1,i,ct,i,xt,i,1]

(5.1)

where λ = {λk} is the (K+ 3)×1 parameter vector which measure the importance of all factors

towards the poachers’ decisions. λK+3 is the free parameter and λ′ is the transpose vector of

λ. In essence, compared to Equation 4.2 where LensQR was seen to only use three features, I

now have a weighted sum over a much larger number of features as is appropriate in my wildlife

domain.

Furthermore, if the poachers attack at (t, i), I predict the probability that the rangers can

detect any poaching signs as follows:

p(ot,i = 1|at,i = 1, ct,i,xt,i) = ct,i ×
ew
′[xt,i,1]

1 + ew
′[xt,i,1]

(5.2)

where the first term is the probability that the rangers are present at (t, i) and the second term

indicates the probability that the rangers can detect any poaching sign when patrolling at (t, i).

Additionally, w = {wk} is the (K + 1) × 1 vector of parameters which indicates the signifi-

cance of domain features in affecting the rangers’ probability of detecting poaching signs. w′ is
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transpose of w. In QENP specifically, LensQR-Poacher employs seven features: animal density,

distances to rivers/roads/villages, net primary productivity (NPP), habitat and slope to predict

attacking/detection probabilities.

In the following, I will explain my approach for learning the parameters (λ,w) of my hier-

archical model. I use p(at,i = 1|at−1,i, ct,i) and p(ot,i = 1|at,i = 1, ct,i) as the abbreviations

of the LHSs in Equations 5.1 and 5.2. The domain features xt,i are omitted in all equations for

simplification.

5.2.2 Parameter Estimation

Due to the presence of unobserved variables a = {at,i}, I use the standard Expectation Maxi-

mization (EM) method in order to estimate (λ,w). In particular, EM attempts to maximize the

log-likelihood that the rangers can have observations o = {ot,i} given the rangers’ coverage

probabilities c = {ct,i} and domain features x = {xt,i} for all time steps t = 1, . . . , T and

targets i = 1, . . . , N which is formulated as follows:

max
λ,w

log p(o|c,x, λ,w) (5.3)

The standard EM procedure (Bishop, 2006) is to start with an initial estimate of (λ,w) and

iteratively update the parameter values until a locally optimal solution of (5.3) is reached. Many

restarts are used with differing initial values of (λ,w) to find the global optimum. Each iteration

of EM consists of two key steps:

• E step: compute p(a|o, c, (λ,w)old)

• M step: update values of the parameters: (λ,w)old) = (λ∗,w∗) where (λ∗,w∗) =

argmax
λ,w

∑
a p(a|o, c, (λ,w)old) log(p(o,a|c, λ,w)).

In my case, the E (Expectation) step attempts to compute the probability that the poachers take

actions a = {at,i} given the rangers’ observations o, the rangers’ patrols c, the domain features

x = {xt,i}, and current values of the model parameters (λ,w)old. The M (Maximization) step

tries to maximize the expectation of the logarithm of the complete-data (o,a) likelihood function

given the action probabilities computed in the E step and updates the value of (λ,w)old with the

obtained maximizer.
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Although I can decompose the log-likelihood, the EM algorithm is still time-consuming due

to the large number of targets and parameters. Therefore, I use two novel ideas to speed up the

algorithm: parameter separation for accelerating the convergence of EM and target abstraction

for reducing the number of targets.

5.2.2.1 Parameter Separation

Observe that the objective in the M step can be split into two additive parts as follows:∑
a

p(a|o, c, (λ,w)old) log(p(o,a|c, λ,w)) (5.4)

=
∑
t,i

∑
at,i

p(at,i|o, c, (λ,w)old) log p(ot,i|at,i, ct,i,w)

+
∑
t,i

∑
at,i

∑
at−1,i

p(at,i, at−1,i|o, c, (λ,w)old) log p(at,i|at−1,i, ct,i, λ)

In (5.4), the first component is obtained as a result of decomposing w.r.t the detection probabilities

of the rangers at every (t, i) (Equation 5.2). The second one results from decomposing according

to the attacking probabilities at every (t, i) (Equation 5.1). Importantly, the first component is

only a function of w and the second component is only a function of λ. Following this split, for

my problem, the E step reduces to computing the following two quantities:

Total probability: p(at,i|o, c, (λ,w)old) (5.5)

2-step probability: p(at,i, at−1,i|o, c, (λ,w)old) (5.6)

which can be computed by adapting the Baum-Welch algorithm (Bishop, 2006) to account for

missing observations, i.e., ot,i = −1 when rangers do not patrol at (t, i). This can be done by

introducing p(ot,i = −1|at,i, ct,i = 0) = 1 when computing (5.5) and (5.6).

More importantly, as shown in (5.4), the structure of my problem allows for the decomposi-

tion of the objective function into two separate functions w.r.t attack parameters λ and detection

parameters w: F d(w) + F a(λ) where the detection function F d(w) is the first term of the RHS

in Equation 5.4 and the attack function F a(λ) is the second term. Therefore, instead of maximiz-

ing F d(w) + F a(λ), I decompose each iteration of EM into two E steps and two M steps that

enables maximizing F d and F a separately as follows:

• E1 step: compute total probability
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• M1 step: w∗ = argmaxw F
d(w); update wold = w∗

• E2 step: compute 2-step probability

• M2 step: λ∗ = argmaxλ F
a(λ); update λold = λ∗

Note that the detection and attack components are simpler functions compared to the original

objective since these components only depend on the detection and attack parameters respectively.

Furthermore, at each EM iteration, the parameters get closer to the optimal solution due to the

decomposition since the attack parameter is now updated based on the new detection parameters

from the E1/M1 steps instead of the old detection parameters from the previous iteration. Thus,

by decomposing each iteration of EM according to attack and detection parameters, EM will

converge more quickly without loss of solution quality. The convergence and solution quality

of the separation can be analyzed similarly to the analysis of multi-cycle expected conditional

maximization (Meng & Rubin, 1993).

Furthermore, the attack function F a(λ) is shown to be concave by Proposition 1, allowing us

to easily obtain the global optimal solution of the attacking parameters λ at each iteration of EM.

Proposition 1. F a(λ) is concave in the attack parameters λ.

Proof. As shown in (5.4), the attack function (the second term on the RHS of (5.4)) is the expec-

tation of the logarithm of the attacking probability, log p(at,i|at−1,i, λ), at (t, i). This logarithm

function has the following formulations according to Equation 5.1:

log p(at,i=1|at−1,i, ct,i, λ) = λ′[at−1,i, ct,i,xt,i, 1]− log(1+eλ
′[at−1,i,ct,i,xt,i,1])

log p(at,i=0|at−1,i, ct,i, λ) = − log(1+eλ
′[at−1,i,ct,i,xt,i,1]) (5.7)

which are a concave functions in λ (its Hessian matrix is semi-negative definite). Since a linear

combination (with positive weights) of concave functions is also a concave function, the attack

function, F a(λ), is concave in the attack parameters λ.

5.2.2.2 Target Abstraction

My second idea is to reduce the number of targets via target abstraction. Previous work in network

security and poker games has also applied abstraction for reducing the complexity of solving
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Figure 5.2: Target Abstraction
these games by exploring intrinsic properties of the games (Basilico & Gatti, 2011; Sandholm

& Singh, 2012). In CAPTURE, by exploiting the spatial connectivity betIen grid cells of the

conservation area, I can divide the area into a smaller number of grid cells by merging each cell

in the original grid with its neighbors into a single bigger cell. The corresponding domain features

are aggregated accordingly. Intuitively, neighboring cells tend to have similar domain features.

Therefore, I expect that the parameters learned in both the original and abstracted grid would

expose similar characteristics. Hence, the model parameters estimated based on the abstracted

grid could be effectively used to derive the parameter values in the original one.

In this work, I leverage the values of parameters learned in the abstracted grid in two ways:

(i) reduce the number of restarting points (i.e., initial values of parameters) for reaching different

local optimal solutions in EM; and (ii) reduce the number of iterations in each round of EM. The

idea of target abstraction is outlined in Figure 5.2 wherein each black dot corresponds to a set

of parameter values at a particular iteration given a specific restarting points. At the first stage,

I estimate the parameter values in the abstracted grid given a large number of restarting points

R, assuming that I can run M1 EM iterations. At the end of the first stage, I obtain R different

sets of parameter values; each corresponds to a local optimal solution of EM in the abstracted

grid. Then at the second stage, these sets of parameter values are used to estimate the model

parameters in the original grid as the following: (i) only a subset of K resulting parameter sets

which refer to the top local optimal solutions in the abstracted grid are selected as initial values of

parameters in the original grid; and (ii) instead of runningM1 EM iterations again, I only proceed

with M2 << M1 iterations in EM since I expect that these selected parameter values are already
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Ill learned in the abstracted grid and thus could be considered as warm restarts in the original

grid.

5.3 Patrol Planning

Once the model parameters (λ,w) are learned, I can compute the optimal patrolling strategies

for the rangers in next time steps taking into account the LensQR-Poacher model. I consider

two circumstances: 1) single-step patrol planning in which the rangers only focus on generating

the patrolling strategy at the next time step and 2) multiple-step patrol planning for generating

strategies for the next ∆T > 1 time steps, given the rangers’ patrol and observation history and

domain features. While the former provides a one-step patrolling strategy with an immediate

but short-term benefit, the latter generates strategies across multiple time steps with a long-term

benefit. I leave the choice of which planning option to use for the rangers given the cost/benefit

trade-off betIen the two. The key challenge in designing strategies for the rangers given the

LensQR-Poacher model is that I need to take into account new aspects of the modeling of the

adversary. These include the rangers’ detection uncertainty and the temporal dependency of the

poachers’ activities. This challenge leads to a complicated non-convex optimization problem to

compute the optimal patrolling strategy for the rangers; I provide novel game-theoretic algorithms

to solve it.

I suppose that the rangers have an observation history o = {ot′,i} for t′ = 1, . . . , T and

i = 1, . . . , N . Similar to standard SSGs, I assume that if the poachers successfully attack at (t, i),

the rangers receive a penalty P dt,i. Conversely, if the rangers successfully confiscate poaching

tools at (t, i), the rangers obtain a reward Rdt,i. Therefore, the rangers’ expected utility at (t, i) if

the poachers attack at (t, i) is computed as follows where p(ot,i = 1|at,i= 1, ct,i) is the rangers’

detection probability at (t, i) as shown in Equation 5.2:

Udt,i = p(ot,i = 1|at,i = 1, ct,i)× [Rdt,i − P dt,i] + P dt,i (5.8)

I now explain in detail my new game-theoretic algorithms. The rangers’ past patrols at (t′, i) for

for t′ = 1, . . . , T and i = 1, . . . , N are already known and thus can be omitted in all following

mathematical formulations for simplification.
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5.3.1 Single-step Patrol Planning

Given the rangers’ observation history o and the model parameters (λ,w), the problem of com-

puting the optimal strategies at the next time step T + 1 can be formulated as follows:

max
{cT+1,i}

∑
i
p(aT+1,i = 1|o, cT+1,i)× UdT+1,i (5.9)

s.t. 0 ≤ cT+1,i ≤ 1, i = 1 . . . N (5.10)∑
i
cT+1,i ≤ B (5.11)

where B is the maximum number of ranger resources and p(aT+1,i = 1|o, cT+1,i) is the prob-

ability that the poachers attack at (T + 1, i) given the rangers’ observation history o and the

rangers’ coverage probability cT+1,i. Since the poachers’ behaviors depends on their activities in

the past (which is hidden to the rangers), I need to examine all possible actions of the poachers in

previous time steps in order to predict the poachers’ attacking probability at (T + 1, i). Hence,

the attacking probability p(aT+1,i = 1|o, cT+1,i) should be computed by marginalizing over all

possible actions of poachers at (T, i) as follows:

p(aT+1,i =1|cT+1,i,o) =
∑

aT,i
p(aT+1,i = 1|aT,i, cT+1,i)× p(aT,i|o) (5.12)

where p(aT+1,i|aT,i, cT+1,i), which is computed in (5.1), is the attacking probability at (T +1, i)

given the poachers’ action aT,i at (T, i) and the rangers’ coverage probability cT+1,i. In addition,

p(aT,i|o) is the total probability at (T, i) which can be recursively computed based on the Baum-

Welch approach as discussed in Section 5.2. Overall, (5.9 – 5.11) is a non-convex optimization

problem in the rangers’ coverage probabilities {cT+1,i}. Fortunately, each additive term of the

rangers’ utility in (5.9) is a separate sub-utility function of the rangers’ coverage, cT+1,i, at (T +

1, i):

fi(cT+1,i) = p(aT+1,i = 1|o, cT+1,i)× UdT+1,i (5.13)

Therefore, I can piecewise linearly approximate fi(cT+1,i) and represent (5.9 – 5.11) as a Mixed

Integer Program which can be solved by CPLEX. The details of piecewise linear approximation

can be found at (Yang, Ordonez, & Tambe, 2012). Essentially, the piecewise linear approximation

method provides an O( 1
K )-optimal solution for (5.9 – 5.11) where K is the number of piecewise

segments (Yang et al., 2012).
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5.3.2 Multi-step Patrol Planning

In designing multi-step patrol strategies for the rangers, there are two key challenges in incor-

porating the LensQR-Poacher model that I need to take into account: 1) the time dependence of

the poachers’ behavior; and 2) the actual actions of the poachers are hidden (unobserved) from

the rangers. These two challenges make the problem of planning multi-step patrols difficult as I

show below.

Given that the rangers have an observation history o = {ot′i} for t′ = 1, . . . , T and i =

1 . . . N , the rangers aim at generating patrolling strategies {ct,i} in next ∆T time steps where

t = T + 1, . . . , T + ∆T . Then the problem of computing the optimal patrolling strategies for

next ∆T time step T + 1, . . . , T + ∆T can be formulated as follows:

max
{ct,i}

∑
t,i
p(at,i = 1|o, cT+1...t,i)U

d
t,i (5.14)

s.t. 0 ≤ ct,i ≤ 1, t = T + 1 . . . T + ∆T, i = 1 . . . N (5.15)∑
i
ct,i ≤ B, t = T + 1 . . . T + ∆T. (5.16)

where p(at,i = 1|o, cT+1...t,i) is the attacking probability at (t, i) given the rangers’ coverages at

(t′, i) where t′ = T + 1, . . . , t and observation history o = {ot′,i} where t′ = 1, . . . , T . Because

of the two aforementioned challenges, I need to examine all possible actions of the poachers in

previous time steps in order to compute the attacking probability at (t, i), p(at,i = 1|o, cT+1...t,i).

my idea is to recursively compute this attacking probability via the attacking probabilities at

previous time steps as follows:

p(at,i = 1|o, cT+1...t,i) =
∑
at−1,i

p(at,i|at−1,i, ct,i)× p(at−1,i|o, cT+1...t−1,i) (5.17)

where the initial step is to compute the total probability p(aT,i|o) by using the Baum-Welch ap-

proach. Here, the objective in (5.14) can be no longer divided into separate sub-utility functions

of a single coverage probability at a particular (t, i) because of the time dependency of the poach-

ers’ behaviors. Thus, I can not apply piecewise linear approximation as in the single-step patrol

planning for solving (5.14 – 5.16) quickly. In this work, I use non-convex solvers (i.e., fmincon

in MATLAB) to solve (5.14 – 5.16).

In (Fang et al., 2015), the dependence of the attacker’s actions on the defender’s patrolling

strategies in the past is also considered; they assume that the attacker’s responses follow the
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LensQR model while the attacker perceives the defender’s current strategy as a weighted linear

function of the defender’s strategies in the past. They also assume that these weights are known,

thereby making the computational problem easy. In contrast, I make the more realistic assumption

that the poachers are influenced by their own past observations and my learning algorithm learns

the weights corresponding to such influence from the data. Unfortunately, this makes the problem

of planning multistep patrols more difficult as shown before.

5.4 Experimental Results

I aim to (i) extensively assess the prediction accuracy of the LensQR-Poacher model compared to

existing models based on real-world wildlife/poaching data; (ii) examine the runtime performance

of learning the new model; and (iii) evaluate the solution quality of the CAPTURE planning for

generating patrols. In the following, I provide a brief description of the real-world wildlife data

used.

5.4.1 Real-world Wildlife/Poaching Data

Figure 5.3: QENP with animal density

To learn the poachers’ behavior, I use the wildlife

data collected by the rangers over 12 years from 2003

to 2014 in QENP (Figure 5.3 with animal density).

This work is accomplished in collaboration with the

Wildlife Conservation Society (WCS) and Uganda

Wildlife Authority (UWA). While patrolling, the park

rangers record information such as locations (lati-

tude/longitude), times, and observations (e.g., signs

of human illegal activities). Figure 5.4 shows an ex-

ample of data samples w.r.t the rangers’ patrols, in-

cluding patrol IDs, patrol days (i.e., which day of

the patrols—each patrol may last several days), way-

points, dates and times, observations, observation

codes, and locations in terms of (longitude, latitude)
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using the World Geodetic System (WGS84). Similar to the work of (Critchlow et al., 2015), I

also divide collected human signs into six different groups: commercial animal (i.e., human signs

such as snares which refer to poaching commercial animals such as buffalo, hippo and elephant),

non-commercial animal, fishing, encroachment, commercial plant, and non-commercial plant.

In this work, I mainly focus on two types of human illegal activities: commercial animal and

non-commercial animal which are major threats to key species of concern such as elephants and

hippos.

Patrol 
ID

Patrol 
Day Waypoint Date Time Observation Observation 

Code Latitude Longitude

5691 1 1 2/4/12 8:17 Poaching sign Snares -0.141765 29.831301
5691 1 2 2/4/12 8:43 Poaching Hunting -0.139047 29.824643
5691 1 3 2/4/12 9:09 Poaching Hunting -0.148023 29.81837
5691 1 4 2/4/12 9:35 Elephant Sighting -0.149393 29.819606

Figure 5.4: Data samples of rangers’ patrols

ID Longitude Latitude Habitat NPP Slope Road 
Distance

Town 
Distance

River
Distance

Animal 
Density

1 1.25e+05 9.92e+06 0.2 1.1744 0.0105 61.16 6513.4 594.49 2.8288
2 1.25e+05 9.921e+06 0.2 1.2587 0.0064 625.55 7035.6 439.24 4.3833
3 1.25e+05 9.922e+06 0.2 1.3040 0.0062 1213.10 7653.4 197.55 5.9379
4 1.26e+05 9.92e+06 0.2 1.1227 0.0196 761.61 5648.1 1373.50 3.8863

Figure 5.5: Data samples of domain features

The poaching data is then divided into the four different groups according to four seasons in

Uganda: dry season I (Jun, July, and August), dry season II (December, January, and February),

rainy season I (March, April, and May), and rainy season II (September, October, November). I

aim at learning behaviors of the poachers w.r.t these four seasons as motivated by the fact that

the poachers’ activities usually vary seasonally. In the end, I obtain eight different categories of

wildlife data given that I have the two poaching types and four seasons. Furthermore, I use seven

domain features in learning the poachers’ behavior, including animal density, slope, habitat, net

primary productivity (NPP), and locations of villages/rivers/roads provided by (Critchlow et al.,

2015).
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I divide the park area into a 1km × 1km grid consisting of more than 2500 grid cells (≈

2500km2). Domain features and the rangers’ patrols and observations are then aggregated into

the grid cells. Figure 5.5 shows an example of data samples w.r.t domain features at four grid cells

together with these cells’ id and locations (i.e., the longitude and latitude (UTM grid zone 36S)

of the cells’ centers) after aggregation. I also refine the poaching data by removing all abnormal

data points such as the data points which indicate that the rangers conducted patrols outside the

QENP park or the rangers moved too fast, etc. Since I attempt to predict the poachers’ actions

in the future based on their activities in the past, I apply a time window (i.e., five years) with an

1-year shift to split the poaching data into eight different pairs of training/test sets. For example,

for the (commercial animal, rainy season I) category, the oldest training/test sets correspond to

four-year data (2003–2006) w.r.t this category for training and one-year (2007) data for testing.

In addition, the latest training/test sets refer to the four years (2010–2013) and one year (2014)

of data respectively. In total, there are eight different training/test sets for each of my eight data

categories.

5.4.2 Behavioral Learning

Prediction Accuracy. In this work, I compare the prediction accuracy of seven models: 1)

LensQR-Poacher (LensQR-Poacher with parameter separation); 2) P-Abstract (LensQR-Poacher

with parameter separation and target abstraction); 3) P-NoTime (LensQR-Poacher with parame-

ter separation and without the component of temporal effect); 4) Logit (Logistic Regression); 5)

LensQR; 6) SVM (Support Vector Machine); and 7) Non-Lipschitz (Parametric Lipschitz (Sinha,

Kar, & Tambe, 2016)). I use AUC (Area Under the Curve) to measure the prediction accuracy of

these behavioral models. Based on ROC plots of data, AUC is a standard and common statistic

in machine learning for model evaluation (Bradley, 1997). Essentially, AUC refers to the proba-

bility that a model will weight a random positive poaching sample higher than a random negative

poaching sample in labeling these samples as positive (so, higher AUC values are better). For

each data category (w.r.t poaching types and poaching seasons), the AUC values of all the mod-

els are averaged over the eight test sets as explained in Section 5.4.1. I also show the average

prediction accuracy over all seasons. I use bootstrap-t (Wilcox, 2002) to measure the statistical

significance of my results.
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Models Rainy I Rainy II Dry I Dry II Average
LensQR-Poacher 0.76 0.76 0.74 0.73 0.7475

P-Abstract 0.79 0.76 0.74 0.67 0.74
P-NoTime 0.71 0.75 0.67 0.71 0.71

Logit 0.53 0.59 0.57 0.60 0.5725
LensQR 0.53 0.59 0.56 0.62 0.575

SVM 0.61 0.59 0.51 0.66 0.5925
Lipschitz 0.64 0.58 0.55 0.42 0.5457

Table 5.1: AUC: Commercial Animal

The results are shown in Tables 5.1 and 5.2. I can infer the following key points from these

tables. First, and most important, LensQR-Poacher improves performance over the state of the

art, which is LensQR and SVM. LensQR-Poacher’s average AUC in Table 5.1 (essentially this

is over 32 data points of eight test sets over four seasons) is 0.7475 vs 0.575 for LensQR, and

in Table 5.2 is 0.74 vs 0.57 for LensQR. This clearly shows a statistically significant (α = 0.05)

advance in my modeling accuracy. This improvement illustrates that all the four advances in

LensQR-Poacher mentioned in Section 5.1 — addressing observation error, time dependence,

detailed domain features and not requiring a firm count of poachers beforehand – have indeed

led to a significant advance in LensQR-Poacher’s performance. I can now attempt to understand

the contributions of each of LensQR-Poacher’s improvements, leading to the next few insights.

Second, comparison of LensQR-Poacher with P-NoTime which only addresses the challenge

of observation bias demonstrates the importance of considering time dependence. Third, while

parameter separation does not cause any loss in solution quality as discussed in Section 5.2.2,

Tables 5.1 and 5.2 shows that the prediction accuracy of LensQR-Poacher with target abstraction

is good in general except for Dry season II with Commercial Animal. As I show later, parameter

separation and target abstraction help in speeding up the runtime performance of learning the

LensQR-Poacher model.

Fourth, the results of the model parameter values in the LensQR-Poacher model show that all

these domain features substantially impact the poachers’ behaviors. For example, one learning

result on the model parameters corresponding to the category (non-commercial animal/dry sea-

son I) in 2011 is (0.33, 1.46,−2.96,−1.97, 1.88,−0.78, 0.36) for domain features (habitat, NPP,

slope, road distance, town distance, water distance, and animal density), −1.40 for the rangers’

coverage probability and 4.27 for the poachers’ past action. Based on these learned weights, I
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Models Rainy I Rainy II Dry I Dry II Average
LensQR-Poacher 0.76 0.70 0.78 0.72 0.74

P-Abstract 0.76 0.70 0.74 0.70 0.725
P-NoTime 0.72 0.68 0.75 0.70 0.7125

Logit 0.52 0.63 0.57 0.52 0.56
LensQR 0.54 0.62 0.58 0.54 0.57

SVM 0.42 0.50 0.55 0.56 0.5075
Lipschitz 0.60 0.47 0.55 0.43 0.5125

Table 5.2: AUC: Non-Commercial Animal

Year 2009 2010 2011 2012 2013 2014
weight -10.69 -4.35 -0.7 -2.21 -1.78 -17.39

Table 5.3: Patrol weights in recent years

can interpret how these domain features affect the poachers’ behavior. Specifically, the nega-

tive weights for road/water distances indicates that the poachers tend to poach at locations near

roads/water. In addition, the resulting positive weight for the poachers’ past actions indicates

that the poachers are more likely to attack the targets which Ire attacked before. Furthermore,

the resulting negative weight for the rangers’ patrols also shows that the poachers’ activity is

influenced by the rangers’ patrols, i.e., the poachers are less likely to attack targets with higher

coverage probability of the rangers. Lastly, the ranger-poacher interaction changes over time as

indicated by different negative weights of the rangers’ patrols across different years (Table 5.3).

For example, the patrol weight corresponding the category (non-commercial animal/dry season

II) in 2014 is −17.39 while in 2013 is -1.78, showing that rangers’ patrols have more impact on

the poachers’ behavior in 2014 than in 2013. This is the first time there is a real-world evidence

which shows the impact of ranger patrols on poacher behavior.

Runtime Performance. I compare the runtime performance of learning the LensQR-Poacher

model in three cases: 1) learning without both heuristics of parameter separation and target ab-

straction; 2) learning with parameter separation only; and 3) learning with both heuristics. In my

experiments, for the first two cases, I run 20 restarting points and 50 iterations in EM. In the third

case, I first run 20 restarting points and 40 iterations in EM with target abstraction. In particular,

in target abstraction, I aggregate or interpolate all domain features as Ill as the rangers’ patrols

into 4km× 4km grid cells while the original grid cell size is 1km× 1km. Then given the results
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in the abstracted grid, I only select 5 results of parameter values (which correspond to the top five

prediction accuracy results w.r.t the training set). I use these results as restarting points for EM in

the original grid and only run 10 iterations to obtain the final learning results in the original grid.

Heuristics Average Runtime
None 1419.16 mins

Parameter Separation 333.31 mins
Parameter Separation w/ Target Abstraction 222.02 mins

Table 5.4: LensQR-Poacher Learning: Runtime Performance

The results are shown in Table 5.4 which are averaged over 64 training sets (statistically sig-

nificant (α = 0.05)). In Table 5.4, learning LensQR-Poacher model parameters with parameter

separation is significantly faster (i.e., 4.25 times faster) than learning LensQR-Poacher without

this heuristic. This result clearly shows that reducing the complexity of the learning process

(by decomposing it into simpler sub-learning components via parameter separation) significantly

speeds up the learning process of LensQR-Poacher. Furthermore, the heuristic of target abstrac-

tion helps LensQR-Poacher in learning even faster although the result is not as substantial as with

parameter separation, demonstrating the advantage of using this heuristic.

5.4.3 Patrol Planning

Based on the LensQR-Poacher model, I apply my CAPTURE planning algorithm (Section 5.3) to

compute the optimal patrolling strategies for the rangers. The solution quality of my algorithm is

evaluated based on the real-world QENP domain in comparison with LensQR (i.e., optimal strate-

gies of the rangers against LensQR-based poachers), Maximin (maximin strategies of the rangers

against worst-case poacher responses), and Real-world patrolling strategies of the rangers. The

real-world strategies are derived from the four seasons in years 2007 to 2014. Given that CAP-

TURE’s prediction accuracy is the highest among all the models, in my experiments, I assume that

the poachers’ responses follow my model. Given the QENP experimental settings, the reward of

the rangers at each target are set to be zero while the penalty is the opposite of the animal density

(i.e., zero-sum games). I assess the solution quality of all algorithms according to different num-

ber of the rangers’ resources (i.e., number of targets the rangers can cover during a patrol). The

56



real-world patrolling strategies are normalized accordingly. Moreover, I also consider different

number of time steps for generating patrols.
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Figure 5.6: Solution quality of CAPTURE-based planning

The experimental results are shown in Figure 5.6 which are averaged over all years and sea-

sons. In Figure 5.6, the x-axis is the number of the rangers’ resources and the y-axis is the

aggregated utility the rangers receive over two and four time steps (seasons) for playing CAP-

TURE, LensQR, Maximin, and Real-world patrolling strategies respectively. As shown in Figure

5.6, my CAPTURE planning algorithm provides the highest utility for the rangers (with statis-

tical significance (α = 0.05)). Especially when the number of the rangers’ resources increases,

the CAPTURE planning algorithm significantly improves the quality of the rangers’ patrolling

strategies. Furthermore, my CAPTURE algorithm provides patrolling strategies which take into

account the temporal effect on the poachers’ behaviors. As a result, when the number of time

steps increases (Figure 5.6(b)), my algorithm enhances its solution quality compared to the oth-

ers.

5.5 CAPTURE-based Application

CAPTURE tool is available for the rangers to predict the poachers’ behavior and design optimal

patrol schedules. Not all the regions are equally attractive to the poachers, so it is beneficial to de-

tect the hotspots and favorite regions for poachers and protect those areas with higher probability.

The general work-flow for this software could be itemized as: 1) Aggregating previously gathered

data from the park to create a database that includes domain features, poaching signs and rangers’
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effort to protect the area; 2) Pre-processing of the data points; 3) Running the CAPTURE tool

to predict the attacking probability, rangers’ observation over the area and generate the optimal

patrol strategy; and 4) Post-processing of the results and generating the related heatmaps.

To compare the optimal strategy generated by the single-step patrol planning algorithm pro-

vided by CAPTURE and current real strategy deploying over the area, I plotted the related

heatmaps according to the defender coverage, shown in Figure 5.7(a) and Figure 5.8(a). The

darker the area, the greater chance to be covered by the rangers. Also, I used LenQR-Poacher to

predict the probability of the attack based on these patrol strategies. These heatmaps are shown in

Figure 5.7(b) and Figure 5.8(b). The darker regions on the map demonstrate the more attractive

regions to the poachers.

I can see the following key points based on the heatmaps: (i) The optimal patrol strategy

covers more of the regions with higher animal density (for instance south-west and middle parts

of the park as shown in Figure 5.3). So the deployment of the optimal strategy would result in

more protection to areas with higher animal density, as shown in Figure 5.8(a) and 5.8(b). (ii)

The poaching heatmap shows significantly higher predicted activity of attackers against human

generated patrols in regions with higher animal density, as shown in Figure 5.7(a) and 5.7(b).

(a) Patrol strategy (b) Attack probability

Figure 5.7: Heatmaps by CAPTURE (based on the real patrol strategy)
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(a) Patrol strategy (b) Attack probability

Figure 5.8: Heatmaps by CAPTURE (based on the optimal strategy)

5.6 Summary

I propose a new predictive anti-poaching tool, CAPTURE. Essentially, CAPTURE introduces a

novel hierarchical model, LensQR-Poacher, to predict the poachers’ behaviors. The LensQR-

Poacher model provides a significant advance over the state-of-the-art in modeling poachers in

security games (Fang et al., 2016) and in conservation biology (Hofer et al., 2000; Critchlow

et al., 2015) via 1) addressing the challenge of imperfect observations of the rangers; 2) incor-

porating the temporal effect on the poachers’ behaviors; and 3) not requiring a known number

of attackers. I provide two new heuristics: parameter separation and target abstraction to reduce

the computational complexity in learning the model parameters. Furthermore, CAPTURE incor-

porates a new planning algorithm to generate optimal patrolling strategies for the rangers, taking

into account the new complex poacher model. Finally, this application presents an evaluation of

the largest sample of real-world data in the security games literature, i.e., over 12-years of data of

attacker defender interactions in QENP. The experimental results demonstrate the superiority of

my model compared to other existing models. CAPTURE will be tested in QENP in early 2016.
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Chapter 6

Maximin-based Solutions for Security Games

This chapter will cover another major contribution of my work, which focuses on providing new

robust maximin-based solutions for addressing multiple types of uncertainties that naturally arise

in security games. These types of uncertainties include: 1) uncertainty in the attacker’s payoff; 2)

uncertainty in the attacker’s rationality; and 3) uncertainty in the defender’s strategy (w.r.t the de-

fender’s execution and the attacker’s observation). In general, two different approaches have been

pursued in previous work to handle uncertainties. The first approach models uncertainties using

probability distributions and solves the resulting Bayesian Stackelberg game models (Kiekintveld

et al., 2011; Yin & Tambe, 2012b); the second takes a robust optimization approach of maximiz-

ing defender expected utility under the worst case resulting from such uncertainties (Jiang et al.,

2013; Kiekintveld et al., 2013; Pita et al., 2009; Yin et al., 2011). While the first approach as-

sumes a known distribution of uncertainties beforehand, the second does not assume such prior

knowledge. Since in many real world domains, including applications in counter-terrorism, we

may lack data to generate a prior distribution, I thus focus on the second approach in this chapter.

As mentioned previously, one key weakness of all previous work in robust optimization in

SSGs is that previous work compartmentalizes the uncertainties. The lack of a unified frame-

work implies that existing algorithms suffer losses in solution quality in handling uncertainties in

real-world security situations – where multiple types of uncertainties may exist simultaneously.

This chapter remedies these weaknesses of state-of-the-art algorithms when addressing uncer-

tainties in SSGs by providing the following key contributions. First, I am the first to present

a unified computational framework – a single core problem representation – for handling the

different types of uncertainties, as addressed so far in SSGs, and their combinations. Second,
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based on this unified framework, I present a unified algorithmic framework from which I can

derive different “unified” robust algorithms which address any combination of uncertainties in

my framework, avoiding the compartmentalization mentioned above – no other previous algo-

rithm can handle these combinations of uncertainties. Third, exploiting new insights from my

framework, I present fast approximate algorithms for handling different subsets of uncertainties

in large-scale security games. Finally, my experiments show the solution quality and runtime

advantages of my algorithms.

6.1 A Unified Robust Framework

6.1.1 The Space of Uncertainties in SSGs

I first summarize the major types of uncertainties that have been studied in previous work as a 3-

dimensional uncertainty space, shown in Figure 6.1. As shown in Figure 6.1, the three dimensions

of the uncertainty space are: 1) uncertainty in the adversary’s payoff; 2) uncertainty related to the

defender’s strategy; and 3) uncertainty in the adversary’s rationality. These dimensions refer to

three key aspects which directly affect both the defender and the adversary’s utilities. The origin

point of the uncertainty space corresponds to the case with perfectly rational adversary and no

uncertainty in the adversary’s payoff or related to the defender’s strategy.

Figure 6.1: The uncertainty space

Uncertainty in the adversary’s pay-

off has been addressed by ISG (Kiek-

intveld et al., 2013). Uncertainty in

the defender’s strategy can be classi-

fied into 2 cases, both addressed by RE-

CON (Yin et al., 2011): 1) uncertainty

in the defender’s execution in which the

executed strategy is different from the

planned strategy of the defender; and 2)

uncertainty in the adversary’s observa-

tion of the defender’s executed strategy.
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In the dimension of uncertainty in the adversary’s rationality, the existing methods can be classi-

fied into 3 cases: 1) the adversary can choose any arbitrary strategy (Maximin); 2) the adversary

can choose any strategy that satisfies the monotonic property (monotonic maximin (Jiang et al.,

2013)); and 3) the adversary can choose any ε−optimal strategy (BRASS (Pita et al., 2009)).

It is known that computing the defender’s strategy with the first and third cases is equivalent to

a special case of uncertainty in adversary’s payoff (Kiekintveld et al., 2013; Pita et al., 2009).

Therefore, when dealing with rationality uncertainty, I will focus only on the case of monotonic

adversary, i.e., monotonic maximin. As can be seen, the existing robust solution concepts attempt

to address only a specific type of uncertainty and thus lie on axes of the space. Thus, I can identify

combinations of different uncertainties which correspond to points not on any of the axes, that

have not been addressed by previous works.

6.1.2 A General Formulation of Uncertainty Sets

The existing robust solution concepts for SSGs all follow a standard robust-optimization ap-

proach: first represent the uncertainty in the system as an uncertainty set of possible models, then

choose the decision variables (defender strategy x in my case) such that the objective (defender

utility) is optimized given the worst-case model from the uncertainty set. The main difference

among the solution concepts is the way uncertainty sets are defined for different types of uncer-

tainties. For example, in ISG, the uncertainty sets are intervals of adversary payoffs; in RECON,

there is an hyper-rectangular uncertainty set around x representing the strategy executed by the

defender, and another hyper-rectangular uncertainty set representing the defender strategy per-

ceived by the adversary. In this work, I follow the same approach as previous work to represent

each individual type of uncertainty in SSGs. In particular, given the defender’s planned strategy x,

the real strategy that is executed lies within the rangeH(x) = {x̂ : x̂i ∈ [xi−γi, xi+γi]∩[0, 1]}.

Moreover, given that strategy, x̂, the defender’s strategy perceived by the adversary accord-

ing to his observations lies within the range [x̂i − ηi, x̂i + ηi] ∩ [0, 1]. As a result, the de-

fender’s final strategy at target i perceived by the adversary can be any value within the range

[xi−γi− ηi, xi+γi+ ηi]∩ [0, 1] where (γi, ηi) are given constants. Similarly, given an assumed

adversary’s payoff at target i, (Rai , P
a
i ), the adversary’s actual reward and penalty will lie within

the ranges [Rai − αi, R
a
i + αi] and [P ai − βi, P

a
i + βi] respectively, where (αi, βi) are given
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constants. Finally, in many cases such as counter-terrorism domains, the defender does not have

sufficient data on the adversary’s behaviors to accurately estimate the parameters of QR models.

Instead, monotonic maximin assumes that the adversary can choose any strategy y ∈ Y that has

the following monotonicity property (which is satisfied by all known variants of QR models):

Uai (x) ≤ Uaj (x) =⇒ yi ≤ yj . In other words, the higher the expected utility of a target, the

more likely the adversary will attack that target.

The first key component of my unified framework is a unified formulation of uncertainty

sets for SSGs that captures all major existing approaches. Consider an SSG where all or any

subset of the aforementioned uncertainties may be present. I begin by examining my objective

function, which is the defender’s expected utility
∑

i yiU
d
i (x). In general, Udi (x) is affected by

the uncertainty about the execution of defender strategies. The adversary strategy y will generally

depend on his expected utilities Uai (x) for all actions i, as well as how he makes decisions based

on these expected utilities. Naturally, y is affected by the uncertainty about adversary rationality.

Also, the uncertainties about adversary payoffs and adversary’s observation of defender’s strategy

both affect Uai (x), which in turn affects y; furthermore, since the uncertainty about the defender’s

executed strategy will affect the adversary’s observation of it, that in turn also affects y.

Based on the above observations, I build an uncertainty set that captures all uncertainties that

affect Udi (x), and another for uncertainties that affect y. The former task is simpler since only the

execution uncertainty affectsUdi (x). The task of defining an uncertainty set for y is more complex

because multiple types of uncertainties are involved. First of all, recall that execution uncertainty

indirectly affects y; but since I have already represented execution uncertainty usingH(x) above,

I take an executed defender strategy x̂ ∈ H(x) as the input of my definition for the uncertainty set

for y. Specifically, given an executed defender strategy x̂ ∈ H(x), I define Ψ(x̂) ⊆ Y as the set

of possible adversary strategies, resulting from all or any subset of uncertainties about adversary

payoffs, adversary’s observation, and adversary’s rationality. In this paper I will consider the case

with all uncertainties (Sections 6.1.3 and 6.2) as well as special cases with subsets of uncertainties

(Sections 6.3 and 6.4), so it is important to have a definition of the uncertainty set Ψ(x̂) that is

general and versatile. With that motivation in mind, I define the general form of Ψ(x̂) as follows.
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Definition 2. Given x̂ ∈ H(x), the uncertainty set Ψ(x̂) ⊆ Y is represented as a set of linear

constraints on the adversary strategy y. Specifically, there are K potential linear constraints on

y, each of which is activated or not depending on x̂. Formally,

Ψ(x̂) = {y ∈ Y : Dk(x̂) =⇒ Ak(y) ≥ 0, k = 1,K},

where Dk(x̂) is a disjunction (logical OR) of a set of conditions: Dk(x̂) = ∨s(Dks(x̂) ≥ 0)1

where Dks : X→ R are known scalar piecewise linear functions of x. Finally, Ak : Y → R are

known scalar linear functions of y, i.e., Ak(y) =
∑

i σikyi.

Then, the robust optimization problem of maximizing defender utility given worst-case un-

certainty can be formulated as follows:

P1 : max
x

min
x̂∈H(x)

min
y∈Ψ(x̂)

∑
i

yiU
d
i (x̂)

Next, I show that P1 is sufficiently general, i.e., it can capture combinations of the previously-

studied types of uncertainties.

6.1.3 Representation of Combined Uncertainties

I will focus on two cases in which specific formulations of the uncertainty set are different: 1)

combinations of uncertainties with a rational adversary, i.e., uncertainty in the adversary’s payoff

and the defender’s strategy; and 2) combinations of all other uncertainties with a monotonic

adversary. Other points in the uncertainty space can then be separated into these two cases.

Consider an SSG where there is uncertainty in the adversary’s payoff, i.e., for each target i,

the adversary’s reward and penalty lie within the range [Rai −αi, Rai +αi] and [P ai −βi, P ai +βi]

respectively. Furthermore there is uncertainty about execution and adversary’s observation of the

defender strategy as in RECON, with the former represented by H(x) and the latter represented

by intervals [x̂i − ηi, x̂i + ηi] ∩ [0, 1] for all targets i = 1, T .

1As we will see later in the paper, for certain types of uncertainties I will use strict inequalitiesDks(x̂) > 0 instead
of weak inequalities Dks(x̂) ≥ 0.
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Given the defender’s executed strategy x̂, the adversary’s utility at target i will vary within

the range [Ûamin(x̂, i), Ûamax(x̂, i)] where the lower and upper bounds Ûamin(x̂, i) and Ûamax(x̂, i)

are computed as the following:

Ûamin(x̂, i) = (Rai − αi)(1− x̂maxi ) + (P ai − βi)x̂maxi (6.1)

Ûamax(x̂, i) = (Rai + αi)(1− x̂mini ) + (P ai + βi)x̂
min
i (6.2)

where x̂maxi = min{1, x̂i + ηi} and x̂mini = max{0, x̂i − ηi} are the lower bound and upper

bound of the defender’s coverage probability at target i w.r.t the adversary’s observation.

Rational Adversary. Overall, target i could be potentially attacked by the adversary only when

Ûamax(x̂, i) ≥ maxj{Ûamin(x̂, j)}. Otherwise, there always exists a target j even with all the

uncertainties such that the adversary’s utility at target j is greater than at target i, which means that

the adversary will never attack target i. Therefore, in the uncertainty set, I have K = T potential

linear constraints with Ak(y) = −yk and Dk(x̂) = ∨s=1,T (Ûamin(x̂, s) − Ûamax(x̂, k) > 0)

where k = 1, T . Then (Dk(x̂) =⇒ Ak(y) ≥ 0) means that given target k, if there is a target

s ∈ {1, 2, . . . , T} such that Ûamin(x̂, s)− Ûamax(x̂, k) > 0, then yk = 0.

Example 1. Figure 6.2 shows an example of a 2-target game with uncertainty intervals of the

attacker’s payoffs, the defender’s execution and the attacker’s observation. In particular, the

uncertainty intervals of the attacker’s reward and penalty at target 1 are [4, 6] and [−4,−2].

Similarly, at target 2, we obtain intervals [0, 2] and [−3,−1]. The defender’s planned strategy is

to protect target 1 and 2 with 30% and 70% of the time. Due to uncertainty, the actual strategy

that the defender executes is to protect these two targets with probabilities lying within [0.2, 0.4]

and [0.6, 0.8] respectively. Finally, the attacker can observe that the defender is protecting target

1 with probability within [0.1, 0.5] and target 2 with probability within [0.5, 0.9]. As a result,

suppose that the executed strategy is x̂, given the uncertainty set and the adversary is perfectly

rational, there are two potential linear constraints, which is formulated as follows:

Ûamin(x̂, 2) > Ûamax(x̂, 1) =⇒ y1 = 0 (6.3)

Ûamin(x̂, 1) > Ûamax(x̂, 2) =⇒ y2 = 0 (6.4)

Let’s consider a particular executed strategy of the defender within the uncertainty interval, x̂ =

{0.2, 0.8}, then the actual strategy of the defender which is observed by the adversary belongs
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Target 1 Target 2 Plan Execution

Target 1 4, [-4, -2] -1, [0, 2] 0.3 [0.2, 0.4]

Target 2 -5, [4, 6] 2, [-3, -1] 0.7 [0.6, 0.8]

Observation [0.1, 0.5] [0.5, 0.9]

Adversary

D
ef

en
de

r
Figure 6.2: A 2-target game with uncertainties

to the intervals [0.1, 0.3] and [0.7, 0.9] of protecting target 1 and 2 respectively. Therefore, the

lower and upper bounds of the attacker’s utilities at target 1 and 2 is computed as:

Ûamin(x̂, 1) = 4× (1− 0.3) + (−4)× 0.3 = 1.6 (6.5)

Ûamax(x̂, 1) = 6× (1− 0.1) + (−2)× 0.1 = 5.2 (6.6)

Ûamin(x̂, 2) = 0× (1− 0.9) + (−3)× 0.9 = −2.7 (6.7)

Ûamax(x̂, 2) = 2× (1− 0.7) + (−1)× 0.7 = −0.1 (6.8)

Since Ûamax(x̂, 2) < Ûamin(x̂, 1), only target 1 could be attacked by the adversary. Therefore,

only the second potential constraint is activated while the first one is not activated. As a result,

the set of possible adversary strategies Ψ(x̂) is Ψ(x̂) ≡ {y ∈ Y : y2 ≤ 0}.

Monotonic Adversary. Overall, because the adversary is monotonic, for any pair of targets (i, j),

the following constraint must hold: Ûamin(x̂, i) ≥ Ûamax(x̂, j) =⇒ yi ≥ yj . Conversely, there

is no constraint on the attacking probability between target i and j if Ûamin(x̂, i) < Ûamax(x̂, j)

and Ûamin(x̂, j) < Ûamax(x̂, i). Therefore, in the uncertainty set, I have T (T−1)
2 potential linear

constraints indexed by k = (i, j), i 6= j, i, j = 1, T with Ak(y) = yi − yj and Dk(x̂) =

(Ûamin(x̂, i)− Ûamax(x̂, j) ≥ 0). In this case, there is only one condition in Dk(x̂), i.e., s = 1.

Example 2. Given the same example as shown in Figure 6.2 but the adversary is monotonic,

there are two potential linear constraints, which is formulated as follows:

Ûamin(x̂, 2) ≥ Ûamax(x̂, 1) =⇒ y2 ≥ y1 (6.9)

Ûamin(x̂, 1) ≥ Ûamax(x̂, 2) =⇒ y1 ≥ y2 (6.10)
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Since Ûamax(x̂, 2) < Ûamin(x̂, 1), only the second constraint is activated while the first one is not

activated. As a result, we obtain the set of possible adversary strategies Ψ(x̂) is Ψ(x̂) ≡ {y ∈

Y : y1 ≥ y2}.

6.1.4 Uncertainty Dimension Reduction

Overall, P1 is a multi-level complicated optimization problem which involves multiple and inter-

dependent uncertainty variables. My first novel idea is to reduce the number of dimensions in the

uncertainty space to simplify P1 in terms of reducing the complexity of finding the worst-case

scenario for the defender due to uncertainties. In general, it is not straightforward to integrate the

three dimensions of the uncertainty space into a single uncertainty dimension as to simplify the

max-min-min problem P1 to a single maximin problem. Indeed, these uncertainty dimensions are

inter-dependent which are difficult to unify because both the defender’s executed strategy x̂ and

the adversary’s strategy y directly involve in the objective function
∑

i yiU
d
i (x̂) while the feasible

region Ψ(x̂) of y depends on x̂. As an important contribution, I show that the multi-dimension

uncertainty space can be mapped into a uni-dimension space of the adversary’s strategies (Figure

6.3). In other words, P1 can be reformulated as a single maximin problem based on which I

propose a unified robust algorithmic framework described in Section 6.2.

PAYOFF UNCERTAINTY

DEFENDER STRATEGY
UNCERTAINTY

ATTACKER RATIONALITY
UNCERTAINTY

ATTACKER STRATEGY
UNCERTAINTY

Figure 6.3: Mapping 3-dimensional to 1-dimensional uncertainty space

Given the defender’s original strategy, x, the adversary’s utility at target i lies within the range

[Uamin(x, i), Uamax(x, i)] where Uamin(x, i) and Uamax(x, i) can be represented as the following:

Uamin(x, i) = (Rai − αi)(1− x+
i ) + (P ai − βi)x+

i (6.11)

Uamax(x, i) = (Rai + αi)(1− x−i ) + (P ai + βi)x
−
i (6.12)
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where x+
i = min{1, xi + γi + ηi} and x−i = max{0, xi − γi − ηi}. I define the set of the

adversary’s strategies, L(x), as the following:

• Monotonic adversary: L(x) = {y ∈ Y : Uamin(x, i) ≥ Uamax(x, j) =⇒ yi − yj ≥ 0}

• Rational adversary: L(x) = {y ∈ Y : ∨i(Uamin(x, i)−Uamax(x, j) > 0) =⇒ −yj ≥ 0}.

In addition, I define Udmin(x, i) which is the lowest possible value of defender expected utility

given that defender chose x and attacker chose i as follows:

Udmin(x, i) = max{0, xi − γi}(Rdi − P di ) + P di (6.13)

Theorem 1. P1 is equivalent to the following single maximin problem P2:

P2 : max
x∈X

min
y∈L(x)

∑
i

yiU
d
min(x, i)

Proof. In this proof, I focus on combinations of uncertainties with a monotonic adversary which

is the most difficult uncertainty case. Any other uncertainty cases could be solved in a similar

way. Given the defender’s original strategy, x, denote v1 = min
x̂∈H(x)

min
y∈Ψ(x̂)

∑
i yiU

d
i (x̂) and

v2 = min
y∈L(x)

∑
i yiU

d
min(x, i), in the following, I show that v1 = v2.

Step 1. I will first prove that v1 ≤ v2. The optimal solution of the inner minimization,

min
y∈L(x)

∑
i yiU

d
min(x, i), is an extreme point of L(x). Moreover, all inequalities of L(x) are

of the form yi ≥ 0 and yi ≥ yj for certain pairs of targets (i, j). Any extreme point of

L(x) satisfies the following condition: For all (i, j), if yi, yj > 0, then yi = yj . Denote

Ia(x) = {i : y∗i > 0, y∗ = argmin
y∈L(x)

∑
i yiU

d
min(x, i)} be the support of the optimal strategy

of the adversary given the defender’s original strategy x, I have ∀i ∈ Ia(x), y∗i = 1
|Ia(x)| and

∀j /∈ Ia(x), y∗j = 0. Moreover, the following constraint must hold:

∀i ∈ Ia(x), j /∈ Ia(x) : Uamax(x, i) > Uamin(x, j). (6.14)

Given the defender’s original strategy x and the corresponding support Ia(x), consider the

following defender’s executed strategy:

x̂∗i =

 max{0, xi − γi} , if i ∈ Ia(x)

min{1, xi + γi} , otherwise
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According to the definition of H(x), I have: x̂∗ ∈ H(x). In addition, I have: Uamax(x̂∗, i) =

Uamax(x, i) for all i ∈ Ia(x) and Uamin(x̂∗, j) = Uamin(x, j) for all j /∈ Ia(x). Therefore,

according to (6.14), I have y∗ ∈ Ψ(x̂∗). On the other hand, for all i ∈ Ia(x), I obtain Udi (x̂∗) =

Udmin(x, i). As the result, we obtain the following inequality:

v1 ≤ min
y∈Ψ(x̂∗)

∑
i

yiU
d
i (x̂∗) ≤

∑
i

y∗i U
d
i (x̂∗) =

∑
i∈Ia(x)

Udmin(x, i)

|Ia(x)|
= v2.

Step 2. Now, I am going to prove that v1 ≥ v2. Let x̂ ∈ H(x) be an executed strategy of the

defender, I have: Uamin(x, i) ≤ Ûamin(x̂, i) and Uamax(x, i) ≥ Ûamax(x̂, i), for all i. Therefore,

given any pair of targets (i, j), if Uamin(x, i) ≥ Uamax(x, j), then Ûamin(x̂, i) ≥ Ûamax(x̂, j) which

implies that ∀y ∈ Ψ(x̂), yi ≥ yj . As the result, ∀y ∈ Ψ(x̂), I obtain the following condition:

Uamin(x, i) ≥ Uamax(x, j) =⇒ yi ≥ yj . According to the definition of L(x), I have: y ∈ L(x).

Therefore, L(x) ⊇ Ψ(x̂). As the result, L(x) ⊇ ∪
x̂∈H(x)

Ψ(x̂). Because L(x) ⊇ ∪
x̂∈H(x)

Ψ(x̂)

and Udmin(x, i) ≤ Udi (x̂) for all i, I obtain:

v2 = min
y∈L(x)

∑
i

yiU
d
min(x, i) ≤ min

y∈ ∪
x̂∈H(x)

Ψ(x̂)

∑
i

yiU
d
min(x, i) (6.15)

= min
x̂∈H(x)

min
y∈Ψ(x̂)

∑
i

yiU
d
min(x, i) ≤ min

x̂∈H(x)
min

y∈Ψ(x̂)

∑
i

yiU
d
i (x̂) = v1 (6.16)

By combining Step 1 and Step 2, I show that v1 = v2 for all x. Therefore, P1 ≡ P2.

To that end, as L(x) exhibits the same structure as Ψ(x̂), I can represent this uncertainty set

as a set of potential linear constraints which are specified according to:

L(x) = {y ∈ Y : Dk(x) =⇒ Ak(y) ≥ 0, k = 1,K}

In particular, in the case of combined uncertainties with a rational adversary, for all k = 1, T , I

obtain a set of potential linear constraints with:

Ak(y) = −yk

Dk(x) = ∨s(Uamin(x, s)− Uamax(x, k) > 0)
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Similarly, in the case of combined uncertainties with a monotonic adversary, for all k =

(i, j), i, j = 1, T , the set of potential linear constraints are determined based on:

A(i,j)(y) = yi − yj

D(i,j)(x) = (Uamin(x, i)− Uamax(x, j) ≥ 0)

Example 3. In the 2-target game shown in Figure 6.2, given the defender’s planned strategy,

x = {0.3, 0.7}, the lower and upper bounds of the attacker’s utilities at targets 1 and 2 w.r.t the

defender’s planned strategy are computed as:

Uamin(x, 1) = 4× (1− 0.5) + (−4)× 0.5 = 0 (6.17)

Uamax(x, 1) = 6× (1− 0.1) + (−2)× 0.1 = 5.2 (6.18)

Uamin(x, 2) = 0× (1− 0.9) + (−3)× 0.9 = −2.7 (6.19)

Uamax(x, 2) = 2× (1− 0.5) + (−1)× 0.5 = 0.5 (6.20)

In the case that the adversary is perfectly rational, there are two potential linear constraints

which are determined as follows:

Uamin(x, 1)− Uamax(x, 2) > 0 =⇒ −y2 ≥ 0

Uamin(x, 2)− Uamax(x, 1) > 0 =⇒ −y1 ≥ 0

Since Uamin(x, 1)− Uamax(x, 2) < 0 and Uamin(x, 2)− Uamax(x, 1) < 0, both the constraints are

not activated. As a result, the uncertainty set of the adversary’s strategies is: L(x) = {y ∈ Y}

In the case that the adversary is monotonic, there are also two potential linear constraints

which are determined as follows:

Uamin(x, 1)− Uamax(x, 2) ≥ 0 =⇒ y1 ≥ y2

Uamin(x, 2)− Uamax(x, 1) ≥ 0 =⇒ y1 ≤ y2

Again, since Uamin(x, 1) − Uamax(x, 2) < 0 and Uamin(x, 2) − Uamax(x, 1) < 0, both the above

constraints for the monotonic adversary are not activated. As a result, the uncertainty set of the

adversary’s strategies is specified as: L(x) = {y ∈ Y}.
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6.2 Unified Robust Algorithm

Unlike the standard simple maximin problem for zero-sum games, in my maximin problem P2,

the uncertainty set for the adversary’s strategy, L(x), depends on the defender’s strategy x, mak-

ing P2 significantly harder to solve. More specifically, each strategy of the defender x will lead to

a different uncertainty set of the adversary’s strategy L(x) — which is determined by a different

set of activated linear constraints. A naive approach to solve P2 is to iterate over all possible

strategies for the defender to find the optimal one. However, since the strategy space of the de-

fender is infinite, this approach is infeasible. Therefore, I propose a divide-and-conquer method

to overcome this challenge which decouples the dependency of the adversary’s strategies on the

defender’s strategies. Essentially, I divide P2 into sub-maximin problems; each sub-problem is

associated with a subset of the defender’s strategies and a uncertainty subset of the adversary’s

strategies which is independent from the defender’s strategies (Figure 6.4). In other words, every

strategy within each subset of the defender’s strategies corresponds to the same uncertainty subset

of the adversary’s strategies. These sub-maximin problems thus can be solved using a standard

optimization approach which I will explain later. Finally, P2 is solved by combining the resulting

sub-optimal solutions to find the global optimal solution.

Defender strategy 
sub-space

Attacker action 
sub-space

Defender strategy space

(a) Cluster defender’s strategy space. (b) Divide P2 into sub-maximin problems; each 
corresponds to a pair of defender and attacker’s 
strategy sub-spaces.

Figure 6.4: Overview of URAC’s divide-and-conquer
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6.2.1 Divide-and-Conquer

I first define a subset C(x) as {k ∈ {1, 2, . . . ,K} : Dk(x)} which refers to the set of activated

linear constraints on y, i.e., ∀k ∈ C(x), Ak(y) ≥ 0. I define a T×K-constraint matrixM(C(x))

as the following: for all i = 1, T and k = 1,K:

M(C(x))ik =

 σik , if k ∈ C(x)

0 , otherwise

Proposition 2. The set of the adversary’s strategies, L(x), can be formulated as L(x) = {y ∈

Y : [M(C(x))]′ y ≥ 0} where [M(C(x))]′ is the transposed matrix of M(C(x)).

Proof. According to the definition of M(C(x)), I have:

(
[M(C(x))]′ y

)
k

=


∑

i σikyi , if k ∈ C(x)

0 , otherwise

Therefore, [M(C(x))]′ y ≥ 0 ⇐⇒ ∀k ∈ C(x), Ak(y) ≥ 0.

Example 4. Let us consider an example of a 3-target game in which the adversary is monotonic.

Given a defender’s planned strategy x, suppose that we obtain:

Uamin(x, 1) ≥ Uamax(x, 2)

Uamin(x, 1) ≥ Uamax(x, 3)

which means that the conditions D(1,2)(x) and D(1,3)(x) are true. As a result, the constraints

A(1,2)(y) = y1 − y2 ≥ 0 and A(1,3)(y) = y1 − y3 ≥ 0 must hold on y. In other words, I have

C(x) = {(1, 2), (1, 3)}. Furthermore, since A(i,j)(y) = yi − yj , ∀i, j = 1, 3, the coefficients

σik = 1 and σjk = −1 with k = (i, j). Thus, M(C(x)) is represented as the following:
(1, 2) (1, 3) (2, 1) (2, 3) (3, 1) (3, 2)

1 1 0 0 0 0

−1 0 0 0 0 0

0 −1 0 0 0 0


Although the constraint matrix depends on the defender’s strategy x, the set of M(C(x))

is finite. Specifically, M(C(x)) is a function of the subset C(x) ⊆ {1, 2, ...,K}. In other
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words, each subset of {1, 2, ...,K} corresponds to a unique constraint matrix. Because the

set {1, 2, ...,K} has 2K subsets, there are at most 2K constraint matrices. My key idea of the

unified algorithm is to conceptually divide the original optimization problem into multiple sub-

optimization problems according to the constraint matrix M(C(x)). Given a constraint matrix

M(C) where C ⊆ {1, 2, ...,K}, the corresponding sub-optimization problem is defined as

max
x∈SdC

min
y∈SaC

∑
i

yiU
d
min(x, i) (6.21)

where SdC and SaC are in turn the sets of the defender’s and adversary’s strategies corresponding

to C. In particular, SdC = {x ∈ X : C(x) = C} = {x ∈ X : ∨s(Dks(x) ≥ 0) ∀k ∈

C, ∧s(Dks(x) < 0) ∀k /∈ C} and SaC = {y ∈ Y : [M(C)]′y ≥ 0}. In other words, for all

x ∈ SdC , L(x) = SaC . Thus, the inner minimization of (6.21) can be represented as:

min
y

∑
i
yiU

d
min(x, i) (6.22)

[M(C)]′y ≥ 0 (6.23)∑
i
yi = 1, 0 ≤ yi ≤ 1. (6.24)

Replacing this LP with its dual, the sub-optimization problem (6.21) can be formulated as the

following single maximization problem:

max
x,θ,t

t (6.25)

(M(C)θ)i + t ≤ Udmin(x, i), ∀i = 1, T (6.26)

x ∈ SdC (6.27)

θ ≥ 0. (6.28)

where θ is dually associated with the constraint (6.23).

Example 5. In a 3-target game with a monotonial adversary, considering a constraint matrix

C = {(1, 2), (1, 3)}, then the constraint matrix M(C) can be constructed as shown in Example

4. The two sets of the defender’s and the adversary’s strategies are determined as follows:

SdC = {x ∈ X : Uamin(x, 1) ≥ Uamax(x, 2) and Uamin(x, 1) ≥ Uamax(x, 3)}

SaC = {y ∈ Y : y1 ≥ y2 and y1 ≥ y3}
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Finally, by introducing integer variables to encode the OR operators in SdC , each sub-

optimization problem (6.25-6.28) can be solved as a MILP. The final optimization solution of

P2 can be computed as the maximum of all these sub-optimization problems. However, there is

an exponential number, i.e., 2K , of such sub-optimization problems that I need to solve. In the

next section, I introduce a single MILP representation for more efficiently solving P2.

6.2.2 URAC: Unified Algorithmic Framework

Overall, I define an integer vector z ∈ {0, 1}K which encodes the set C. Specifically, given

a subset C ⊆ {1, 2, ...,K}, then zk = 1 if k ∈ C; otherwise, zk = 0. As a result, I have:

M(C)ik = zkσik. Therefore, by using z to refer to 2K sub-optimization problems, I obtain the

general MILP (6.29-6.37).

Example 6. In the case of a monotonic adversary, the integer vector z is defined as z(i,j) = 1

when (i, j) ∈ C for a pair of targets (i, j), which indicates that the adversary will attack target

i with higher probability than attacking target j. Conversely, z(i,j) = 0 when (i, j) /∈ C. On the

other hand, in the case of a perfectly rational adversary, the integer vector z is defined as zi = 1

when i ∈ C for target i, implying that target i can be attacked by the adversary.

Overall, this MILP with an instantiation of z is equivalent to a specific sub-optimization

problem (6.25–6.28). Since the MILP optimizes over all possible values of z, it computes the

maximum of all these sub-optimization problems, which is the optimal solution of P2. In par-

ticular, constraints (6.26) and (6.28) correspond to constraints (6.30–6.31). In constraint (6.26),

I can rewrite the first term (M(C)θ)i as
∑

k zkσikθk which is a quadratic expression. I apply

a standard technique to transform it to a linear expression. Specifically, I define a new variable

φk = zkθk. I have zk = 0 =⇒ φk = 0. On the other hand, zk = 1 =⇒ φk = θk where 0 ≤ θk,

74



which means that I only need constraints 0 ≤ φk. As a result, I have the following constraints on

φk: 0 ≤ φk ≤ Nzk where N is a sufficiently large constant.

max
x,z,φ,q,t

t (6.29)∑
k
σikφk + t ≤ Udmin(x, i), ∀i (6.30)

0 ≤ φk ≤ Nzk, ∀k (6.31)

rk + (1− zk)N ≥ 0, ∀k (6.32)

rk − zkN < 0, ∀k (6.33)

rk ≥ Dks(x), ∀k, s (6.34)

rk ≤ Dks(x) + (1− qks)N, ∀k, s (6.35)∑
i
xi ≤ R, xi ∈ [0, 1] (6.36)∑
s
qks = 1, ∀k, zi, qks ∈ {0, 1}. (6.37)

Furthermore, the feasible set of the defender’s strategies, SdC , in constraint (6.27) is computed

according to the constraints (6.32–6.36). Specifically, the constraint {∨s(Dks(x) ≥ 0) ∀k ∈ C}

of SdC can be replaced as constraint (6.32) where rk = maxsDks(x) can be determined by con-

straints (6.34–6.35). In addition, the constraint {∧s(Dks(x) < 0) ∀k /∈ C} of SdC corresponds to

constraint (6.33). MILP solvers generally can not directly deal with strict inequality constraints

like (6.33). In my implementation, I replace (6.33) with rk + ε − zkN ≤ 0, ∀k, s, where ε is a

small positive constant. This usage of ε is consistent with previous formulations such as RECON

and ISG (Kiekintveld et al., 2013; Yin et al., 2011).

Finally, in order to express Dks(x) and Udmin(x, i) which are piecewise linear functions of

x, I need extra integer variables. For example, I can compute Udmin(x, i) (Equation (6.13)) using

integer variable hi ∈ {0, 1} as the following:

P di ≤ Udmin(x, i) ≤ P di + hiN (6.38)

bi ≤ Udmin(x, i) ≤ bi + (1− hi)N (6.39)

where bi = (xi − γi)(Rdi − P di ) + P di . I can determine Uamin(x, i) and Uamax(x, i) in Dks(x) in

a similar way.
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I refer to the MILP (6.29-6.37) as the Unified Robust Algorithmic framework for addressing

unCertainties (URAC). By replacing Dk(x) and Ak(x) with specific formulations, I obtain a

version of URAC for addressing a particular type of uncertainty, i.e., when Ak(y) = −yk and

Dk(x) = ∨s(Uamin(x, s) − Uamax(x, k) > 0), the corresponding version of URAC addresses

a combined uncertainty with a rational adversary. In fact, no previous robust algorithm could

handle all these combinations of uncertainties.

MILP relaxation: I approximate the piecewise linear functions Uamin(x, i), Uamax(x, i) and

Udmin(x, i) with linear functions to reduce the computational complexity of URAC, e.g., I can

replace Udmin(x, i) as Udmin(x, i) = (xi−γi)(Rdi −P di )+P di . I also approximate Uamin(x, i) and

Uamax(x, i) similarly. I refer to this approximate algorithm as a-URAC.

6.3 A Scalable Robust Algorithm I

Although (a-)URAC can handle any type of uncertainty in the uncertainty space, these algo-

rithms struggle to scale up to larger problems, due to having potentially large numbers of integer

variables. Nevertheless, having the general formulation of uncertainty sets allows us to make

the following observation: the constraint functions Ak(y) exhibit two different important prop-

erties depending on the types of uncertainties under consideration: 1) in the case of combined

uncertainties with a rational adversary, Ak(y) imposes constraints on the targets separately, i.e.,

Ak(y) = −yk; 2) in the case of combined uncertainties with a monotonic adversary, Ak(y) in-

volves multiple targets into constraints, i.e., A(i,j)(y) = yi− yj . By using these properties, in the

next two sections I present two scalable algorithms.

In the case of combined uncertainties with a rational adversary (Group 1), overall, I want

to apply the binary search method to iteratively search through the space of the defender’s utility.

At each iteration of the binary search, I need to determine if there exists a feasible solution of

the defender’s strategy, x, such that min
y∈L(x)

∑
i yiU

d
min(x, i) ≥ t where t is a given value. This

corresponds to a feasibility version of the MILP (6.29-6.37), where given t I are asked to find a

feasible x. At a high level, because Ak(y) includes only a single target k, constraints (6.30-6.35)

of x can be decomposed into separate constraints of xi. Then by examining the conditions on the

defender’s coverage at every target independently, I can determine if a utility value t is feasible.

76



In particular, constraints (6.30-6.35) provide conditions by which the linear constraint Aj(y)

at target j for all j = 1, T is (not) activated. Denote by r = maxj U
a
min(x, j) the maximum

value of the adversary’s lowest utilities over all targets. I call r the adversary’s “cut-off” utility.

In addition, I define i = argmaxj U
a
min(x, j) as the “cut-off” target. In fact, if t and i are known

in advance, constraints (6.30-6.35) reduce to xj ≥ xminj , where xminj is the required minimum

coverage probability of the defender at target j (which I will explain in detail later). As a result,

I can determine the defender’s minimum coverage, {xminj }j , such that the lowest utility of the

defender is t and the “cut-off” target is i. Therefore, given t, minimum amount of resources

required is Rmin = mini{
∑

j x
min
j |i← “cut-off” target}.

Hence, t is a feasible utility for the defender only when Rmin ≤ R (Constraint 6.36). By fol-

lowing the binary search approach, I obtain a scalable algorithm called δ−Optimal Robust Algo-

rithm for Addressing unCertainties (δ−ORAC). This algorithm guarantees an δ−optimal solution

for addressing uncertainties in this group where δ is a given positive small value. δ−ORAC is a

generalization of ISG which only deals with uncertainty in the adversary’s payoff (Kiekintveld

et al., 2013). δ−ORAC arises out of my unified framework and then with γ = η = 0, it becomes

equivalent to ISG, whereas with α = β = 0, it becomes a robust algorithm for dealing with

uncertainty in the defender’s strategy.

Finally, given a feasible utility t and the “cut-off” target i, xminj for all j = 1, T can be

determined as follows. As rk can be computed as rk = maxsDks(x) = r − Uamax(x, k), the

MILP constraints (6.30-6.35) reduce to the following conditions:

Defender utility condition for targets at which linear constraints are not activated: For all

such targets j, I have zj = 0. As σjk = −1 if j = k; otherwise, σjk = 0, constraint (6.30) can

be reduced to the following:

−φj + t ≤ Udmin(x, j), ∀j = 1, T

which implies that if zj = 0, Udmin(x, j) ≥ t or equivalently, xminj ≥ md
j where md

j is the

minimum coverage of the defender on target j ensuring that Udmin(x, j) is at least t. In particular,

if P dj ≥ t, then md
j = 0. Otherwise, md

j =
t−P dj
Rdj−P dj

+ γj .
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In addition, constraint (6.33) can be formulated as the following:2

r − Uamax(x, j)− zjN ≤ 0, ∀j = 1, T (6.40)

which implies that Uamax(x, j) ≥ r if zj = 0.

As the linear constraint at the “cut-off” target i is always not activated, I have: xmini = md
i .

Thus, the adversary’s “cut-off” utility can be computed as r = Uamin(x, i) = max{P ai −βi, (Rai −

αi)(1−md
i − γi − ηi) + (P ai − βi)(md

i + γi + ηi)}.

Adversary utility condition for targets at which linear constraints are activated: For all such

targets j, I have zj = 1. Constraint (6.32) can be simplified as the following:

r − Uamax(x, j) + (1− zj)N > 0, ∀j = 1, T (6.41)

which implies that Uamax(x, j) < r when zj = 1. I approximate this constraint by Uamax(x, j) ≤

r − ε, where ε is a small positive constant.

Thus, if zj = 1, then xminj ≥ ma
j where ma

j = 0 if Raj + αj ≤ r − ε. Otherwise, ma
j =

Raj+αj−r+ε
Raj+αj−(Paj +βj)

+γj + ηj .

As zj is either 0 or 1, I obtain: xminj ≥ min{md
j ,m

a
j}.

Cut-off utility condition for all targets: Finally, I have:

Uamin(x, j) ≤ r, ∀j (6.42)

This constraint implies: xminj ≥ mk
j for all target j where mk

j = max{0, Raj−αj−r
Raj−αj−(Paj −βj)

− γj −

ηj}. In fact, the constraint (6.42) is equivalent to constraint (6.34).

As a result, I can determine the smallest necessary amount of defender’s resources at every

target j as follows:

xminj = max{mk
j ,min{md

j ,m
a
j}} (6.43)

Moreover, if {xminj }j satisfy constraint (6.36), the defender’s strategy x with xj = xminj for

all j is a feasible solution given t.

Example 7. Given the example of a 2-target game with uncertainties shown in Figure 6.2 and the

adversary is perfectly rational, let’s consider a utility of the defender t = 0.0. Now, I am trying
2As Dk(x) refers to strict inequalities in this case of uncertainty (Section 6.1.4) which differs from Definition 2,

constraint (6.40) is not a strict inequality as (6.33).
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to determine if there exists a feasible strategy x such that the defender receives a utility which is

no less than t for playing x. I consider two cases of the “cut-off” target:

Case 1–Target 1 is the cut-off target. There are three conditions that need to be satisfied:

• Defender utility condition: Since target 1 is the cut-off target, i.e., Uamin(x, 1) ≥

Uamin(x, 2), the linear constraint at target 1 is not activated which means that

Udmin(x, 1) ≥ t =⇒ 4 × (x1 − 0.1) + (−5) × (1 − x1 + 0.1) ≥ 0 =⇒ x1 ≥

0.66 =⇒ md
1 ≈ 0.66.

Furthermore, if the linear constraint at target 2 is not activated, I obtain: Udmin(x, 2) ≥

t =⇒ 2×(x2−0.1)+(−1)×(1−x2 +0.1) ≥ 0 =⇒ x2 ≥ 1.3
3 =⇒ md

2 = 1.3
3 ≈ 0.43.

Finally, the adversary’s cut-off utility is computed as r = Uamin(x, 1) = max{−4, 4× (1−

md
1 − 0.2) + (−4)× (md

1 + 0.2)} ≈ −2.84.

• Adversary utility condition: Since this condition is only applied for targets at which linear

constraints are activated, I only need to examine target 2 (target 1 is the cut-off target at

which linear constraints are always not activated). If the linear constraint at target 2 is

activated, I obtain: Uamax(x, 2) ≤ r =⇒ 2×(1−x2 +0.2)+(−1)×(x2−0.2) ≤ −2.84

which implies that ma
2 ≈ 1.81.

• Cut-off utility condition: Finally, the condition on the cut-off utility of the adversary

Uamin(x, 2) ≤ r =⇒ 0 × (1 − x2 − 0.2) + (−3) × (x2 + 0.2) ≤ −2.84 which is

hold for all x2 ≥ 0.75 This implies that mk
2 ≈ 0.75.

As a result, when target 1 is the cut-off target, the minimum coverages of the defender at targets

1 and 2 are computed as:

xmin1 = md
1 ≈ 0.66

xmin2 = max{mk
2,min{md

2,m
a
2}} = 0.75

Case 2–Target 2 is the cut-off target. The minimum coverages of the defender which satisfy that

the defender’s utility is at least t = 0.0 can be computed in a similar way.

To that end, I will examine if at least one of the two cases will provide a feasible strategy for

the defender; that is x ∈ X. For example, in the case that target 1 is the cut-off target, I have

xmin1 + xmin2 > 1. which means that the defender’s utility t = 0.0 is infeasible.
79



6.4 A Scalable Robust Algorithm II

I now turn to providing an approximate algorithm for the second group, which combines mono-

tonic adversaries with other uncertainties. To that end, I first focus on approximate algorithm for

the monotonic maximin problem without other uncertainties, i.e., max
x∈X

min
y∈Lm(x)

∑
i yiU

d(x, i),

by exploiting the structure of the feasible region which corresponds to Ak(y), Lm(x) = {y ∈

Y : Uai (x) ≥ Uaj (x) =⇒ yi ≥ yj}.

The main computational difficulty of URAC for this case of uncertainty is due to its T 2

integer variables zk, k = (i, j), i, j = 1, T . At a high level, my approach builds an alternative

formulation with fewer integer variables. Given a defender strategy x, the optimal solution of

the inner minimization problem, y∗, will be one of the extreme points of the polytope of Lm(x)

which means that ∀i, j such that y∗i , y
∗
j > 0, then y∗i = y∗j . This implies that Lm(x) has at most

T extreme points (Jiang et al., 2013). In practice, I observe that the number of extreme points

of Lm(x∗) where x∗ is the optimal solution of the monotonic maximin problem is often much

smaller than T . To exploit this observation, my idea is to find the optimal x∗ within a subset

Sdp ⊆ X such that for each x ∈ Sdp , there are only p extreme points of Lm(x) where p �

T . Intuitively, having to consider fewer extreme points should make the computation simpler.

Indeed, this optimization problem can be formulated as a MILP with only pT integer variables.

Specifically, I define Sdp to be the set of x such that the targets can be clustered into p

groups, each group having the same attacker expected utility. Formally, given x ∈ Sdp , define

G1, G2, ..., Gp as a partition of the T targets such that ∀ k = 1, p, I have Uai (x) = Uaj (x), ∀i, j ∈

Gk, and ∀ k < k′, I have Uai (x) > Uaj (x), ∀i ∈ Gk, j ∈ Gk′ . Since the monotonic property

implies that Uai (x) = Uaj (x) =⇒ yi = yj , therefore ∀i, j ∈ Gk, I have yi = yj . I can then

write the set of extreme points of L(x) as Sa(x) = {yk : yki = 1∑k
r=1 |Gr|

, ∀i ∈ Gs, s ≤ k; yki =

0,∀i ∈ Gs, s > k}k=1,p. Intuitively, each extreme point yk corresponds to the case that the

adversary only attacks targets belonging to group G1, G2, . . . , Gk with the same probability. As

the optimal strategy of the adversary is an extreme point of L(x), then it belongs to Sa(x). In

fact, y∗ = argminyk
∑

i y
k
i U

d
i (x).

Denote by Bd
p = ∪k=1,pS

d
k the set of the defender’s strategy such that each x ∈ Bd

p will

categorize the targets into no more than p groups. Finally, given that x∗ ∈ Bd
p , the monotonic

80



maximin problem becomes max
x∈Bdp

min
y∈Sa(x)

∑
i yiU

d
i (x), which can be encoded as the MILP for-

mulated in (6.44-6.53), referred to as the Grouping Monotonic Maximin-p (GMM-p) where p

indicates the maximum number of groups.

max
x,h,s,t,m

t (6.44)

Uai (x) + (1− hk,i)N ≥ mk, ∀k, i (6.45)

mk ≥ Uai (x)− hk,iN + ε, ∀k, i (6.46)

m1 ≥ Uai (x), ∀i (6.47)

mk ≥ Uai (x)− hk−1,iN, ∀k, i (6.48)

hk,i ≥ hk−1,i, ∀k, i (6.49)

sk,i + t ≤ Udi (x) + (1− hk,i)N, ∀k, i (6.50)

− hk,iN ≤ sk,i ≤ hk,iN,
∑

i
sk,i = 0, ∀k, i (6.51)

hp,i = 1, ∀i,
∑

i
h1,i ≥ 1 (6.52)∑

i
xi ≤ R, 0 ≤ xi ≤ 1, hk,i ∈ {0, 1}, ∀k, i. (6.53)

In this MILP, hk (k = 1, p) is an integer vector which indicates targets belonging to individual

groups. Specifically, if hk,i = 0 and hk+1,i = 1, target i must belong to group k + 1 and

hk′,i = 1, ∀k′ ≥ k + 1 and hk′,i = 0, ∀k′ ≤ k. The variable m represents the adversary’s

expected utility for each group, i.e., all targets belonging to group k must have the adversary’s

expected utility equal to mk. Variable t is the maximum utility of the defender and also the

objective value for us to optimize. Finally, sk is an auxiliary variable used for computing the

defender’s utility which is corresponding to a potential optimal strategy of the adversary.

Overall, constraints (6.45-6.49) guarantee that all targets in the same group will have the

same adversary’s expected utility and ∀i ∈ Gk, j ∈ Gk′ , k < k′, I have: Uai (x) > Uaj (x).

Furthermore, constraints (6.50-6.51) guarantee that if t∗ is the optimal objective value, then

t∗ = mink{U
d
(x, k)} where Ud(x, k) is corresponding defender’s utility to a potential optimal

strategy yk of the adversary in Sa(x).

Theorem 2. Denote by v∗p the maximum utility of the defender returned by GMM-p. For all

p > p′, I have: v∗p ≥ v∗p′ . Morever, there exists 1 ≤ p ≤ T such that v∗p = v∗ where v∗ is the

maximum utility of the defender computed by monotonic maximin.
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Proof. Overall, the MILP (6.44-6.53) attempts to compute the optimal solution of the optimiza-

tion problem: max
x∈Bdp

min
y∈Sa(x)

∑
i yiU

d
i (x).

In particular, constraints (6.45-6.49) guarantee that all targets in the same group will have the

same adversary’s expected utility and ∀i ∈ Gk, j ∈ Gk′ , k < k′, I have: Uai (x) > Uaj (x). In

particular, if hk−1,i = 0 and hk,i = 1 which mean that target i belongs to group k, constraints

(6.45) and (6.48) force Uai (x) = mk. If hk,i = 0 which means that target imust belong to a group

k′ > k which means Uai (x) < mk, constraint (6.46) guarantees that Uai (x) ≤ mk − ε < mk

where ε is a given small positive number. Constraint (6.49) ensures that if hk−1,i = 1, then

hk,i must be equal to 1, being consistent with the definition of the integer variable vector hk.

Constraint (6.52) guarantees that each target must belong to a certain group.

Furthermore, constraints (6.50-6.51) guarantee that if t∗ is the optimal objective value, then

t∗ = min
k=1,p

{Ud(x, k)} where Ud(x, k) is corresponding defender’s utility to a potential optimal

strategy yk of the adversary in Sa(x). In particular, in constraint (6.51), if hk,i = 0, then sk,i = 0.

In addition, as
∑

i sk,i = 0, I have:
∑

i∈∪r=1,kGr
sk,i = 0 (*). On the other hand, in constraint

(6.50), ∀i ∈ ∪r=1,kGr, which means that hk,i = 1, I have: sk,i + t ≤ Udi (x) (**). By taking

the sum of (**) over all i ∈ ∪r=1,kGr and by using condition (*), I obtain the following derived

inequality: for all k = 1, p, t ≤ U
d
(x, k). As the objective of the MILP is to maximize t, the

optimal values of {sk,i}k=1,p,i=1,T will lead to t∗ = min
k=1,p

{Ud(x, k)}.

Therefore, GMM-p will find the optimal solution through Bd
p . In addition, I have the follow-

ing property of Bd
p : ∀T ≥ p > p′ ≥ 1 : |Bd

p | ⊇ |Bd
p′ |. Therefore, v∗p ≥ v∗p′ . Finally, as any

strategy of the defender will categorize the targets into p groups for some p ∈ {1, 2, ..., T}, the

optimal strategy of the defender will belong to Bp for some p which implies that GMM-p will

provide the optimal solution.

In the case of combination of monotonic adversary with other uncertainties, the grouping

idea can still be applied but a somewhat different approach is needed.

6.5 Experimental Results

I systematically generated payoff structures based on covariance games in GAMUT (Nudelman

et al., 2004). I adjust the covariance value r ∈ [−1.0, 0.0] with step size λ = 0.1 to control
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the correlation between rewards of players. The rewards and penalties of both the defender and

the adversary are chosen within the ranges [1, 10] and [−10,−1] respectively. The experimental

results are obtained using CPLEX on a 2.3 GHz machine with 4GB main memory. All compar-

ison results except where noted with my algorithms are statistically significant under bootstrap-t

(α = .05) (Wilcox, 2002).

6.5.1 Solution quality

I show that my robust algorithms outperform other existing robust algorithms discussed in Chap-

ter 3 in both small-scale and large-scale game scenarios, under conditions of low or high uncer-

tainties, and given any combinations of uncertainties.

Small-scale domains: In my first set of experiments, I examine the performance of my algo-

rithms in the case of small-scale games which are motivated by real-world domains such as LAX

or Boston harbor (Tambe, 2011). I first examine the game settings in which uncertainties exist

in all 3 dimensions of the uncertainty space (Figure 6.1): the adversary’s payoff, the defender’s

strategy, and the adversary’s rationality. Specifically, I examine two cases: 1) low uncertainty:

(α = β = 0.1, γ = η = 0.01); and 2) high uncertainty: (α = β = 0.5, γ = η = 0.05). In

both cases, the adversary responds monotonically. I evaluate the performance of URAC-1 and a-

URAC-1 – versions addressing a combination of all uncertainties including monotonic adversary

against ISG, RECON, and monotonic maximin (MM). For ISG and RECON, I search over the

range of [0.1, 5.0] with step size λ1 = 0.2 and the range of [0.01, 0.5] with step size λ2 = 0.02

to find the parameter settings for (α, β, γ, η) that provide the highest defender’s expected util-

ity in my settings. In fact, when the sampled values of parameters are sufficiently large, i.e.,

α = β = 5.0, ISG’s optimal solution corresponds to Maximin’s. In these figures, the results are

averaged over 500 payoff structures.

Figure 6.5 shows the defender’s worst-case expected utility (y-axis) while varying the num-

ber of targets (x-axis). As shown in Figure 6.5, even though the parameters of both ISG and

RECON are optimally tuned over the sampled values, both URAC-1 and a-URAC-1 still obtain

significantly higher defender’s expected utility. For example, in Figure 6.5(a), in the 6-target case,

while ISG, RECON, and MM achieve a utility of -0.064, -0.2631, and -0.9672, respectively, the

defender’s utilities obtained by URAC-1 and a-URAC-1 are, in turn, 0.1892 and 0.1822.
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(a) Uncertainty setting:α = β = .1, γ = η = .01 (b) Uncertainty setting:α = β = .5, γ = η = .05

Figure 6.5: Solution quality, all uncertainties
Now I switch to the case of a combination of a subset of or individual uncertainties. In this

case, in addition to URAC, I evaluate the performance of my approximate algorithms. Figure

6.6(a) shows the solution quality of URAC-2 and δ−ORAC where δ = 1e − 8 in comparison

with RECON and ISG in the case of combined uncertainties with a rational adversary. URAC-

2 is a version of URAC to address this combination of uncertainties. The parameter values of

both RECON and ISG are selected similarly to the previous experiment. In addition, I compare

the solution quality of URAC-3, GMM-3, and GMM-2 with monotonic maximin (MM) and the

top-K algorithms with K = 2, 3 when addressing the monotonic adversary without any additional

uncertainty (Figure 6.6(b)). URAC-3 is a version of URAC corresponding to this case of uncer-

tainty. Specifically, the top-K algorithms approximate the monotonic maximin solution; higher K

achieves higher solution quality but runs more slowly. The Top-3 and Top-2 algorithms are cho-

sen as they are the top performers (Jiang et al., 2013). In these figures, the results are averaged

over 100 payoff structures.

(a) Uncertainty setting:α = β = .5, γ = η = .05 (b) Uncertainty setting: monotonic adversary

Figure 6.6: Solution quality, approximate algorithms

As shown in Figure 6.6, δ−ORAC, GMM-2, and GMM-3 significantly outperform the other

existing robust algorithms. Their solution quality is approximately the same as URAC-2 and
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URAC-3, respectively. For example, in Figure 6.6(a), in the case of 9-target games, while the de-

fender’s utility obtained by both URAC-2 and δ−ORAC is -1.16, ISG and RECON only achieve

utilities of -1.89 and -1.87, respectively. These results show that my robust algorithms outperform

other existing robust algorithms in terms of solution quality in small-scale games. The only ex-

ception is the isolated uncertainty of monotonic adversary where MM provides the exact optimal

solution.

Large-scale domains: Here, I show that my approximate algorithms significantly outperform

other robust algorithms for addressing a combination of a subset of or individual uncertainties. I

examine 2 game settings: 1) combined uncertainties with a rational adversary (Figure 6.7(a)); and

2) monotonic adversary (Figure 6.7(b)). In these figures, the results are averaged over 100 payoff

structures. Given the limited scalability of URAC to large games, I do not include its result.

Figure 6.7 shows that my approximate algorithms obtain a significantly higher utility than other

robust algorithms in large-scale games. For example, in Figure 6.7(a), in the case of 80-target

games, δ−ORAC achieves a utility of -2.06 while RECON and ISG obtain only -2.82 and -2.83,

respectvely.

(a) Uncertainty setting:α = β = .5, γ = η = .05 (b) Uncertainty setting: monotonic adversary

Figure 6.7: Solution quality, approximate algorithms

Furthermore, even when δ−ORAC only attempts to address a specific type of uncertainty, i.e.,

uncertainty in the defender’s strategy (α = β = 0.0), it provides a higher solution quality than

the fastest robust algorithm, i-RECON (Yin et al., 2011), for dealing with this type of uncertainty.

In this experiment, δ−ORAC guarantees to obtain an δ−optimal solution with δ = 1e− 8 while

i-RECON does not ensure any solution bound. As shown in Figure 6.8, while both algorithms

achieve the similar expected utility when γ = η = .01, when the uncertainty increases, i.e.,

γ = η = .05, i-RECON obtains lower defender’s utility than δ−ORAC. For example, in Figure
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6.8(b), in the case of 320-target games, δ−ORAC obtains a defender’s utility of -3.54 on average

while i-RECON achieves only -3.84. Overall, my robust algorithms significantly outperform the

existing robust algorithms for addressing uncertainties.

(a) γ = η = .01 (b) γ = η = .05

Figure 6.8: Solution quality, uncertainty in defender’s strategy

6.5.2 Runtime performance

(a) Uncertainty setting:α = β = .5, γ = η = .05 (b) Uncertainty setting: monotonic adversary

Figure 6.9: Runtime performance, approximate algorithms

In addition to solution quality, I show that my approximate algorithms obtain an efficient run-

time performance in comparison with other robust algorithms in large-scale games. The results

are average over 100 payoff structures. In Figure 6.9, the y-axis indicates the runtime in seconds

and the x-axis shows the number of targets. Figure 6.9(a) shows that δ−ORAC runs significantly

faster than i-RECON and its runtime is approximately the same as ISG; i-RECON’s runtime

grows quickly while δ−ORAC’s runtime is consistently fast as the number of targets increases.

For example, i-RECON’s runtime reaches 144.25 seconds while δ−ORAC and ISG take only

0.05 and 0.046 seconds on average in 320-target games, respectively.
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Furthermore, my GMM-p algorithm is shown to have approximately the same runtime as

the Top-K algorithm (Figure 6.9(b)). While my approximate algorithms achieve higher quality

without sacrificing runtime, some URAC versions are unable to scale-up. For example, when

addressing a combination of all uncertainties (i.e., α = β = 0.5, γ = η = 0.05, monotonic

adversary), URAC-1’s runtime is 85.17 seconds for 9-target games while my approximate algo-

rithms take less than 1 second; of course, URAC-1 addresses a combination of uncertainties that

no algorithm can.

6.6 Summary

In this chapter, I provide the following main contributions: 1) I present the first unified frame-

work to handle all the uncertainties where robust maxmin algorithms have been defined in security

games; 2) I provide a unified algorithmic framework from which I can derive different “unified”

robust maximin algorithms to address combinations of these uncertainties; 3) I introduce approx-

imate robust scalable algorithms; 4) I show through my experiments that my algorithms improve

runtime performance and/or solution quality.
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Chapter 7

Regret-based Solutions for Security Games

As shown in Chapter 6, a major approach to deal with uncertainties in SSGs is to use strict uncer-

tainty, where the uncertain elements (e.g., the attacker payoffs) are assumed to lie within some

interval. In this chapter, I develop novel robust optimization methods for addressing uncertainties

in SSGs, specifically focusing on Strict Uncertainty Payoff games (SPACs) that rely on the min-

imax regret — a widely used decision criterion for decision making under uncertainty (Savage,

1972; Kouvelis & Yu, 1997; Boutilier et al., 2006). Essentially, minimax regret focuses on the

loss with respect to decision quality over possible payoff realizations, making decisions with the

tightest possible optimality guarantees.

Under the Bayesian perspective, it may be argued that minimax regret is too conservative.

Minimax regret is also pointed out to not satisfy the principle of irrelevant alternatives or stochas-

tic dominance (Savage, 1972; Luce & Raiffa, 2012; Quiggin, 1990). Yet, in many security do-

mains, especially in wildlife protection, assessing a prior distribution over the payoff values (i.e.,

animal density) is often very difficult and hence the Bayesian approach is inappropiate. In addi-

tion, finding the equilibrium of a Bayesian Stackelberg game is NP-hard. On the other hand, in

security domains, terrorist attacks could cause massive loss of life and thus security agencies may

tend to be very cautious toward the worst case scenrio of uncertainty that affects their patrol ef-

fectiveness. Minimax regret helps in determining robust strategies and their vulnerabilities when

a prior distribution is hard to estimate. Moreover, bounds on payoff values (or payoff uncertainty

intervals) are easier to maintain. Using such bounds also leads to much less computationally

expensive algorithms. Therefore, minimax regret is an appropriate robust method to deal with

uncertainties in security games.
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In fact, for these SPACs, robust optimization methods have been developed before using only

the maximin decision criterion, in which a defender chooses a strategy that maximizes her worst-

case utility over possible payoff realizations. Indeed, minimax regret has not yet been available

to (security) policy makers—my work in this chapter makes it a viable criterion for generating

new, less conservative, candidate defensive strategies. Unfortunately, operationalizing minimax

regret involves complex, non-convex optimization for which efficient algorithms do not exist.

I thus develop novel, efficient algorithms for approximating minimax regret, and offer experi-

mental results showing that high solution quality can be attained quickly. My second contribution

is a payoff elicitation procedure that can be used to optimize the defender’s efforts in assessing

payoffs, allowing reduction in the uncertainty of those parameters that most improve decision

quality. This is yet another reason to use minimax regret as an alternative robustness criterion—it

has been proven to be a very effective driver of elicitation in several domains (Boutilier, Sand-

holm, & Shields, 2004; Regan & Boutilier, 2009). Finally, I propose and evaluate several payoff

elicitation strategies, exploiting minimax regret solutions.

The remainder of the chapter is organized as follows: 1) First, I define minimax regret (MMR)

and then introduce several new exact and approximate algorithms for its computation; 2) Second,

I explain new preference elicitation methods; and 3) Finally, I provide empirical evaluation.

7.1 Regret-based Solutions

I now introduce some basic game concepts which will be used in this chapter. I then formulate

the minimax regret solution for SPACs and finally, discuss several methods for its computation.

7.1.1 Basic Game Concepts

Expected utilities. In SSGs, a defender allocatesm resources to protect a set of T targets from an

attacker who will attack one of the targets. A defender mixed strategy is a vector x = (x)1≤t≤T ,

with 0 ≤ xt ≤ 1 and
∑

t xt≤ m, where xt denotes the probability of protecting t. Let X = {x :

0 ≤ xt ≤ 1,
∑

t xt ≤ m} be the set of feasible defender strategies.

If the attacker attacks t, he receives a reward Rat if the target is unprotected, and a penalty

P at < Rat if it is protected. Conversely, the defender receives a penalty P dt in the former case
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and a reward Rdt > P dt in the latter. Given a defender strategy x and the attacked target t, the

expected utilities of the adversary and the defender, respectively, are computed as follows:

Uat (xt, R
a
t , P

a
t ) = Rat (1− xt) + P at xt (7.1)

Udt (xt, R
d
t , P

d
t ) = Rdt xt + P dt (1− xt) (7.2)

Attack set. Let Ra = {Rat }t and P a = {P at }t be the the set of attacker rewards/penalties at all

targets. The attacker’s attack set A(x, Ra, P a), given defender strategy x, contains the targets

that give him the highest utility:

A(x, Ra, P a) = {t : Uat (xt, R
a
t , P

a
t ) ≥ Uat′(xt′ , Rat′ , P at′), ∀t′} (7.3)

The defender’s aim is to choose a strategy x that maximizes her own payoff v(x, Ra, P a):

v(x, Ra, P a) = max
t∈A(x,Ra,Pa)

Udt (xt, R
d
t , P

d
t ). (7.4)

Key target. As in other work in the literature, I assume that the attacker breaks ties in favor of the

defender (Von Stengel & Zamir, 2004). Given a defender’s strategy x and an adversary’s payoff

(Ra, P a), I call target t a key target if t is the attacked target within the attack set, that is:

t = argmax
t′∈A(x,Ra,Pa)

Udt′(xt′ , R
d
t′ , P

d
t′)

v(x, Ra, P a) = Udt (xt, R
d
t , P

d
t )

Attacker Payoff Uncertainty. I focus on SPACs (Kiekintveld et al., 2013; Yin et al., 2011) where

the defender lacks the data to precisely estimate attacker payoffs. I assume that attacker payoffs

are known only to lie within specific intervals: for each t, we have Rat ∈Irt =[Ramin(t), Ramax(t)]

and P at ∈I
p
t =[P amin(t), P amax(t)]. Let I = {(Irt, I

p
t )}t denote the set of payoff intervals.

7.1.2 Minimax Regret

Definition 3. Given uncertainty interval I, the max regret of defender strategy x ∈ X is:

MR(x, I) = max
(Ra,Pa)∈I

max
x′∈X

(
v(x′, Ra, P a)−v(x, Ra, P a)

)
(7.5)

Essentially, given payoff uncertainty I, max regret evaluates the quality of strategy x, under

the worst-case realization of the payoff in I, by measuring the worst-case loss in defender utility

of using x rather than the optimal strategy x′ given that realization.
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Example 8. Table 7.1 shows an example of a 3-target game with uncertainty in the attacker’s

payoffs. For example, the defender reward and penalty at target 2 is 5 and −6 respectively. On

the other hand, the uncertainty intervals of the attacker’s reward and penalty at all targets are

the same, which in turn are [0, 10] and [−4, 0]. I suppose that the defender has only one security

resource and she plays a strategy of {0.5, 0.3, 0.2} to protect the three targets.

Targets Def. rew. Def. pen. Adv. rew. Adv. pen.
1 -6 -7 [0, 10] [-4,0]
2 5 -6 [0, 10] [-4,0]
3 3 -5 [0, 10] [-4,0]

Table 7.1: A 3-target, 1-resource SPAC.

Then the payoff instance of the attacker within the uncertainty intervals which leads to a

maximum regret for the defender is {0, 10, 0} of rewards and {−4, 0,−4} of penalties. In this

case, the corresponding optimal strategy of the defender w.r.t this payoff instance is {0, 1, 0}—

the attacker will attack target 2 and as a result, the defender receives a utility of 5 to play this

strategy. On the other hand, the defender will receive a utility of −2.7 for playing the strategy

{0.5, 0.3, 0.2}. Thus, the defender receives a utility loss or regret of 5− (−2.7) = 7.7.

To guard against this loss in utility, the defender can adopt the strategy that minimizes this

max regret, which is defined as follows:

Definition 4. The minimax regret (MMR) of interval I is:

MMR(I) = min
x∈X

MR(x, I). (7.6)

A minimax optimal strategy is any x that minimizes Eq. 7.6. Such a strategy has the strongest

optimality guarantee given uncertainty I.

Example 9. Given the example of a 3-target game in Table 7.1, I will show why MMR might

be more valuable than maximin. The optimal defender strategy under maximin is [1.0, 0.0, 0.0]:

it allocates all resources to the most vulnerable target 1, simply because it has the lowest re-

ward/penalty, despite the fact that defending target 1 provides little benefit. Maximin also leaves
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targets 2 and 3 unprotected, and has a max regret of 11. By contrast, MMR diversifies the de-

fender strategy to minimize utility loss over all payoff realizations. The minimax optimal strategy

is [0.34, 0.44, 0.22] which has max regret 6.2.

7.1.3 Computing Minimax Regret

I note that MMR can be formulated as follows:

minx∈X θ (7.7)

s.t. θ≥v(x′, Ra, P a)− v(x, Ra, P a),∀x′∈X, (Ra, P a)∈I

Unfortunately, since X and I are continuous, the set of constraints is infinite; and the problem

is non-convex, making MMR computation difficult. One practical approach to optimization with

large constraint sets is constraint sampling (De Farias & Van Roy, 2004), coupled with constraint

generation (Boutilier et al., 2006). The key idea is to sample a subset of constraints and gradually

expand this set by adding violated constraints to the relaxed problem until convergence to the

optimal solution. MIRAGE (MInimax Regret Algorithm using constraint GEneration), see Alg. 2,

begins by sampling pairs (x, (Ra, P a)) of defender strategies and attacker payoffs uniformly

from X and I to obtain a finite set S of sampled constraints. It then solves the correspond-

ing relaxed optimization program Eq. 7.7—using the bCISM algorithm—whose optimal solution

(lb,x∗) provides a lower bound (lb) on true MMR. Then constraint generation is applied to deter-

mine violated constraints (if any). This uses the ALARM algorithm, which computes MR(x∗, I).

This provides an upper bound (ub) on true MMR. If ub > lb, ALARM’s solution provides us

with the maximally violated constraint (see line 5), which is added to S. If ub = lb, then x∗ is

the minimax optimal strategy and lb = ub = MMR(I).1

Example 10. Figure 7.1 illustrates how the MIRAGE algorithm works for 2-target, 1-resource

SPAC. Initially, MIRAGE considers only one payoff sample within the uncertainty intervals which

is Payoff 1 in the figure. Then MIRAGE calls bCISM to generate an optimal regret-based strategy

x1 for the defender against Payoff 1. Next, MIRAGE calls ALARM to find the new payoff instance

Payoff 2 that provides the maximum regret for the defender when the defender plays strategy x1.

1While constraint generation can be used by itself, generating violated constraints is computationally intensive.
Initializing with some randomly sampled constraints offers better performance.
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Algorithm 2: Constraint-generation (MIRAGE)

1 Initialize S=φ, ub =∞, lb = 0 ;
2 Randomly generate (x′, Ra, P a), S=S∪{x′, (Ra, P a)};
3 while ub > lb do
4 Call bCISM to compute relaxed MMR w.r.t S. Let x∗ be its optimal solution with

objective value lb;
5 Call ALARM to compute MR(x∗, I). Let (x′∗, Ra,∗, P a,∗) be its optimal solution with

objective value ub;
6 S = S ∪ {x′,∗, Ra,∗, P a,∗};
7 end
8 return (lb,x∗);

Payoff 1
Target 1 Target 2

Target 1 4, -3 -1, 1
Target 2 -5, 5 2, -1

x1

Target 1 0.6
Target 2 0.4

Payoff 1
Target 1 Target 2

Target 1 4, -3 -1, 1
Target 2 -5, 5 2, -1

Payoff 2
Target 1 Target 2

Target 1 4, -2 -1, 3
Target 2 -5, 1 2, -1

x1,2

Target 1 0.52
Target 2 0.48

…

Optimal regret-based strategy 2

Optimal regret-based strategy 1

Figure 7.1: Illustration of the MIRAGE algorithm
Given the two payoff instances, in the next iteration, MIRAGE calls bCISM again to generate

a new regret-based strategy for the defender, x2, that minimizes the maximum regret against

these two payoff instances. This process will continue until MIRAGE reaches the final optimal

regret-based strategy for the defender.
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7.1.4 Compute Relaxed MMR

The first step, corresponding to line (4) of MIRAGE, solves a relaxed version of Eq. 7.7. This

relaxed problem can be formulated as a mixed integer linear program (MILP) as follows:

min
x,q,r,θ

θ (7.8)

s.t. θ ≥ v(x′
j
, Ra,j , P a,j)−Udt (xt, R

d
t , P

d
t )−(1−qjt )M, ∀j, t (7.9)

Uat (xt, R
a,j
t , P a,jt ) + (1− qjt )M ≥ rj , ∀j, t (7.10)

rj ≥ Uat (xt, R
a,j
t , P a,jt ), ∀j, t (7.11)∑

t
xt ≤ m, xt ∈ [0, 1], ∀t (7.12)∑
t
qjt = 1, qjt ∈ {0, 1}, ∀j, t (7.13)

rj ∈ R, ∀j. (7.14)

Essentially, this MILP attempts to compute the optimal strategy for the defender that mini-

mizes the maximum regret that the defender receives over all payoff instance within the sam-

ple set S. Here the index j ranges over sampled/generated constraints (x′j, (Ra,j, P a,j)) in S,

index t ranges over targets and M is a large positive constant. The binary variable qjt indi-

cates whether t is the key target w.r.t the payoff instance j. In particular, constraints (7.10-

7.11) ensure that if t is the key target (i.e., qtj = 1) for the jth instance of Ra,j and P a,j , then

the attacker’s utility Uat (xt, R
a,j
t , P a,jt )≥ Uat′(xt′, R

a,j
t′ , P

a,j
t′ ) ∀t′. Finally, constraint (7.9) en-

sures that θ is the maximum regret for the defender by requiring that if qjt =1, then θ ≥ v(x′j ,

Ra,j , P a,j)−Udt (xt, R
d
t , P

d
t ). I dub this mCISM (MILP for Computing dIScretized MMR). Un-

fortunately, mCISM becomes quite slow as S grows.

As an alternative, I introduce a binary-search based algorithm (bCISM) which searches

defender utility space to find the optimal solution in polynomial time. Intuitively, I search

for a strategy x that satisfies constraints (7.9-7.14), where θ is computed using binary search.

Specifically, given θ, I compute the defender’s minimum coverage at each target s.t. θ ≥

v(x′j, Ra,j, P a,j) − v(x, Ra,j, P a,j) is satisfied for all (x′j , (Ra,j , P a,j)) ∈ S, and then test if

x ∈ X (i.e., is the strategy feasible).
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Algorithm 3: Compute minimum coverage given θ

1 Initialize lbt = 0, xjt = +∞ ∀j, t;
2 while true do
3 for j = 1 to |S| do
4 for t = 1 to T do
5 cj,tt = max{lbt, θ

j−P dt
Rdt−P dt

};

6 if cj,tt > 1 then continue;
7 foreach k 6= t do

8 cj,tk = max{lbt,
Uat (cjt ,R

a,j
t ,Pa,jt )−Ra,jk

Pa,jk −R
a,j
k

};

9 xjk = min{xjk, c
j,t
k };

10 end
11 xjt = min{xjt , c

j,t
t };

12 end
13 end
14 Set x = {xt : xt = maxj x

j
t}t;

15 if x /∈ X then return false;
16 else if v(x, Ra,j , P a,j) ≥ θj ∀j then return x;
17 else lbt = xt;
18 end

Let θj = −θ + v(x′j , Ra,j , P a,j) for the jth constraint in S. I require θj ≤ v(x, Ra,j , P a,j)

for all j ∈ S, with x is computed by Alg. 3. Alg. 3 iterates through two levels of problem decom-

position to find x (as illustrated in Figure 7.2). First, it finds cj,tk , the minimum defender coverage

at each target k for the jth instance such that t is the key target and θj ≤ v(x, Ra,j , P a,j). I iter-

ate over all possible key targets t to find corresponding cj,tk . Based on these cj,tk , I then compute

the minimum defender coverage at target k, denoted xjk (k ≤ T ), which satisfies the constraint

θj ≤ v(xj , Ra,j , P a,j) w.r.t. the jth instance only (lines (4-11)). The resulting {xjk}k for all

j ≤ |S| are then combined to compute x (line 14), as I elaborate below.

I now explain lines (4-11). Note that if t is the key target of the jth instance, then

v(xj , Ra,j , P a,j) = Udt (xjt , R
d
t , P

d
t ). Here the algorithm goes through all targets t that could

potentially be the key target for the jth instance to compute cj,tk . Specifically, if t is the key

target, as Udt (cj,tt , R
d
t , P

d
t ) ≥ θj , I have cj,tt ≥ max{lbt, θ

j−P dt
Rdt−P dt

}, where lbt is the lower

bound for the defender’s coverage at t (line 5). This lower bound is updated in each iteration

of the while loop. In addition, for any other target k, it follows that Uak (cj,tk , R
a,j
k , P a,jk ) ≤

Uat (cj,tt , R
a,j
t , P a,jt ) which means cj,tk ≥ max{lbk,

Uat (cj,tt ,Ra,jt ,Pa,jt )−Ra,jk
Pa,jk −R

a,j
k

}. Thus, the higher cj,tt ,
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• Only satisfy regret 
constraint 1

• Key target: target 2

• Only satisfy regret 
constraint 1

• Key target: target 1

PAYOFF SAMPLE 1
• Only satisfy regret constraint 1             

PAYOFF SAMPLE 1
ATTACK TARGET 1 

For each fix regret 𝛉: Two levels of decomposition

PAYOFF SAMPLE 2

• Only satisfy regret constraint 2             

PAYOFF SAMPLE 1
ATTACK TARGET 2

• Only satisfy regret 
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Figure 7.2: Two levels of decomposition in bCISM
the smaller Uat (cj,tt , R

a,j
t , P a,jt ) and therefore, the higher cj,tk for all k. The minimum cover-

age for target t is then cj,tt = max{lbt, θ
j−P dt
Rdt−P dt

} and for any other target k is cj,tk = max{lbk,
Uat (cj,tt ,Ra,jt ,Pa,jt )−Ra,jk

Pa,jk −R
a,j
k

}.

Proposition 3. Given constraint j, suppose x is a feasible strategy s.t. θj ≤ v(x, Ra,j , P a,j) with

key target t and lower bound xk ≥ lbk,∀k. Then xk ≥ cj,tk ,∀k.

Proof. We always have the defender’s coverage at target t satisfying xt ≥ cj,tt as θj ≤

v(x, Ra,j , P a,j) = Udt (xt, R
d
t , P

d
t ). Therefore, Uat (xt, R

a,j
t , P a,jt ) ≤ Uat (cj,tt , R

a,j
t , P a,jt ). As

a result, since t is the key target, we have Uak (xk, R
a,j
k , P a,jk ) ≤ Uat (xt, R

a,j
t , P a,jt ) for all k

which means that xk ≥ max{lbk,
Uat (xt,R

a,j
t ,Pa,jt )−Ra,jk

Pa,jk −R
a,j
k

} ≥ cj,tk .

Proposition 4. For any constraint j, if cj,tk > cj,t
′

k for some target k, then cj,ti ≥ cj,t
′

i for all

targets i.

Proof. Note that cj,ti = max{lbi,
Uat (cj,tt ,Ra,jt ,Pa,jt )−Ra,ji

Pa,ji −R
a,j
i

} for all target i (including the key target

t). Thus, cj,tk > cj,t
′

k for some target k is equivalent to Uat (cj,tt , R
a,j
t , P a,jt ) < Uat (cj,t

′

t′ , R
a,j
t′ , P

a,j
t′ ).

As a result, I obtain cj,ti ≥ c
j,t′

i for all target i.

Prop. 3 implies that if xk < cj,tk for some k, x is not feasible given that t is the key target and

θj ≤ v(x, Ra,j , P a,j). In other words, cj,tk is a lower bound on all xk satisfying this condition.

Prop. 4 implies that for any pair of key targets t and t′, cj,tk ≥ cj,t
′

k for all targets k, or vice versa.

Taken together, the minimum defender coverages are xjk = mint c
j,t
k , ∀k. As strategy x must

satisfy θj ≤ v(x, Ra,j , P a,j) for all j ∈ S, xt ≥ xjt , ∀t. Therefore, xt ≥ maxj x
j
t , ∀t (line 14).
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Since this minimum coverage xt may be infeasible (i.e., x 6∈ X), I test feasibility (line

(15)). Furthermore, it may not be feasible w.r.t. θ as it may now violate the constraints for the

chosen key targets in S. Thus, I check (line (16)) for violations that give an objective value less

than θ. If so, I update the lower bound on xt (line (17)). I repeat until the constraint x ∈ X

is violated or a feasible solution is found. bCISM thus determines if some feasible x satisfies

θ ≥ v(x′, Ra, P a)− v(x, Ra, P a) for all (x′, (Ra, P a)) ∈ S. bCISM is guaranteed to provide a

δ-optimal solution to MMR, where δ is the binary-search termination threshold.

Example 11. Figure 7.3 shows an example of a 2-target game with two instances of the at-

tacker’s payoffs. Assume that the defender has one resource, the optimal strategies for the de-

fender against these two payoff instances are: {3
8 ,

5
8} and {1

2 ,
1
2} respectively. The corresponding

optimal utilities for the defender is 2.25 and 1.0 w.r.t the payoff instances 1 and 2 respectively.

Targets Att. rew. Att. pen.
1 2 -2
2 3 -1

(a) Attack payoff instance 1

Targets Att. rew. Att. pen.
1 1 -3
2 2 -4

(b) Attacker payoff instance 2

Targets Def. rew. Def. pen.
1 3 -1
2 6 -4

(c) Defender’s payoffs

Figure 7.3: A 2-target, 1-resource game with 2 attacker payoff instances.

Let’s consider a value of θ = 1. Since, we aim at determining whether the defender’s maxi-

mum regret is at most θ = 1, then the utilties of the defender w.r.t these two payoff instances must

be no less than θ1 = 1.25 and θ2 = 0.0 respectively. I analyze these two conditions separately:

W.r.t payoff instance 1. Considering two cases of key target:

• If target 1 is the key target, this means that the attacker will attack target 1. In other words,

the defender receives the expected utility at target 1 and the attacker’s expected utility at
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target 1 is no less than at target 2. Since the defender’s utility is no less than θ1 = 1.25,

we obtain the minimum coverages {c1,1
1 , c1,1

2 }:

3× c1,1
1 + (−1)× (1− c1,1

1 ) ≥ 1.25 =⇒ c1,1
1 =

5

8

2× (1− c1,1
1 ) + (−2)× c1,1

1 ≥ 3× (1− c1,1
2 ) + (−1)× c1,1

2 =⇒ c1,1
2 =

7

8

• If target 2 is the key target, this mean that the attacker will attack target 2. Similarly, I

obtain the minimum coverages {c1,2
1 , c1,2

2 }:

6× c1,1
2 + (−4)× (1− c1,1

2 ) ≥ 1.25 =⇒ c1,1
2 = 0.525

2× (1− c1,1
1 ) + (−2)× c1,1

1 ≤ 3× (1− c1,1
2 ) + (−1)× c1,1

2 =⇒ c1,1
1 = 0.275

By combining these two cases of attack target, I obtain the minimum coverages of the de-

fender, {x1
1, x

1
2}, which satisfies that the defender’s utility is no less than θ1 = 1.25: x1

1 =

min{c1,1
1 , c1,2

1 } = 0.525 and x1
2 = min{c1,1

2 , c1,2
2 } = 0.275.

W.r.t payoff instance 2. Similarly, I obtain the minimum coverages of the defender, {x2
1, x

2
2},

which satisfies that the defender’s utility is no less than θ2 = 0.0: x2
1 = 0.25 and x2

2 = 1
3 .

Finally, since the defender’s strategy must satisfy both utillity conditions w.r.t the two attacker

payoff instance, the defender’s coverages must satisify the following lower bound conditions:

x1 ≥ max{x1
1, x

2
1} = 0.525 and x2 ≥ max{x1

2, x
2
2} = 1

3 . To that end, I verify if these lower

bounds will satisfy both utility conditions (which means that the defender can obtain the regret

which is less than θ = 1). Otherwise, I will continue the above steps but now with additional

lower bound constraints that the defender’s coverages must be no less than {0.525, 1
3}.

7.1.5 Computing Max Regret

The second sub-problem of MIRAGE is computation of MR(x, I). This is accomplished with

ALARM (Approximate Linearization Algorithm for Reckoning Max regret). Given Eq. 7.5,

MR(x, I) requires computing the strategy x′ and attacker payoff (Ra, P a) that maximize the

loss of x. However, value of v(x′, Ra, P a) = maxt∈A(x′,Ra,Pa) U
d
t (x′t, R

d
t , P

d
t ) depends on the

attack set A(x′, Ra, P a), which in turn is determined by the attacker’s utility at each target t—

Uat (x′t, R
a
t , P

a
t )=Rat (1−x′t)+P at x′t. This is a non-convex function of variables x′t and (Rat , P

a
t ),
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making max regret a non-convex optimization problem. To speed up computation, I now develop

a linearization.

Both v(x′, Ra, P a) and v(x, Ra, P a) are dictated by the key targets, which depend on

(Ra, P a) ∈ I and x′ ∈ X. I partition (I,X) into T 2 subsets such that each pair of targets

t, t′ are the key targets within a particular subset. I then search over all pairs of possible key

targets (t′, t) to compute max regret. Specifically, given key targets (t′, t), max regret can be

reformulated as follows:

max
(Ra,Pa)∈I,x′∈X

Udt′(x
′
t′ , R

d
t′ , P

d
t′)− Udt (xt, R

d
t , P

d
t ) (7.15)

s.t. Uat′(x
′
t′ , R

a
t′ , P

a
t′)≥Uak (x′k, R

a
k, P

a
k ),∀k 6= t, t′ (7.16)

Uat (xt, R
a
t , P

a
t )≥Uak (xk, R

a
k, P

a
k ), k∈N(t)\{t, t′} (7.17)

Uat (xt, R
a
t, P

a
t )≥Uak (xk, R

a
k, P

a
k )+ε, k /∈N(t)∪{t, t′} (7.18)

Uat′(x
′
t′ , R

a
t′ , P

a
t′)≥Uat (x′t, R

a
t , P

a
t ) (7.19)

Uat (xt, R
a
t , P

a
t )≥Uat′(xt′ , Rat′ , P at′) if t′ ∈ N(t) (7.20)

Uat (xt, R
a
t , P

a
t )≥Uat′(xt′ , Rat′ , P at′) + ε if t′ /∈ N(t) (7.21)

whereN(t) = {k : Udt (xt, R
d
t , P

d
t ) ≥ Udk (xk, R

d
k, P

d
k )} is the set of targets at which the defender

utility is lower than the utility at t, and ε is a small positive constant. I separate constraints for

key and non-key targets for expository purposes. Constraints (7.17, 7.18, 7.20, 7.21) ensure that

t is the key target w.r.t. x, while ε ensures the strict inequality Uat (xt, R
a
t , P

a
t ) > Uak (xk, R

a
k, P

a
k )

when Udt (xt, R
d
t , P

d
t ) < Udk (xk, R

d
k, P

d
k ) (or when k /∈ N(t)); otherwise, the attacker will attack

k instead of t (by tie-breaking). I do allow violation of the tie-breaking constraint for the key

target t′ w.r.t. x′ for each sub-problem (7.15-7.21). Searching over all possible key targets t′

guarantees the final solution will satisfy the tie-breaking assumption.

Note that (Rak, P
a
k ) and x′ are involved in computing Uak (x′k, R

a
k, P

a
k ) which makes this utility

function non-convex (constraints (7.16–7.19)). I could solve the MR problem (Eq. 7.15) using

existing commercial solvers for non-convex optimization (e.g., Knitro): (a) solve a non-convex

program for every combination of key targets (Multi-NLP); or (b) formulate it as a mixed integer

non-linear program (MINLP, see Appendix). However, these perform poorly, as I show below.
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Hence I use binary search to linearize these non-convex constraints to approximate MR (noting

that they can be linearized if x′t′ and x′t are known).

Problem 1. (ALARM binary search decision problem) Given a value θ, and t′, t as key tar-

gets: Are there (Ra, P a) ∈ I and x′ ∈ X satisfying (7.16–7.21), such that Udt′(x
′
t′ , R

d
t′ , P

d
t′) −

Udt (xt, R
d
t , P

d
t ) ≥ θ?

Proposition 5. If Problem 1 has a feasible solution, then the following solution is feasible: Rak=

Ramin(k) and P ak =P amin(k), ∀k 6= t, t′; and x′t′=x′min(t′)=max{0, θ+U
d
t (xt,Rdt,P

d
t )−P d

t′
Rd
t′−P

d
t′

}.

Proof. I observe that (Rak, P
a
k ) with k 6= t, t′ only involve in the RHS of constraints (7.16-

7.18). Therefore, if there exists a feasible solution of the decision problem, then for all

k 6= t, t′, (Ramin(k), P amin(k)) is also a feasible value of (Rak, P
a
k ) since Uak (x′k, R

a
k, P

a
k ) and

Uak (xk, R
a
k, P

a
k ) (the RHS of the constraints) are minimized when Rak = Ramin(k) and P ak =

P amin(k) for all k 6= t, t′. As a result, constraints (7.16-7.18) are satisfied given Rak = Ramin(k)

and P ak = P amin(k) for all k 6= t, t′.

Furthermore, it follows that Udt′(x
′
t′ , R

d
t′ , P

d
t′) − Udt (xt, R

d
t , P

d
t ) ≥ θ ⇐⇒ x′t′ ≥

x′min(t′) where x′min(t′) = max{0, θ+U
d
t (xt,Rdt ,P

d
t )−P d

t′
Rd
t′−P

d
t′

}. Therefore, I have Uat′(x
′
t′ , R

a
t′ , P

a
t′) ≤

Uat′(x
′
min(t′), Rat′ , P

a
t′) for all x′. As a result, if constraints (7.16, 7.19) are satisfied with any x′t′ ,

then the constraints are also satisfied with x′t′ = x′min(t′).

Thus, by replacing (Rak, P
a
k ) with (Ramin(k), P amin(k)), for all k 6= t, t′ and x′t′ with x′min(t′),

We are left with one non-convex constraint (7.19). I circumvent this non-convex constraint by

converting Problem 1 into the following optimization with a non-convex objective:

max
{x′k}k6=t′,R

a
t,P

a
t ,R

a
t′,P

a
t′
Uat′(x

′
t′, R

a
t′, P

a
t′)−Uat (x′t, R

a
t, P

a
t ) (7.22)

s.t. updated (7.16–7.18, 7.20–7.21) (7.23)

Intuitively, constraint (7.19) is translated into the objective (7.22), maintaining other constraints

with their updates (Ramin(k), P amin(k)) and x′min(t′).

Proposition 6. If the optimum of (7.22) is no less than zero, Problem 1 has a feasible solution;

otherwise it is infeasible.
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Algorithm 4: Local search

1 Initialize x′t, δ = inf;
2 Compute x′k 6=t,t′ which minimize max

k 6=t,t′
Uak (x′k, R

a
k, P

a
k ) using ORIGAMI;

3 while δ > 0 do
4 Given x′k 6=t′ , solve (7.22-7.23) to obtain obj ∗ and (Rat , P

a
t , R

a
t′ , P

a
t′)
∗;

5 Given (Rat , P
a
t , R

a
t′ , P

a
t′)
∗, solve (7.22-7.23) to obtain obj ∗∗ and x′k 6=t′ ;

6 δ = obj ∗∗ − obj ∗;
7 end
8 return (obj ∗∗, (Rat , P

a
t , R

a
t′ , P

a
t′)
∗, x′k 6=t′ ;

Proof. Because the optimal solution of (7.22-7.23) is no less than zero, it satisfies constraint

(7.19). As this optimal solution also satisfies constraints (7.16-7.18, 7.20-7.21), it thus is a feasi-

ble solution of the decision problem 5.

As the objective (7.22) remains non-convex, and direct non-convex methods are inefficient, I

apply the following linearization:

Proposition 7. If x′t is fixed, then the {x′k}k6=t′,t which minimizes maxk6=t,t′ U
a
k (x′k, R

a
k, P

a
k ) are

optimal for (7.22).

Proof. I observe that x′k for all k 6= t′, t only involve in the RHS of constraint (7.16). De-

note by {x′∗k }k 6=t′,t = argmin
{x′k}k 6=t′,t

max
k 6=t,t′

Uak (x′k, R
a
k, P

a
k ). As x′t is fixed, for all feasible solutions

{x′k}k 6=t′,t, Rat , P at , Rat′ , P at′ of (7.22-7.23), I also have {x′∗k }k 6=t′,t, Rat , P at , Rat′ , P at′ is a feasible

solution. Because the objective function depends on only Rat , P
a
t , R

a
t′ , P

a
t′ , thus {x′∗k }k 6=t′,t is

optimal.

Recall that my variables are Rat , P
a
t , R

a
t′ , P

a
t′ and x′k (k 6= t′). Given a value of x′t, by

Prop. 7 I can apply ORIGAMI (Kiekintveld et al., 2009) to compute x′k for all k 6= t, t′ to

minimize maxk 6=t,t′ U
a
k (x′k, R

a
k, P

a
k ). The remaining variables are Rat , P

a
t , R

a
t′ , P

a
t′ . Starting with

an initial value x′t and the corresponding x′k for all k 6= t, t′ computed by ORIGAMI, my lo-

cal search, see Alg. 4, gradually updates (Rat , P
a
t , R

a
t′ , P

a
t′) and x′k 6=t′ to find a local optimum of

Eq. (7.22). In Alg. 4, obj ∗ and obj ∗∗ are the optimal objective values of Eq. (7.22) given x′k 6=t′ and

(Rat , P
a
t , R

a
t′ , P

a
t′)
∗, respectively. By fixing either x′k 6=t′ or (Rat , P

a
t , R

a
t′ , P

a
t′), Eq. (7.22) becomes

a linear program, allowing one to readily obtain a locally optimal solution. my experiments show

that randomly initializing x′t even just five times typically suffices to find a global optimum.
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7.2 Payoff Elicitation

Typically, defenders employ the services of expert risk analysts to assess the attacker payoffs at

specific targets (Shieh et al., 2012). While my MMR methods offer robust decisions in the face of

payoff uncertainty, the resulting max regret level may be too large in certain cases. Thus I develop

an interactive process whereby the defender can reduce her uncertainty w.r.t. attacker payoffs by

querying the expert, at some cost, for additional information about these payoffs. Note however

that reducing uncertainty for its own sake often fails to improve max regret (Boutilier et al., 2006;

Braziunas & Boutilier, 2010); attention must be focused on those payoffs that actually influence

decisions. I develop preference elicitation strategies driven by MMR that focus on “relevant”

uncertainty. Generally, queries and payoff assessment continue until MMR reaches an acceptable

level or some budget limit is met.

I consider bound queries, widely used in preference elicitation (Boutilier et al., 2006; French,

1986), in which an expert is asked whether the attacker reward/penalty at some target t is greater

than some value p. For example, if the reward interval at target t is [0, 10], I can ask if the reward

is greater than 5. A positive (negative) response increases the lower bound to 5 (decreases the

upper bound to 5). I assume each query qt is associated with a single target t, and queries both

the reward Rat and penalty P at terms at the midpoints of their corresponding intervals Irt and Ipt

(since assessment of a target generally provides information about both). Thus each query has

fmy possible responses. Query costs may vary with the target.

Since reducing uncertainty at different targets impacts max regret differently, and I may have

a fixed budget, queries must be chosen effectively. Alg. 5 outlines my elicitation procedure. I

now describe three heuristic query selection strategies.

Myopic strategy. I compute the average regret reduction over the fmy possible responses to each

query (target) and query the target with the greatest average reduction.

Approximate strategy. The Myopic strategy may be computationally inefficient as it relies on

exact computation of MMR for all 4T query responses. This strategy uses bCISM to approximate

MMR, but otherwise mimics Myopic.

Optimistic/pessimistic strategy. To maximize regret, attacker payoffs are set within uncertainty

intervals to induce the attacker to select targets that cause greatest defender loss: let the MMR so-

lution set attacker payoffs to be (R
a
, P

a
). If a query at target t obtains a response that makes the
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Algorithm 5: Preference elicitation

1 Initialize totalcost = 0, regret =∞;
2 while totalcost < budget or regret > thres do
3 Find the best target t∗ using an elicitation strategy;
4 Ask a bound query regarding payoff of target t∗;
5 Update uncertainty interval Inew;
6 Update totalcost, recompute MMR;
7 end

attacker’s (say) reward Rat infeasible (by responding with the half interval of Irt not containing

R
a
t ) max regret may be reduced significantly. my optimistic heuristic evaluates queries by assum-

ing optimistically that each query response will rule out the current “regret-inducing” payoffs at

that target, and selects the query that, assuming this response, offers the greatest MMR reduc-

tion. my pessimistic strategy is analogous. I combine the Optimistic and Pessimistic strategies

with the Approximate strategy by replacing the exact MMR computation with the approximation

bCISM, thereby increasing their computational efficiency. I call these strategies Opt-Approx and

Pess-Approx.

7.3 Experimental Evaluation

I evaluate the runtime and solution quality of my algorithms on games generated using GAMUT.2

All experiments Ire run on a 2.83GHz Intel processor with 4GB of RAM, using CPLEX 12.3

for LP/MILPs and KNITRO 8.0.0.z for nonlinear optimization. I set the covariance value

r ∈ [0.0, 1.0] with step size λ = 0.2 to control the correlation of attacker and defender re-

wards. Upper and lower bounds for payoff intervals are generated randomly from [−14,−1] for

penalties and [1, 14] for rewards, with the difference betIen the upper and lower bound (i.e., inter-

val size) exactly 2 (this gives payoff uncertainty of roughly 30%). All results are averaged over

120 instances (20 games per covariance value) and use eight defender resources unless otherwise

specified. All comparison results with my algorithms are statistically significant under bootstrap-t

(α = 0.05).
2See http://gamut.stanford.edu/.
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Figure 7.4: Evaluating discretized MMR algorithms
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Figure 7.5: Evaluating algorithms for computing MR

7.3.1 Evaluating MMR Algorithms

I first evaluate my algorithms for discretized MMR. Fig. 7.4(a) shows runtimes of bCISM with 10,

25 and 40 initial samples from S, and mCISM with 10 samples. bCISM is roughly 68 times faster

than mCISM (60 targets), and is rather insensitive to the number of initial samples. Fig. 7.4(b)

plots solution quality; bCISM’s solutions are within 0.01% of the mCISM’s optima. Thus, the

computational efficiency of bCISM comes at low cost in terms of solution quality.

I next evaluate my three MR algorithms, ALARM (with 1, 10 and 20 samples of x′t), MINLP,

and Multi-NLP. Fig. 7.5(a) shows that MINLP and Multi-NLP’s runtimes increase exponentially

with the number of targets. All instances of ALARM run approximately 100 (resp., 30) times

faster than MINLP (resp., Multi-NLP) with 100 targets. Fig. 7.5(b) plots their relative solution

quality and shows that ALARM, despite its exponential speedup, has at most a 1% (avg.) loss in

solution quality vs. MINLP and Multi-NLP.

Since bCISM and ALARM handily outperform the other algorithms, I now evaluate MI-

RAGE only using bCISM and ALARM as its relaxed-MMR and MR subroutines. Fig. 7.6(a)

plots MIRAGE runtimes, as number of targets varies, with either 100 and 3000 samples (con-

straints) added at each iteration. With 50 targets (not shown), MIRAGE takes about 10mins.,

and converges after 15 iterations. With 100 samples, MIRAGE takes longer to converge (about

6 times slower than with 3000); and runtime increases roughly by a factor of 14 with every 5

targets. Fig. 7.6(b) shows MIRAGE’s runtime with the number of iterations (10 to 40 targets),
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Figure 7.7: Evaluating payoff elicitation strategies

while Fig. 7.6(c) shows progress of its MMR upper and lower bounds (20 and 40 targets). This

demonstrates a promising anytime profile, allowing early termination with high quality solutions.

For instance, Fig. 7.6(c) shows, with 20 targets, that 9 iterations offers a solution within 5% of

minimax optimality. Fig. 7.6(d) shows the tradeoff betIen runtime and (upper bound on) MMR

(20 and 40 targets) up to convergence, confirming the positive anytime profile.

7.3.2 Evaluating Payoff Elicitation Strategies

I analyze the performance of the three elicitation strategies described above—Myopic, Opt-

Approx and Pess-Approx—as Ill as a Random strategy (with target queries chosen at random,

but eliciting at midpoints as above). I test on small problems with five targets (Random-S, etc.)

and large problems with 20 targets (Random-L, etc.). Fig. 7.7(a) shows how MMR decreases as I

ask queries using the different strategies. I see that Myopic is the most effective strategy, folloId
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by Opt-Approx, Pess-Approx, and Random, which performs worst. Fig. 7.7(b) plots cumulative

runtime of the elicitation process using my different strategies. Fig. 7.7(b) shows that Myopic is

about 20 times slower than the other strategies. Opt-Approx is not much slower (1.08 times) than

Random, while Pess-Approx is 1.24 times slower than Random. I use five-target games primarily

to compare Myopic to the other methods; with 20 targets, Myopic is intractable and cannot be

evaluated. With five targets, the strategies (unsurprisingly) do not vary much in elicitation perfor-

mance. However, with 20 targets, Opt-Approx reduces MMR significantly faster than Random

or Pess-Approx. Given its computational effectiveness, it seems to be a reasonable choice for

payoff elicitation. However, all strategies point to tradeoffs that, depending on the task at hand

and available budget, may make any of them viable.

7.4 Summary

Despite significant applications of SSGs for protecting major critical infrastructure, research on

robustness in SSGs has, to date, focused only on one concept, maximin over interval uncer-

tainty of payoffs. In this chapter, I have proposed the use of MMR as a decision criterion for

payoff-uncertain SSGs and presents efficient algorithms for computing MMR for such games.

Furthermore, I have addressed, for the first time, the challenge of preference elicitation in SSGs,

providing novel regret-based solution strategies. Experimental results validate the effectiveness

of my approaches w.r.t. both computational and informational efficiency.
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Chapter 8

Regret-based Solutions for Wildlife Protection

Motivated by the effectiveness of regret-based solutions for security games provided in Chapter

7, this chapter focuses on developing new regret-based solutions for addressing payoff uncer-

tainty in wildlife protection. In particular, the regret-based solutions in Chapter 7 are mainly

designed for addressing uncertainty in the attacker’s payoffs in standard SSGs, assuming that the

attacker is perfectly rational. In this chapter, I introduce new regret-based solutions which can

handle uncertainty in both players’ payoffs in different game scenarios in which the attacker is

either boundedly rational or perfectly rational. Furthermore, I develop new elicitation strategies

to strategically reduce uncertainty, given available elicitation resources in wildlife domains —

mobile sensors such as Unmanned Aerial Vehicles (UAV).

8.1 Overview

Prior work on wildlife protection are founded on the promise of an abundance of adversary data

(about where the adversaries attacked in the past) that can be used to accurately learn adversary

behavior models which capture their bounded rationality (Yang et al., 2014; Fang et al., 2015).

Furthermore, game-theoretic research on wildlife protection assumes that available domain data

such as animal density is sufficient to help determine payoff values precisely. However, there

remain four key shortcomings in wildlife protection related to these assumptions about data. First,

despite proposing different adversary behavioral models (e.g., Quantal Response (Yang et al.,

2012)), research on wildlife protection has yet to evaluate these models on any real-world data.

Second, the amount of real-world data available is not always present in abundance, introducing
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different types of uncertainties in wildlife protection. In particular, in some wildlife protection

domains, there is a significant need to handle uncertainty in both the defender and the adversary’s

payoffs since information on key domain features, e.g., animal density, terrain, etc. that contribute

to the payoffs is not precisely known. Third, in some wildlife protection domains, we may even

lack sufficient attack data to learn an adversary behavior model, and simultaneously must handle

the aforementioned payoff uncertainty. Finally, defenders have access to mobile sensors such as

UAVs to elicit information over multiple targets at once to reduce payoff uncertainty, no efficient

technique has been provided to exploit such sensors for payoff elicitation.

In this chapter, I address these challenges by proposing four key contributions. As my first

contribution, I provide the first results demonstrating the usefulness of behavioral models in

SSGs using real-world data from a wildlife park. To address the second limitation of uncertainty

over payoff values, my second contribution is ARROW (i.e., Algorithm for Reducing Regret to

Oppose Wildlife crime), a novel security game algorithm that can solve the behavioral minimax

regret problem. ARROW is the first algorithm to compute MMR in the presence of an adver-

sary behavioral model; it is also the first to handle payoff uncertainty in both players’ payoffs in

SSGs. However, jointly handling of adversary bounded rationality and payoff uncertainty cre-

ates the challenge of solving a non-convex optimization problem; ARROW provides an efficient

solution to this problem. (Note that I primarily assume a zero-sum game as done in some prior

wildlife protection research; however as discussed my key techniques generalize to non-zero sum

games as well.) My third contribution addresses situations where I do not even have data to learn

a behavior model. Specifically, I propose ARROW-Perfect, a novel MMR-based algorithm to

handle uncertainty in both players’ payoffs, assuming a perfectly rational adversary without any

requirement of data for learning. ARROW-Perfect exploits the adversary’s perfect rationality as

well as extreme points of payoff uncertainty sets to gain significant additional efficiency over

ARROW. Fourth, I present two new elicitation heuristics which select multiple targets at a time

for reducing payoff uncertainty, leveraging the multi-target-elicitation capability of sensors (e.g.,

UAVs) available in green security domains. Lastly, I conduct extensive experiments, including

evaluations of ARROW based on data from a wildlife park.

The outline of the chapter as follows: 1) First, I present the results of behavioral modeling

validation based on real-world wildlife/poaching data; 2) Second, I introduce the concept of
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behavioral minimax regret and describe the ARROW algorithm to solve it; 3) Third, I provide the

new regret-based algorithm, ARROW-Perfect; 4) Fourth, I present new elicitation heuristics; and

5) Finally, I provide experimental results.

8.2 Behavioral Modeling Validation

My first contribution addresses the first limitation of previous work mentioned in Section 8.1:

understanding the extent to which existing behavior models capture real-world behavior data from

green security domains. I used a real-world patrol and poaching dataset from Uganda Wildlife

Authority supported by Wildlife Conservation Society. This dataset was collected from 1-year

patrols in the Queen Elizabeth national park.1

8.2.1 Dataset Description

My dataset had different types of observations (poacher sighting, animal sighting, etc.) with

40, 611 observations in total recorded by rangers at various locations in the park. The latitude

and longitude of the location corresponding to each observation was recorded using a GPS de-

vice, thus providing reliable data. Each observation has a feature that specified the total count

of the category of observation recorded, for example, number and type of animals sighted or

poaching attacks identified, at a particular location. The date and time for a particular patrol was

also present in the dataset. I discretized the park area into 2423 grid cells, with each grid cell

corresponding to a 1km × 1km area within the park. After the discretization, each observation

fell within one of the 2423 target cells and I therefore aggregated the animal densities and the

number of poaching attacks within each target cell. I considered attack data from the year 2012

in my analysis, which has 2352 attacks in total.

Gaussian smoothing of animal densities: Animal density at each target is computed based

on the patrols conducted by the rangers and are thus observations at a particular instant of time.

Animal density also has a spatial component, meaning that it is unlikely to change abruptly betIen

grid cells. Therefore, to account for movement of animals over a few kilometers in general, I do

a blurring of the current recording of animal densities over the cells. To obtain the spatial spread
1This is the preliminary work on modeling poachers’ behaviors. Further study on building more complex behav-

ioral models would be a new interesting research topic for future work.
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based on recordings of animal sightings, I use Gaussian smoothing; more specifically I use a

Gaussian Kernel of size 5× 5 with σ = 2.5 to smoothen out the animal densities over all the grid

cells.

Distance as a feature: In addition to animal density, the poachers’ payoffs should take into

account the distance (or effort) the poacher takes in reaching the grid cell. Therefore, I also use

distance as a feature of my LensQR models. Here, the subjective utility function (Equation 4.2)

is extended to include the distance feature: Ûa
t (x,Ra,Pa) = w1xt + w2R

a
t + w3P

a
t + w4Φt

where Φt is the distance from the attacker current position to target t. For calculating distance,

I took a set of 10 entry points based on geographical considerations. The distance to each target

location is computed as the minimum over the distances to this target from the 10 entry points.

8.2.2 Learning Results

I compare the performance of 13 behavioral models2 as follows (Figure 8.1): (i) LensQR-3,

which corresponds to LensQR with three features (coverage probability, poacher reward which is

considered to be same as the animal density and poacher penalty which is kept uniform over all

targets); (ii) LensQR-4, which corresponds to LensQR with four features (coverage probability,

animal density, poacher penalty and distance to the target location); (iii) QR; (iv) eight versions of

the ε-optimal model, a bounded rationality model (Pita et al., 2009) where the adversary chooses

to attack any one of the targets with an utility value which is within ε of the optimal target’s utility,

with equal probability; (v) a random adversary model; and (vi) a perfectly rational model.

From the 2352 total attacks in my dataset, I randomly sampled (10 times) 20% of the attack

data for testing and trained the three models: LensQR-3, LensQR-4 and QR on the remaining

80% data. For each train-test split, I trained my behavioral models to learn their parameters,

which are used to get probabilities of attack on each grid cell in the test set. Thus, for each

grid cell, I get the actual label (whether the target was attacked or not) along with my predicted

probability of attack on the cell. Using these labels and the predicted probabilities, I plotted a

Receiver Operating Characteristic (ROC) curve (in Figure 8.1) to analyze the performance of the

various models.
2Models involving cognitive hierarchies (Wright & Leyton-Brown, 2014) are not applicable in Stackelberg games

given that attacker plays knowing the defender’s actual strategy.
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(a) All Models (b) ε-optimal (various values of ε) vs LensQR-4

Figure 8.1: ROC plots on Uganda dataset
The result shows that the perfectly rational model, that deterministically classifies which tar-

get gets attacked (unlike LensQR/QR which give probabilities of attack on all targets), achieves

an extremely poor prediction accuracy. I also observe that the ε∗-optimal model performs worse

than QR and LensQR models (Figure 8.1(a)). Here, by ε∗-optimal model, I mean the model cor-

responding to the ε that generates the best prediction (Figure 8.1(b)). In my case, the best value

of ε is 250. For the ε-optimal model, no matter what ε I choose, the curves from the ε-optimal

method never gets above the LensQR-4 curve, demonstrating that LensQR-4 is a better model

than ε-optimal. Furthermore, LensQR-4 (Area Under the Curve (AUC) = 0.73) performs better

than both QR (AUC = 0.67) and LensQR-3 (AUC = 0.67), thus highlighting the importance of

distance as a feature in the adversary’s utility. Thus, LensQR-4 provides the highest prediction

accuracy and thus will be my model of choice in the rest of the paper.

In summary, comparing many different models shows for the first time support for LensQR

from real-world data in the context of GSGs. The LensQR-4 model convincingly beats QR,

ε−optimal, perfect-rationality and the random model, thus showing the validity of using LensQR

in predicting adversary behaviors in GSGs.

8.3 Behavioral Minimax Regret (MMRb)

While we can learn a behavioral model from real-world data, we may not always have access

to data to precisely compute animal density. For example, given limited numbers of rangers,
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they may have patrolled and collected wildlife data from only a small portion of a national

park, and thus payoffs in other areas of the park may remain uncertain. Also, due to the dy-

namic changes (e.g., animal migration), players’ payoffs may become uncertain in the next sea-

son. Hence, this chapter introduces my new MMR-based robust algorithm, ARROW, to han-

dle payoff uncertainty in wildlife protection, taking into account adversary behavioral models.

Here, I primarily focus on zero-sum games. In addition, I use a model inspired by LensQR-

4 as the adversary’s behavioral model, given its high prediction accuracy presented in Sec-

tion 8.2. More specifically, the subjective utility function in Equation (4.2) is extended to:

Ûa
t (x,Ra,Pa) = w1xt + w2R

a
t + w3P

a
t + w4Φt where Φt is some other feature (e.g., dis-

tance) of target t. In fact, my methods generalize to non-zero-sum games with a general class

of QR. I now formulate MMRb with uncertain payoffs for both players in zero-sum SSG with a

boundedly rational attacker.

Definition 5. Given (Ra,Pa), the defender’s behavioral regret is the loss in her utility for play-

ing a strategy x instead of the optimal strategy, which is represented as follows:

Rb(x,Ra,Pa) = max
x′∈X

F(x′,Ra,Pa)− F(x,Ra,Pa) (8.1)

where F(x,Ra,Pa) =
∑

t
q̂t(x,R

a,Pa)Ud
t (x,Rd,Pd) (8.2)

Behavioral regret measures the distance in terms of utility loss from the defender strategy x

to the optimal strategy given the attacker payoffs. Here, F(x,Ra,Pa) is the defender’s utility

(which is non-convex fractional in x) for playing x where the attacker payoffs, whose response

follows LensQR, are (Ra,Pa). The defender’s payoffs in zero-sum games are Rd = −Pa

and Pd = −Ra. In addition, the attacking probability, q̂t(x,R
a,Pa), is given by Equation

4.2. When the payoffs are uncertain, if the defender plays a strategy x, she receives different

behavioral regrets w.r.t to different payoff instances within the uncertainty intervals. Thus, she

could receive a behavioral max regret which is defined as follows:

Definition 6. Given payoff intervals I, the behavioral max regret for the defender to play a

strategy x is the maximum behavioral regret over all payoff instances:

MRb(x, I) = max
(Ra,Pa)∈I

Rb(x,Ra,Pa) (8.3)
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Definition 7. Given payoff intervals I, the behavioral minimax regret problem attempts to find

the defender optimal strategy that minimizes the MRb she receives:

MMRb(I) = min
x∈X

MRb(x, I) (8.4)

Intuitively, behavorial minimax regret ensures that the defender’s strategy minimizes the loss

in the solution quality over the uncertainty of all possible payoff realizations.

Example 12. In the 2-target zero-sum game as shown in Table 8.1, each target is associated

with uncertainty intervals of the attacker’s reward and penalty. For example, if the adversary

successfully attacks Target 1, he obtains a reward which belongs to the interval [2, 3]. Otherwise,

he receives a penalty which lies within the interval [−2, 0]. The attacker’s response, assumed to

follow LensQR, is defined by the parameters (w1 = −10.0, w2 = 2.0, w3 = 0.2, w4 = 0.0).

Table 8.1: A 2-target, 1-resource game.
Targets Attacker reward. Attacker penalty.

1 [2, 3] [-2, 0]
2 [5, 7] [-10, -9]

Then the defender’s optimal mixed strategy generated by behavioral MMR (Equation 8.4) cor-

responding to this LensQR model is x = {0.35, 0.65}. The attacker payoff values which give the

defender the maximum regret w.r.t this behavioral MMR strategy are (3.0, 0.0) and (5.0,−10.0)

at Target 1 and 2 respectively. In particular, the defender obtains an expected utility of −0.14

for playing x against this payoff instance. On the other hand, she would receive a utility of 2.06

if playing the optimal strategy x′ = {0.48, 0.52} against this payoff instance. As a result, the

defender gets a maximum regret of 2.20.

8.4 ARROW Algorithm: Boundedly Rational Attacker

Algorithm 6 presents the outline of ARROW to solve the MMRb problem in Equation 8.4. Essen-

tially, ARROW’s two novelties — addressing uncertainty in both players’ payoffs and a bound-

edly rational attacker — lead to two new computational challenges: 1) uncertainty in defender

payoffs makes the defender’s expected utility at every target t non-convex in x and (Rd,Pd)
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Algorithm 6: ARROW Outline

1 Initialize S = φ, ub =∞, lb = 0 ;
2 Randomly generate sample (x′,Ra,Pa), S = S ∪ {x′, (Ra,Pa)};
3 while ub > lb do
4 Call R.ARROW to compute relaxed MMRb w.r.t S. Let x∗ be its optimal solution

with objective value lb;
5 Call M.ARROW to compute MRb(x∗, I). Let the optimal solution be

(x′,∗,Ra,∗,Pa,∗) with objective value ub;
6 S = S ∪ {x′,∗,Ra,∗,Pa,∗};
7 end
8 return (lb,x∗);

(Equation 2.2); and 2) the LensQR model is in the form of a logit function which is non-convex.

These two non-convex functions are combined when calculating the defender’s utility (Equation

8.2) — which is then used in computing MMRb (Equation 8.4), making it computationally ex-

pensive. Overall, MMRb can be reformulated as minimizing the max regret r such that r is no

less than the behavioral regrets over all payoff instances within the intervals:

min
x∈X,r∈R

r (8.5)

s.t. r ≥ F(x′,Ra,Pa)− F(x,Ra,Pa),∀(Ra,Pa) ∈ I,x′ ∈ X

In (8.5), the set of (non-convex) constraints is infinite since X and I are continuous. One practical

approach to optimization with large constraint sets is constraint sampling (De Farias & Van Roy,

2004), coupled with constraint generation (Boutilier et al., 2006). Following this approach, AR-

ROW samples a subset of constraints in Problem (8.5) and gradually expands this set by adding

violated constraints to the relaxed problem until convergence to the optimal MMRb solution.

Specifically, ARROW begins by sampling pairs (Ra,Pa) of the adversary payoffs uniformly

from I. The corresponding optimal strategies for the defender given these payoff samples, de-

noted x′, are then computed using the PASAQ algorithm (Yang et al., 2012) to obtain a finite set

S of sampled constraints (Line 2). These sampled constraints are then used to solve the corre-

sponding relaxed MMRb program (line 4) using the R.ARROW algorithm (described in Section

8.4.1) — I call this problem relaxed MMRb as it only has samples of constraints in (8.5). I

thus obtain the optimal solution (lb,x∗) which provides a loIr bound (lb) on the true MMRb.

Then constraint generation is applied to determine violated constraints (if any). This uses the

M.ARROW algorithm (described in Section 8.4.2) which computes MRb(x∗, I) — the optimal
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regret of x∗ which is an upper bound (ub) on the true MMRb. If ub>lb, the optimal solution of

M.ARROW, {x′,∗,Ra,∗,Pa,∗}, provides the maximally violated constraint (line 5), which is added

to S. Otherwise, x∗ is the minimax optimal strategy and lb=ub=MMRb(I).

8.4.1 R.ARROW: Compute Relaxed MMRb

The first step of ARROW is to solve the relaxed MMRb problem using R.ARROW. This relaxed

MMRb problem is non-convex. Thus, R.ARROW presents two key ideas for efficiency: 1) binary

search (which iteratively searches the defender’s utility space to find the optimal solution) to

remove the fractional terms (i.e., the attacking probabilities in Equation 4.2) in relaxed MMRb;

and 2) it then applies piecewise-linear approximation to linearize the non-convex terms of the

resulting decision problem at each binary search step (as explained below). Overall, relaxed

MMRb can be represented as follows:

min
x∈X,r∈R

r (8.6)

s.t. r ≥ F(x′,k,Ra,k,Pa,k)− F(x,Ra,k,Pa,k), ∀k = 1 . . .K

where (x′,k,Ra,k,Pa,k) is the kth sample in S (i.e., the payoff sample set as described in Al-

gorithm 6) where k = 1 . . .K and K is the total number of samples in S. In addition, r is

the defender’s max regret for playing x against sample set S. Finally, F(x′,k,Ra,k,Pa,k) is the

defender’s optimal utility for every sample of attacker payoffs (Ra,k,Pa,k) where x′,k is the cor-

responding defender’s optimal strategy (which can be obtained via PASAQ (Yang et al., 2012)).

The term F(x,Ra,k,Pa,k), which is included in relaxed MMRb’s constraints, is non-convex and

fractional in x (Equation 8.2), making (8.6) non-convex and fractional. I now detail the two key

ideas of R.ARROW.

Binary search. In each binary search step, given a value of r, R.ARROW tries to solve the

decision problem (P1) that determines if there exists a defender strategy x such that the defender’s

regret for playing x against any payoff sample in S is no greater than r.

(P1) : ∃x s.t. r ≥ F(x′,k,Ra,k,Pa,k)− F(x,Ra,k,Pa,k), ∀k = 1 . . .K?
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I present the following Proposition 8 showing that (P1) can be converted into the non-fractional

optimization problem (P2) (as shown below) of which the optimal solution is used to determine

the feasibility of (P1):

(P2): min
x∈X,v∈R

v

s.t. v ≥
∑

t

[
F(x′,k,Ra,k,Pa,k)−r−Ud,k

t (x)
]
eÛa

t (x,Ra,k,Pa,k), ∀k = 1 . . .K

where Ud,k
t (x) = −

[
xtP

a,k
t + (1− xt)Ra,kt

]
is the defender’s expected utility at target t given

x and the kth payoff sample.

Proposition 8. Suppose that (v∗,x∗) is the optimal solution of (P2). If v∗ ≤ 0, then x∗ is a

feasible solution of the decision problem (P1). Otherwise, (P1) is infeasible.

Proof. If v∗ ≤ 0, the RHS of all constraints in (P2) must be no greater than zero. By dividing

these RHSs by the term
∑

t e
Ûa

t (x∗,Ra,Pa), we obtain the following inequalities (Equation 8.7),

implying that the regret for playing x∗ against any payoff sample is no greater than the regret

value r, indicating that x∗ is a feasible solution of (P1).

r ≥ F
(
x′,k,Ra,k,Pa,k

)
− F

(
x∗,Ra,k,Pa,k

)
, ∀k. (8.7)

Conversely, if v∗ > 0, then for every x ∈ X, there exists k ∈ {1, . . . ,K} such that the RHS of

the kth constraint in (P2) is greater than zero (otherwise we can always find a feasible solution

v ≤ 0 < v∗ which is a contradiction to our assumption that v∗ is optimal). As a result, by dividing

this RHS by
∑

t e
Ûa

t (x,Ra,Pa), we still obtain a positive value, meaning that for all strategies

x ∈ X, there exists k ∈ {1, . . . ,K} such that r < F
(
x′,k,Ra,k,Pa,k

)
− F

(
x,Ra,k,Pa,k

)
.

Therefore, (P1) is infeasible.

Given that the decision problem (P1) is now converted into the optimization problem (P2), as

the next step, I attempt to solve (P2) using piecewise linear approximation.

Piecewise linear approximation. Although (P2) is non-fractional, its constraints are non-

convex. I use a piecewise linear approximation for the RHS of the constraints in (P2) which

is in the form of
∑

t f
k
t (xt) where the term fkt (xt) is a non-convex function of xt (recall that xt is

the defender’s coverage probability at target t). The feasible region of the defender’s coverage xt

for all t, [0, 1], is then divided into M equal segments
{[

0, 1
M

]
,
[

1
M ,

2
M

]
, . . . ,

[
M−1
M , 1

]}
where
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M is given. The values of fkt (xt) are then approximated by using the segments connecting pairs

of consecutive points
(
i−1
M , fkt

(
i−1
M

))
and

(
i
M , f

k
t

(
i
M

))
for i = 1 . . .M as follows:

fkt (xt)≈fkt (0)+
∑M

i=1
αkt,ixt,i (8.8)

where αkt,i is the slope of the ith segment which can be determined based on the two extreme

points of the segment. Also, xt,i refers to the portion of the defender’s coverage at target t

belonging to the ith segment, i.e., xt=
∑

i xt,i.

Example 13. When the number of segments M = 5, it means that I divide [0, 1] into 5 segments{[
0, 1

5

]
,
[

1
5 ,

2
5

]
,
[

2
5 ,

3
5

]
,
[

3
5 ,

4
5

]
,
[

4
5 , 1
]}

. Suppose that the defender’s coverage at target t is xt =

0.3, since 1
5 < xt <

2
5 , I obtain the portions of xt that belongs to each segment is xt,1 = 1

5 ,

xt,2 = 0.1, and xt,3 = xt,4 = xt,5 = 0 respectively. Then each non-linear term fkt (xt) is

approximated as fkt (xt)≈ fkt (0)+ 1
5α

k
t,1 + 0.1αkt,2 where the slopes of the 1st and 2nd segments

are αkt,1 = 5
[
fkt
(

1
5

)
− fkt (0)

]
and αkt,2 = 5

[
fkt
(

2
5

)
− fkt

(
1
5

)]
respectively.

By using the approximations of fkt (xt) for all k and t, I can reformulate (P2) as the MILP

(P2’) which can be solved by the solver CPLEX:

(P2’): min
xt,i,zt,i,v

v (8.9)

s.t. v ≥
∑

t
fkt (0) +

∑
t

∑
i
αkt,ixt,i,∀k = 1 . . .K (8.10)∑

t,i
xt,i ≤ R, 0 ≤ xt,i ≤

1

M
,∀t = 1 . . . T, i = 1 . . .M (8.11)

zt,i
1

M
≤ xt,i, ∀t = 1 . . . T, i = 1 . . .M − 1 (8.12)

xt,i+1 ≤ zt,i, ∀t = 1 . . . T, i = 1 . . .M − 1 (8.13)

zt,i ∈ {0, 1},∀t = 1 . . . T, i = 1 . . .M − 1 (8.14)

where zt,i is an auxiliary integer variable which ensures that the portions of xt satisfies xt,i = 1
M

if xt ≥ i
M (zt,i = 1) or xt,i+1 = 0 if xt < i

M (zt,i = 0) (constraints (8.11 – 8.14)). Con-

straints (8.10) are piecewise linear approximations of constraints in (P2). In addition, constraint

(8.11) guarantees that the resource allocation condition,
∑

t xt ≤ R, holds true and the piecewise

segments 0 ≤ xt,i ≤ 1
M .

Finally, I provide Theorem 3 showing that R.ARROW guarantees a solution bound on com-

puting relaxed MMRb.
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Theorem 3. R.ARROW provides an O
(
ε+ 1

M

)
-optimal solution of relaxed MMRb where ε is

the tolerance of binary search and M is the number of piecewise segments.

We apply the following lemmas for proving Theorem 3:

Lemma 1. Denote by F (x,Ra,Pa) the piecewise linear approximation of the defender’s utility

F (x,Ra,Pa), then the difference
∣∣F (x,Ra,Pa)− F (x,Ra,Pa)

∣∣ is bounded by O
(

1
M

)
where

M is the number of piecewise segments.

Proof. Overall, the defender’s utility F (x,Ra,Pa) has the form F (x,Ra,Pa) = N(x)
D(x) where

N(x) =
∑

t e
Ûa

t (x,Ra,Pa)Ud
t (x,Rd,Pd) and D(x) =

∑
t e

Ûa
t (x,Ra,Pa) where Rd = −Pa and

Pd = −Ra in zero-sum games. Similarly, the approximate utility F (x,Ra,Pa) has the form

F (x,Ra,Pa) = N(x)

D(x)
where N(x) and D(x) are piecewise linear approximations of the enu-

merator N(x) and the denominator D(x) respectively. We obtain the following inequality on the

approximation error:

∣∣F (x,Ra,Pa)− F (x,Ra,Pa)
∣∣ =

∣∣∣∣N(x)

D(x)
−N(x)

D(x)

∣∣∣∣
=

∣∣∣∣N(x)−N(x)

D(x)
−N(x)

[
1

D(x)
− 1

D(x)

]∣∣∣∣
≤
∣∣N(x)−N(x)

∣∣ 1

|D(x)|
+
∣∣D(x)−D(x)

∣∣ ∣∣N(x)
∣∣

|D(x)|
∣∣D(x)

∣∣ . (8.15)

As N(x) and D(x) are continuous functions over the compact strategy set X, the two terms 1
|D(x)|

and |N(x)|
|D(x)||D(x)| are bounded. Thus, there exist constants C1, C2 ≥ 0 such that the following

inequality holds true:

∣∣F (x,Ra,Pa)− F (x,Ra,Pa)
∣∣≤C1

∣∣N(x)−N(x)
∣∣+C2

∣∣D(x)−D(x)
∣∣ (8.16)

On the other hand, the error for piecewise linearly approximating D(x) satisfies:

∣∣D(x)−D(x)
∣∣= ∣∣∣∑

t
Lt(xt)− Lt(xt)

∣∣∣≤∑
t

∣∣Lt(xt)−Lt(xt)
∣∣ (8.17)

where Lt(xt) = eÛa
t (x,Ra,Pa). In addition, suppose that xt ∈

[
i−1
M , i

M

]
for some 1 ≤ i ≤ M ,

according to the approximation, the following condition holds:

min

{
Lt

(
i− 1

M

)
,Lt

(
i

M

)}
≤ Lt(xt) ≤ max

{
Lt

(
i− 1

M

)
,Lt

(
i

M

)}
(8.18)
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According to (8.18) and since Lt(xt) is a continuous function, there exists x̂t ∈
[
i−1
M , i

M

]
such

that the value of Lt(xt) at x̂t is equal to the value of its approximation at xt, i.e., Lt(x̂t) = Lt(xt).

As a result, we obtain
∣∣Lt(xt)− Lt(xt)

∣∣ = |Lt(xt)− Lt(x̂t)|. On the other hand, according to

the Lagrange mean value theorem, there exists a ∈ [min{xt, x̂t},max{xt, x̂t}] such that the

derivative at a satisfies the following equality:

L′t(a) =
Lt(xt)− Lt(x̂t)

xt − x̂t
(8.19)

Thus, we obtain the following inequality:

∣∣Lt(xt)−Lt(xt)
∣∣= |Lt(xt)−Lt(x̂t)|=

∣∣L′t(a)
∣∣ |xt − x̂t|≤ 1

M
max
xt∈[0,1]

∣∣L′t(xt)∣∣ (8.20)

As a result, denote by Ct = maxxt∈[0,1] |L′t(xt)| the maximum derivative value of Lt(xt) over

the range [0, 1], by combining (8.17) and (8.20), we obtain an upper bound on the error for

approximating D(x) as the follows:

∣∣D(x)−D(x)
∣∣ ≤ 1

M

∑
t
Ct = O

(
1

M

)
(8.21)

Similarly, we also have
∣∣N(x)−N(x)

∣∣ to be bounded by O
(

1
M

)
. Finally, according to (8.16)

and the error boundsO
(

1
M

)
for two terms

∣∣Lt(xt)−Lt(xt)
∣∣ and

∣∣N(x)−N(x)
∣∣, the error bound,∣∣F (x,Ra,Pa)− F (x,Ra,Pa)

∣∣, is O
(

1
M

)
. �

Lemma 2. Let lb and ub be the final lower and upper bounds of the binary search in R.ARROW,

i.e., 0 ≤ ub− lb ≤ ε and x∗ be the final solution of R.ARROW, we denote by r (x∗) the defender’s

max regret for playing x∗ against the payoff sample set S. Then r (x∗) has an upper bound of

ub+O
(

1
M

)
.

Proof. Denote by r (x∗) the piecewise approximate max regret obtained by R.ARROW, then

we have lb ≤ r (x∗) ≤ ub. Furthermore, the regret constraint must hold: r (x∗) =

maxk F
(
x′,k,Ra,k,Pa,k

)
− F

(
x∗,Ra,k,Pa,k

)
.3

3For simplification, we assume the optimal utility of the defender against the kth payoff sample,
F
(
x′,k,Ra,k,Pa,k

)
, is exactly computed. In fact, it is straightforward to extend this lemma to the case when this

optimal utility is approximated based on the PASAQ algorithm.
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On the other hand, since r (x∗) is the defender’s max regret for playing x∗ against the payoff

sample set S, then r (x∗) = maxk F
(
x′,k,Ra,k,Pa,k

)
− F

(
x∗,Ra,k,Pa,k

)
. As a result, we

obtain the following inequality:

|r (x∗)− r (x∗)| ≤ max
k

∣∣∣F(x∗,Ra,k,Pa,k
)
− F

(
x∗,Ra,k,Pa,k

)∣∣∣ (8.22)

According to Lemma 1, the RHS of this inequality is bounded by O
(

1
M

)
. Since r (x∗) ≤ ub,

then r (x∗) has an upper bound of ub+O
(

1
M

)
. �

Lemma 3. Denote by x∗ the optimal solution of the relaxed MMR problem and r (x∗) the cor-

responding max regret, then r (x∗) has a lower bound of lb + O
(

1
M

)
where lb is the final lower

bound of the binary search in R.ARROW.

Proof. Similar to the proof of Lemma 2, denote by r (x∗) the piecewise approximate max regret

of the defender for playing the optimal strategy x∗, we obtain the following inequality:

|r (x∗)− r (x∗)| ≤ max
k

∣∣∣F(x∗,Ra,k,Pa,k
)
− F

(
x∗,Ra,k,Pa,k

)∣∣∣ (8.23)

According to Lemma 1, the RHS of this inequality is bounded by O
(

1
M

)
. Since r (x∗) ≥

r (x∗) ≥ lb, then r (x∗) has a lower bound of lb+O
(

1
M

)
. �

Based on Lemmas 2 and 3, we now provide the proof for Theorem 3. According to Lemma 2,

we obtain the upper bound of ub+O
(

1
M

)
on the defender’s max regret for playing the R.ARROW

strategy x∗. Furthermore, based on Lemma 3, the defender’s max regret for playing the optimal

relaxed MMRb strategy has a lower bound of lb + O
(

1
M

)
. Since lb and ub are the final lower

and upper bounds of R.ARROW’s binary search, i.e., 0 ≤ ub− lb ≤ ε, it means that R.ARROW

provides an O
(
ε+ 1

M

)
-optimal solution for computing the relaxed MMRb problem.

8.4.2 M.ARROW: Compute MRb

Given the optimal solution x∗ returned by R.ARROW, the second step of ARROW is to compute

MRb of x∗ using M.ARROW (line 5 in Algorithm 6). The problem of computing MRb can be

represented as the following non-convex maximization problem:

max
x′∈X,(Ra,Pa)∈I

F(x′,Ra,Pa)− F(x∗,Ra,Pa) (8.24)
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Overall, it is difficult to apply the same techniques used in R.ARROW for M.ARROW since

it is a subtraction of two non-convex fractional functions, F(x′,Ra,Pa) and F(x∗,Ra,Pa).

Therefore, I use local search with multiple starting points which allows us to reach different local

optima.

8.5 ARROW-Perfect Algorithm: Perfectly Rational Attacker

While ARROW incorporates an adversary behavioral model, it may not be applicable for green

security domains where there may be a further paucity of data in which not only payoffs are

uncertain but also parameters of the behavioral model are difficult to learn accurately. Therefore, I

introduce a novel MMR-based algorithm, ARROW-Perfect, to handle uncertainty in both players’

payoffs assuming a perfectly rational attacker. In general, ARROW-Perfect follows the same

constraint sampling and constraint generation methodology as ARROW. Yet, by leveraging the

property that the attacker’s optimal response is a pure strategy (given a perfectly rational attacker)

and the game is zero-sum, I obtain the exact optimal solutions for computing both relaxed MMR

and max regret in polynomial time (while I cannot provide such guarantees for a boundedly

rational attacker). In this case, I call the new algorithms for computing relaxed MMR and max

regret: R.ARROW-Perfect and M.ARROW-Perfect respectively.

8.5.1 R.ARROW-Perfect: Compute Relaxed MMR

In zero-sum games, when the attacker is perfectly rational, the defender’s utility for play-

ing a strategy x w.r.t the payoff sample (Ra,k,Pa,k) is equal to F
(
x,Ra,k,Pa,k

)
=

−Ua
t

(
x,Ra,k,Pa,k

)
if the attacker attacks target t. Since the adversary is perfectly rational,

therefore, F
(
x,Ra,k,Pa,k

)
= −maxt Ua

t

(
x,Ra,k,Pa,k

)
, I can reformulate the relaxed MMR

in (8.6) as the following linear minimization problem:

min
x∈X,r∈R

r (8.25)

s.t. r ≥ F
(
x′,k,Ra,k,Pa,k

)
+ Ua

t

(
x,Ra,k,Pa,k

)
, ∀k = 1 . . .K,∀t = 1 . . . T (8.26)

where F
(
x′,k,Ra,k,Pa,k

)
is the defender’s optimal utility against a perfectly rational attacker

w.r.t payoff sample
(
Ra,k,Pa,k

)
and x′,k is the corresponding optimal strategy which is the
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Maximin solution. In addition, constraint (8.26) ensures that the regret r ≥ F
(
x′,k,Ra,k,Pa,k

)
+

maxt Ua
t

(
x,Ra,k,Pa,k

)
for all payoff samples. This linear program can be solved exactly in

polynomial time using any linear solver, e.g., CPLEX.

8.5.2 M.ARROW-Perfect: Compute Max Regret

Computing max regret (MR) in zero-sum games presents challenges that the regret-based solu-

tions provided in Chapter 7 can not handle since the defender’s payoffs are uncertain while assum-

ing these payoff values are known. In this chapter, I propose a new exact algorithm, M.ARROW-

Perfect, to compute MR in polynomial time by exploiting insights of zero-sum games.

In zero-sum games with a perfectly rational adversary, Strong Stackelberg Equilibrium is

equivalent to Maximin solution (Yin, Korzhyk, Kiekintveld, Conitzer, & Tambe, 2010). Thus,

given the strategy x∗ returned by relaxed MMR, max regret in (8.24) can be reformulated as

follows:

max
x′∈X,(Ra,Pa)∈I,v

v − F(x∗,Ra,Pa) (8.27)

s.t. v ≤ −
[
x′tP

a
t + (1− x′t)Rat

]
, ∀t (8.28)

where v is the Maximin/SSE utility for the defender against the attacker payoff (Ra,Pa).

Moreover, the defender’s utility for playing x∗ can be computed as F(x∗,Ra,Pa) =

−
[
x∗jP

a
j + (1− x∗j )Raj

]
if the adversary attacks target j. Thus, I divide the attacker payoff

space into T subspaces such that within the jth subspace, the adversary always attacks target j

against the defender strategy x∗, for all j = 1 . . . T . By solving these T sub-max regret prob-

lems corresponding to this division, my final global optimal solution of max regret will be the

maximum of all T sub-optimal solutions.

Next, I will explain how to solve these sub-max regret problems. Given the jth attacker payoff

sub-space, I obtain the jth sub-max regret problem as:

max
x′∈X,(Ra,Pa)∈I,v

v + (x∗jP
a
j + (1− x∗j )Raj ) (8.29)

s.t. v ≤ −[x′tP
a
t + (1− x′t)Rat ], ∀t (8.30)

x∗jP
a
j + (1− x∗j )Raj ≥ x∗tP at + (1− x∗t )Rat , ∀t (8.31)
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where constraints (8.31) ensures that the adversary attacks target j against the defender strategy

x∗. Here, constraints (8.30) are non-convex for all targets. I provide the following proposition

which allows us to linearize constraints (8.30) for all targets but j.

Proposition 9. Given target j, the lower bounds of the attacker’s payoffs at all targets except j,

{Ramin(t), P amin(t)}t6=j , are optimal solutions of
{
Raj , P

a
j

}
t6=j

for the jth sub-max regret prob-

lem.

Proof. Denote by (x′,∗,Ra,∗,Pa,∗, v∗) an optimal solution of the jth sub-max regret problem

(8.29–8.31). We construct a new solution by replacing the payoff
(
Ra,∗t , P a,∗t

)
of the optimal

solution with (Ramin(t), P amin(t)) for all t 6= j while keeping the rest of the solution unchanged.

We show that this new solution is also an optimal solution.

Since
(
x′,∗, Ra,∗j , P a,∗j , v∗

)
remains the same, we only need to verify if constraints (8.30–

8.31) are satisfied for all t 6= j with (Ramin(t), P amin(t)). In constraint (8.30), as P a,∗t ≥ P amin(t)

and Ra,∗t ≥ Ramin(t), we obtain the following inequality:

v∗≤−
[
x′,∗t P a,∗

t + (1− x′,∗t )Ra,∗
t

]
≤−

[
x′,∗t P a

min(t) + (1− x′,∗t )Ra
min(t)

]
,∀t 6= j (8.32)

Similarly, in constraint (8.31), we obtain the follows:

x∗jP
a,∗
j +(1−x∗j )Ra,∗

j ≥x
∗
tP

a,∗
t +(1−x∗t )Ra,∗

t ≥x∗tP a
min(t)+(1−x∗t )P a

min(t),∀t 6= j. (8.33)

Thus, the new solution is feasible and thus an optimal solution.

Now, only constraint (8.30) w.r.t target j remains non-convex for which I provide further steps

to simplify it. Given the defender strategy x′, I define the attack set as including all targets with

the attacker’s highest expected utility: Γ(x′) = {t : Ua
t (x′,Ra,Pa) = maxt′ U

a
t′ (x

′,Ra,Pa)}.

I provide the following observations based on which I can determine the optimal value of the

attacker’s reward at target j, Raj , for the sub-max regret problem (8.29–8.31) (according to the

Proposition 10 below):

Observation 1. If x′ is the optimal solution of computing the jth sub-max regret in (8.29–8.31),

target j belongs to the attack set Γ(x′).

Since x′ is the Maximin or SSE solution w.r.t attacker payoffs (Ra,Pa), the corresponding

attack set Γ(x′) has the maximal size (Kiekintveld et al., 2009). In other words, if a target t
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belongs to the attack set of any defender strategy w.r.t (Ra,Pa), then t ∈ Γ(x′). In (8.29–8.31),

because target j belongs to the attack set Γ(x∗), I obtain j ∈ Γ(x′).

Observation 2. If x′ is the optimal solution of computing the jth sub-max regret in (8.29–8.31),

the defender’s coverage at target j: x′j ≥ x∗j .

Since j ∈ Γ(x′) according to Observation 1, the defender utility for playing x′ is equal to

v = −[x′jP
a
j + (1 − x′j)Raj ]. Furthermore, the max regret in (8.29) is always not less than zero,

meaning that v ≥ −
[
x∗jP

a
j + (1− x∗j )Raj

]
. Thus, I obtain x′j ≥ x∗j .

Proposition 10. Given target j, the upper bound of the attacker’s reward at j, Ramax(j), is an

optimal solution of the attacker reward Raj for the jth sub-max regret problem.

Proof. Suppose that Raj < Ramax(j) is optimal in (8.29–8.31) and x′ is the corresponding de-

fender optimal strategy, then v = −[x′jP
a
j + (1 − x′j)R

a
j ] according to the Observation 1. I

then replace Raj with Ramax(j) while other rewards/penalties and x′ remain the same. Since

Raj < Ramax(j), this new solution is also feasible for (8.29–8.31) and target j still belongs

to Γ(x′). Therefore, the corresponding utility of the defender for playing x′ will be equal to

−
[
x′jP

a
j + (1− x′j)Ramax(j)

]
. Since Raj < Ramax(j) and x′j ≥ x∗j (Observation 2), the follow-

ing inequality holds true:

−
[
x′jP

a
j + (1− x′j)Ramax(j)

]
+
[
(x∗jP

a
j + (1− x∗j )Ramax(j)

]
(8.34)

= −
[
x′jP

a
j +(1−x′j)Raj

]
+
[
(x∗jP

a
j +(1−x∗j )Raj

]
+
[
x′j−x∗j

] [
Ramax(j)−Raj

]
(8.35)

≥ −
[
x′jP

a
j +(1−x′j)Raj

]
+
[
(x∗jP

a
j +(1−x∗j )Raj

]
. (8.36)

This inequality indicates that the defender’s regret w.r.t Ramax(j) (the LHS of the inequality) is

no less than w.r.t Raj (the RHS of the inequality). Therefore, Ramax(j) is an optimal solution of

the attacker’s reward at target j for (8.29–8.31).
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Based on the Proposition 9 & 10 and the Observation 1, the jth sub-max regret (8.29–8.31)

is simplified to the following optimization problem:

max
x′∈X,Paj ,v

v + (x∗jP
a
j + (1− x∗j )Ramax(j)) (8.37)

s.t. v = −
[
x′jP

a
j + (1− x′j)Ramax(j)

]
(8.38)

v ≤ −
[
x′tP

a
min(t) + (1− x′t)Ramin(t)

]
,∀t 6= j (8.39)

P amax(j) ≥ P aj ≥ max

{
P amin(j),

C − (1− x∗j )Ramax(j)

x∗j

}
(8.40)

where C = maxt6=j x
∗
tP

a
min(t) + (1 − x∗t )Ramin(t) is a constant. In addition, constraints (8.38–

8.39) refer to constraint (8.30) (where constraint (8.38) is a result of Observation 1) and con-

straints (8.40) is equivalent to constraint (8.31). The only remaining non-convex term is x′jP
a
j

in constraint (8.38). I then alleviate the computational cost incurred based on Theorem 4 which

shows that if the attack set Γ(x′) is known beforehand, I can convert (8.37–8.40) into a simple

optimization problem which is straightforward to solve.

Theorem 4. Given the attack set Γ(x′), the jth sub-max regret problem (8.37–8.40) can be rep-

resented as the following optimization problem on the variable v only:

max
v
v +

av + b

cv + d
(8.41)

s.t. v ∈ [lv, uv]. (8.42)

where v is the defender utility for playing x′ in (8.37–8.40).

Proof. According to constraint (8.39), we obtain x′t =
Ramin(t)+v

Ramin(t)−Pamin(t) for all t 6= j, t ∈ Γ(x′)

and x′t = 0 for all t /∈ Γ(x′). Since
∑

t x
′
t ≤ R where R is the number of defender resources,

the defender’s coverage at target j must satisfy the following upper bound constraint: x′j ≤

R −
∑

t∈Γ(x′),t 6=j
Ramin(t)+v

Ramin(t)−Pamin(t) in which the RHS is in the form of cv + d where c and d are

constants. If cv + d ≥ 1 or cv + d = 0, the problem becomes trivial since x′j = 1 and x′j = 0

respectively will be the optimal solution of x′j . Therefore, we only consider when 0 ≤ cv+d ≤ 1.
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Since v is maximized when x′j is maximized according to constraint (8.38), x′j = cv + d is thus

the optimal solution of x′j . Then the constraint (8.38) is equivalent to the following equality:

v = −
[
(cv + d)P aj + (1− cv − d)Ramax(j)

]
(8.43)

⇐⇒ P aj =
−v − (1− cv − d)Ramax(j)

cv + d
(8.44)

By replacing P aj by the RHS of (8.44) to the objective of the jth sub-max regret problem in

(8.37), we obtain the new objective which is in the form of v + av+b
cv+d where (a, b) are constants.

Finally, according to the constraint (8.40) and the allocation constraints 0 ≤ xt ≤ 1 for all t, we

obtain the lower bound and upper bound on v, (lv, uv).

The constants (a, b, c, d, lv, uv) are determined based on the attack set Γ(x′), the attacker’s

payoffs {Ramin(t), P amin(t)}t6=j andRamax(j), and the number of the defender resourcesR. Here,

the total number of possible attack sets Γ(x′) is maximally T sets according to the property that

Rat > Rat′ for all t ∈ Γ(x′) and t′ /∈ Γ(x′) (Kiekintveld et al., 2009). Therefore, I can iterate

over all these possible attack sets and solve the corresponding optimization problems in (8.41–

8.42). The optimal solution of each sub-max regret problem (8.37–8.40) will be the maximum

over optimal solutions of (8.41–8.42). The final optimal solution of the max regret problem

(8.27–8.28) will be the maximum over optimal solutions of all these sub-max regret problems.

In summary, I provide the M.ARROW-Perfect algorithm to exactly compute max regret of

playing the strategy x∗ against a perfectly rational attacker in zero-sum games by exploiting the

insight of extreme points of the uncertainty intervals as Ill as attack sets. Furthermore, I provide

Theorem 5 showing that the computational complexity of solving max regret is polynomial.

Theorem 5. M.ARROW-Perfect provides an optimal solution for computing max regret against a

perfectly rational attacker in O(T 3) time.

Proof. Theorem 4 shows that if the attack set Γ(x′) is given, then each sub-max regret prob-

lem can be converted into the maximization problem (8.41–8.42) which can be optimally solved

in O(1) time since its optimal solution will be at either the lower/upper bounds (lv, uv) or

at the points where the derivative of (8.41) is zero. In addition, computing the constants

(a, b, c, d, lv, uv) will take O(T ) time where T is the number of targets. Therefore, solving each

sub-max regret given the attack set will be O(T ) time.
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Algorithm 7: Elicitation process

1 Input: budget: B, regret barrier: δ, uncertainty intervals: I;
2 Initialize regret r = +∞, cost c = 0 ;
3 while c < B and r > δ do
4 (r,x∗, (x′,∗,Ra,∗,Pa,∗)) = ARROW(I);
5 P = calculatePath(x∗, (x′,∗,Ra,∗,Pa,∗));
6 I = collectInformationUAV(P); c = updateCost(P);
7 end
8 return (r,x∗);

Furthermore, the total number of possible attack sets is maximally T sets according to the

property that Rat > Rat′ for all t ∈ Γ(x′) and t′ /∈ Γ(x′). Hence, by iterating over all possible

attack sets and solving the corresponding maximization problem (8.41–8.42), we can compute

the optimal solution of each sub-max regret (8.37–8.40) in O(T 2) time.

Finally, since there are T sub-max regret problems corresponding to which target is attacked

given the defender strategy returned by R.ARROW-Perfect x∗, the max regret problem (8.27–

8.28) is optimally solved in O(T 3) time as the maximum over all T sub-max regret problems

(8.37–8.40).

8.6 UAV Planning for Payoff Elicitation (PE)

my final contribution is to provide PE heuristics to select the best UAV path to reduce uncertainty

in payoffs, given any adversary behavioral model. Despite the limited availability of mobile

sensors in conservation areas (many of them being in developing countries), these UAVs may

still be used to collect accurate imagery of these areas periodically, e.g., every six months to

reduce payoff uncertainty. Since the UAV availability is limited, it is important to determine the

best UAV paths such that reducing payoff uncertainty at targets on these paths could help reducing

the defender’s regret the most. While a UAV visits multiple targets to collect data, planning an

optimal path (which considers all possible outcomes of reducing uncertainty) is computationally

expensive. Thus, I introduce the current solution-based algorithm which evaluates a UAV path

based solely on the MMRb solution given current intervals.4

I first present a general elicitation process for UAV planning (Algorithm 7). The input in-

cludes the defender’s initial budget B (e.g., limited time availability of UAVs), the regret barrier
4A similar idea was introduced in (Boutilier et al., 2006) although in a very different domain without UAV paths.
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Figure 8.2: Min Cost Network Flow
δ which indicates how much regret (utility loss) the defender is willing to sacrifice, and the uncer-

tainty intervals I. The elicitation process consists of multiple rounds of flying a UAV and stops

when the UAV cost exceeds B or the defender’s regret is less than δ. At each round, ARROW

is applied to compute the optimal MMRb solution given current I; ARROW then outputs the

regret r, the optimal strategy x∗, and the corresponding most unfavorable strategy and payoffs

(x′,∗,Ra,∗,Pa,∗) which provide the defender’s max regret (line 4). Then the best UAV path is

selected based on these outputs (line 5). Finally, the defender controls the UAV to collect data at

targets on that path to obtain new intervals and then updates the UAV flying cost (line 6).

The key aspects of Algorithm 7 are in lines 4 and 5 where the MMRb solution is computed

by ARROW and the current solution heuristic is used to determine the best UAV path. In this

heuristic, the preference value of a target t, denoted pr(t), is measured as the distance in the de-

fender utility betIen x∗ and the most unfavorable strategy x′,∗ against attacker payoffs (Ra,∗,Pa,∗)

at that target, which can be computed as follows: pr(t) = q̂t(x
∗,Ra,∗,Pa,∗)Ud

t (x∗,Rd,Pd)−

q̂t(x
′,∗,Ra,∗,Pa,∗)Ud

t (x′,∗,Rd,Pd) where Rd =−Pa,∗ and Pd =−Ra,∗. Intuitively, targets with

higher preference values play a more important role in reducing the defender’s regret. I use the

sum of preference values of targets to determine the best UAV path based on the two heuristics:

Greedy heuristic: The chosen path consists of targets which are iteratively selected with the

maximum pr value and then the best neighboring target.

MCNF heuristic: I represent this problem as a Min Cost Network Flow (MCNF) where

the cost of choosing a target t is −pr(t). For example, there is a grid of fmy cells

(t1, t2, t3, t4) (Figure 8.2(a)) where each cell is associated with its preference value, namely

(pr(1), pr(2), pr(3), pr(4)). Suppose that a UAV covers a path of two cells every time it flies
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(a) ARROW regret (b) Influence of parameters

Figure 8.3: Solution quality of ARROW
and its entry locations (where the UAV takes off or land) can be at any cell. The MCNF for

UAV planning is shown in Figure 8.2(b) which has two layers where each cell ti has fmy copies

(t1i, t
2
i, t

3
i, t

4
i ) with edge costs c(t1i, t

2
i ) = c(t3i , t

4
i ) = −pr(i). The connectivity betIen these two

layers corresponds to the grid connectivity. There are Smyce and Sink nodes which determine the

UAV entry locations. The edge costs betIen the layers and betIen the Smyce or Sink to the layers

are set to zero.

8.7 Experimental Results

I use CPLEX for my algorithms and Fmincon of MATLAB on a 2.3 GHz/4 GB RAM machine.

Key comparison results are statistically significant under bootstrap-t (α = 0.05) (Wilcox, 2002).

More results are in the Online Appendix G.

8.7.1 Synthetic Data

I first conduct experiments using synthetic data to simulate a wildlife protection area. The area

is divided into a grid where each cell is a target, and I create different payoff structures for these

cells. Each data point in my results is averaged over 40 payoff structures randomly generated

by GAMUT (Nudelman et al., 2004). The attacker reward/defender penalty refers to the animal

density while the attacker penalty/defender reward refers to, for example, the amount of snares

that are confiscated by the defender (Yang et al., 2014). Here, the defender’s regret indicates the

animal loss and thus can be used as a measure for the defender’s patrolling effectiveness. Upper
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and loIr bounds for payoff intervals are generated randomly from [-14, -1] for penalties and [1,

14] for rewards with an interval size of 4.0.

Solution Quality of ARROW. The results are shown in Figure 8.3 where the x-axis is the grid

size (number of targets) and the y-axis is the defender’s max regret. First, I demonstrate the

importance of handling the attacker’s bounded rationality in ARROW by comparing solution

quality (in terms of the defender’s regret) of ARROW with ARROW-Perfect and Maximin. Figure

8.3(a) shows that the defender’s regret significantly increases when playing ARROW-Perfect and

Maximin strategies compared to playing ARROW strategies, which demonstrates the importance

of behavioral MMR.

Second, I examine how ARROW’s parameters influence the MMRb solution quality; which

I show later affects its runtime-solution quality tradeoff. I examine if the defender’s regret sig-

nificantly increases if (i) the number of starting points in M.ARROW decreases (i.e., ARROW

with 20 (ARROW-20), 5 (ARROW-5) and 1 (ARROW-1) starting points for M.ARROW and

40 iterations to iteratively add 40 payoff samples into the set S), or (ii) when ARROW only uses

R.ARROW (without M.ARROW) to solve relaxed MMRb (i.e., R.ARROW with 50 (R.ARROW-

50) and 100 (R.ARROW-100) uniformly random payoff samples). Figure 8.3(b) shows that the

number of starting points in M.ARROW does not have a significant impact on solution quality.

In particular, ARROW-1’s solution quality is approximately the same as ARROW-20 after 40

iterations. This result shows that the shortcoming of local search in M.ARROW (where solution

quality depends on the number of starting points) is compensated by a sufficient number (e.g., 40)

of iterations in ARROW. Furthermore, as R.ARROW-50 and R.ARROW-100 only solve relaxed

MMRb, they both lead to much higher regret. Thus, it is important to include M.ARROW in

ARROW.

Runtime Performance of ARROW. Figure 8.4(a) shows the runtime of ARROW with different

parameter settings. In all settings, ARROW’s runtime linearly increases in the number of targets.

Further, Figure 8.3(a) shows that ARROW-1 obtains approximately the same solution quality as

ARROW-20 while running significantly faster (Figure 8.4(a)). This result shows that one starting

point of M.ARROW might be adequate for solving MMRb in considering the trade-off betIen

runtime performance and solution quality. Figure 8.4(b) plots the trade-off betIen runtime and the
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(a) Runtime vs #Targets (b) Runtime vs Regret

Figure 8.4: Runtime performance of ARROW
defender’s regret in 40 iterations of ARROW-20 for 20-40 targets which shows a useful anytime

profile.

Solution quality of ARROW-Perfect. Figure 8.5 shows the solution quality of ARROW-Perfect.

The x-axis is the number of targets and the y-axis indicates the defender’s expected utility for

playing ARROW-Perfect compared with the optimal utility against the worst payoff instance.

The result shows that the utility loss due to payoff uncertainty increases linearly with the interval

size. Especially, the defender’s utility loss compared with the optimal utility is approximately the

same when the number of targets varies. This result clearly shows that ARROW-Perfect helps the

defender in keeping a low loss in her utility given payoff uncertainty.
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Figure 8.5: Solution quality of ARROW-Perfect

Runtime Performance of ARROW-Perfect. Figure 8.6 shows the runtime performance of

ARROW-Perfect compared to ARROW and a non-linear solver (i.e., fmincon of Matlab) to com-

pute MMR of the perfectly rational attacker case. While the runtime of both ARROW and non-

linear solver increase quickly w.r.t the number of targets (e.g., it takes them approximately 20
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Figure 8.6: Runtime Performance of ARROW-Perfect
minutes to solve a 200-target game on average), ARROW-Perfect’s runtime slightly increases

and reaches 53 seconds to solve a 800-target game on average. This result shows that ARROW-

Perfect is scalable for large security games.

Payoff Elicitation. I evaluate my PE strategies using synthetic data of 5×5-target (target = 2×2

km cell) games. The UAV path length is 3 cells and the budget for flying a UAV is set to 5 rounds

of flying. I assume the uncertainty interval is reduced by half after each round. my purpose is

to examine how the defender’s regret is reduced over different rounds. The empirical results are

shown in Figure 8.7 where the x-axis is the number of rounds and the y-axis is the regret obtained

after each round (Figure 8.7(a)) or the accumulative runtime of the elicitation process over rounds

(Figure 8.7(b)). I compare three heuristics: 1) randomly choosing a path (Random) 2) Greedy,

and 3) MCNF. Figure 8.7 shows that the defender’s regret is reduced significantly by using Greedy

and MCNF in comparison with Random. As mentioned, the difference are statistically significant

(α = 0.05). Also, both Greedy and MCNF run as quickly as Random.

(a) Solution quality (b) Runtime performance

Figure 8.7: UAV planning: uncertainty reduction over rounds
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(a) Small interval (b) Larger interval

Figure 8.8: Real world max regret comparison
8.7.2 Real-world Data

Lastly, I use my wildlife dataset from Uganda (Section 8.2) to analyze the effectiveness of past

patrols conducted by rangers (in the wildlife park) compared with the patrol strategies generated

by ARROW. I choose multiple subsets of 50 grid cells each, randomly sampled from the 2423

grid cells for my analysis. Before these wildlife areas Ire patrolled, there was uncertainty in the

features values in those areas. I simulate these conditions faced by real world patrollers by intro-

ducing uncertainty intervals in the real-world payoffs. In my experiments, I impose uncertainty

intervals on the animal density for each target, though two cases: a small and a large interval

of sizes 5 and 10 respectively. Figures 8.8(a) and 8.8(b) show the comparison of the max regret

achieved by ARROW and real world patrols for 10 such subsets, under the above mentioned cases

of payoff uncertainty intervals. The x-axis refers to 10 different random subsets and the y-axis

is the corresponding max regret. These figures clearly show that ARROW generates patrols with

significantly less regret as compared to real-world patrols.

8.8 Summary

Whereas previous work in wildlife protection had assumed that there was an abundance of data

in these domains, such data is not always available. To address such situations, I provide four

main contributions: 1) for the first time, I compare key behavioral models, e.g., LensQR/QR on

real-world data and show LensQR’s usefulness in predicting adversary decisions; 2) I propose a

novel algorithm, ARROW, to solve the MMRb problem addressing both the attacker’s bounded

rationality and payoff uncertainty (when there is sufficient data to learn adversary behavioral
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models); 3) I present a new scalable MMR-based algorithm, ARROW-Perfect, to address payoff

uncertainty against a perfectly rational attacker (when learning behavioral models is infeasible),

and 4) I introduce new PE strategies for mobile sensors, e.g., UAV to reduce payoff uncertainty.
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Chapter 9

Conclusion and Future Work

Game-theoretic approaches to security, referred to security games, have been sucessfully applied

to solving many real-world security problems, ranging from protecting critical national infras-

tructure such as airports, flights, and ports from terrorists to protecting environmental resources

such as forests, wildlife, and fishery from smugglers, poachers, and illegal fisherman. In par-

ticular, Stackelberg security games, a leader-follower game-theoretic model, are at the heart of

many real-world security applications, which assist security agencies to optimally randomize

the allocation of limited security resources to protect important targets from being attacked by

adversaries (e.g., terrorists). Standard SSGs require perfect knowledge about the game and un-

realistic assumptions, such as: (i) the adversary is perfectly rational; (ii) the payoffs of both the

defender and adversary are precisely estimated; and (iii) the defender’s strategy is always exe-

cuted perfectly and is always fully observed by the adversary. However, these assumptions are

not ideal for solving real-world security problems since there exist a variety of uncertainties w.r.t

the adversary’s rationality, the players’ payoff values, as well as the defender’s execution and the

adversary’s observations. While adopting such assumptions is a reasonable start for developing

the first generation of security game applications, it is critical to address uncertainties in security

games in order to obtain effective patrolling strategies for the defender.

My research focuses on providing innovative techniques and significant advances for address-

ing the challenges of uncertainties in real-world security problems. In order to understand better

the real-world security problems, in particular the wildlife protection problem, I co-organized

a workshop on wildlife protection in collaboration with the World Wildlife Fund (WWF) held

in Bandar Lampung, Indonesia in May, 2015. The goal of the workshop is to demonstrate the
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(a) Workshop participants (b) Anti-poaching games

Figure 9.1: Workshop on wildlife protection held in Bandar Lampung, Indonesia

(a) Rhino camp (b) Collect information

Figure 9.2: Ranger patrols in Bandar Lampung, Indonesia
value of game-theoretic solutions for anti-poaching problems to security experts who protect

wildlife. The workshop is held in Bandar Lampung, Indonesia which involves the participants

from both the government and NGOs (Indonesian National Park Service, WWF, Wildlife Conser-

vation Society, Indonesian Rhino Foundation, and Prosecution Officers from the Courts). These

park rangers and law enforcement officers have a great deal of experience in wildlife protection

and domain expertise in wildlife crime and protection. I’m fortunate to work directly with these

domain experts, learning from their experience and expertise to improve my game-theoretic anti-

poaching solutions, and especially going on the field with them to understand how patrols are

conducted in the real world (Figure 9.1 and Figure 9.2). To that end, my thesis has the following

five key contributions.
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9.1 Contributions

• Stochastic model of adversary behavior—LensQR: This work demonstrates the importance

of modeling human adversary decision making in SSGs. In particular, I introduce a new be-

havioral model called LensQR which is a novel integration of the Lens utility function with

the Quantal Response model. Through extensive experiments, I provided the following

contributions: (i) I show that my LensBRQR algorithm, which involves the new LensQR

behavioral model, significantly outperforms both MATCH and its improved versions; (ii)

I am the first to present experimental results with security intelligence experts, and find

that even though the experts are more rational than AMT workers, LensBRQR performs

better than its competition against the experts; (iii) I show the advantage of LensBRQR in

a new game setting and demonstrate that additional data can further boost the performance

of LensBRQR over MATCH. Finally, I show that LensQR is the best model compared to

existing behavioral models in predicting poachers’ behavior in wildlife protection.

• Sophisticated model of poacher behavior in wildlife protection—LensQR-Poacher: I in-

troduce a new behavioral models of poachers, LensQR-Poacher, which is integrated in

my new predictive anti-poaching tool, CAPTURE. The LensQR-Poacher model provides a

significant advance over the state-of-the-art in modeling poachers in security games (Fang

et al., 2016) and in conservation biology (Hofer et al., 2000; Critchlow et al., 2015) via 1)

addressing the challenge of imperfect observations of the rangers; 2) incorporating tempo-

ral effects on the poachers’ behaviors; and 3) not requiring a known number of attackers. I

provide two new heuristics: parameter separation and target abstraction to reduce the com-

putational complexity of learning the model parameters. Furthermore, CAPTURE incor-

porates a new planning algorithm to generate optimal patrolling strategies for the rangers,

taking into account the new complex poacher model. Finally, this application presents an

evaluation on the largest sample of real-world data in the security games literature, i.e.,

over 12-years of data of attacker defender interactions in QENP. The experimental results

demonstrate the superiority of my model compared to other existing models. CAPTURE

will be tested in QENP in early 2016.
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• Robust maximin algorithm—URAC, ORAC, and GMM: I present three robust algorithms

to handle multiple uncertainties in security games that maximize the defender’s utility

against the worst-case uncertainty. URAC is a unified robust algorithm that addresses all

types of uncertainties. The first novel idea of URAC is to reduce the number of dimen-

sions in the uncertainty space to reduce the complexity of finding the worst-case scenario

for the defender due to uncertainties. URAC then follows a divide-and-conquer method

to decouple the dependency of the adversary’s strategies on the defender’s strategies. Es-

sentially, URAC divides the problem into sub-maximin problems; each sub-problem is

associated with a subset of the defender’s strategies and a uncertainty subset of the adver-

sary’s strategies which is independent from the defender’s strategies. URAC then solves

these sub-maximin problems using a standard optimization approach and combines the re-

sulting sub-optimal solutions to find the global optimal solution. ORAC and GMM, on the

other hand, are approximate robust scalable algorithms which focus on subsets of uncer-

tainties, exploiting intrinsic properties of the attacker’s rationality. Finally, I show through

my experiments that my algorithms improve runtime performance and/or solution quality.

• Regret-based algorithm—MIRAGE: Despite significant applications of SSGs for protect-

ing major critical infrastructure, research on robustness in SSGs has, to date, focused only

on one concept, maximin over interval uncertainty of payoffs. I have proposed the use of

MMR as a decision criterion for payoff-uncertain SSGs and presented an efficient algo-

rithm, MIRAGE, for computing MMR for such games. The key idea of MIRAGE is to use

incremental payoff generation; it starts by solving a relaxed minimax regret problem given

a small set of payoff samples. Then new payoff samples are iteratively generated and added

into the current set of samples until the optimal solution is obtained. I then introduce two

new algorithms, bCISM and ALARMS, to solve the relaxed minimax regret and the max

regret probblems. In particular, bCISM follows a two-level decomposition technique which

decomposes relaxed minimax regret into simpler sub-problems based on individual payoff

samples and targets the adversary can attack. ALARMS focuses on exploiting extreme

points in the uncertainty space to compute max regret. Furthermore, I have addressed, for

the first time, the challenge of preference elicitation in SSGs, providing novel regret-based
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solution strategies. Experimental results validate the effectiveness of my approaches w.r.t.

both computational and informational efficiency.

• Regret-based algorithm for wildlife protection—ARROW and ARROW-Perfect: Whereas

previous work in wildlife protection had assumed that there was an abundance of data in

these domains, such data is not always available. To address such situations, I propose

a novel algorithm, ARROW, to solve the MMRb problem addressing both the attacker’s

bounded rationality and payoff uncertainty (when there is sufficient data to learn adver-

sary behavioral models). Furthermore, I present a new scalable MMR-based algorithm,

ARROW-Perfect, to address payoff uncertainty against a perfectly rational attacker (when

learning behavioral models is infeasible). Both ARROW and ARROW-Perfect follow the

incremental payoff generation approach to solve minimax regret. ARROW applies piece-

wise linear approximation to linearize the non-convex components of the behavioral model

of the poachers and represents the relaxed minimax regret problem as a MILP. ARROW-

Perfect exploits extreme points in the uncertainty space to solve both relaxed minimax

regret and max regret in polynomial time. Finally, I introduce new PE strategies for mo-

bile sensors, e.g., UAVs, to reduce payoff uncertainty. I conduct extensive experiments,

including evaluations of ARROW based on data from a wildlife park.

9.2 Future Work

In this thesis, I have shown how game-theoretic approaches (i.e., security games) can be applied

to solving real-world security problems, with the focus on addressing uncertainties in two spe-

cific security domains: 1) infrastructure security and 2) wildlife protection. My future work will

continue to focus on methodological advancements in human behavioral modeling and robust

optimization techniques for addressing uncertainties. My work will support applications in not

only infrastructure, green, and cyber security domains but also in other domains, such as public

heath management and decision analysis, which include complex human decision making and

multiple types of uncertainties. My research is inspired by large-scale interdisciplinary research

challenges that arise in these domains, involving multi-disciplinary research areas including ma-

chine learning, multi-agent systems, and optimization.
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One possible future direction is to further improve the behavioral model and patrol planning

in CAPTURE for wildlife protection. I want to explore a richer class of behavioral models that

explore spatial-temporal dependence in poachers’ decision making as well as leverage all infor-

mation w.r.t the poachers’ activities. Currently, LensQR-Poacher does not take into account the

spatial dependence of poachers’ behavior. For example, if the poachers often go to certain areas

to poach animals, they are likely to go to the neighborhood of that area as well. In fact, neighbor

areas tend to share similarity in animal density and terrain structure, etc. Thus we can exploit

this spatial property in reasoning about the poachers’ behavior, further improving the prediction

accuracy of the model. Moreover, LensQR-Poacher only considers a binary observation of the

rangers, meaning that the model only examines whether the rangers observe any poaching signs

or not at a certain location. As a result, LensQR does not fully exploit the observations of the

rangers, which exhibit multiple levels of poaching signs at every location within the park. Fur-

thermore, in planning patrols for the rangers, CAPTURE mainly focuses on generating coverage

probabilities over grid cells. While this is a reasonable start, it is critical for CAPTURE to con-

sider the terrain structure of the park in generating patrols, including elevation change and the

habitat of the area, since it is infeasible for the rangers to walk through high moutains or rivers.

While (Fang et al., 2016) presents the first solution for addressing this challenge by building a

street map in which rangers can follow paths in the map, this work still adopts the simple LensQR

model for predicting the poacher behavior. How to address the challenge of generating feasible

and effective patrol routes for the rangers while taking into account the complex behavioral model

of poachers, i.e., LensQR-Poacher is an interesting research direction for the future.

One other direction is the problem of exploration-exploitation tradeoff in adversary behav-

ioral learning. Generally, we assume that our new behavioral model can capture accurately the

adversary’s behavior and then compute the optimal patrolling strategy for the defender relying on

this assumption. However, in many real-world security domains, the available data for learning

the adversary’s behavior is insufficient, leading to an important issue of bias in modeling. For

example, in wildlife protection, the rangers usually can only patrol a small portion of the area,

leaving other areas unexplored. As a result, the model of the poachers’ behavior can be learnt

only based on the data collected by the rangers within that small portion. This issue may result
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in an inaccurate model that cannot represent the poachers’ behavior over the whole park. There-

fore, it is important for us to go beyond the resulting model in terms of: 1) keep patrolling areas

with a lot of poaching signs based on the resulting behavioral model (exploitation phase); and

2) patrolling other unexplored areas together with collecting poaching signs (exploration phase).

I am interested in determining the level of exploitation and exploration given available data for

learning.

Another possible direction relates to efficient computation of an optimal, robust, and feasible

strategy for the defender. Currently, my robust algorithms mainly focus on generating an opti-

mal robust marginal strategy for the defender without considering any patrolling constraints. As

pointed out, in wildlife protection as well as other security domains, there are several constraints

on the defender’s feasible patrols (e.g., the rangers have to follow a set of patrol routes). As a

result, the marginal strategy generated by my algoirthms may not be implementable. Therefore,

in future work, I would like to extend my algorithms to handle such constraints. A key challenge

is that these constraints could lead to a large number of the defender’s pure strategies that need

to be considered, making the problem of finding an optimal strategy for the defender computa-

tionally expensive. For example, in wildlife protection there is an exponential number of possible

routes that the rangers can follow to patrol. Therefore, I want to address this scalability challenge

together with the uncertainty challenge in security games.

To that end, I aim at building up a general unified game-theoretic framework for addressing

uncertainties in security. This unified framework will allows us to easily adapt and extend the

general game-theoretic methodologies presented to deal with uncertainties in any specific security

domain. Specifically, in modeling the adversary’s behavior, there will be multiple components

(e.g., temporal and spatial components) integrated in predicting the adversary’s decision making.

The planning part will consist of different robust and efficient algorithms (based on maximin and

minimax regret) to generate an optimal patrolling strategy for the defender. Integrated algorithms

will be built to address different types of uncertainties, taking into account behavioral models of

the adversary as well as the scalability challenge.
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