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Abstract

Game theory has been successfully used to handle complex resource allocation and patrolling

problems in security and sustainability domains. More specifically, real-world applications have

been deployed for different domains based on the framework of security games, where the de-

fender (e.g., security agency) has a limited number of resources to protect a set of targets from

an adversary (e.g., terrorist). Whereas the first generation of security games research provided

algorithms for optimizing security resources in mostly static settings, my thesis advances the

state-of-the-art to a new generation of security games, handling massive games with complex

spatio-temporal settings and leading to real-world applications that have fundamentally altered

current practices of security resource allocation. Indeed, in many real-world domains, players act

in a geographical space over time, and my thesis is then to expand the frontiers of security games

and to deal with challenges in domains with spatio-temporal dynamics. My thesis provides the

first algorithms and models for advancing key aspects of spatio-temporal challenges in security

games, including (i) continuous time; (ii) continuous space; (iii) frequent and repeated attacks;

(iv) complex spatial constraints.

First, focusing on games where actions are taken over continuous time (for example games

with moving targets such as ferries and refugee supply lines), I propose a new game model that

accurately models the continuous strategy space for the attacker. Based on this model, I provide

xii



an efficient algorithm to calculate the defender’s optimal strategy using a compact representation

for both the defender and the attacker’s strategy space. Second, for games where actions are taken

over continuous space (for example games with forest land as a target), I provide an algorithm

computing the optimal distribution of patrol effort. Third, my work addresses challenges with one

key dimension of complexity – frequent and repeated attacks. Motivated by the repeated inter-

action of players in domains such as preventing poaching and illegal fishing, I introduce a novel

game model that deals with frequent defender-adversary interactions and provide algorithms to

plan effective sequential defender strategies. Furthermore, I handle complex spatial constraints

that arise from the problem of designing optimal patrol strategy given detailed topographical

information.

My thesis work has led to two applications which have been deployed in the real world and

have fundamentally altered previously used tactics, including one used by the US Coast Guard

for protecting the Staten Island Ferry in New York City and another deployed in a protected area

in Southeast Asia to combat poaching.
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Chapter 1

Introduction

Security and sustainability challenges exist all around the world. These challenges include pro-

tecting critical infrastructure and transportation networks, preventing intrusions in cyber systems,

as well as protecting environmental resources, saving endangered wildlife from poaching and

stopping illegal fishing. A unifying theme in these challenges is the strategic reasoning between

the law enforcement agencies and the adversaries such as terrorists and poachers. The law en-

forcement agencies only have limited resources, and it is not possible to protect everything at all

times; and at the same time, the adversaries can conduct surveillance to observe the agencies’

actions. Therefore, any deterministic allocation of resources can be exploited by the adversaries,

and it is important for the agencies to introduce randomness to the allocation.

Game theory has become a well-established paradigm for modeling complex resource al-

location and scheduling problems in security and sustainability domains (Tambe, 2011; Gatti,

2008; Agmon, Kraus, & Kaminka, 2008; Basilico, Gatti, & Amigoni, 2009). One game-theoretic

model that has received significant attention is the Stackelberg security game (denoted as SSG)

model with two players, the defender, and the attacker. In SSG, the defender needs to allocate

and schedule their limited resources to protect a set of targets from the attacker. The defender

1



commits to a mixed strategy, which is a randomized schedule specified by a probability distribu-

tion over deterministic schedules; the attacker then observes the distribution and plays the best

response (Korzhyk, Conitzer, & Parr, 2010a). Models and algorithms have been proposed to

compute the optimal strategy for the defender efficiently to address real-world challenges, form-

ing the first generation of security games (Jain, 2013; Yin, 2013; Pita, 2012; Yang, 2014; Shieh,

2015; Brown, 2015). Decision-support systems based on SSG and the proposed algorithms have

been successfully deployed in several domains to assist security agencies (Pita, Jain, Marecki,

Ordóñez, Portway, Tambe, Western, Paruchuri, & Kraus, 2008a; Tsai, Rathi, Kiekintveld, Or-

donez, & Tambe, 2009a; Shieh, An, Yang, Tambe, Baldwin, DiRenzo, Maule, & Meyer, 2012a;

Yin, Jiang, Johnson, Kiekintveld, Leyton-Brown, Sandholm, Tambe, & Sullivan, 2012b).

In most previous work on security games, only limited spatio-temporal aspects have been con-

sidered: First, the targets are assumed to be stationary (e.g., airport terminals (Pita, Jain, Marecki,

Ordóñez, Portway, Tambe, Western, Paruchuri, & Kraus, 2008b)), or stationary relative to the de-

fender and the attacker (e.g., trains (Yin & Tambe, 2012) and planes (Tsai, Rathi, Kiekintveld,

Ordonez, & Tambe, 2009b), where the players can only move along with the targets to protect or

attack them). Second, the targets are assumed to be discretized, such as airport terminals and dif-

ferent regions in port. Third, it is assumed that the attackers can conduct long-term surveillance

to understand the defender’s strategy and then plan for a one-shot attack. Fourth, spatial con-

straints that restrict the movement of the defender’s resources (e.g., patrollers) are often ignored

or significantly simplified.

However, as the security game model has evolved, there has been a push towards increas-

ingly complex security domains where these simple assumptions might not be sufficient. My

thesis focuses on such domains and addresses the research challenges raised by introducing more

2



(a) Ferry protection (b) Forest protection

(c) Wildlife protection (d) Fishery protection

Figure 1.1: Different domains with complex spatio-temporal aspects.

complex spatio-temporal aspects. The first part of my thesis considers spatio-temporal continuity

of targets and players’ action space in security games. The second part of my thesis focuses on

spatio-temporal dynamics in “green (environmental)” security domains such as preventing poach-

ing and illegal fishing, where frequent and repeated attacks and complex spatial constraints are

involved. The technical contributions of my thesis include models and algorithms for addressing

these spatio-temporal aspects.

1.1 Spatio-temporal Continuity

The first part of my thesis focuses on spatio-temporal continuity in security games. In many real-

world scenarios, players act in a geographical space over time even considering a one-shot attack,

and these scenarios would lead to a need of considering the continuous time and space.
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One important scenario is moving target protection, where the defender has mobile resources

to protect targets that are moving according to a known daily schedule and with changing utility

values. This scenario captures domains such as protecting ferry systems from potential attacks

and protecting refugee supply lines. The changing position of the targets makes it necessary to

reason about the continuous space and time, which leads to significant challenges in representing

the players’ strategies and calculating the equilibrium. For example, the action set for the attacker

has infinite actions, as he can choose not only which target to attack, but also when to attack.

Such infinite action space due to continuous time and space was not considered in previous work

in security games.

Another important scenario where continuous space needs to be considered is protecting a

large area from intruders. The intruders’ reward is not only measured by whether or not he in-

trudes the area without being captured by the patroller, but also how far he intrudes. This scenario

abstracts the problem of protecting a forest land from excessive fuel-wood extraction where the

rangers aim to deter extractors who intrude the forest from the boundary of the protected land.

Calculating the optimal strategies for the players is a significant challenge as the action sets for

both players have infinite cardinality: the extractors need to decide how far to intrude, and the

rangers need to plan their patrol effort within the whole area.

To handle the infinite action space introduced by spatio-temporal continuity in security games,

one approach that is often used is discretization (Yang, Ford, Tambe, & Lemieux, 2014a). In some

problems, the discretization needs to be sufficiently fine-grained to ensure the solution quality.

However, a fine-grained discretization can still lead to a large action space for the players, mak-

ing the calculation of optimal strategies computationally prohibitive. Also, in some problems,

no matter how fine-grained the discretization is, it may still lead to sup-optimal solutions. My
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main contributions in this part include exploiting the spatio-temporal structure to handle the in-

finite action space directly and to handle the large action space after discretization efficiently.

The key ideas include reducing the number of actions to be considered based on the dominance

relationship or equivalence relationship and analyzing the properties of the optimal strategy to

reduce the search space. Both ideas aim to abstract the players’ action space before calculating

the equilibrium strategy.

In dealing with the problem of moving target protection, I introduce a novel game model

that considers an SSG with a continuous set of actions for the attacker. In contrast, while the

defender’s action space is also continuous, it is discretized for three reasons. Firstly, if the de-

fender’s action space is continuous, the space of mixed strategies for the defender would then

have infinite dimensions, which makes exact computation infeasible. Secondly, in practice, the

defender’s mobile resources (i.e., patrol boats for protecting ferries) may not be able to have in-

finitely fine-grained control over their movement, which makes the actual defender’s action space

effectively a discrete one. Finally, the discretized defender action space is a subset of the original

continuous defender action space, so the optimal defender strategy calculated in the discretized

defender action space is a feasible solution in the original game and gives a lower-bound guaran-

tee for the defender.

Given this model, I propose CASS (Solver for Continuous Attacker Action Set), an efficient

linear program to exactly solve the proposed game model. In this solver, I represent the defender’s

mixed strategies as marginal probability variables, and this compact representation significantly

reduces the number of variables needed to describe a defender strategy under discretization. In

addition, I handle the infinite attacker actions over continuous time directly by partitioning the at-

tacker’s action set. I show that due to the spatio-temporal structure of the problem, only one time
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point could potentially be chosen by a best-responding attacker for each target in each partitioned

subset. An attacker is best-responding if he tries to attack a target at a time point that gives him the

highest expected utility. Therefore, it is sufficient to consider a finite number of attacker actions

when calculating the optimal defender strategy. Additional contributions include equilibrium re-

finement in the game and patrol route sampling. The game may have multiple equilibria and the

defender strategy found by CASS can be suboptimal with respect to uncertainties in the attacker’s

model, e.g. if the attacker can only attack during certain time intervals. I propose two heuristic

equilibrium refinement approaches. The first, route-adjust, iteratively computes a defender strat-

egy that dominates earlier strategies. The second, flow-adjust, is a linear-programming-based

approach. An application built based on the work has been deployed for protecting the Staten

Island Ferry and is used by US Coast Guard since April 2013.

For area protection, the solution stems from the cost-benefit analysis, which leads to the key

observation that in equilibrium, the attacker chooses a distance with the highest net benefit and the

defender allocates the patrol resources to make the attacker’s marginal net benefit be zero beyond

the equilibrium distance. That is, the attacker’s every additional step beyond the equilibrium

distance would lead to zero net benefit. We prove that there exists one optimal strategy that

satisfies this property, and we aim to find such strategy. With this analysis, the search space

for the optimal patrol strategy is reduced significantly since the strategy can be characterized by

the distance from which the defender starts to allocate patrol resources. Our work provides an

efficient algorithm to find the optimal patrol strategy, a simple and practical approximation with

a theoretical bound, as well as closed-form solutions for special cases.
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1.2 Novel Challenges in Green Security Domains

The second part of my thesis focuses on spatio-temporal dynamics in green security domains such

as protecting wildlife and preventing illegal fishing. Same as infrastructure security domains, the

law enforcement agencies have limited resources, and game theory can be brought into the field

to fight against the illegal activities such as poaching and illegal fishing. However, these green

security domains are very different compared to infrastructure security for several main reasons.

First, frequent and repeated attacks are involved. For example, poachers place snares on the

ground to trap animals. More than one thousand snares can be found annually in a conservation

area in Uganda. If we consider the problem as a game, it is no longer a one-shot game. In addition,

the frequent attacks would bring in more attack data that can be exploited by the defender. The

second main difference is in attacker’s decision making. The attacks take place frequently, so

it’s impossible for the attacker to conduct long-term surveillance before each of the attacks. The

attacker may even have a lagged understanding of the defender’s strategy. Also, due to frequent

attacks and the relatively low cost of failure, the attacker will take less effort in planning the

attacks and may be boundedly rational in their decision making. Third, the feasibility of a patrol

route is often constrained by various spatial constraints. For example, it is important to take into

account the geographical information and design routes that can be followed by patrollers.

With all these differences, new models are needed for green security domains and the defender

faces a much more complex optimization problem. My contributions in this part include models

and algorithms to handle challenges introduced by these difference.

I proposed Green Security Games (GSGs), a novel game model that considers frequent and

repeated attacks and a novel behavior model for the attacker. In green security domains, the
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attackers can repeatedly and frequently perform attacks. On the other hand, this makes it possi-

ble for the defender to exploit the attackers’ temporal attack pattern and benefit from changing

her strategy from time to time. GSG generalizes the standard Stackelberg assumption in secu-

rity games and instead assumes that the attackers’ understanding of the defender strategy can be

approximated as a convex combination of the defender strategies used in several recent rounds.

Based on this model, I proposed two sets of algorithms that plan ahead, providing defender strate-

gies in each round and I further provide a novel framework that incorporates learning with our

planning framework.

In bringing the defender strategy to the real world, one important aspect to be considered is

spatial constraints. For example, efforts have been made by law enforcement agencies in many

countries to protect endangered animals; the most commonly used approach is conducting foot

patrols. However, for human patrollers who move in conservation areas with complex terrain,

a defender strategy in the form of coverage probability is not sufficient. More guidance should

be provided, and a desirable defender strategy should include a set of complete and detailed

patrol routes that are compatible with the terrain. In my thesis, I incorporate the topographical

information into the game model and handle the spatial constraints brought by it.

The main technical challenge of addressing the spatial constraints is that considering detailed

topographical information leads to a need for a fine-grained discretization, which makes the cal-

culation of optimal defender strategy computationally prohibitive. To address this challenge, I

use a hierarchical modeling approach and combine grid-based discretization and graph represen-

tation. I first apply a coarse grid-based discretization for the whole area, and then represent each

discretized region as a sub-graph and connect the sub-graphs to get a large graph – a virtual street

map of the area. More specifically, I build the sub-graphs of the discretized regions based on the
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terrain features such as ridgeline and streams, as they are important conduits for animals’ move-

ment and patrollers should focus on these features during their patrols. With the street map, the

number of patrol routes for the defender is significantly reduced, making it possible to calculate

the optimal defender strategy efficiently.

1.3 Thesis Overview

The structure of the thesis is organized as follows: Chapter 2 discusses background material

for Stackelberg security games. Chapter 3 reviews related work to provide the context for the

contributions of the thesis. Chapter 4 considers security games continuous time (for example

games with moving targets such as ferries and refugee supply lines). Chapter 5 investigates

how to reason about continuous space in security games (for example games with forest land

as a target). Chapter 6 explores the problem of frequent and repeated attacks, motivated by

green security domains such as preventing poaching and illegal fishing. Chapter 7 examines how

to handle complex spatial constraints that arise from the problem of designing optimal patrol

strategy given complex topographical information. Chapter 8 summarizes the thesis and presents

possible directions for future work.
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Chapter 2

Background

2.1 Security Games

A security game (Conitzer & Sandholm, 2006; Kiekintveld, Jain, Tsai, Pita, Ordóñez, & Tambe,

2009a; Paruchuri, Pearce, Marecki, Tambe, Ordonez, & Kraus, 2008) is a two-player game be-

tween a defender and an attacker, where the defender must protect a set of N targets from the

attacker. The defender tries to prevent attacks using K defender resources. A pure strategy for

the defender is typically an assignment of the K resources to either patrols or targets (depend-

ing on the type of the game) while a pure strategy for the adversary is typically the target that

is to be attacked. Denote the kth defender pure strategy as Ak, which is an assignment of all

the security resources. Ak is represented as a column vector Ak = 〈Aki〉T , where Aki indicates

whether target i is covered by Ak. For example, in a game with four targets and two resources,

Ak = 〈1, 1, 0, 0〉 represents the pure strategy of assigning one resource to target 1 and another

to target 2. Each target i ∈ [N ] is assigned a set of payoffs {P ai , Rai , P di , Rdi }: If an attacker

attacks target i and it is protected by a defender resource, the attacker gets utility P ai (P stands

for penalty) and the defender gets utility Rdi (R stands for reward). If target i is not protected, the
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attacker gets utility Rai and the defender gets utility P di . In order to be a valid security game, it

must hold that Rai > P di and Rdi > P di , which means that assigning a resource to cover a target

more often is always beneficial for the defender and disadvantageous for the adversary. Careful

planning by the defender is necessary as the amount of available security resources is limited,

i.e., K < N , and not all targets can be covered.

Most work on security games has used the Stackelberg assumption, i.e., the defender commits

to a strategy first. The adversary is then able to conduct surveillance and thus learn the defender’s

strategy before selecting their strategy. The game is then denoted as a Stackelberg security game

(SSG) and the standard solution concept the Strong Stackelberg Equilibrium (SSE), in which

the defender selects an optimal strategy based on the assumption that the adversary will choose

an optimal response, breaking ties in favor of the defender. In an SSG, the optimal resource

allocation strategy for the defender will usually be a mixed (randomized) strategy a, which is

a distribution over the set of pure defender strategies A, as any deterministic defender strategy

would easily be exploited by the adversary. The defender’s mixed strategy can then be represented

as a vector a = 〈ak〉, where ak ∈ [0, 1] is the probability of choosing pure strategy Ak. There

is also a more compact ”marginal” representation for defender strategies. Let x be the marginal

strategy, where xi =
∑

Ak∈A akAki is the probability that target i is covered. Thus, depending

on the particular type of security game, the defender is trying to find either the optimal mixed

strategy a or marginal strategy x.

There have been many algorithms and models developed to solve SSGs, including DOBSS

(Paruchuri et al., 2008) which solves SSGs using a mixed-integer linear program, ORIGAMI

(Kiekintveld et al., 2009a) which provides a polynomial time algorithm for SSGs that contain no
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scheduling constraints. However, these algorithms do not apply to security games with spatio-

temporal aspects associated with moving targets, continuous target, and frequent adversary inter-

action.

2.2 Human Behavior Models

One of the strongest assumptions in classic game theory is that the players are perfectly rational

utility maximizer. However, it is well-understood that human beings are boundedly rational, and

thus, the attackers may not always choose to attack the target with the highest expected utility,

i.e., best respond to the defender’s strategy. Incorporating human behavioral models (McKelvey

& Palfrey, 1995) in decision making into security games has been demonstrated to improve the

performance of defender patrol strategies in both simulations and human subject experiments

(Pita, Jain, Ordonez, Tambe, & Kraus, 2010; Yang, Ordonez, & Tambe, 2012; Nguyen, Yang,

Azaria, Kraus, & Tambe, 2013c).

(Yang et al., 2012) was the first to address human adversaries in security games by incorpo-

rating quantal response (QR) model (McKelvey & Palfrey, 1995) from the behavioral economics

literature. Instead of choosing the action with the highest utility, QR model predicts a probabil-

ity distribution over adversary actions where actions with higher utility have a greater chance of

being chosen.

(Nguyen et al., 2013c) extended the QR model by proposing that humans use “subjective util-

ity”, a weighted linear combination of features (such as defender coverage, adversary reward, and

adversary penalty), to make decisions. This subjective utility quantal response (SUQR) model
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was shown to outperform QR in human subject experiments. As a result, most subsequent re-

search on boundedly rational human adversaries in security games has focused on the SUQR

model. In this model, an attacker’s choice is based on an evaluation of key properties of each tar-

get, including the coverage probability, the reward and the penalty, represented by the parameter

vector ω = (ω1, ω2, ω3). If the attackers respond to defender strategy η, the probability that an

attacker with parameter ω attacks target i is

qi(ω, η) =
eω1ηi+ω2Ra

i +ω3Pa
i∑

j e
ω1ηj+ω2Ra

j +ω3Pa
j

(2.1)

When there are multiple attackers, Bayesian SUQR model (Yang et al., 2014a) is proposed based

on the SUQR model. It captures the heterogeneity of a group of attackers and assumes that

different attackers have different parameters.
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Chapter 3

Related Work

3.1 Stackelberg Security Games

Stackelberg games have been widely applied to security domains, although most of this work has

considered static targets (e.g., Korzhyk et al., 2010a; Krause, Roper, & Golovin, 2011; Letchford

& Vorobeychik, 2012; Kiekintveld, Islam, & Kreinovich, 2013). (Agmon et al., 2008) proposed

algorithms for computing mixed strategies for setting up a perimeter patrol in adversarial set-

tings with mobile robot patrollers. Similarly, (Basilico et al., 2009) computed randomized leader

strategies for robotic patrolling in environments with arbitrary topologies. Even when both of the

players are mobile, e.g., in hider-seeker games (Halvorson, Conitzer, & Parr, 2009), infiltration

games (Alpern, 1992) or search games (Gal, 1980), the targets (if any) were assumed to be static.

(Tsai et al., 2009b) applied Stackelberg games to the domain of scheduling federal air marshals

on board flights. The targets (i.e., flights) in this domain are mobile, but the players are restricted

to move along the targets to protect or attack them. This stationary nature leads to discrete game

models with finite numbers of pure strategies.
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(Bošanský, Lisý, Jakob, & Pěchouček, 2011) and (Vaněk, Jakob, Hrstka, & Pěchouček, 2011)

studied the problem of protecting moving targets. However, they both considered a model in

which the defender, the attacker, and the targets have discretized movements on a directed graph.

Such discretization of attacker strategy spaces can introduce suboptimality in the solutions as we

have shown with DASS. We, in our work, generalize the strategy space of the attacker to the

continuous realm and compute optimal strategies even in such a setting. Furthermore, while we

provide an efficient and scalable linear formulation, (Bošanský et al., 2011) presented a formu-

lation with non-linear constraints, which faced problems scaling up to larger games even with a

single defender resource.

(Yin & Tambe, 2012) considered the domain of patrolling in public transit networks (such as

the LA Metro subway train system) in order to catch fare evaders. Because the players ride trains

that follow a fixed schedule, the domain is inherently discrete, and they modeled the patrolling

problem as a finite zero-sum Bayesian game. (Yin & Tambe, 2012) proposed a compact represen-

tation for defender mixed strategies as flows in a network. We adapt this compact representation

idea to a continuous domain. In particular, in our domain, we need to model the interaction be-

tween the defender’s flow and attacker’s continuous strategy space. Our proposed sub-interval

analysis used spatio-temporal reasoning to efficiently reduce the problem into a finite LP.

There is an extensive literature on equilibrium refinement; however most existing work on

the computation of equilibrium refinement focuses on finite games. For simultaneous-move finite

games, solution concepts such as perfect equilibrium and proper equilibrium were proposed as

refinements of Nash equilibrium (Fudenberg & Tirole, 1991). (Miltersen & Sørensen, 2007) pro-

posed an efficient algorithm for computing proper equilibria in finite zero-sum games. For finite

security games, (An, Tambe, Ordóñez, Shieh, & Kiekintveld, 2011) proposed a refinement of
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Stackelberg equilibrium and techniques for computing such refinements. The resulting defender

strategy is robust against possibilities of constrained capabilities of the attacker. These existing

approaches rely on the finiteness of action sets and is thus not applicable to our setting. (Simon

& Stinchcombe, 1995) proposed definitions of perfect equilibrium and proper equilibrium for

infinite games with continuous strategy sets. However, they did not propose any computational

procedure for the resulting solution concepts. Exact computation of equilibrium refinements of

continuous games remains a challenging open problem.

There is a rising interest in applying game theory to green security domains, e.g., protecting

fisheries from over-fishing (Brown, Haskell, & Tambe, 2014; Haskell, Kar, Fang, Tambe, Che-

ung, & Denicola, 2014a) and protecting wildlife from poaching (Yang et al., 2014a). However,

previous work in green security domains (Yang, Ford, Tambe, & Lemieux, 2014b; Haskell, Kar,

Fang, Tambe, Cheung, & Denicola, 2014b) models the problem as a game with multiple rounds

and each round is an SSG (Yin, Korzhyk, Kiekintveld, Conitzer, & Tambe, 2010) where the de-

fender commits to a mixed strategy and the attackers respond to it. However, these efforts share

the standard Stackelberg assumption that the defender’s mixed strategy is fully observed by the

attacker via extensive surveillance before each attack. This assumption can be unrealistic in green

security domains due to the frequent and repeated attacks. Due to this assumption, previous ef-

forts do not engage in any planning and instead rely only on designing strategies for the current

round.

The bounded rationality of attackers has been studied extensively in the context of Stackel-

berg security games. Instead of always choosing to attack the target with the highest expected

utility, the attackers may choose sub-optimal targets. It has been shown that considering human

behavioral models (McKelvey & Palfrey, 1995) when designing defender strategies in security
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games can significantly improve the performance of defender in human subject experiments (Pita

et al., 2010; Yang et al., 2012; Nguyen, Yang, Azaria, Kraus, & Tambe, 2013a). In addition, the

bounded rationality of attackers has also been studied in green security problems, and new human

behavior models are proposed to incorporate heterogeneity among a population of attackers (Yang

et al., 2014a). However, previous work does not consider the attacker’s lagged understanding of

the defender strategy and bounded memory. By embedding these factors, we complement previ-

ous work that focuses on modeling human bounded rationality and bounded memory (Rubinstein,

1997; Cowan, 2005).

Previous work on learning in repeated SSGs (Marecki, Tesauro, & Segal, 2012; Letchford,

Conitzer, & Munagala, 2009; Blum, Haghtalab, & Procaccia, 2014) has mainly focused on learn-

ing the payoffs of attackers assuming perfectly rational attackers. In contrast, we not only gen-

eralize the Stackelberg assumption to fit green security domains but also provide algorithms to

learn the parameters in the attackers’ bounded rationality model. While the work by (Yang et al.,

2014a) do exploit the available attack data, they use Maximum Likelihood Estimation (MLE)

to learn the parameters of the SUQR model for individual attackers which may lead to skewed

results.

3.2 Continuous Strategy Space in Games

Games with continuous strategy spaces have been well-studied in game theory. Much of the

economics literature has focused on games whose equilibria can be solved analytically (and thus

the question of computation does not arise), for example, the classical theory of auctions (see

e.g., Krishna, 2009). Recent computational approaches for the analysis and design of auctions
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have focused on discretized versions of the auction games (e.g., Thompson & Leyton-Brown,

2009; Daskalakis & Weinberg, 2012). There has been research on efficiently solving two-player

continuous games with specific types of utility functions, such as zero-sum games with convex-

concave utility functions (Owen, 1995) and separable continuous games with polynomial utility

functions (Stein, Ozdaglar, & Parrilo, 2008). However, the approaches to handle the continuous

strategy space cannot be directly applied to security games with complex spatio-temporal settings.

Hybrid games and timed games in control problems have also been studied with an investi-

gation into the continuous timeline (Henzinger, Horowitz, & Majumdar, 1999; De Alfaro, Hen-

zinger, & Majumdar, 2001; Platzer, 2015). To address the infinite number of possible actions over

the continuous timeline, region construction is used. In timed games, the options are partitioned

into equivalent classes of states based on bisimilarity, similarity, and trace equivalence, forming

a finite number of regions in the action space. The region construction in timed games and the

compact representation in my work share the spirit of exploiting the equivalent class of strategies.

Also, the region construction and the partitioning of the attacker’s strategy space in my work share

the high-level intuition of reducing the number of actions to be considered from infinite to finitely

many through exploiting the problem structure. However, the underlying techniques cannot apply

directly. In my work, I partition the continuous timeline into a finite set of zones and consider

only one best time point in each zone by exploiting the dominance relationship within each zone.

3.3 Planning and Learning in Repeated Games

Planning and learning in repeated games against opponents with bounded memory has been stud-

ied (Sabourian, 1998; Powers & Shoham, 2005; Chakraborty, Agmon, & Stone, 2013; de Cote &
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Jennings, 2010; Banerjee & Peng, 2005). However, most of the work considers the case where

each player chooses one action from his finite action set in each round of the game. In addi-

tion, there is no delay in observing the other player’s action. Therefore, on-line learning based

approaches can be used to find a good strategy against the opponent. Instead, we focus on the

problem motivated by real-world green security challenges where the players can choose a mixed

strategy and implement it for multiple episodes in each round. Previous approaches fail to apply

in such settings, which is a better fit for the green security problems.
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Chapter 4

Reasoning in Continuous Time

My thesis has addressed reasoning in continuous time when the defender has mobile resources

to protect moving targets. One major example of the practical domains motivating this work is

the problem of protecting ferries that carry passengers in many waterside cities. Packed with

hundreds of passengers, these may present attractive targets for an attacker. For example, the

attacker may ram a suicide boat packed with explosives into the ferry as happened with attacks

on French supertanker Limburg and USS Cole (Greenberg, Chalk, & Willis, 2006). In this case,

the intention of the attacker can only be detected once he gets very close to the ferry. Small, fast

and well-armed patrol boats (patrollers) can provide protection to the ferries, by detecting the

attacker and stopping him with the armed weapons. However, there are often limited numbers of

patrol boats, i.e., they cannot protect the ferries at all times at all locations.

Most previous work on game-theoretic models for security has assumed either stationary

targets such as airport terminals (Pita et al., 2008b), or targets that are stationary relative to the

defender and the attacker, e.g., trains (Yin & Tambe, 2012) and planes (Tsai et al., 2009b), where

the players can only move along with the targets to protect or attack them). This stationary nature

leads to discrete game models with finite numbers of pure strategies. In contrast, the attacker
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in this problem can attack these targets at any point in time during their movement, leading to a

continuous set of strategies. The defender can deploy a set of mobile defender resources (called

patrollers for short) to protect these targets. The patrollers’ movement is constrained by a speed

limit and a patroller can provide protection to targets within a known protection radius. The

values/utilities of the targets may vary depending on their locations and time. Along the line with

previous work (Tambe, 2011; Yin & Tambe, 2012; Kiekintveld et al., 2009a), the attackers in

this problem are assumed to be perfectly rational and will choose to attack a target at a time that

is most favorable to him (i.e., with the highest expected utility). The defender’s objective is to

schedule the patrollers to minimize attacker’s maximal expected utility (zero-sum game).

The first contribution of this chapter is a novel game model for MRMT called MRMTsg.

MRMTsg is an attacker-defender Stackelberg game model with a continuous set of strategies for

the attacker. In contrast, while the defender’s strategy space is also continuous, we discretize it

in MRMTsg for three reasons. Firstly, if we let the defender’s strategy space to be continuous,

the space of mixed strategies for the defender would then have infinite dimensions, which makes

exact computation infeasible. Secondly, in practice, the patrollers are not able to have such fine-

grained control over their vehicles, which makes the actual defender’s strategy space effectively a

discrete one. Finally, the discretized defender strategy space is a subset of the original continuous

defender strategy space, so the optimal solution calculated under our formulation is a feasible

solution in the original game and gives a lower-bound guarantee for the defender in terms of

expected utility for the original continuous game. On the other hand, discretizing the attacker’s

strategy space can be highly problematic as we will illustrate later in this chapter. In particular, if

we deploy a randomized schedule for the defender under the assumption that the attacker could
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only attack at certain discretized time points, the actual attacker could attack at some other time

point, leading to a possibly much worse outcome for the defender.

Our second contribution is CASS (Solver for Continuous Attacker Strategies), an efficient

linear program to exactly solve MRMTsg. Despite discretization, the defender strategy space

still has an exponential number of pure strategies. We overcome this shortcoming by compactly

representing the defender’s mixed strategies as marginal probability variables. On the attacker

side, CASS exactly and efficiently models the attacker’s continuous strategy space using sub-

interval analysis, which is based on the observation that given the defender’s mixed strategy, the

attacker’s expected utility is a piecewise-linear function. Along the way to presenting CASS, we

present DASS (Solver for Discretized Attacker Strategies), which finds minimax solutions for

MRMTsg games while constraining the attacker to attack at discretized time points. For clarity

of exposition, we first derive DASS and CASS for the case where the targets move on a one-

dimensional line segment. We later show that DASS and CASS can be extended to the case

where targets move in a two-dimensional space.

Our third contribution is focused on equilibrium refinement. Our game has multiple equi-

libria, and the defender strategy found by CASS can be suboptimal with respect to uncertainties

in the attacker’s model, e.g. if the attacker can only attack during certain time intervals. We

present two heuristic equilibrium refinement approaches for this game. The first, route-adjust, it-

eratively computes a defender strategy that dominates earlier strategies. The second, flow-adjust,

is a linear-programming-based approach. Our experiments show that flow-adjust is computa-

tionally faster than route-adjust but route-adjust is more effective in selecting robust equilibrium

strategies.
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Additionally, I provide several sampling methods for generating practical patrol routes given

the defender strategy in a compact representation. Finally, I present detailed experimental anal-

yses of our algorithm in the ferry protection domain. CASS has been deployed by the US Coast

Guard since April 2013.

The rest of the chapter is organized as follows: Section 4.1 provides our problem statement.

Section 4.2 presents the MRMTsg model and an initial formulation of the DASS and CASS for

a one-dimensional setting. Section 4.3 discusses equilibrium refinement, followed by Section

4.4 which gives the generalized formulation of DASS and CASS for two-dimensional settings.

Section 4.5 describes how to sample a patrol route and Section 4.6 provides experimental results

in the ferry protection domain. Section 4.7provides concluding remarks.

4.1 Problem Statement

One major example of the practical domains motivating this chapter is the problem of protecting

ferries that carry passengers in many waterside cities. Packed with hundreds of passengers, these

may present attractive targets for an attacker. For example, the attacker may ram a suicide boat

packed with explosives into the ferry as happened with attacks on French supertanker Limburg

and USS Cole (Greenberg et al., 2006). In this case, the intention of the attacker can only be

detected once he gets very close to the ferry. Small, fast and well-armed patrol boats (patrollers)

can provide protection to the ferries (Figure 4.1(a)), by detecting the attacker and stopping him

with the armed weapons. However, there are often limited numbers of patrol boats, i.e., they

cannot protect the ferries at all times at all locations. We first focus on the case where ferries and

patrol boats move in a one-dimensional line segment (this is a realistic setting and also simplifies
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exposition); we will discuss the two-dimensional case in Section 4.4. Table 6.1 provides a table

listing all the notations used in the work.

(a) (b)

Figure 4.1: (a) Protecting ferries with patrol boats; (b) Part of the map of New York Harbor
Commuter Ferry Routes. The straight line linking St. George Terminal and Whitehall Terminal
indicates a public ferry route run by New York City Department of Transportation.

4.1.1 Domain Description

In this problem, there are L moving targets, F1, F2, ..., FL. We assume that these targets move

along a one-dimensional domain, specifically, a straight line segment linking two terminal points

which we will name A and B. This is sufficient to capture real-world domains such as ferries

moving back-and-forth in a straight line between two terminals as they do in many ports around

the world; an example is the green line shown in Figure 4.1(b). We will provide an illustration of

our geometric formulation of the problem in Figure 4.1.1. The targets have fixed daily schedules.

The schedule of each target can be described as a continuous function Sq : T → D where q =

1, ..., L is the index of the target, T = [0, 1] is a continuous time interval (e.g., representing the

duration of a typical daily patrol shift) andD = [0, 1] is the continuous space of possible locations

(normalized) with 0 corresponding to terminal A and 1 to terminal B. Thus Sq(t) denotes the

position of the target Fq at a specified time t. We assume Sq is piecewise linear.
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The defender hasW mobile patrollers that can move alongD to protect the targets, denoted as

P1, P2, ..., PW . Although capable of moving faster than the targets, they have a maximum speed

of vm. While the defender attempts to protect the targets, the attacker will choose a certain time

and a certain target to attack. (In the rest of the chapter, we denote the defender as “she” and the

attacker as “he”). The probability of attack success depends on the positions of the patrollers at

that time. Specifically, each patroller can detect and try to intercept anything within the protection

radius re but cannot detect the attacker prior to that radius. Thus, a patroller protects all targets

within her protective circle of radius re (centered at her current position), as shown in Figure

4.1.1.

� ��

� �

�

� �

Figure 4.2: An example with three targets (triangles) and two patrollers (squares). The protective
circles of the patrollers are shown with protection radius re. A patroller protects all targets in her
protective circle. Patroller P1 is protecting F2 and P2 is protecting F3.

Symmetrically, a target is protected by all patrollers whose protective circles can cover it. If

the attacker attacks a protected target, then the probability of successful attack is a decreasing

function of the number of patrollers that are protecting the target. Formally, we use a set of

coefficients {CG} to describe the strength of the protection.

Definition 1. Let G ∈ {1, ...,W} be the total number of patrollers protecting a target Fq,

i.e., there are G patrollers such that Fq is within radius re of each of the G patrollers. Then

CG ∈ [0, 1] specifies the probability that the patrollers can successfully stop the attacker. We

require that CG1 ≤ CG2 if G1 ≤ G2, i.e., more patrollers offer better protection.
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As with previous work in security games (Tambe, 2011; Yin & Tambe, 2012; Kiekintveld

et al., 2009a), we model the game as a Stackelberg game, where the defender commits to a ran-

domized strategy first, and then the attacker can respond to such a strategy. The patrol schedules

in these domains were previously created by hand; and hence suffer the drawbacks of hand-drawn

patrols, including lack of randomness (in particular, informed randomness) and reliance on simple

patrol patterns (Tambe, 2011), which we remedy in this chapter.

4.1.2 Defender Strategy

A pure strategy of the defender is to designate a movement schedule for each patroller. Analogous

to the target’s schedule, a patroller’s schedule can be written as a continuous function Ru : T →

D where u = 1, ...,W is the index the patroller. Ru must be compatible with the patroller’s

velocity range. A mixed defender strategy is a randomization over the pure strategies, denoted as

f .

4.1.3 Attacker Strategy

The attacker conducts surveillance of the defender’s mixed strategy and the targets’ schedules;

he may then execute a pure strategy response to attack a certain target at a certain time. The

attacker’s pure strategy can be denoted as 〈q, t〉 where q is the index of the target to attack and t

is the time to attack.

4.1.4 Utility Function

We assume the game is zero-sum. If the attacker performs a successful attack on target Fq at

location x at time t, he gets a positive reward Uq(x, t) and the defender gets−Uq(x, t), otherwise
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both players get utility zero. The positive reward Uq(x, t) is a known function which accounts for

many factors in practice. For example, an attacker may be more effective in his attack when the

target is stationary (such as at a terminal point) than when the target is in motion. As the target’s

position is decided by the schedule, the utility function can be written as Uq(t) ≡ Uq(Sq(t), t).

We assume that for each target Fq, Uq(t) can be represented as a piecewise linear function of t.

4.1.5 Equilibrium

Since our game is zero-sum, the Strong Stackelberg Equilibrium can be calculated by finding the

minimax/maximin strategy (Fudenberg & Tirole, 1991; Korzhyk et al., 2010a). That is, we can

find the optimal defender strategy by finding a strategy that minimizes the maximum of attacker’s

expected utility.

Definition 2. For single patroller case, the attacker expected utility of attacking target Fq at

time t given defender mixed strategy f is

AttEUf (Fq, t) = (1− C1ωf (Fq, t))Uq(t) (4.1)

Uq(t) is the reward for a successful attack, ωf (Fq, t) is the probability that the patroller is

protecting target Fq at time t and C1 is the protection coefficient of single patroller. We drop the

subscript if f is obvious from the context. As C1 and Uq(t) are constants for a given attacker’s

pure strategy 〈q, t〉, AttEU(Fq, t) is purely decided by ω(Fq, t). The definition with multiple

patrollers will be given in Section 4.2.5. We further denote the attacker’s maximum expected

utility as

AttEUm
f = max

q,t
AttEUf (Fq, t) (4.2)
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So the optimal defender strategy is a strategy f such that the AttEUm
f is minimized, formally

f ∈ arg minf ′ AttEUm
f ′ (4.3)

4.1.6 Assumptions

In our problem, the following assumptions are made based on discussions with domain experts.

Here we provide our justifications for these assumptions. While appropriate for the current do-

main of application, relaxing these assumptions for future applications remains an issue for future

work, and we provide an initial discussion at the end of this chapter.

• The attacker’s plan is decided off-line, i.e., the attacker does not take into account the

patroller’s current partial route (partial pure strategy) in executing an attack: This as-

sumption is similar to the assumption made in other applications of security games and

justified elsewhere (An, Kempe, Kiekintveld, Shieh, Singh, Tambe, & Vorobeychik, 2012;

Pita, Jain, Ordonez, Portway, Tambe, Western, Paruchuri, & Kraus, 2009; Tambe, 2011).

One key consideration is that given that attackers have limited resources as well, for them

to generate and execute complex conditional plans that change based on “on-line” obser-

vations of defender’s pure strategy is both difficult and risky.

• A single attacker is assumed instead of multiple attackers: This assumption arises because

performing even a single attack is already costly for the attacker. Thus, having coordinating

attackers at the same time will be even harder and therefore significantly less likely for the

attacker.
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• The game is assumed to be zero-sum: In this case, the objectives of the defender and

attacker are in direct conflict: preventing an attack with higher potential damage is a bigger

success to the defender in our game.

• The schedules for the targets are deterministic: For the domains we focus on, potential

delays in the targets’ schedules are usually within several minutes if any, and the targets

will try to catch up with the fixed schedules as soon as possible. Therefore, even when

delays occur, the deterministic schedule for a target can be viewed as a good approximation

of the actual schedule.

4.2 Models

In this section, we introduce our MRMTsg model that uses a discretized strategy space for the

defender and a continuous strategy space for the attacker. For clarity of exposition, we then

introduce the DASS approach to compute a minimax solution for discretized attacker strategy

space (Section 4.2.2), followed by CASS for the attacker’s continuous strategy space (Section

4.2.3). We first assume a single patroller in Sections 4.2.1 through 4.2.3 and then generalize to

multiple patrollers in Section 4.2.5.

4.2.1 Representing Defender’s Strategies

In this subsection, we introduce the discretized defender strategy space and the compact represen-

tation used to represent the defender’s mixed strategy. We show that the compact representation

is equivalent to the intuitive full representation, followed by several properties of the compact

representation.
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Since the defender’s strategy space is discretized, we assume that each patroller only makes

changes at a finite set of time points T = {t1, t2, ..., tM}, evenly spaced across the original

continuous time interval. t1 = 0 is the starting time and tM = 1 is the normalized ending time.

We denote by δt the distance between two adjacent time points: δt = tk+1−tk = 1
M−1 . We set δt

to be small enough such that for each target Fq, the schedule Sq(t) and the utility function Uq(t)

are linear in each interval [tk, tk+1] for k = 1, . . . ,M − 1, i.e., the target is moving with uniform

speed and the utility of a successful attack on it changes linearly during each of these intervals.

Thus, if t0 is a breakpoint of Sq(t) or Uq(t) for any q, it can be represented as t0 = δtK0 where

K0 is an integer.

In addition to discretization in time, we also discretize the line segment AB that the targets

move along into a set of points D = {d1, d2, ..., dN} and restrict each patroller to be located at

one of the discretized points di at any discretized time point tk. Note that D is not necessarily

evenly distributed and the targets’ locations are not restricted at any tk. During each time interval

[tk, tk+1], each patroller moves with constant speed from her location di at time tk to her location

dj at time tk+1. Only movements compatible with the speed limit vm are possible. The points

d1, d2, ..., dN are ordered by their distance to terminal A, and d1 refers to A and dN refers to B.

Since the time interval is discretized into M points, a patroller’s route Ru can be represented as

a vector Ru = (dru(1), dru(2), ..., dru(M)). ru(k) indicates the index of the discretized distance

point where the patroller is located at time tk.

We discretized the defender’s strategy space not only for computational reasons. It is not even

clear whether an equilibrium exists in the original game with continuous strategy space for both
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players. The discretization is made also because of the practical constraint of patrollers. In addi-

tion, as we show later in this chapter, we can provide a bi-criteria polynomial time approximation

scheme for the optimal defender strategy in the original game using the discretized games.

For expository purpose, we first focus on the case with a single defender resource and then

generalize to a larger number of resources later. For a single defender resource, the defender’s

mixed strategy in full representation assigns a probability to each of the patrol routes that can be

executed. Since at each time step a patroller can choose to go to at most N different locations,

there are at most NM possible patrol routes in total and this number is achievable if there is no

speed limit (or vm is large enough). The exponentially growing number of routes will make any

analysis based on full representation intractable.

Therefore, we use the compact representation of the defender’s mixed strategy.

Definition 3. The compact representation for a single defender resource is a compact way to

represent the defender’s mixed strategy using flow distribution variables {f(i, j, k)}. f(i, j, k) is

the probability of the patroller moving from di at time tk to dj at time tk+1.

The complexity of the compact representation is O(MN2), which is much more efficient

compared to the full representation.

Proposition 1. Any strategy in full representation can be mapped into a compact representa-

tion.

Proof sketch: If there are H possible patrol routes R1, R2, ..., RH , a mixed defender strategy

can be represented in full representation as a probability vector (p(R1), ...p(RH)) where p(Ru)

is the probability of taking route Ru. Taking route Ru means the patroller moves from dru(k) to

dru(k+1) during time [tk, tk+1], so the edge ERu(k),Ru(k+1),k is taken when route Ru is chosen.
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Then the total probability of taking edge Ei,j,k is the sum of probabilities of all the routes Ru

where Ru(k) = i and Ru(k+ 1) = j. Therefore, given any strategy in full presentation specified

by the probability vector (p(R1), ...p(RH)), we can construct a compact representation consisting

of a set of flow distribution variables {f(i, j, k)} where

f(i, j, k) =
∑

Ru:Ru(k)=i and Ru(k+1)=j

p(Ru). (4.4)

Figure 4.3 shows a simple example illustrating the compact representation. Numbers on the

edges indicate the value of f(i, j, k). We use Ei,j,k to denote the directed edge linking nodes

(tk, di) and (tk+1, dj). For example, f(2, 1, 1), the probability of the patroller moving from

d2 to d1 during time t1 to t2, is shown on the edge E2,1,1 from node (t1, d2) to node (t2, d1).

While a similar compact representation was used earlier by (Yin & Tambe, 2012), we use it in a

continuous setting.
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Figure 4.3: Compact representation: x-axis shows time intervals; y-axis the discretized distance-
points in the one-dimensional movement space.

Note that different mixed strategies in full representation can be mapped to the same compact

representation. Table 4.2 shows two different mixed defender strategies in full representations

that can be mapped to the same mixed strategy in compact representation as shown in Figure 4.3.
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The probability of a route is labeled on all edges in the route in full representation. Adding up

the numbers of a particular edge Ei,j,k in all routes of a full representation together, we can get

f(i, j, k) for the compact representation.

Theorem 1. Compact representation does not lead to any loss in solution quality.

Proof sketch: The complete proof of the theorem relies on the calculations in Section 4.2.2

and 4.2.3. Here we provide a sketch. Recall our goal is to find an optimal defender strategy

f that minimizes the maximum attacker expected utility AttEUm
f . As we will show in the next

subsections, ω(Fq, t) can be calculated from the compact representation {f(i, j, k)}. If two de-

fender strategies under the full representation are mapped to the same compact representation

{f(i, j, k)}, they will have the same ω function and then the same AttEU function according

to Equation 4.1. Thus the value of AttEUm
f is the same for the two defender strategies. So an

optimal mixed defender strategy in compact representation is still optimal for the corresponding

defender strategies in full representation.

We exploit the following properties of the compact representation.

Property 1. For any time interval [tk, tk+1], the sum of all flow distribution variables equals

to 1:
∑N

i=1

∑N
j=1 f(i, j, k) = 1.

Property 2. The sum of flows that go into a particular node equals the sum of flows that go

out of the node. Denote the sum for node (tk, di) by p(i, k), then p(i, k) =
∑N

j=1 f(j, i, k− 1) =∑N
j=1 f(i, j, k). Each p(i, k) is equal to the marginal probability that the patroller is at location

di at time tk.

Property 3. Combining Property 1 and 2,
∑N

i=1 p(i, k) = 1.
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4.2.2 DASS: Discretized Attacker Strategies

In this subsection, we introduce DASS, a mathematical program that efficiently finds minimax

solutions for MRMTsg-based games under the assumption that the attacker will attack at one of

the discretized time points tk. In this problem, we need to minimize v where v is the maximum

of attacker’s expected utility. Here, v is the maximum of AttEU(Fq, t) for any target Fq at any

discretized time point tk.

From Equation (4.1), we know that AttEU(Fq, t) is decided by ω(Fq, t), the probability that

the patroller is protecting target Fq at time t. Given the position of the target Sq(t), we define the

protection range βq(t) = [max{Sq(t)− re, d1},min{Sq(t) + re, dN}]. If the patroller is located

within the range βq(t), the distance between the target and the patroller is no more than re and

thus the patroller is protecting Fq at time t. So ω(Fq, t) is the probability that the patroller is

located within range βq(t) at time t. For the discretized time points tk, the patroller can only be

located at a discretized distance point di, so we define the following.

Definition 4. I(i, q, k) is a function of two values. I(i, q, k) = 1 if di ∈ βq(tk), and otherwise

I(i, q, k) = 0.

In other words, I(i, q, k) = 1 means that a patroller located at di at time tk can protect target

Fq. Note that the value of I(i, q, k) can be calculated directly from the input parameters (di, Sq(t)

and re) and stored in a look-up table. In particular, I(i, q, k) is not a variable in the formulations

that follow. It simply encodes the relationship between di and the location of target Fq at tk. The

probability that the patroller is at di at time tk is p(i, k). So we have

ω(Fq, tk) =
∑

i:I(i,q,k)=1
p(i, k), (4.5)
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AttEU(Fq, tk) =

(
1− C1

∑
i:I(i,q,k)=1

p(i, k)

)
Uq(tk). (4.6)

Equation (4.6) follows from Equations (4.1) and (4.5), expressing attacker’s expected utility for

discretized time points. Finally, we must address speed restrictions on the patroller. We set all

flows corresponding to actions that are not achievable to zero,1 that is, f(i, j, k) = 0 if |dj−di| >

vmδt. Thus, DASS can be formulated as a linear program. This linear program solves for any

number of targets but only one defender resource.

min
f(i,j,k),p(i,k)

z (4.7)

f(i, j, k) ∈ [0, 1], ∀i, j, k (4.8)

f(i, j, k) = 0, ∀i, j, k such that |dj − di| > vmδt (4.9)

p(i, k) =

N∑
j=1

f(j, i, k − 1), ∀i,∀k > 1 (4.10)

p(i, k) =
N∑
j=1

f(i, j, k), ∀i,∀k < M (4.11)

N∑
i=1

p(i, k) = 1, ∀k (4.12)

z ≥ AttEU(Fq, tk), ∀q,∀k (4.13)

Constraint 4.8 describes the probability range. Constraint 4.9 describes the speed limit. Con-

straints 4.10–4.11 describes Property 2. Constraint 4.12 is exactly Property 3. Property 1 can be
1Besides the speed limit, we can also model other practical restrictions of the domain by placing constraints on

f(i, j, k).
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derived from Property 2 and 3, so it is not listed as a constraint. Constraint (4.13) shows the at-

tacker chooses the strategy that gives him the maximal expected utility among all possible attacks

at discretized time points; where AttEU(·) is described by Equation (4.6).

4.2.3 CASS: Continuous Attacker Strategies

In this subsection, we generalize the problem to one with continuous attacker strategy set and

provides a linear-programming-based solution CASS. CASS efficiently finds optimal mixed de-

fender strategy under the assumption that the attacker can attack at any time in the continuous

time interval T = [0, 1]. With this assumption, DASS’s solution quality guarantee may fail: if

the attacker chooses to attack between tk and tk+1, he may get a higher expected reward than

attacking at tk or tk+1. Consider the following example, with the defender’s compact strategy

between tk and tk+1 shown in Figure 4.4. Here the defender’s strategy has only three non-zero

flow variables f(3, 4, k) = 0.3, f(3, 1, k) = 0.2, and f(1, 3, k) = 0.5, indicated by the set of

three edges E+ = {E3,4,k, E3,1,k, E1,3,k}. A target Fq moves from d3 to d2 at constant speed

during [tk, tk+1]. Its schedule is depicted by the straight line segment Sq. The dark lines L1
q and

L2
q are parallel to Sq with distance re. The area between them indicates the protection range βq(t)

for any time t ∈ (tk, tk+1). Consider the time points at which an edge from E+ intersects one of

L1
q , L

2
q , and label them as θrqk, r = 1 . . . 4 in Figure 4.4). Intuitively, these are all the time points

at which a defender patrol could potentially enter or leave the protection range of the target. To

simplify the notation, we denote tk as θ0
qk and tk+1 as θ5

qk. For example, a patroller moving

from d3 to d4 (or equivalently, taking the edge E3,4,k) protects the target from θ0
qk to θ1

qk because

E3,4,k is between L1
1 and L2

1 in [θ0
qk, θ

1
qk], during which the distance to the target is less or equal

than protection radius re. Consider the sub-intervals between each θrqk and θr+1
qk , for r = 0 . . . 4.
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Since within each of these five sub-intervals, no patroller enters or leaves the protection range,

the probability that the target is being protected is a constant in each sub-interval, as shown in

Figure 4.5(a).
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Figure 4.4: An example to show how a target moving from d3 to d2 during [tk, tk+1] is protected.
In a sub-interval [θrqk, θ

r+1
qk ], a patroller either always protects the target or never protects the

target. Equivalently, the target is either always within the protective circle of a patroller or always
outside the circle.

Suppose Uq(t) decreases linearly from 2 to 1 during [tk, tk+1] and C1 = 0.8. We can then

calculate the attacker’s expected utility function AttEU(Fq, t) for (tk, tk+1), as plotted in Figure

4.5(b). AttEU(Fq, t) is linear in each sub-interval but the function is discontinuous at the inter-

section points θ1
qk, . . . , θ

4
qk because of the patroller leaving or entering the protection range of the

target. We denote the limit of AttEU when t approaches θrqk from the left as:

lim
t→θr−qk

AttEU(Fq, t) = AttEU(Fq, θ
r−
qk )
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Similarly, the right limit is denoted as:

lim
t→θr+qk

AttEU(Fq, t) = AttEU(Fq, θ
r+
qk )

If Fq is the only target, an attacker can choose to attack at a time immediately after θ2
qk, getting

an expected utility that is arbitrarily close to 1.70. According to Equation (4.6), we can get

AttEU(Fq, tk) = 1.20 and AttEU(Fq, tk+1) = 1.00, both lower than AttEU(Fq, θ
2+
qk ). Thus, the

attacker can get a higher expected reward by attacking between tk and tk+1, violating DASS’s

quality guarantee.
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(a) Probability that the target is protected is a
constant in each sub-interval.
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(b) The attacker’s expected utility is linear in
each sub-interval.

Figure 4.5: Sub-interval analysis in (tk, tk+1) for the example shown in Figure 4.4.]

However, because of discontinuities in the attacker’s expected utility function, a maximum

might not exist. This implies that the minimax solution concept might not be well-defined for our

game. We thus define our solution concept to be minimizing the supremum of AttEU(Fq, t).

Definition 5. The supremum of attacker’s expected utility is the smallest real number

that is greater than or equal to all elements of the infinite set {AttEU(Fq, t)}, denoted as

sup AttEU(Fq, t).
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The supremum is the least upper bound of the function AttEU(Fq, t). So for CASS model,

Equation 4.2 should be modified as

AttEUm
f = sup

q,t
AttEUf (Fq, t) (4.14)

So a defender strategy f is minimax if AttEUm
f is maximized, i.e.,

f ∈ arg minf ′ sup AttEUf ′(Fq, t)

In the above example, the supremum of attacker’s expected utility in (tk, tk+1) is

AttEU(Fq, θ
2+
qk ) = 1.70. In the rest of the chapter, we will not specify when supremum is used

instead of maximum as it can be easily inferred from the context.

How can we deal with the possible attacks between the discretized points and find an optimal

defender strategy? We generalize the process above (called sub-interval analysis) to all possible

edges Ei,j,k. We then make use of the piecewise linearity of AttEU(Fq, t) and the fact that

the potential discontinuity points are fixed, which allows us to construct a linear program that

solves the problem to optimality. We name the approach CASS (Solver for Continuous Attacker

Strategies).

We first introduce the general sub-interval analysis. For any target Fq and any time in-

terval (tk, tk+1), we calculate the time points at which edges Ei,j,k and L1
q , L

2
q intersect, de-

noted as intersection points. We sort the intersection points in increasing order, denoted as

θrqk, r = 1 . . .Mqk, where Mqk is the total number of intersection points. Set θ0
qk = tk and

θ
Mqk+1
qk = tk+1. Thus (tk, tk+1) is divided into sub-intervals (θrqk, θ

r+1
qk ), r = 0, ...,Mqk.
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Lemma 1. For any given target Fq, AttEU(Fq, t) is piecewise-linear in t. Furthermore,

there exists a fixed set of time points, independent of the defender’s mixed strategy, such that

AttEU(Fq, t) is linear between each adjacent pair of points. Specifically, these points are the

intersection points θrqk defined above.

Proof: In each sub-interval (θrqk, θ
r+1
qk ) for a target Fq, a feasible edge Ei,j,k is either totally

above or below L1
q , and similarly for L2

q . Otherwise there will be a new intersection point which

contradicts the definition of the sub-intervals. If edge Ei,j,k is between L1
q and L2

q , the distance

between a patroller taking the edge and target Fq is less than re, meaning the target is protected by

the patroller. As edge Ei,j,k is taken with probability f(i, j, k), the total probability that the target

is protected (ω(Fq, t)) is the sum of f(i, j, k) whose corresponding edge Ei,j,k is between the

two lines in a sub-interval. So ω(Fq, t) is constant in t in each sub-interval and thus the attacker’s

expected utility AttEU(Fq, t) is linear in each sub-interval according to Equation 2 as Uq(t) is

linear in [tk, tk+1]. Discontinuity can only exist at these intersection points and an upper bound

on the number of these points for target Fq is MN2.

Define coefficient Arqk(i, j) to be C1 if edge Ei,j,k is between L1
q and L2

q in (θrqk, θ
r+1
qk ), and

0 otherwise. According to Equation (4.1) and the fact that ω(Fq, t) is the sum of f(i, j, k) whose

corresponding coefficient Arqk(i, j) = C1, we have the following equation for t ∈ (θrqk, θ
r+1
qk ).

AttEU(Fq, t) =

1−
N∑
i=1

N∑
j=1

Arqk(i, j)f(i, j, k)

 · Uq(t) (4.15)

Piecewise linearity of AttEU(Fq, t) means the function is monotonic in each sub-interval and the

supremum can be found at the intersection points. Because of linearity, the supremum of AttEU

in (θrqk, θ
r+1
qk ) can only be chosen from the one-sided limits of the endpoints, AttEU(Fq, θ

r+
qk ) and
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AttEU(Fq, θ
(r+1)−
qk ). Furthermore, if Uq(t) is decreasing in [tk, tk+1], the supremum is

AttEU(Fq, θ
r+
qk ) and otherwise it is AttEU(Fq, θ

(r+1)−
qk ). In other words, all other attacker’s strate-

gies in (θrqk, θ
r+1
qk ) are dominated by attacking at time close to θrqk or θr+1

qk . Thus, CASS adds new

constraints to Constraints 4.8–4.13 which consider attacks to occur at t ∈ (tk, tk+1). We add one

constraint for each sub-interval with respect to the possible supremum value in this sub-interval:

min
f(i,j,k),p(i,k)

z (4.16)

subject to constraints (4.8 . . . 4.13)

z ≥ max{AttEU(Fq, θ
r+
qk ),AttEU(Fq, θ

(r+1)−
qk )} (4.17)

∀k ∈ {1 . . .M}, q ∈ {1 . . . L}, r ∈ {0 . . .Mqk}

This linear program stands at the core of CASS and we will not differentiate the name for

the solver and the name for the linear program in the following. All the linear constraints in-

cluded by Constraint 4.17 can be added to CASS using Algorithm 4.2.3. The input of the

algorithm include targets’ schedules {Sq}, the protection radius re, the speed limit vm, the

set of discretized time points {tk} and the set of discretized distance points {di}. Function

CalInt(L1
q , L

2
q , vm) in Line 1 returns the list of all intersection time points between all possi-

ble edges Ei,j,k and the parallel lines L1
q , L

2
q , with additional points tk as θ0

qk and tk+1 as θMqk+1
qk .

Function CalCoef(L1
q , L

2
q , vm, θ

r
qk, θ

r+1
qk ) in Line 1 returns the coefficient matrix Arqk. Arqk can be

easily decided by checking the status at the midpoint in time. Set tmid = (θrqk + θr+1
qk )/2 and

denote the patroller’s position at tmid when edge Ei,j,k is taken as Ei,j,tmid
, thus Arqk(i, j) =

C1 if Ei,j,tmid
∈ βq(tmid). Lines 1–1 add a constraint with respect to the larger value of

AttEU(Fq, θ
r+
qk ) and AttEU(Fq, θ

(r+1)−
qk ) to CASS for this sub-interval (θrqk, θ

r+1
qk ). It means

41



when the attacker chooses to attack Fq in this sub-interval, his best choice is decided by the larger

value of the two side-limits of AttEU in (θrqk, θ
r+1
qk ).

Algorithm 1 Add constraints described in Constraint 4.17
Input: Sq, re, vm, {tk}, {di} for k ← 1, . . . ,M − 1 do

for q ← 1, . . . , L do
L1
q ← Sq + re, L2

q ← Sq − re θ0
qk, . . . , θ

Mqk+1
qk ← CalInt(L1

q , L
2
q , vm) for r ←

0, . . . ,Mqk do
Arqk ← CalCoef(L1

q , L
2
q , vm, θ

r
qk, θ

r+1
qk ) if Uq(t) is decreasing in [tk, tk+1] then

add constraint z ≥ AttEU(Fq, θ
r+
qk )

end
else

add constraint z ≥ AttEU(Fq, θ
(r+1)−
qk )

end
end

end
end

Theorem 2. CASS computes (in polynomial time) the exact solution (minimax) of the game

with discretized defender strategies and continuous attacker strategies.

Proof: According to Lemma 1, AttEU(Fq, t) is piecewise linear and discontinuity can only

occur at the intersection points θrqk. These intersection points divide the time space into sub-

intervals. Because of piecewise linearity, the supremum of AttEU(Fq, t) equals to the limit of an

endpoint of at least one sub-interval. For any defender’s strategy f that is feasible, a feasible z

of the linear program 4.16-4.17 is no less than any of the limit values at the intersection points

according to Constraint 4.17 and values at the discretized time points tk according to Constraint

4.13, and thus v can be any upper bound of AttEU(Fq, t) for f . As z is minimized in the objective

function, z is no greater than the supremum of AttEU(Fq, t) given any defender strategy f , and

further z will be the minimum of the set of supremum corresponding to all defender strategies.

Thus we get the optimal defender strategy f .
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The total number of variables in the linear program is O(MN2). The number of constraints

represented in Algorithm 4.2.3 is O(MN2L) as the number of intersection points is at most

2(M − 1)N2 for each target. The number of constraints represented in Constraints 4.8–4.13 is

O(MN2). Thus, the linear program computes the solution in polynomial time.

Corollary 1. The solution of CASS provides a feasible defender strategy of the original con-

tinuous game and gives exact expected value of that strategy.

4.2.4 Optimal Defender Strategy in the Original Game

We have solved the problem with discretized defender strategy space. In this subsection, we dis-

cuss how much the defender loses by using the discretization. Indeed, we can provide a bi-criteria

polynomial time approximation scheme for the optimal defender strategy in the original game us-

ing the discretized games. Let DefEUδd,δt(re, vm) denote the defender’s optimal expected utility

with a discretization granularity defined by δd and δt (i.e.,N = 1
δd

). Let DefEUopt(re, vm) denote

the defender’s optimal expected utility without using discretization. The defender’s capability is

depicted by the protection radius re and speed limit vm. Then DefEUopt(re, vm) is bounded by

the following:

DefEUδd,δt(re, vm) ≤ DefEUopt(re, vm) ≤ DefEUδ′d,δ
′
t
(re + ε, vm + ∆) (4.18)

∀δd, δt, ε,∆, δ′t ≤
2ε

vm
, δ′d ≤ δ′t∆ (4.19)
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4.2.5 Generalized Model with Multiple Defender Resources

In this subsection, we generalize DASS and CASS to solve the problem with multiple defender

resources. When there are multiple patrollers, the patrollers will coordinate with each other. Re-

call the protection coefficient CG in Definition 1, a target is better protected when more patrollers

are close to it (within radius re). So the protection provided to a target is determined when all

patrollers’ locations are known. Thus it is not sufficient to calculate the probability that an in-

dividual edge is taken as in the single patroller case. Under the presence of multiple patrollers,

we need a more complex representation to explicitly describe the defender strategy. To illustrate

generalization to the multiple defender resources case, we first take two patrollers as an example.

If there are two patrollers, the patrol strategy can be represented using flow distribution variables

{f(i1, j1, i2, j2, k)}. Here the flow distribution variables are defined on the Cartesian product

of two duplicated sets of all feasible edges {Ei,j,k}. f(i1, j1, i2, j2, k) is the joint probability of

the first patroller moving from di1 to dj1 and the second patroller moving from di2 to di2 during

time tk to tk+1, i.e., taking edge Ei1,j1,k and Ei2,j2,k respectively. The corresponding marginal

distribution variable p(i1, i2, k) represents for the probability that the first patroller is at di1 and

the second at di2 at time tk. Protection coefficientsC1 andC2 are used when one or two patrollers

are protecting the target respectively.

So the attacker’s expected utility can be written as

AttEU(Fq, t) = (1− (C1 · ω1(Fq, t) + C2 · ω2(Fq, t))) · Uq(t)
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ω1(Fq, t) is the probability that only one patroller is protecting the targetFq at time t and ω2(Fq, t)

is the probability that both patrollers are protecting the target. For attacks that happen at dis-

cretized points tk, we can make use of I(i, q, k) in Definition 4 and I(i1, q, k) + I(i2, q, k) is the

total number of patrollers protecting the ferry at time tk.

ω1(Fq, tk) =
∑

i1,i2:I(i1,q,k)+I(i2,q,k)=1
p(i1, i2, k)

ω2(Fq, tk) =
∑

i1,i2:I(i1,q,k)+I(i2,q,k)=2
p(i1, i2, k)

Constraints for attacks occurring in (tk, tk+1) can be calculated with an algorithm that looks the

same as Algorithm 4.2.3. The main difference is in the coefficient matrix Arqk and the expression

of AttEU. We set the values in the coefficient matrix Arqk(i1, j1, i2, j2) as C2 if both edges

Ei1,j1,k and Ei2,j2,k are between L1
q and L2

q , and C1 if only one of the edges protects the target.

The attacker’s expected utility function in (θrqk, θ
r+1
qk ) is

AttEU(Fq, t) = (1−
∑

i1,j1,i2,j2

Arqk(i1, j1, i2, j2)f(i1, j1, i2, j2, k)) · Uq(t)

For a general case ofW defender resources, we can use {f(i1, j1, ..., iW , jW , k)} to represent

the patrol strategy.

Definition 6. The compact representation for multiple defender resources is a com-

pact way to represent the defender’s mixed strategy using flow distribution variables

{f(i1, j1, ..., iW , jW , k)}. {f(i1, j1, ..., iW , jW , k)} is the joint probability that patroller mov-

ing from diu at time tk to dju at time tk+1 for u = 1 . . .W .
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Given the generalized compact representation, we get the following equations for calculating

the attacker’s expected utility function and the protection probability:

AttEU(Fq, t) =

1−
W∑
Q=1

CQ · ωQ(Fq, t)

 · Uq(t)
ωQ(Fq, tk) =

∑
i1,...,iW :

W∑
u=1

I(iu,q,k)=Q
p(i1, . . . , iW , k)

Q is the number of patrollers protecting the target. We can modify Algorithm 4.2.3 to apply

for the multiple defender resource case. Set Arqk(i1, j1, ..., iW , jW ) as CQ if Q of the edges

{Eiu,ju,k} are between L1
q and L2

q .
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We conclude the linear program for generalized CASS for multiple patrollers as follows.

min
f(i1,j1,...,iW ,jW ,k),p(i1,...,iW ,k)

z (4.20)

f(i1, j1, . . . , iW , jW , k) = 0, ∀i1, . . . , iW , j1, . . . , jW such that ∃u, |dju − diu | > vmδt

(4.21)

p(i1, . . . , iW , k) =
n∑

j1=1

. . .
n∑

jW =1

f(j1, i1, . . . , jW , iW , k − 1),∀i1, . . . , iW ,∀k > 1

(4.22)

p(i1, . . . , iW , k) =
n∑

j1=1

. . .
n∑

jW =1

f(i1, j1, . . . , iW , jW , k),∀i1, . . . , iW , ∀k < M

(4.23)

n∑
i1=1

. . .

n∑
iW =1

p(i1, . . . , iW , k) = 1, ∀k (4.24)

z ≥ AttEU(Fq, tk), ∀q,∀k (4.25)

z ≥ max{AttEU(Fq, θ
r+
qk ),AttEU(Fq, θ

(r+1)−
qk )},∀k, ∀q,∀r

(4.26)

The number of variables in the linear program is O(MN2W ) and the number of constraints

is O(MNW ). It is reasonable to examine potentially more efficient alternatives. We summarize

the results of such an examination below concluding that using the current linear program would

appear to currently offer our best tradeoff in terms of solution quality and time at least for the

current domains of application; although as discussed below, significant future work might reveal

alternatives approaches for other future domains.
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The first question to examine is that of the computational complexity of the problem at hand:

generating optimal patrolling strategies for multiple patrollers on a graph. Unfortunately, de-

spite the significant attention paid to the topic, currently, the complexity remains unknown. More

specifically, the question of computational complexity of generating patrols for multiple defend-

ers on graphs of different types has received significant attention (Letchford, 2013; Korzhyk et al.,

2010a). These studies illustrate that in several cases the problem is NP-hard, in some cases the

problem is known to be polynomial time, but despite significant effort, the problem complexity in

many cases remains unknown (Letchford & Conitzer, 2013). Unfortunately, our graph turns out

to be different from the cases considered in their work. Indeed, the DASS model can be explained

as a game with homogeneous defender resources patrolling on a graph, similar to the cases that

have already been considered. However, prior results cannot explain the complexity of our game

as the structure of our graph does not fit any of the prior graphs.

Given that computational complexity results are not directly available, we may examine ap-

proaches to provide efficient approximations. Here we provide an overview of two such ap-

proaches (providing experimental results in Section 4.6.1.6). Our first approach attempts to pro-

vide a more compact representation in the hope of providing a speedup. To that end, we apply an

intuitive approach that uses individual strategy profile for each patroller and then calculates a best

possible mixed strategy combination. Unfortunately, this approach is inefficient in run-time even

for the DASS model and may result in a suboptimal solution. Thus, although more compact, this

approach fails to achieve our goal; we explain this approach next.

Assume each patroller independently follows her mixed strategy. Denote the individual mixed

strategy for patroller u as fu(iu, ju, tk), and the probability that a target is protected by Q players
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can be represented as a polynomial expression of {fu(iu, ju, tk)} of order Q. Then our optimiza-

tion problem is converted to minimizing objective function z with non-linear constraints. Assume

we have two patrollers, and for a potential attack at target q at time tk, we denote the probability

that patroller u is protecting the target as$u. $u is linear in fu and the attacker’s expected utility

for this attack can be represented as

AttEU(Fq, tk) = (1− C1((1−$1)$2 + (1−$2)$1)− C2$1$2)Uq(tk)

So a constraint z ≥ AttEU(Fq, tk) is quadratic in f , due to the fact that the joint probability

is represented by the product of the individual probability of each patroller. These constraints

are not ensured to have a convex feasible region, and there are no known polynomial algorithms

for solving this kind of non-convex optimization problems. We attempt to solve the problem

by converting it into a mathematical program with a non-convex objective function and linear

constraints, i.e., instead of minimizing z with constraints z ≥ AttEU(Fq, tk), we incorporate the

constraints into the objective function as

z = max
q,k
{AttEU(Fq, tk)} (4.27)

The results in Section 4.6.1.6 show that when we solve this mathematical program in MATLAB

using function fmincon with interior-point method for the DASS model, the algorithm fails to

get to a feasible solution efficiently and even when enough time is given, the solution can still

be suboptimal as it may get stuck at a local minimum. To conclude, although this approach is
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more compact and helps in saving memory, it is inefficient at run-time and may result in a loss in

solution quality.

Our second approach takes a further step to reduce the run-time complexity, making it a poly-

nomial approximation algorithm, but it can lead to a high degradation in solution quality. In

this approach, we iteratively compute the optimal defender strategy for a newly added resource

unit given the existing strategies for the previous defender resources. Namely, we first calculate

f1(i1, j1, tk) as if only one patroller is available and then calculate f2(i2, j2, tk) given the value

of f1(i1, j1, tk). In this way, we need to solve W linear programs with complexity O(MN2) so

this approach is much faster compared to the former one. Unfortunately, this approach fails to

capture the coordination between the patrollers effectively and thus may result in a high degra-

dation in solution quality. For example, suppose there are only two targets of constant utility

U , one target stays at terminal A and the other one stays at terminal B. Further, suppose the

protection coefficient is always 1 when a target is protected by one or more patrollers. When

two patrollers are available, the optimal solution would be each protect one of the targets all the

way, so both targets are protected with probability 1 and the expected utility function for the

attacker is 0. If the defender strategy is calculated for each patroller sequentially as discussed

above, the solution would be to protect each target with probability 0.5 for both players, making

the attacker’s expected utility 0.25%U . In other words, we reach a suboptimal solution, wasting

resources when both patrollers end up protecting the same target with probability 0.25. In this

case, we can already see that there is a 0.25 probability that a target is unprotected when clearly

an optimal solution existed that protected all targets with probability 1. Thus, even with just two

patrollers, this solution leads to a potentially significant loss in expected utility; therefore, this

solution clearly appears to be inadequate for our purposes.
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Given the above discussion, it would appear that a fast approximation may lead to significant

losses in solution quality or may not be efficient enough. Fortunately for current application

domains, such as the current deployment of CASS for protecting ferries (e.g., the Staten Island

Ferry in New York), the number of defender resources are limited. The lack of resources is the

main reason that optimization using security games becomes critical. As a result, our current

approach of CASS is adequate for current domains such as ferry protection. Further research

about scale-up is an issue for future work.

4.3 Equilibrium Refinement

A game often has multiple equilibria. Since our game is zero-sum, all equilibria achieve the

same objective value. However, if an attacker deviates from his best response, some equilibrium

strategies for the defender may provide better results than others.

Consider the following example game. There are two targets moving during [t1, t2] (no further

discretization): one moves from d3 to d2 and the other moves from d1 to d2 (See Figure 4.6(a)).

Suppose d3 − d2 = d2 − d1 = δd and re = 0.5δd. There is only one patroller available and the

protection coefficient C1 = 1. Both targets’ utility functions decrease from 10 to 1 in [t1, t2] (See

Figure 4.6(b)). In one equilibrium, f3,2,1 = f1,2,1 = 0.5, i.e., the patroller randomly chooses one

target and follows it all the way. In another equilibrium, f3,3,1 = f1,1,1 = 0.5, i.e., the patroller

either stays at d1 or at d3. In either equilibrium, the attacker’s best response is to attack at t1,

with a maximum expected utility of 5. However, if an attacker is physically constrained (e.g.,

due to launch point locations) to only attack no earlier than t0 and t0 > θ1
1 (where θ1

1 is the only

intersection time point and θ1
1 = (t1 + t2)/2), against both defender strategies he will choose to
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attack either of the targets at t0. The attacker’s expected utility is Uq(t0)/2 in the first equilibrium

because there is 50% probability that the patroller is following that target. However in the second

equilibrium, he is assured to succeed and get a utility of Uq(t0) because the distance between

the chosen target and d1 (or d3) is larger than re at t0, i.e., the chosen target is unprotected at t0.

In this case, the defender strategy in the first equilibrium is preferable to the one in the second;

indeed, the first defender strategy dominates the second one, by which we mean the first is equally

good or better than the second no matter what strategy the attacker chooses. We provide a formal

definition of dominance in Section 4.3.1.

��

��

��

�� �� ����

������	�

��

��

��

��

����
�

(a) Two targets moves with schedules S1 and S2.
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(b) Utility function is the same for both targets
and is decreasing linearly over time.

Figure 4.6: An example to show one equilibrium outperforms another when the attacker is con-
strained to attack in [t0, t2] if t0 > θ1

1.

Our goal is to improve the defender strategy so that it is more robust against constrained

attackers while keeping the defender’s expected utility against unconstrained attackers the same.

This task of selecting one from the multiple equilibria of a game is an instance of the equilibrium

refinement problem, which has received extensive study in game theory (van Damme, 1987;

Fudenberg & Tirole, 1991; Miltersen & Sørensen, 2007). For finite security games, (An et al.,

2011) proposed techniques that provide refinement over Stackelberg equilibrium. However, there

has been little prior research on the computation of equilibrium refinements for continuous games.
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In this section, we introduce two equilibrium refinement approaches: “route-adjust” (Section

4.3.1) and “flow-adjust” (Section 4.3.2). Both approaches can be applied to improve any feasi-

ble defender strategy, and when they are applied to an optimal defender strategy in an existing

equilibrium, we will get new equilibria with more robust optimal defender strategies.

For expository simplicity, we still use the single-resource case as an example, but both meth-

ods apply to the multiple-resources case. The results shown in evaluation section experimentally

illustrates these two refinement methods can significantly improve the performance.

4.3.1 Route Adjust

Given that f is the defender strategy of one equilibrium of the game, if we can find a defender

strategy f ′ such that for any attacker strategy (q, t), the defender’s expected utility under f ′ is

equal to or higher than the one under f , and the one under f ′ is strictly higher than the one

under f for at least one specific attacker strategy, we say that f ′ dominates f . Intuitively, the

defender should choose f ′ instead of f as f ′ is at least as good as f for any attacker strategy

and can achieve better performance for some attacker strategies. So an equilibrium with strategy

f ′ is more robust to unknown deviations on the attacker side. We give the formal definition of

dominance as follows.

Definition 7. Defender strategy f dominates f ′ if ∀q, t, DefEUf (Fq, t) ≥ DefEUf ′(Fq, t),

and ∃q, t, DefEUf (Fq, t) > DefEUf ′(Fq, t); or equivalently in this zero-sum game, ∀q, t,

AttEUf (Fq, t) ≤ AttEUf ′(Fq, t), and ∃q, t, AttEUf (Fq, t) < AttEUf ′(Fq, t).

Corollary 2. Defender strategy f dominates f ′ if ∀q, t, ω(Fq, t) ≥ ω′(Fq, t) and ∃q, t,

ω(Fq, t) > ω′(Fq, t).
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Definition 7 simply restates the commonly used weak dominance definition in game theory

for this specific game. Corollary 2 follows from Equation (4.1).

In this section, we introduce the route-adjust approach which gives a procedure for finding a

defender strategy f1 that dominates the given defender strategy f0. Route-adjust provides final

routes using these steps: (i) decompose flow distribution f0 into component routes; (ii) for each

route, greedily find a route which provides better protection to targets; (iii) combine the resulting

routes into a new flow distribution, f1, which dominates f0 if f1 is different from f0. The detailed

process is listed in Algorithm 2. We illustrate this approach using a simple dominated strategy

shown in Figure 4.3.

To accomplish step (i), we decompose the flow distribution by iteratively finding a route that

contains the edge with minimum probability. As shown in Figure 4.7, we first randomly choose a

route that contains edge E1,2,2, as f(1, 2, 2) = 0.4 is the minimum among all flow variables. We

choose R2 = (d1, d1, d2), and set p(R2) = f(1, 2, 2) = 0.4. Then for each edge of the route R2

we subtract 0.4 from the original flow, resulting in a residual flow. We continue to extract routes

from the residual flow until there is no route left. Denote by Z the number of non-zero edges in

the flow distribution graph, then Z is decreased by at least 1 after each iteration. So the algorithm

will terminate in at most Z steps and at most Z routes are found. The result of step (i) is a sparse

description of a defender mixed strategy in full representation. As we will discuss in Section 4.5,

this decomposition constitutes one method of executing a compact strategy.

For step (ii), we adjust each of the routes greedily. To that end, we first introduce the dom-

inance relation of edges and routes, using the intersection points θrqk and the coefficient matrix

Arqk(i, j) defined in Section 4.2.3.
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Algorithm 2 Route-Adjust
Input: a mixed defender strategy f
Output: an updated mixed defender strategy f ′

(i) Decompose f into multiple routes by iteratively finding a route that contains the
edge with minimum probability:

(a) Initialize the remaining flow distribution f̃ = f and route set S = ∅. Initial-
ize probability distribution over routes p(Ru) = 0, ∀u.

(b) while max f̃(i, j, k) > 0 do

i. Set (i0, j0, k0) = arg mini,j,k:f̃(i,j,k)>0 f̃(i, j, k).

ii. Set fmin = f̃(i0, j0, k0).
iii. Find an arbitrary routeRu0 such that ru0(k0−1) = i0 and ru0(k0) = j0

(i.e., edge Ei0,j0,k0 is in the route) and f̃(ru0(k), ru0(k+1), k) > 0, ∀k
(i.e., all edges in the route has non-zero remaining flow).

iv. Add Ru0 to S and set p(Ru0) = fmin.
v. Set f̃(i, j, k) = f̃(i, j, k)− fmin if ru0(k − 1) = i and ru0(k) = j.

end

(ii) Adjust each route in S greedily to get a new set of routes S′ and the corresponding
new probability distribution p′:

(a) Initialize the new set S′ = ∅ and new probability distribution p′(Ru) = 0,
∀u.

(b) while S 6= ∅ do
i. Pick a route Ru from S.

ii. Adjust Ru to get new route Ru′ : for a given Ru and a specified k∗, set
ru′(k) = ru(k) if k 6= k∗. Set ru′(k∗) = i0 such that: 1) E(u1, k

∗ − 1)
and E(u1, k

∗) meet the speed constraint; 2) Ru′ dominates Ru with the
choice of i0; 3) Ru′ is not dominated by a route with any other choice
of i0. If no such i0 exists, set ru′(k∗) = ru(k∗)

iii. Add Ru to S′ and set p′(Ru′) = p(Ru).
iv. Remove Ru from S.

end

(iii) Reconstruct a new compact representation f ′ from S′ and p′ according to Equation
4.4.
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Figure 4.7: Step (i): decomposition. Every time a route containing the minimal flow variable is
subtracted and a residual graph is left for further decomposition. The original flow distribution is
thus decomposed into three routes R2, R1, and R3 with probability 0.4, 0.2 and 0.4 respectively.

Definition 8. Edge Ei,j,k dominates edge Ei′,j′,k in [tk, tk+1] if Arqk(i, j) ≥ Arqk(i
′, j′),

∀q = 1..L, ∀r = 0..Mqk, and ∃q, r such that Arqk(i, j) > Arqk(i
′, j′).

The dominance relation of edges is based on the comparison of protection provided to the

targets in each sub-interval. In the following dominance relation of routes, we denote the edge

Eru(k),ru(k+1),k as E(u, k) to simplify the notation, .

Definition 9. Route Ru = (dru(1), . . . , dru(M)) dominates Ru′ = (dru′ (1), . . . , dru′ (M)) if

∀k = 1 . . .M − 1, E(u, k) = E(u′, k) or E(u, k) dominates E(u′, k) and ∃k such that E(u, k)

dominates E(u′, k).

Route Ru dominates Ru′ if each edge of Ru is either the same as or dominates the corre-

sponding edge in Ru′ and at least one edge in Ru dominates the corresponding edge in Ru′ .

Denote the original route to be adjusted as Ru and the new route as Ru′ . A greedy way to

improve the route is to replace only one node in the route. If we want to replace the node at time

tk∗ , then we have ru′(k) = ru(k), ∀k 6= k∗ and dru(k∗) in the original route is replaced with
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dru′ (k∗). So the patroller’s route changes only in [tk∗−1, tk∗+1]. Thus, only edges E(u, k∗ − 1)

and E(u, k∗) in the original route are replaced by E(u′, k∗ − 1) and E(u′, k∗) in the new route.

We are trying to find a new route Ru′ that dominates the original route to provide equal or

more protection to the targets. So the selection of ru′(k∗) needs to meet the requirements speci-

fied in Algorithm 2. The first one describes the speed limit constraint. The second one requires

the changed edges E(u′, k∗− 1) and E(u′, k∗) are either equal to or dominate the corresponding

edges in the original route (and dominance relation exist for at least one edge). The third require-

ment attains a local maximum. If such a new node does not exist for a specified k∗, we return the

original route Ru.

We can iterate this process for the new route and get a final route denoted by Ru′ after several

iterations or when the state of convergence is reached. When the state of convergence is reached,

the resulting route Ru′ keeps unchanged no matter which k∗ is chosen for the next iteration.

For the example in Figure 4.7, assume the only target’s moving schedule is d1 → d1 → d2,

d3 − d2 = d2 − d1 = δd, re = 0.1δd and utility function is constant. We adjust each route for

only one iteration by changing the patroller’s position at time t3, i.e., ru(3). As t3 is the last

discretized time point, only edge E(u, 2) may be changed. For R1 = (d1, d1, d1), we enumerate

all possible patroller’s positions at time t3 and choose one according to the three constraints

mentioned above. In this case, the candidates are d1 and d2, so the corresponding new routes are

R1 (unchanged) and R2 = (d1, d1, d2) respectively. Note that edge Ed1,d2,2 dominates Ed1,d1,2

because the former one protects the target all the way in [t2, t3] and thus R2 dominates R1. So d2

is chosen as the patroller’s position at t3 and R2 is chosen as the new route. The adjustment for

all routes with non-zero probability after decomposition is shown in Table 4.3.
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The new routes we get after step (ii) are same as the original routes or dominate the original

routes. That is, whenever a route Ru is chosen according to the defender mixed strategy resulting

from step (i), it is always equally good or better to choose the corresponding new route Ru′

instead, because Ru′ provides equal or more protection to the targets than Ru. Suppose there are

H possible routes in the defender strategy after step (i), denoted as R1, ..., RH . After adjusting

the routes, we get a new defender strategy (p′(R1), p′(R2), ..., p′(RH)) in full representation (See

Table 4.4). Some routes are taken with higher probability (e.g. p′(R2) = 0.2 + 0.4 = 0.6) and

some are with lower probability (e.g. p′(R3) = 0) compared to the original strategy. For step (iii),

we reconstruct a new compact representation according to Equation 4.4. This is accomplished

via a process that is the inverse of decomposition and is the same as how we map a strategy in

full representation into a compact representation. For the example above, the result is shown in

Table 4.4.

Theorem 3. After steps (i)–(iii), we get a new defender strategy f1 that dominates the origi-

nal one f0 if f1 is different from f0.

Proof: We continue to use the notation that the decomposition in step (i) yields the routes

R1, ..., RH . For each flow distribution variable in the original distribution f0(i, j, k), it is decom-

posed into H sub-flows {f0
u(i, j, k)} according to the route decomposition. f0

u(i, j, k) = p(Ru)

if i = ru(k), j = ru(k + 1) and f0
u(i, j, k) = 0 otherwise. Thus we have the following equation.

f0(i, j, k) =
∑H

u=1
f0
u(i, j, k) (4.28)

=
∑

u:ru(k)=i,ru(k+1)=j
f0
u(i, j, k) (4.29)
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After adjust each route separately, each non-zero sub-flow f0
u(i, j, k) on edge E(u, k) is moved

to edge E(u′, k) as route Ru is adjusted to Ru′ . Reconstructing the flow distribution f1 can

also be regarded as adding up all the sub-flows after adjustment together on each edge. That

means, f1 is composed of a set of sub-flows after adjustment, denoted as {f1
u(i′, j′, k)}. The

subscript u represents for the index of the original route to indicate it is moved from edgeE(u, k).

So f1
u(i′, j′, k) = f0

u(ru(k), ru(k + 1), k), if i′ = Ru′(k) and j′ = Ru′(k + 1); otherwise

f1
u(i′, j′, k) = 0. Similarly to Equation 4.29, we have the following equation for f1.

f1(i′, j′, k) =
∑H

u=1
f1
u(i′, j′, k) (4.30)

=
∑

u′:ru′ (k)=i′,ru′ (k+1)=j′
f1
u(i′, j′, k) (4.31)

Based on how the adjustment is made, Ru′ is same as or dominates Ru and thus E(u′, k) is

same as or dominates E(u, k). So if edge E(u, k) protects target Fq at time t, the corresponding

edge E(u′, k) after adjustment also protects target Fq at time t.

Recall from Section 4.2.3 that ω(Fq, t) is the sum of f(i, j, k) whose corresponding edge

Ei,j,k can protect the target Fq at time t. We denote by ω0(Fq, t) and ω1(Fq, t) the probabilities

of protection corresponding to f0 and f1 respectively. According to Equation 4.29, ω0(Fq, t) can

be viewed as the sum of all the non-zero sub-flows f0
u(i, j, k) where the corresponding E(u, k)

protects the target Fq at time t. If f0
u(i, j, k) is a term in the summation to calculate ω0(Fq, t),

it means E(u, k) protects Fq at t and thus the corresponding E(u′, k) protects Fq at t, so the

corresponding sub-flow f1
u(ru′(k), ru′(k+1), k) in f1 is also a term in the summation to calculate

ω1(Fq, t). It leads to the conclusion ω0(Fq, t) ≤ ω1(Fq, t). Note that if ∀q, t, ω0(Fq, t) =

ω1(Fq, t), then all routes kept unchanged in step (ii) as otherwise it contradicts with the fact that
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the new route dominates the original route. According to Corollary 2, we have f1 dominates f0

if it is different from f0.

In the example in Figure 4.7, f0(1, 1, 2) is decomposed into two non-zero terms f0
1 (1, 1, 2) =

0.2 and f0
3 (1, 1, 2) = 0.4 along with routesR1 andR3 (See Figure 4.7). After adjustment, we get

the corresponding subflows f1
1 (1, 2, 2) = 0.2, f1

3 (1, 2, 2) = 0.4. Recall that the target’s schedule

is d1 → d1 → d2. The flow distribution after adjustment (See Table 4.6) gives more protection

to the target in [t2, t3]. Since the flow is equal from t1 to t2 (and therefore the protection is the

same), overall the new strategy dominates the old strategy.

Therefore, if we apply route-adjust to the optimal defender strategy calculated by CASS we

get a more robust equilibrium. While step (iii) allows us to prove Theorem 3, notice that at the

end of step (ii), we have a probability distribution over a set of routes from which we can sample

actual patrol routes. For two or more defender resources, a generalized version of Definition

8 can be used to define the dominance relation on the edge tuple (Ei1,j1,k, ..., EiW ,jW ,k) with

coefficient matrix for multiple patrollers Arqk(i1, j1, ..., iW , jW ).

There are other ways to adjust each route. Instead of adjusting only one node in the route,

we can adjust more consecutive nodes at a time, for example, we can adjust both ru′(k∗) and

ru′(k
∗ + 1) by checking edges E(u′, k∗ − 1), E(u′, k∗) and E(u′, k∗ + 1). However, we need

to tradeoff the performance and the efficiency of the algorithm. This tradeoff will be further

discussed in Section 4.6.

4.3.2 Flow Adjust

Whereas route-adjust tries to select an equilibrium that is robust against attackers playing sub-

optimal strategies, the second approach, flow-adjust, attempts to select a new equilibrium that
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is robust to rational attackers that are constrained to attack during any time interval [tk, tk+1].

As we will discuss below, flow-adjust focuses on a weaker form of dominance, which im-

plies that a larger set of strategies are now dominated (and thus could potentially be elimi-

nated) compared to the standard notion of dominance used by route-adjust; however flow-adjust

does not guarantee the elimination of all such dominated strategies. We denote by DefEUk
f

the defender expected utility when an attacker is constrained to attack during time interval

[tk, tk+1] when the attacker provides his best response given the defender strategy f . Formally,

DefEUk
f = minq∈{1...L},t∈[tk,tk+1]{DefEUf (Fq, t)}. We give the following definition of “local

dominance”.

Definition 10. Defender strategy f locally dominates f ′ if DefEUk
f ≥ DefEUk

f ′ , ∀k.2

Corollary 3. Defender strategy f locally dominates f ′ if

min
q∈{1...L},t∈[tk,tk+1]

{DefEUf (Fq, t)} ≥ min
q∈{1...L},t∈[tk,tk+1]

{DefEUf ′(Fq, t)},∀k,

or equivalently in this zero-sum game,

max
q∈{1...L},t∈[tk,tk+1]

{AttEUf (Fq, t)} ≤ max
q∈{1...L},t∈[tk,tk+1]

{AttEUf ′(Fq, t)},∀k.

Corollary 3 follows from the fact that the attacker plays a best response given the defender

strategy, and it means that f locally dominates f ′ if the maximum of attacker expected utilities in

each time interval [tk, tk+1] given f is no greater than that of f ′.

2We don’t require that there exists at least one k such that DefEUk
f > DefEUk

f ′ .
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Compared to Definition 7, which gives the standard condition for dominance, local domi-

nance is a weaker condition; that is if f dominates f ′ then f locally dominates f ′. However,

the converse is not necessarily true. Intuitively, whereas in Definition 7 the attacker can play

any (possibly suboptimal) strategy, here the attacker’s possible deviations from best response are

more restricted. As a result, the set of locally dominated strategies includes the set of dominated

strategies. From Definition 10, if f locally dominates f ′, and the attacker is rational (i.e., still

playing a best response) but constrained to attack during some time interval [tk, tk+1], then f is

preferable to f ′ for the defender. A further corollary is that even if the rational attacker is con-

strained to attack in the union of some of these intervals, f is still preferable to f ′ if f locally

dominates f ′. One intuition for the local dominance concept is the following: suppose we suspect

the attacker will be restricted to an (unknown) subset of time, due to some logistical constraints.

Such logistical constraints would likely make the restricted time subset to be contiguous or a

union of a small number of contiguous sets. Since such sets are well-approximated by unions

of intervals [tk, tk + 1], local dominance can serve as an approximate notion of dominance with

respect to such attackers.

Flow-adjust looks for a defender strategy f1 that locally dominates the original defender

strategy f0. To achieve this, we simply adjust the flow distribution variables f(i, j, k) while

keeping the marginal probabilities p(i, k) the same. Figure 4.8 shows an example game with two

discretized intervals [t1, t2] and [t2, t3] (only the first interval is shown). Suppose the maximal

attacker expected utility is 5U0 in this equilibrium and is attained in the second interval [t2, t3].

If the attacker’s utility for success is a constant U0 in the first interval [t1, t2], then the defender

strategy in [t1, t2] could be arbitrarily chosen because the attacker’s expected utility in [t1, t2] in

worst case is smaller than that of the attacker’s best response in [t2, t3]. However, if a attacker is
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constrained to attack in [t1, t2] only, the defender strategy in the first interval will make a differ-

ence. In this example, there is only one target moving from d1 to d2 during [t1, t2]. The schedule

of the ferry is shown as dark lines and the parallel lines L1
1 and L2

1 with respect to protection ra-

dius re = 0.2(d2 − d1) are shown as dashed lines. The marginal distribution probabilities p(i, k)

are all 0.5 and protection coefficient C1 = 1. In f0, the defender’s strategy is taking edges E1,1,1

and E2,2,1 with probability 0.5 and the attacker’s maximum expected utility is U0, which can be

achieved around time (t1 + t2)/2 when neither of the two edges E1,1,1 and E2,2,1 are within the

target’s protection range. If we adjust the flows to edge E1,2,1 and E2,1,1, as shown in Figure

4.8(b), the attacker’s maximum expected utility in [t1, t2] is reduced to 0.5U0 as edge E1,2,1 is

within the target’s protection range all the way. So a rational attacker who is constrained to attack

between [t1, t2] will get a lower expected utility given defender strategy f1 than given f0, and

thus the equilibrium with f1 is more robust to this kind of deviation on the attacker side.
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(a) f0: the patroller is taking edges
E1,1,1 and E2,2,1 with probability
0.5.
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(b) f1: the patroller is taking edges
E1,2,1 and E2,1,1 with probability
0.5.

Figure 4.8: An example of flow adjust. An rational attacker who is constrained to attack in [t1, t2]
will choose to attack around time (t1 + t2)/2 to get utility U0 given f0 and attack around t1 or t2
to get utility 0.5U0 given f1.

So in flow-adjust, we construct M − 1 new linear programs, one for each time interval

[tk∗ , tk∗+1], k∗ = 1 . . .M − 1 to find a new set of flow distribution probabilities f(i, j, k∗)
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to achieve the lowest local maximum in [tk∗ , tk∗+1] with unchanged p(i, k∗) and p(i, k∗ + 1).

The linear program for an interval [t∗k, tk∗+1] is shown below.

min
f(i,j,k∗)

v

f(i, j, k∗) = 0, if |dj − di| > vm ∗ δt

p(i, k∗ + 1) =

n∑
j=1

f(j, i, k∗),∀i ∈ {1 . . . n}

p(i, k∗) =

n∑
j=1

f(i, j, k∗),∀i ∈ {1 . . . n}

v ≥ AttEU(Fq, tk),∀q ∈ {1 . . . L}, k ∈ {k∗, k∗ + 1}

v ≥ max{AttEU(Fq, θ
r+
qk∗), AttEU(Fq, θ

(r+1)−
qk∗ )}

∀q ∈ {1 . . . L}, r ∈ {0 . . .Mqk∗}

While the above linear program appears similar to the linear program of CASS, they have signif-

icant differences. Unlike CASS, the marginal probabilities p(i, k∗) here are known constants and

are provided as input and as mentioned above, there is a separate program for each [tk∗ , tk∗+1].

Thus, we get f(i, j, k∗) such that the local maximum in [tk∗ , tk∗+1] is minimized. Denote the

minimum as v1
k∗ . From the original flow distribution f0, we get AttEUf0(Fq, t) and we denote

the original local maximum value in [tk∗ , tk∗+1] as v0
k∗ . As the subset {f0(i, j, k∗)} of the orig-

inal flow distribution f0 is a feasible solution of the linear program above, we have v1
k∗ ≤ v0

k∗ ,

noting that the equality happens for the interval from which the attacker’s best response is chosen.

Note that any change made to f(i, j, k) in an interval [t∗k, tk∗+1] will not affect the per-

formance of f in other intervals as the marginal probabilities p(i, k) are kept the same, i.e.,

changing f(i, j, k∗) based on the linear program above is independent from any change to
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f(i, j, k), k 6= k∗. So we can solve the M − 1 linear programs independently. After calcu-

lating f(i, j, k∗) for all k∗ = 1..M − 1, we can get the new defender strategy f1 by combining

the solutions f(i, j, k∗) of the different linear programs together. As v1
k∗ ≤ v0

k∗ , we have

max
q∈{1...L},t∈[tk∗ ,tk∗+1]

AttEUf0(Fq, t) ≤ max
q∈{1...L},t∈[tk∗ ,tk∗+1]

AttEUf1(Fq, t)

for all k∗ = 1..M − 1, i.e., f1 locally dominates f0.

On the other hand, while we have restricted the strategies to have the same p(i, k), there may

exist another strategy f2 with a different set of p(i, k) that locally dominates f1. Finding locally

dominating strategies with different p(i, k) from the original is a topic of future research.

Although the two refinement approaches we provide do not necessarily lead to a non-

dominated strategy under the corresponding dominance definition, these two approaches are guar-

anteed to find a more robust (or at least indifferent) equilibrium when faced with constrained at-

tackers compared to the original equilibrium we obtain from CASS. Clearly, these two refinement

approaches do not exhaust the space of refinement approaches — other refinement approaches are

possible that may lead to other equilibria that are better than (e.g. dominate) the one found by

CASS. However, it is likely that different defender strategies resulting from different equilibrium

refinements are not comparable to each other in terms of dominance, i.e., with some constrained

attackers, one equilibrium might turn out to be better and with other constrained attackers, another

equilibrium might be better. Their computational costs may differ as well. Thus, understanding

this space of refinement approaches regarding their computational cost and output quality, and

determining which approach should be adopted under which circumstances is an important chal-

lenge for future work.
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4.4 Extension To Two-Dimensional Space

Both DASS and CASS presented in Section 4.2 are based on the assumption that both the targets

and the patrollers move along a straight line. However, a more complex model is needed in some

practical domains. For example, Figure 4.9 shows a part of the route map of Washington State

Ferries, where there are several ferry trajectories. If a number of patroller boats are tasked to

protect all the ferries in this area, it is not necessarily optimal to simply assign a ferry trajectory

to each of the patroller boats and calculate the patrolling strategies separately according to CASS

described in Section 4.2. As the ferry trajectories are close to each other, a patrolling strategy that

can take into account all the ferries in this area will be much more efficient, e.g., a patroller can

protect a ferry moving from Seattle to Bremerton first, and then change direction halfway and

protect another ferry moving from Bainbridge Island back to Seattle.

Figure 4.9: Part of route map of Washington State Ferries

In this section, we extend the previous model to a more complex case, where the targets and

patrollers move in a two-dimensional space and provide the corresponding linear-program-based

solution. Again we use a single defender resource as an example and generalize to multiple

defenders at the end of this section.
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4.4.1 Defender Strategy for 2-D

As in the one-dimensional case, we need to discretize the time and space for the defender to

calculate the defender’s optimal strategy. The time interval T is discretized into a set of time

points T = {tk}. Let G = (V,E) represents the graph where the set of vertices V corresponds

to the locations that the patrollers may be at, at the discretized time points in T , and E is the set

of feasible edges that the patrollers can take. An edge e ∈ E satisfies the maximum speed limit

of patroller and possibly other practical constraints (e.g., a small island may block some edges).

4.4.2 DASS for 2-D

When the attack only occurs at the discretized time points, the linear program of DASS and

described in Section 4.2 can be applied to the two-dimensional settings when the distance in

Constraint 4.9 is substituted with Euclidean distance in 2-D space of nodes Vi and Vj .

min
f(i,j,k),p(i,k)

v (4.32)

f(i, j, k) ∈ [0, 1], ∀i, j, k (4.33)

f(i, j, k) = 0,∀i, j, k such that ||Vj − Vi|| > vmδt (4.34)

p(i, k) =

N∑
j=1

f(j, i, k − 1), ∀i,∀k > 1 (4.35)

p(i, k) =

N∑
j=1

f(i, j, k),∀i,∀k < M (4.36)

N∑
i=1

p(i, k) = 1, ∀k (4.37)

v ≥ AttEU(Fq, tk),∀q,∀k (4.38)
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Note that f(i, j, k) now represents the probability that a patroller is moving from node Vi to Vj

during [tk, tk+1]. Recall in Figure 4.1.1, a patroller protects all targets within her protective circle

of radius re. However, in the one-dimensional space, we only care about the straight line AB, so

we used βq(t) = [max{Sq(t) − re, d1},min{Sq(t) + re, dN}] as the protection range of target

Fq at time t, which is in essence a line segment. In contrast, here the whole circle needs to

be considered as the protection range in the two-dimensional space and the extended protection

range can be written as βq(t) = {V = (x, y) : ||V −Sq(t)|| ≤ re}. This change affects the value

of I(i, q, k) and thus the value of AttEU(Fq, tk) in Constraint 4.38.

4.4.3 CASS for 2-D

When the attacking time t can be chosen from the continuous time interval T , we need to analyze

the problem in a similar way as in Section 4.2.3. The protection radius is re, which means only

patrollers located within the circle whose origin is Sq(t) and radius is re can protect target Fq.

As we assume that the target will not change its speed and direction during time [tk, tk+1], the

circle will also move along a line in the 2-D space. If we track the circle in a 3-D space where the

x and y axes indicate the position in 2-D and the z axis is the time, we get an oblique cylinder,

which is similar to a cylinder except that the top and bottom surfaces are displaced from each

other (See Figure 4.10). When a patroller moves from vertex Vi(∈ V ) to vertex Vj during time

[tk, tk+1], she protects the target only when she is within the oblique cylinder. In the 3-D space

we described above, the patroller’s movement can be represented as a straight line.

Intuitively, there will be at most two intersection points between the patroller’s route in 3-D

space and the surface. This can be proved by analytically calculating the exact time of these

intersection points. Assume the patroller is moving from V1 = (x1, y1) to V2 = (x2, y2) and the
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Figure 4.10: An illustration of the calculation of intersection points in the two-dimensional set-
ting. The x and y axes indicates the position in 2-D and the z axis is the time. To simplify the
illustration, z axis starts from time tk. In this example, there are two intersection points occurring
at time points ta and tb.

target is moving from Sq(tk) = (x̂1, ŷ1) to Sq(tk+1) = (x̂2, ŷ2) during [tk, tk+1] (an illustration

is shown in Figure 4.10). To get the time of the intersection points, we solve a quadratic equation

with these coordination parameters and protection radius re. If a root of the quadratic equation is

within the interval [tk, tk+1], it indicates that the patroller’s route intersects with the surface at this

time point. So there will be at most two intersection points. Once we find all these intersection

points, the same analysis in Section 4.2.3 applies and we can again claim Lemma 1. So we

conclude that we only need to consider the attacker’s strategies at these intersection points. We

use the same notation θrqk as in the one-dimensional case to denote the sorted intersection points

and get the following linear program for the 2-D case.

min
f(i,j,k),p(i,k)

v (4.39)

subject to constraints(4.33 . . . 4.38)

v ≥ max{AttEU(Fq, θ
r+
qk ),AttEU(Fq, θ

(r+1)−
qk )} (4.40)

∀k ∈ {1 . . .M}, q ∈ {1 . . . L}, r ∈ {0 . . .Mqk}
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Algorithm 4.2.3 can still be used to add constraints to the linear program of CASS for the 2-D

case. The main difference compared to CASS in the 1-D case is that since Euclidean distance

in 2-D is used in Constraint 4.34 we need to use the extended definition of βq(t) in 2-D when

deciding the entries in the coefficient matrix Arqk(i, j).

The detailed calculation for finding the intersection points is shown below. We calculate the

time where the patroller’s route intersects with the protection range for a target when the patroller

is moving from V1 = (x1, y1) to V2 = (x2, y2) and the target is moving from Sq(tk) = (x̂1, ŷ1)

to Sq(tk+1) = (x̂2, ŷ2) during [tk, tk+1]. The patroller’s position at a given time t ∈ [tk, tk+1] is

denoted as (x, y) and the target’s position is denoted as (x̂, ŷ). Then we have

x =
t− tk

tk+1 − tk
(x2 − x1) + x1, y =

t− tk
tk+1 − tk

(y2 − y1) + y1 (4.41)

x̂ =
t− tk

tk+1 − tk
(x̂2 − x̂1) + x1, ŷ =

t− tk
tk+1 − tk

(ŷ2 − ŷ1) + ŷ1 (4.42)

At an intersection point, the distance from the patroller’s position to the target’s position equals

to the protection radius re, so we are looking for a time t such that

(x− x̂)2 + (y − ŷ)2 = r2
e (4.43)

By substituting the variables in Equation 4.43 with Equations 4.41–4.42, and denoting

A1 =
(x2 − x1)− (x̂2 − x̂1)

tk+1 − tk
, B1 = x1 − x̂1,

A2 =
(y2 − y1)− (ŷ2 − ŷ1)

tk+1 − tk
, B2 = y1 − ŷ1,
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Equation 4.43 can be simplified to

(A1t−A1tk +B1)2 + (A2t−A2tk +B2)2 = r2
e . (4.44)

Denote C1 = B1 − A1tk and C2 = B2 − A2tk, and we can easily get the two roots of this

quadratic equation, which are

ta,b =
−2(A1C1 +A2C2)± 2

√
(A1C1 +A2C2)2 − (A2

1 +A2
2)(C2

1 + C2
2 − r2

e)

2(A2
1 +A2

2)
. (4.45)

ta or tb is the time of a valid intersection point if and only if it is within the time interval under

consideration ([tk, tk+1]).

For multiple defender resources, again the linear program described in Section 4.2.5 is appli-

cable when the extended definition of βq(t) is used to calculate AttEU and Constraint 4.21 is

substituted with the following constraint:

f(i1, j1, . . . , iW , jW , k) = 0,∀i1, . . . , iW , j1, . . . , jW such that ∃u, ‖Vju − Viu‖ > vmδt.

4.5 Route Sampling

We have discussed how to generate an optimal defender strategy in the compact representation;

however, the defender strategy will be executed as taking a complete route. So we need to sample

a complete route from the compact representation. In this section, we give two methods of sam-

pling and show the corresponding defender strategy in the full representation when these methods

are applied.
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The first method is to convert the strategy in the compact representation into a Markov strat-

egy. A Markov strategy in our setting is a defender strategy such that the patroller’s movement

from tk to tk+1 depends only on the location of the patroller at tk. We denote by α(i, j, k) the

conditional probability of moving from di to dj during time tk to tk+1 given that the patroller is

located at di at time tk. In other words α(i, j, k) represents the chance of taking edge Ei,j,k given

that the patroller is already located at node (tk, di). Thus, given a compact defender strategy

specified by f(i, j, k) and p(i, k), we have

α(i, j, k) = f(i, j, k)/p(i, k), if p(i, k) > 0. (4.46)

α(i, j, k) can be an arbitrary number if p(i, k) = 0. We can get a sampled route by first deter-

mining where to start patrolling according to p(i, 1); then for each tk, randomly choose where

to go from tk to tk+1 according to the conditional probability distribution α(i, j, k). The distri-

bution from this sampling procedure matches the given marginal variables as each edge Ei,j,k is

sampled with probability p(i, k)α(i, j, k) = f(i, j, k). This sampling method actually leads to

a full representation where route Ru = (dru(1), dru(2), ..., dru(M)) is sampled with probability

p(ru(1), 1)
∏M−1
k=1 α(ru(k), ru(k + 1), k), the product of the probability of the initial distribu-

tion and the probability of taking each step. This method is intuitively straightforward and the

patrol route can be decided online during the patrol, i.e., the position of the patroller at tk+1 is

decided when the patroller reaches its position at tk, which makes the defender strategy more

unpredictable. The downside of the method is that the number of routes chosen with non-zero

probability can be as high asNM . For 2-D case, the patroller is located at node Vi at time tk. The
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sampling process is exactly the same when α(i, j, k) is used to denote the probability of moving

from Vi to Vj during [tk, tk+1].

The second method of sampling is based on the decomposition process mentioned in Section

4.3.1 (step (i)). As we discussed above for the first sampling method, sampling is essentially

restoring a full representation from the compact representation. As shown in Table 4.2, there are

multiple ways to assign probabilities to different routes and the decomposition process of “route-

adjust” constructively defines one of them. So we can make use of the information we get from

the process, and sample a route according to the probability assigned to each decomposed route.

The number of routes chosen with non-zero probability is at most N2M , much less than the

first method and thus it becomes feasible to describe the strategy in full representation, by only

providing the routes that are chosen with positive probability. Different sampling approaches may

be necessitated by different application requirements. Some applications might require that the

defender obtains a strategy in full representation and only be presented a small number of pure

strategies. However, for other applications, a strategy that can be decided on-line, potentially with

a hand-held smartphone such as in (Luber, Yin, Fave, Jiang, Tambe, & Sullivan, 2013) may be

preferred. Therefore, based on the needs of the application, different sampling strategies might

be selected.

4.6 Evaluation

We use different settings in the ferry protection domain and compare the performance in terms

of the attacker’s expected utility AttEU(Fq, t). As it is a zero-sum game, a lower value of AttEU

indicates a higher value of defender’s expected utility.
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We will run experiments both for 1-D and 2-D setting. We will evaluate the performance

of CASS and show the sampling results. We will also evaluate the improvement of the two

refinement approaches for 1-D. Section 4.6.1 shows our results for the 1-D setting; Section 4.6.2

for the 2-D setting.

4.6.1 Experiments for One-Dimensional Setting

For the 1-D setting, we first evaluate the performance of the solvers and then show how much the

performance can be improved by using the refinement methods. We also show sampled routes

for an example setting and evaluate CASS for varying number of patrollers.

4.6.1.1 Experimental Settings

We used the following setting for the experiments in one-dimensional case. This is a complex

spatio-temporal game; rather than a discrete security game as in most previous work. There are

three ferries moving between terminals A and B and the total distance AB = 1. The simulation

time is 30 minutes. The schedules of the ferries are shown in Figure 4.11, where the x-axis

indicates the time, and the y-axis is the distance from terminal A. Ferry 1 and Ferry 3 are moving

from A to B while Ferry 2 is moving from B to A. The maximum speed for patrollers is vm =

0.1/min and the protection radius is re = 0.1. Experiments in the one-dimensional case are

using 2 patrollers (where C1 = 0.8, and C2 = 1.0), except in Section 4.6.1.5 where we report on

experiments with different numbers of patrollers.
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Figure 4.11: Schedules of the ferries

4.6.1.2 Performance of Solvers

We compare the strategies calculated by CASS with DASS and a baseline strategy. In the baseline

strategy, the two patrollers choose a ferry with a probability of 1/3 (uniformly random) and move

alongside it to offer it full protection, leaving the other two unprotected (strategy observed in

practice). First, we wished to stress-test CASS by using more complex utility functions than

in the realistic case that follows. Therefore, we tested under four different discretization levels

(details about discretization levels are included in Table 4.5) with random utilities, and at each

discretization level, we created 20 problem instances. The problem instances are different across

levels. In this ferry protection domain, the utility function for each ferry usually depends on

the ferry’s position, so each instance has utilities uniformly randomly chosen between [0, 10] at

discretized distance points; an example is shown in Figure 4.12(a). The chosen discretization

levels have ensured that Uq(t) is linear in t in each time interval [tk, tk+1] for each target Fq.

In Figure 4.12(a), the x-axis indicates the distance d from terminal A, the y-axis indicates the

utility of a successful attack if the ferry is located at distance d. In Figure 4.12(b), x-axis plots

the four discretization levels and y-axis plots the average attacker expected utility if he plays best

response over the 20 instances for baseline, DASS and CASS. CASS is shown to outperform

DASS and baseline and the differences are statistically significant (p < 0.01). Note that different

75



sets of instances are generated for different discretization levels, so we cannot compare the results

across levels directly. However, it is helpful to better understand the models. From the figure, we

find the solution quality of DASS varies a lot and sometimes can be worse than the naive strategy

(e.g., level 1). This is because DASS calculates an optimal solution that considers only the attacks

at the discretized time points. In Figure 4.12(b), the solution quality is measured by AttEUm,

which is calculated as the maximum over the continuous attacker strategy set. The gap between

the optimal objective function of DASS and the actual AttEUm given the optimal solution of

DASS may vary for different strategies and different discretization levels. Another interesting

observation is that the average solution quality of CASS is almost the same for all discretization

levels. Despite the difference in instance sets, this result implies that the improvement of a finer

discretization may be limited for CASS.
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gies

Figure 4.12: Performance under different randomized utility function settings. The utility func-
tion in this set of experiments is a function of the distance to Terminal A. The utility function
is piece-wise linear and the value at discretized distance points di is chosen randomly between
[0,10].

Next, we turn to more realistic utility function in this ferry domain, which is of U -shape or

inverse U -shape. Figure 4.13(a) shows a sample utility curve where the attacker gains higher

utility closer to the shore. We fix the utility at the shore as 10, vary the utility in the middle

(denoted as Umid), which is the value on the floor of the U -shape or the top of the inverse U -shape
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Figure 4.13: Performance under different realistic utility function settings. The utility function is
U-shape or inverse U-shape. The utility around distance 0.5 is denoted as Umid. We compare the
defender strategy given by DASS and CASS with the baseline when Umid is changing from 1 to
20.

and evaluate the strategies. In Figure 4.13(b), Umid is shown on the x-axis, and we compare the

performance of the strategies regarding attacker’s expected utility when he plays the best response

on the y-axis. We conclude that 1) the strategy calculated by CASS outperforms the baseline and

DASS; 2) DASS may achieve worse results than the baseline.

0 10 20 30
1

2

3

4

5

t − time

A
ttE

U

 

 

DASS
CASS

Figure 4.14: The attacker’s expected utility function given the defender strategy calculated by
DASS vs CASS under example setting. The expected utilities at the discretized time points are
indicated by squares for CASS and dots for DASS. The maximum of AttEU under CASS is
3.82, 30%less than the maximum of AttEU under DASS, which is 4.99.

Among all these different experiment settings of discretization and utility function, we choose

one instance and provide a more detailed analysis of it. We refer to this instance as example setting

in the following of this section. In this example setting, discretization level 4 is used and the util-

ity curve is as shown in Figure 4.13(a), other parameters involved are described in Section 4.6.1.1.
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Figure 4.14 compares the attacker expected utility function when DASS and CASS is used re-

spectively. The x-axis indicates the time t, and the y-axis indicates the attacker’s expected utility

if he attacks Ferry 1 at time t. For the strategy calculated by DASS, the worst performance at dis-

cretized time points is 3.50 (AttEU(F1, 20)), however, the supremum of AttEU(F1, t), t ∈ [0, 30]

can be as high as 4.99 (AttEU(F1, 4
+)), which experimentally shows that taking into considera-

tion the attacks between the discretized time points is necessary. For the strategy calculated by

CASS, the supremum of AttEU(F1, t) is reduced to 3.82.

4.6.1.3 Improvement Using Refinement Methods

We compare the refinement approaches described in Section 4.3 and analyze the tradeoff between

performance improvement and runtime. Three approaches are considered for comparison: route-

adjust, flow-adjust and a variation of route-adjust, denoted by route-adjust2. In step (ii) of route-

adjust, we replace every node in the route one-by-one in sequence.3 In step (ii) of route-adjust2,

we replace every consecutive pair of nodes in the route in sequence.

We first show results for the example setting. In Figure 4.15(a), we compare the AttEU(Fq, t)

function of the defender strategy given by CASS and of the one after route-adjust for Ferry

1. It shows for an attack aiming at any target at any time, the defender strategy after route-

adjust refinement is equally good or better than the one in the original equilibrium, and thus,

the defender performs equally or better no matter how the attacker is constrained in time, i.e.,

the defender strategy after route-adjust dominates the original strategy. Figure 4.15(b) is the

comparison between AttEU function of the defender strategy after route-adjust and the one after
3In supplementary experiments, we also tested route-adjust with more iterations, e.g., repeating the process of re-

placing every node in sequence five times. The extra benefit is insignificant while the runtime increases proportionally
to the number of iterations. In light of this, we choose to replace each node only once in the experiments reported in
this chapter.
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(b) AttEU function of Ferry 1 after route-adjust2
(two nodes at a time)

0 10 20 30
1

2

3

4

t − time

A
ttE

U

 

 

CASS
Flow−Adjust

(c) Performance of flow-adjust

Figure 4.15: Performance of equilibrium refinement approaches.

route-adjust2 for Ferry 1. The one after route-adjust2 does not dominate the one after route-

adjust but overall the former appears to perform better than the latter more frequently and by

larger amounts. If we use the average value of AttEU function as a metric of performance, we

will show that route-adjust2 is better than route-adjust in this example setting later in Table 4.6.

Figure 4.15(c) shows the comparison between the AttEU function of the defender strategy given

by CASS and that of the defender strategy after flow-adjust for Ferry 1. The strategy given by

CASS is not dominated by the one after flow-adjust under Definition 7, but if we investigate

the maximum of AttEU in each time interval [tk, tk+1], as shown in Table 4.7, we find that the

defender strategy after flow-adjust locally dominates the original strategy.

We list the worst case performance and the average performance of AttEU function over all

ferries in this example setting for four defender strategies (CASS, route-adjust, route-adjust2,

flow-adjust) in Table 4.6, from which we conclude that 1) the worst case performance of all
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strategies of flow-adjust is the same, which means the defender achieves exactly same expected

utility towards an unconstrained rational attacker; 2) the average performance of flow-adjust is

slightly better than the CASS, but is outperformed by route-adjust and route-adjust2, while it

takes much less time to run compared to the other two; 3) in this example setting, when we adjust

two consecutive nodes at a time, the performance is better than adjusting only one node at a time,

but the difference is not significant, and it is much more expensive in terms of run-time.

Figure 4.16(a) and Figure 4.16(b) shows the maximum and the average improvement of

route-adjust, route-adjust2 and flow-adjust, averaged over all the 20 instances of Level 4 with

randomized utilities that have been used for Figure 4.12(b); and Figure 4.16(c) shows the average

runtime. The maximum improvement is the largest difference between the AttEU function given

defender strategy calculated by CASS and the one after refinement. The average improvement

is the average difference between the two functions. The standard deviations over all instances

are shown as error bars. Figure 4.16 confirms that all the refinement approaches improve the

defender strategy calculated by CASS in terms of both the maximum performance and aver-

age performance and thus provide better defender strategies given possible constrained attackers.

Route-adjust2 achieves the most improvement, then route-adjust, and flow-adjust the least. Flow-

adjust achieves much less improvement compared to the other two approaches. One explanation

for this is that the constraints are very strong as they require all marginal probabilities to be

unchanged, so it is likely that little changes are made to the original defender strategy. The differ-

ence between route-adjust2 and route-adjust is not as significant. Regarding run-time, flow-adjust

is the least expensive, route-adjust the second and route-adjust2 the most. Route-adjust2 is sig-

nificantly more expensive compared to the other two. So we conclude that route-adjust is a better

choice considering the tradeoff between improvement and the runtime.
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Figure 4.16: Comparison of refinement approaches.

4.6.1.4 Sampled Routes

We first convert the defender strategy under the example setting into a Markov strategy and sam-

ple 1000 pair of patrol routes. The defender strategy used here is the one after “route-adjust”. In

each sample, a pair of routes is chosen step by step for the two patrol boats according to the joint

conditional probability distribution {α(i1, j1, i2, j2, k)}. The routes for the two patrol routes

are chosen simultaneously as they are coordinating with each other. We cannot show each pair

separately for all 1000 samples. Instead, Figure 4.17(a) shows the frequency of being taken out

of the 1000 samples of each edge. The x-axis indicates the time and the y-axis is the distance to

terminal A. The width of the each edge indicates the frequency of being chosen by at least one

patroller. Although Figure 4.17(a) does not precisely depict the samples, it provides a rough view

of how the routes are taken by the patrol boats.
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Figure 4.17(b) shows the pair of routes that is of highest probability when we use the de-

composition method of sampling. The solid lines show the patrol boats’ routes and the dashed

lines show the ferries’ schedules. We get 3958 different pairs of patrol routes in total in the

decomposition process, and the shown pair of routes is chosen with probability 1.57%.
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Figure 4.17: Results for sampling under the example setting: (a) Frequency of each edge is chosen
when the first sampling method based on Markov strategy is used. (b) Decomposed routes with
highest probability superimposed on ferry schedules when the second sampling method based on
decomposition is used.

4.6.1.5 Number of Patrollers

Figure 4.18(a) shows the improvement in performance of CASS with increasing number of pa-

trollers under discretization Level 1. The x-axis shows the number of patrollers and the y-axis

indicates the average of attacker’s maximal expected utility, i.e., the expected reward when he

plays his best response. The results are averaged over 20 random utility settings of discretiza-

tion Level 1. With fewer patrollers, the performance of the defender varies a lot depending on

the randomized utility function (as indicated by standard deviation shown as the error bar). But

the variance gets much smaller with more patrollers, which means the defender has sufficient re-

sources for different instances. Figure 4.18(b) shows the run-time for CASS. The y-axis indicates

the average of natural logarithm of runtime. Not surprisingly, the run-time increases when the

number of patrollers increases.
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Figure 4.18: Performance with varying number of patrollers.

Figure 4.18(c) and 4.18(d) show the average performance and run-time of CASS with dis-

cretization Level 2, using the same set of utility settings as used in Level 1. Only results for

1 to 3 patrollers are shown. The program runs out of memory for four patrollers as there are

N8M = 2734375 flow distribution variables and at least N4M = 8757 constraints. Note that

the average solution quality of Level 2 is better than the result of Level 1 (e.g., the average at-

tacker EU for 1 patroller is 4.81 in Level 1 and 4.13 in Level 2), which indicates a higher level

of granularity can improve the solution quality. However, granularity clearly affect the ability to

scale-up; which means that we need to consider the tradeoff between the solution quality and the

memory used and one way to combat the scaling-up problem is to reduce the level of granularity.

Nonetheless, the number of patrollers we have encountered in real-world scenarios such as at

New York is of the order of 3 or 4, so CASS is capable at least for key real-world scenarios.
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4.6.1.6 Approximation Approach for Multiple Defender Resources

We tested the first approximation approach for multiple defender resources described in Section

4.2.5 for the example setting. We used the fmincon function with interior-point method in MAT-

LAB to minimize the non-linear objective function (Equation 4.27). Table 4.8 lists different run-

time and the value of the objective function achieved given different iteration number (denoted

as MaxIter). The function is not ensured to provide a feasible solution when the iteration number

is not large enough, as shown in the first two rows. We compared the result with our LP for-

mulation of DASS, which was implemented in MATLAB using linprog function. DASS can be

solved within 8.032 seconds and provides an optimal solution AttEUm = 3.5, this approximation

approach is outperformed in both run-time efficiency and solution quality. This approach fails to

provide a feasible solution efficiently and even when sufficient time is given (more than 400 times

the run-time of the LP formulation), the maximum attacker expected utility is 18% larger than

the optimal solution. This is mainly because the new formulation in the approximation approach

is no longer linear or convex, making it difficult to find a global maximum.

4.6.2 Experiments for Two Dimensional Setting

The settings in 2-D space are more complex even with single patroller. Here we show an example

setting motivated by the ferry system between Seattle, Bainbridge Island and Bremerton as shown

in Figure 4.9. In this example setting, three terminals (denoted as A, B, and C) are non-collinear

in the 2-D space as shown in the Figure 4.19(a). Ferry 1 and Ferry 2 are moving on the trajectory

between Terminal B and C (denoted as Trajectory 1) and Ferry 3, and Ferry 4 are moving on the

trajectory between Terminal B and A (denoted as Trajectory 2). The schedules of the four ferries

are shown in Figure 4.19(b), where the x-axis is the time, and the y-axis is the distance from the
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Figure 4.19: An example setting in two-dimensional space

common terminal B. Ferry 1 moves from C to B, Ferry 2 moves from B to C, Ferry 3 moves from

B to A and Ferry 4 moves from A to B. Similar to the one-dimensional scenario in ferry domain,

we assume the utility is decided by the ferry’s position and the utility function is shown in Figure

4.19(c). The x-axis is the distance from the common terminal B and the y-axis is the utility for

the two trajectories respectively. The 2-D space is discretized into a grid as shown in Figure

4.19(d) with δx = 1.5 and δy = 1 indicating the interval in the x-axis and y-axis. A patroller

will be located at one of the intersection points of the grid graph at any discretized time points.

The simulation time is 60 minutes and M = 13, i.e., tk+1 − tk = 5 minutes. The speed limit for

the patroller is ve = 0.38 and all the available edges that a patroller can take during [tk, tk+1] are

shown in Figure 4.19(d). Only one patroller is involved. The protection radius is set to re = 0.5,

and protection coefficient is C1 = 0.8.

85



0 20 40 60
4

5

6

7

t − time

A
ttE

U
 

 

DASS
CASS

(a) Solution quality of DASSand CASS for
Ferry 2

0 1.5 3 4.5

0

1

2

x

y

Sampled Route by CASS

start
end staystay

staystay

staystay

(b) Sampled route 1 superimposed on ferry tra-
jectories

0 1.5 3 4.5

0

1

2

x

y
Sampled Route by CASS

start

end

stay

staystaystaystaystay

(c) Sampled route 2 superimposed on ferry tra-
jectories

Figure 4.20: Experimental results under two-dimensional settings

Figure 4.20(a) compares the performance of DASS and CASS for Ferry 2. Ferry 2 is chosen

because in both strategies, the attacker’s best response is to attack Ferry 2. The x-axis is the time

t, and the y-axis is the attacker expected utility of attacking Ferry 1 at time t. The maximum of

AttEU of CASS is 6.1466, 12% lower compared to the result of DASS, which is 6.9817. Figure

4.20(b) and 4.20(c) show two sampled route given the strategy calculated by CASS on the 2-D

map where the dashed lines represent for the ferry trajectories. The patroller starts from the node

with text “start” and follows the arrowed route, and ends at the node with text “end” at the end of

the patrol. She may stay at the nodes with text “stay”. The patrol routes are shown in an intuitive

way but can be ambiguous. The exact route should be listed as a table with time and position.
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The routes are sampled based on the converted Markov strategy, and the total number of patrol

routes that may be chosen with non-zero probability is 4.49× 1010.

4.7 Chapter Summary

This chapter makes several contributions in computing optimal strategies given moving targets

and mobile patrollers. First, we introduce MRMTsg, a novel Stackelberg game model that takes

into consideration spatial and temporal continuity. In this model, targets move with fixed sched-

ules and the attacker chooses his attacking time from a continuous time interval. Multiple mobile

defender resources protect the targets within their protection radius, and bring in continuous space

in our analysis. Second, we develop a fast solution approach, CASS, based on compact repre-

sentation and sub-interval analysis. Compact representations dramatically reduce the number of

variables in designing the optimal patrol strategy for the defender. Sub-interval analysis reveals

the piece-wise linearity in attacker expected utility function and shows there is a finite set of

dominating strategies for the attacker. Third, we propose two approaches for equilibrium refine-

ment for CASS’s solutions: route-adjust and flow-adjust. Route-adjust decomposes the patrol

routes, greedily improves the routes and composes the new routes together to get the new de-

fender strategy. Flow-adjust is a fast and simple algorithm that adjusts the flow distribution to

achieve optimality in each time interval while keeping the marginal probability at the discretized

time points unchanged. Additionally, we provide detailed experimental analyses in the ferry pro-

tection domain. CASS has been deployed by the US Coast Guard since April 2013.

There are several important avenues for future work. These include: (i) use a decreasing

function to model the protection provided to the targets instead of using a fixed protection radius;
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(ii) handle practical constraints on patrol boat schedule as not all are easily implementable; (iii)

efficiently handle more complex and uncertain target schedules and utility functions.

Here we provide an initial discussion about the relaxation of the assumptions that we listed

in Section 4.1 and used throughout the chapter:

• If we allow for complex and uncertain target schedules, we may model the problem as a

game where the targets follow stochastic schedules. Our framework may still apply but may

need to be enriched (e.g., using approaches such as the use of MDPs to represent defender

strategies, see (Jiang, Yin, Zhang, Tambe, & Kraus, 2013)). Coordinating multiple such

defenders then become an important challenge. It may be helpful in such cases to appeal to

more of the prior work on multi-agent teamwork, given the significant uncertainty in such

cases leading to more need for on-line coordination (Tambe, 1997; Stone, Kaminka, Kraus,

& Rosenschein, 2010; Kumar & Zilberstein, 2010; Yin & Tambe, 2011).

• If we focus on environments where multiple attackers can coordinate their attacks, then

we may need to further enhance our framework. Prior results from (Korzhyk, Conitzer,

& Parr, 2011) over stationary targets and discrete time would be helpful in addressing this

challenge, although the case of moving targets in continuous space and time in such cases

provides a very significant challenge. Combining with the previous item for future work, a

complex multiple defender multiple attacker scenarios would appear to be a very significant

computational challenge.
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Notation Meaning
MRMT The problem of multiple Mobile Resources protecting Moving Targets

MRMTsg Game model with a continuous set of strategies for the attacker for MRMT.
L Number of ferries.
Fq Ferry with index q.
A, B Terminal points.
T Continuous time interval or a finite set of time points.
D Continuous space of possible locations or a set of distance points.

Sq(t) Ferry schedule. Position of the target Fq at a specified time t.
W Number of patrollers.
Pu Patroller with index u.
vm Speed limit of patroller.
re Protection radius of patroller.
CG Probability that the attacker can be stopped with G patrollers.
Uq(t) Positive reward of a successful attack on target Fq at time t for the attacker.
M Number of discretized time points.
N Number of discretized distance points.
tk Discretized time point.
di Discretized distance point.
δt Distance between two adjacent time points.
Ru Patrol route for patroller Pu. Under discretization of the defender’s strategy space, Ru

can be described as a vector.
ru(k) The patroller is located at dru(k) at time tk.
f(i, j, k) Flow distribution variable. Probability that the patroller moves from di to dj during

time [tk, tk+1].
p(i, k) Marginal distribution variable. Probability that the patroller is located at di tk.
Ei,j,k The directed edge linking nodes (tk, di) and (tk+1, dj).
p(Ru) Probability of taking route Ru.

AttEU(Fq, t) Attacker expected utility of attacking target Fq at time t.
βq(t) Protection range of target Fq at time t
ω(Fq, t) Probability that the patroller is protecting target Fq at time t.
I(i, q, k) Whether a patroller located at di at time tk is protecting target Fq.
L1
q ,L

2
q Lines of Sq(t)± re.

θrqk The rth intersection point in [tk, tk+1] with respect to target Fq.
AttEU(Fq, θ

r±
qk ) Left/right-side limit of AttEU(Fq, t) at θrqk.

Mqk Number of intersection points in [tk, tk+1] with respect to target Fq.
Arqk(i, j) C1 if patroller taking edge Ei,j,k can protect target Fq in [θrqk, θ

r+1
qk ]; 0 otherwise.

E(u, k) Short for Eru(k),ru(k+1),k.

Table 4.1: Summary of notations involved in the chapter.
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Full Representation 1
R1 = (d1, d1, d1) R2 = (d1, d1, d2) R3 = (d2, d1, d1) R4 = (d2, d1, d2)

��� ��� � �

Full Representation 2
R1 = (d1, d1, d1) R2 = (d1, d1, d2) R3 = (d2, d1, d1) R4 = (d2, d1, d2)

��� ��� ��� ���

Table 4.2: Two full representations that can be mapped into the same compact representation
shown in Figure 4.3.

Ru p(Ru) after decomposition Adjusted Routes
R1 = (d1, d1, d1) 0.2 (d1, d1, d2) = R2

R2 = (d1, d1, d2) 0.4 (d1, d1, d2) = R2

R3 = (d2, d1, d1) 0.4 (d2, d1, d2) = R4

Table 4.3: Step (ii): Adjust each route greedily.

Ru p′(Ru) after adjustment Composed Flow Distribution
R1 = (d1, d1, d1) 0

�� ��

��

��
���

��

R2 = (d1, d1, d2) 0.6
R3 = (d2, d1, d1) 0
R4 = (d2, d1, d2) 0.4

Table 4.4: Step (iii): compose a new compact representation.

Level δt (minutes) M δd N
1 10 4 0.5 3
2 5 7 0.25 5
3 2.5 13 0.125 9
4 2 16 0.1 11

Table 4.5: Details about discretization levels. In the experiments mentioned in this section, the
distance space is evenly discretized, parameterized by δd = di+1 − di.

Strategies Worst Case Performance Average Performance Runtime (minutes)
CASS 3.82 3.40 -

Route-Adjust 3.82 2.88 8.96
Route-Adjust2 3.82 2.76 32.31
Flow-Adjust 3.82 3.34 0.50

Table 4.6: Comparison of different refinement approaches in terms of average performance and
runtime. Only the runtime for the refinement process is calculated.
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time interval
[tk, tk+1]

maximum
before

maximum
after

time interval
[tk, tk+1]

maximum
before

maximum
after

[2, 4] 3.7587 3.6675 [16, 18] 3.8111 3.7291
[4, 6] 3.8182 3.8182 [18, 20] 3.8182 3.8182
[6, 8] 3.8153 3.6164 [20, 22] 3.8182 3.8182
[8, 10] 3.8137 3.6316 [22, 24] 3.8182 3.8182
[10, 12] 3.8052 3.6316 [24, 26] 3.8182 3.8182
[12, 14] 3.8050 3.5664 [26, 28] 3.8182 3.8182
[14, 16] 3.7800 3.2100 [28, 30] 3.8182 3.8182

Table 4.7: The maximum of attacker’s expected utility in each time interval decreases after flow-
adjust is used.

MaxIter Run− time(sec) AttEUm

3000 4.14 infeasible
10000 17.21 infeasible
900000 3298 4.0537

Table 4.8: Performance of approximation approach.
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Chapter 5

Reasoning in Continuous Space

In addition to reasoning in continuous time, my thesis addresses the problem of reasoning in

continuous space when protecting a large area. This work is motivated by the challenge in a

”green security game” where policy-makers try to design patrol strategy for protecting forest areas

from illegal extraction1. Illegal extraction of fuelwood or other natural resources from forests

is a problem confronted by officials in many developing countries, with only partial success

(MacKinnon, Mackinnnon, Child, & Thorsell, 1986; Dixon & Sherman, 1990; Clarke, Reed,

& Shrestha, 1993; Robinson, 2008). To cite just two examples, Tanzania’s Kibaha Ruvu Forest

Reserves are “under constant pressure from the illegal production of charcoal to supply markets in

nearby Dar es Salaam,”2 and illegal logging is reported “decimating” the rosewood of Cambodia’s

Central Cardamom Protected Forest (see Fig. 5). In many cases, forest land covers a large area,

which the local people may freely visit. Rather than protecting the forest by denying extractors

entry to it, therefore, protective measures take the form of patrols throughout the forest, seeking

to observe and hence deter illegal extraction activity (Lober, 1992; Sinclair & Arcese, 1995).

With a limited budget, a patrol strategy will seek to distribute the patrols throughout the forest,
1The first author of the work in this chapter is Matthew P. Johnson.
2http://www.tfcg.org/ruvu.html
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to minimize the resulting amount of extraction that occurs or to protect as much of the forest

as possible. The extraction-preventing benefits of patrols are twofold: extraction is prevented

directly, when catching would-be extractors in the act, and also indirectly, through deterrence.

Figure 5.1: “A truck loaded with illegally cut rosewood passes through Russey Chrum Village...in
the Central Cardamom Protected Forest.” Photo from (Boyle, 2011).

The problem setting to be addressed differs from those considered in previous works on secu-

rity games, most crucially in that the forest protection setting is essentially continuous rather than

discrete, both spatially and in terms of player actions. In the existing problems, there are a finite

number of discrete locations to protect, whereas ideally the entire forest area would be protected

from extraction.

To address this problem, I considered a Stackelberg game in which the defender pub-

licly chooses a (mixed) patrol strategy in the form of patrol density distribution over the two-

dimensional protected region, i.e. a probability distribution from which to select patrols; in re-

sponse, the extractor then chooses whether or not to extract, or to what degree. Previous work

in forest economics has provided an influential forest protection model (Albers, 2010) (see also

(Robinson, Albers, & Williams, 2008, 2011)), in which there is a circular forest surrounded by
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villages (hence potential extractors); the task is to distribute the patrols’ probability density across

the region of interest; the objective is to minimize the distance by which the extractors will tres-

pass into the forest (since nearby villagers will extract as a function of this distance (HOFER,

CAMPBELL, EAST, & HUISH, 2000)) and hence maximize the size of the resulting pristine

forestland. The Stackelberg game I consider is a game-theoretic extension of this model, with

additional features such as permitting spatial variation in patrol density, multiple patrol units, and

convex polygon-shaped forests.

To reason about the attacker’s strategy under this continuous setting, I provided a detailed

benefit-cost analysis of the attacker. As the extractors go into the protected area for distance d,

they incur a cost and gain a benefit if not caught, based on an increasing marginal cost function

c(d) and a decreasing marginal benefit function b(d). (The instantaneous or marginal cost and

benefit functions are the derivatives of the functions specifying the cumulative costs and benefits,

respectively, of walking that far into the forest.) A given patrol strategy will reduce the extractor’s

expected benefit for an incursion of distance d from b(d) to some value bp(d).

Based on this analysis, I proposed an efficient algorithm that calculates the optimal patrol

strategy. The general idea of the optimal patrol strategy is to reduce the extractor’s expected

marginal benefit to a level that is equal to his expected marginal cost, i.e., bp(d) = c(d). Thus,

the attacker has no incentive to going further and the area is effectively protected. I also provided

a 1/2-approximation algorithm that calculates a ring patrol strategy, i.e., all patrol resources are

distributed on a thin ring somewhere in the protected area.

Economists have studied the relationship generally between enforcement policy for protect-

ing natural resources and the resulting incentives for neighbors of the protected area (Milliman,

1986; Robinson, 2008; Sanchirico & Wilen, 2001). Our point of departure in this chapter is the
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influential forest protection model of (Albers, 2010) (see also (Robinson et al., 2008, 2011)), in

which there is a circular forest surrounded by villages (hence potential extractors); the task is to

distribute the patrols’ probability density across the region of interest; the objective is to mini-

mize the distance by which the extractors will trespass into the forest and hence (since nearby

villagers will extract as a function of this distance (HOFER et al., 2000)) or maximize the size of

the resulting pristine forestland.

We strengthen this model in several ways, permitting spatial variation in patrol density, mul-

tiple patrol units, and convex polygon-shaped forests. As has been observed (Albers, 2010), ex-

ogenous legal restrictions on patrol strategies, such as requiring homogenous patrols, can degrade

protection performance (MacKinnon et al., 1986; Hall & Rodgers, 1992). Unlike the existing

work on this model, we bring to bear algorithmic analysis on the problem. Specifically, we show

that while certain such allocations can perform arbitrarily badly compared to the optimal, prov-

ably approximate or near-optimal allocations can be found efficiently.

5.1 Problem Setting

In this section we present the forest model of (Albers, 2010) and formulate a corresponding

optimization problem. Villagers are distributed about the forest perimeter (see Fig. 5.2), which is

initially assumed to be a circular region of radius 1, though we later extend to convex polygons.

An extractor’s action is to choose some distance d to walk into the forest, extracting on the return

trip. We may assume, without loss of generality, that the extractor’s route goes the chosen distance

d towards the forest center (on a straight line), before reversing back to his starting point P on the

perimeter. To see this, observe that all possible paths from P will sweep out a lens-like shape but,
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dp

Figure 5.2: The forest, with the pristine area shaded.

since all points on the perimeter are possible starting points, the set of all trespass paths directed

towards the center sweeps out the same area. Given our objective of maximizing pristine forest

area, this holds true even if extractors are distributed around the perimeter nonuniformly, as long

as there is a nonzero probability of villager presence at each point on the perimeter.

Due to symmetries and the fact that extractors’ decisions are uncoordinated, the problem is

essentially one-dimensional. Extractors incur a cost and gain a benefit if not caught, based on

an increasing marginal cost function c(d) and a decreasing marginal benefit function b(d). (The

instantaneous or marginal cost and benefit functions are the derivatives of the functions specifying

the cumulative costs and benefits, respectively, of walking that far into the forest.) If caught,

the extractor’s benefit is 0 (the extracted resources are confiscated) but the cost is unchanged

(the extractor’s traveled distance does not change; there is no positive punishment beyond the

confiscation itself and being prevented from engaging in further extraction while leaving the

forest). Since extraction can be assumed to occur only on the return trip, and given the nature of

the punishment, we may restrict our attention to detection on the return trip. Thus a given patrol

strategy will reduce the extractor’s expected benefit for an incursion of distance d from b(d) to

some value bp(d).

For a sufficiently fast-growing cost function relative to the benefit function, there will be a

“natural core” of pristine forest even with no patrolling at all (Albers, 2010); that is, the optimal
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trespass distance will be less than 1, since the marginal cost of extraction will eventually outweigh

the marginal benefit, corresponding to the point at which the curves b(d) and c(d) intersect (see

Fig. 5.3). The overall result of choosing a given patrol strategy, therefore, is to transform the

benefit curve b(d) into a lower benefit curve bp(d), thus reducing the extractor’s optimal incursion

distance (see Fig. 5.3). In the language of mathematical morphology (Soille, 2004), the pristine

forest area P due to a given patrol strategy will be an erosion P = F 	 B of the forest F by a

shape B, where B is a circle whose radius equals the trespass distance. The erosion is the locus

of points reached by the center of B as it moves about inside of F .

Notation. b(x), c(x), φ(x) are the marginal benefit, cost, and capture probability functions, re-

spectively. B(x), C(x),Φ(x) are the corresponding cumulative functions. dp for p ∈ {n, o, r}

is the trespass distance under no patrols, the optimal patrol allocation, the best ring alloca-

tion, respectively. rp is the radius of the pristine forest area under some patrol p. (Similarly,

bp(x), Bp(x).) dn − dp is the reduction in trespass distance under this patrol.

Definition 11. Let OPT (I) be the optimal solution value of a problem instance I , and let

ALG(I) be the solution value computed by a given algorithm. An algorithm for a maximization

problem is a c-approximation (with c < 1) if, for every problem instance I , we have ALG(I) ≥

c ·OPT (I).

The leader has a budget E specifying a bound on the total detection probability mass that

can be distributed across the region. The task is to choose an allocation in order to minimize

the extractor’s resulting optimal trespass distance dn, which is equivalent to maximizing the tres-

pass distance reduction and implies maximizing the pristine radius. Note that our optimal and

approximation algorithms both perform a binary search and thus incur an additive error ε.
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5.1.1 Detection probability models

Let φ(x) be the detection probability density function chosen by the leader for the forest. An

extractor is detected if he comes within some distance ∆ << 1 of the patrol. Under our time

model, the patrol units move much less quickly than the extractors, and so patrols can be modeled

as stationary from the extractor’s point of view. Therefore, if e.g. φ(x) is constant (for a single

patrol unit) over the regionR (of size |R|), then the probability of detection for an extraction path

of length d is proportional to φd, specifically φd2∆/|R|, where the total area within distance

∆ of the length-d walk is approximated as d · 2∆. That is, probabilities are added rather than

“multiplied” due to stationarity. (Here we assume the patrol unit is not visible to the extractor.)

The model described here also covers settings in which the amount spent at a location determines

the sensing range ∆ there. For notational convenience, we drop ∆ and |R| throughout the chapter,

assuming normalization as appropriate.

φ(x) influences the extractor’s behavior in two ways. The rational extractor will trespass a

distance into the forest that maximizes his total (or cumulative) net benefit, which is where his

net marginal benefit b(x)− c(x) equals zero. As the extractor moves about through a region with

nonzero φ(x), his cost-benefit analysis is affected in two ways. First, the probability of reaching

a given location x is reduced by the cumulative probability of capture up to that point, Φ(x), and

so the net marginal benefit at point x is reduced from b(x) − c(x) by amount Φ(x)b(x). (Recall

that capture occurs on the return trip out of the forest, and so the cost c(x) is paid regardless

of whether confiscation occurs.) Second, being caught at point x is φ(x) means losing the full

benefit accrued so far, which further reduces the net marginal benefit at this point by amount

φ(x)B(x), where B(x) =
´ x
y=0 b(y)dy is the cumulative benefit.
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We emphasize that the extractor’s strategy (trespass distance) is chosen offline (in advance),

based on the expected returns of each possible strategy. Note that the extractor acquires no new

information online that can affect his decision-making: the strategy consists entirely of a distance

by which to attempt to trespass; once caught, there is no further choice.

5.2 Patrol Allocations

Let the patrol zone be the region of the forest assigned nonzero patrol density. We note three

patrol allocation strategies that have been proposed in the past:

• Homogeneous: Patrol density distributed uniformly over the entire region.

• Boundary: Patrol density distributed uniformly over a ring (of some negligible width) at

the forest boundary.

• Ring: Patrol density distributed uniformly over a some ring (of negligible width w) con-

centric with the forest.

Boundary patrols can be superior to homogenous patrols since homogeneous patrols waste

enforcement on the natural core (Albers, 2010). It is interesting to note that this is not always

so. Suppose the homogenous-induced core radius is less than 1− d, w is very small, and the trip

length d satisfies w < 1/2 < d ≤ 1. With homogenous patrols, we will have Φ(d) = E/π · d.

With boundary patrols, however, this probability for any d ≥ w will be E
π−π(1−w)2

· w = E/π ·

w
1−(1−w)2

, which approaches E
2π as w → 0. In this case, homogeneous patrols will outperform

boundary patrols. Intuitively, this is because a patrol in the interior will “intersect” more trips
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from boundary to the center than a patrol on the boundary will. Unfortunately, both boundary

and homogeneous patrols can perform arbitrarily badly.

Proposition 2. The approximation ratios of boundary and homogeneous patrols are both 0.

(sketch). To see this, hold the budget fixed, and consider extremely large forests and cost and

benefit functions yielding an empty natural core. The relationship between the cost/benefit func-

tions and the budget be that an optimal patrol allocation will place patrols near to the forest center,

halting the extractors at some distance ro from the center but the significant dispersions of patrols

due to either boundary or homogenous allocations would mean failing to stop the extractors prior

to the forest center, resulting in an approximation factor of 0.

Instead, our optimal patrol will be of the following sort:

• Band: The shape of the patrol zone is a band, i.e., the set difference of two circles,3 both

concentric with the forest.

The net cumulative benefit of walking distance x is Bo(x) − C(x) = B(x) − Φ(x)B(x) −

C(x), where Φ(x) is the capture probability for this walk. Let φ(x) = dΦ(x)/dx be the prob-

ability density function of the capture probability, which is proportional to patrol density. Then

the probability density function corresponding to Bo(x)− C(x) will be

d(Bo(x)− C(x))/dx = dB(x)/dx− dΦ(x)B(x)/dx− dC(x)/dx

= (1− Φ(x)) · b(x)− φ(x)B(x)− c(x) (5.1)

Let band [do, e) (with 0 ≤ do ≤ e ≤ dn) be the patrol zone chosen by Algorithm 3.

3Generalizable to other forest shapes, as discussed below.
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Algorithm 3 Computing the optimal allocation(b, c, E, ε)

(d1, d2)← (0, dn)
binary search: while d1 < d2 − ε/3 or φ2 not set do

d← (d1 + d2)/2
φ(x) , b(x)−c(x)

B(x) − b(x)
B2(x) (B(x)−C(x)− (B(d)−C(d)) e← x s.t. d ≤ x ≤ dn and φ(x) = 0

cost =
´ e
d 2π(1− x)φ(x)dx

{d2 ← d, φ2 ← φ} if cost ≤ E else d1 ← d
end
return (d2, φ2)

Lemma 2. Without loss of generality, the optimal density φ(x) at each point x ∈ [do, e) can

be assumed to be the smallest possible value disincentivizing further walking from x, i.e., that

density yielding bo(x) = c(x). Moreover, bo(x) < c(x) and φ(x) = 0 for x > e.

Proof. Consider a function φ(·) that successfully stops the extractor at some location do but

which violates the stated property, at some particular level of discretization. That is, partition the

interval [do, dn] into n equal sized subintervals, numbered d1, ..., dn. For this discretization, we

write B(di) =
∑i−1

j=1 b(j) and Φ(di) =
∑i−1

j=1 φ(i) (omitting the coefficients). Let di be the first

such subinterval for which bo(di) < c(x), and let d+
i be shorthand for di + 1. In this case (see

Eq. 5.1) we have (1 − Φ(di))b(di) − φ(di)B(di) − c(di) < 0. We correct this by subtracting a

value δ from φ(di) to bring about equality, and adding δ to φ(d+
i ).

The marginal net benefit of step di is then 0 (by construction), and that of step d+
i is only

lower than it was before, so there is no immediate payoff to walking from di to d+
i or di + 2.

Clearly Φ(di + 2) is unchanged. Finally, we verify that the expected total net benefit of walking
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to position di + 2 is unchanged. This benefit is affected by the changes to both φ(di) and φ(d+
i ).

First, δB(di) is added to bo(di) by subtracting δ from φ(di); second, bo(d+
i ) becomes

bo(d+i )(1− (Φ(d+i )− δ))− (φ(d+i ) + δ) ·Bo(d+i )

= bo(d+i )(1− Φ(d+i )) + bo(d+i )δ − φ(d+i )Bo(d+i )− δBo(d+i )

=
(
b(d+i )(1− Φ(d+i ))− φ(d+i )Bo(d+i )

)
+
(
bo(d+i )δ − δBo(d+i )

)
= bo(d+i )− δB(di)

Thus, since these two changes cancel out, and there was no incentive for walking from di

past di + 2 prior to the modification, this remains true, and so the extractor will walk no farther

than he did before the modification. We repeat this modification iteratively for all earliest ad-

jacent violations (di, d
+
i ), and for discretization precisions n. Since outer rings of circular (or,

more generally, convex) forests have greater circumference, each such operation of moving patrol

density forward only lowers the total cost of the patrol. bo(x) < c(x) and φ(x) = 0 for x > e

follows from φ(·) being a band that stops the extractor at position do.

Lemma 3. Without loss of generality, we may assume do kisses the outer edge of the patrol

region.

Proof. Clearly do will not be prior to the start of the patrol region. If do lay after the beginning

of the patrol region, then, by Lemma 2, the solution would have its cost only lowered by shifting

the earlier patrol density past do.

Under the varying patrol density regime, the optimal patrol allocation can be computed (nu-

merically). We remark that under the resulting patrol allocation, patrol density will decline mono-

tonically with distance into the forest. Intuitively, the reason for this is that as distance into the
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Figure 5.3: The shaded regions correspond to the reduction in marginal benefits within the patrol zone.
Not shown are the (less dramatic) effects on b(·) following the patrol zone, due to the cumulative capture
probability.

forest grows, there is a smaller and smaller remaining net marginal benefit (b(x) − c(x) that we

need to compensate for by threat of confiscation, and yet the magnitude of the potential confisca-

tion (B(x)) grows only larger.

Theorem 4. Algorithm 3 produces a near-optimal allocation (i.e., with arbitrarily small er-

ror).

Proof. We assume the properties stated by Lemma 2. Let do indeed be the optimal trespass

distance. Observe that for x < do, bo(x) = b(x); for x > e, bo(x) is determined only by b(x)

and the cumulative capture probability, i.e., bo(x) = (1 − Φ(x)) · b(x). e is the point at which

φ(x) = 0 and (1− Φ(x)) · b(x)− c(x) = 0. Now we compute bo(·). Setting Eq. 5.1 to 0 yields:

φ(x) =
(1− Φ(x)) · b(x)− c(x)

B(x)
(5.2)

The solution to this standard-form first-order differential equation (recall that Φ(x) =

´ x
do
φ(y)dy, and note that Φ depends on the value do) is:

Φ(x) = e−
´
P (x)dx ·

( ˆ
Q(x) · e

´
P (x)dxdx+K)

)
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where P (x) = b(x)
B(x) , Q(x) = b(x)−c(x)

B(x) , and K is a constant. Since
´
P (x)dx =

´ b(x)
B(x)dx =

lnB(x), we have e
´
P (x)dx = elnB(x) = B(x). Therefore

ˆ
Q(x) · e

´
P (x)dxdx =

ˆ
b(x)− c(x)

B(x)
·B(x)dx

=

ˆ
(b(x)− c(x))dx = B(x)− C(x)

and, based on initial condition Φ(do) = 0,

K = −
ˆ
Q(x) · e

´
P (x)dxdx|do = −(B(do)− C(do))

Since φ(x) = (Φ(x))′, this yields:

Φ(x) =
B(x)− C(x)− (B(do)− C(do))

B(x)

φ(x) =
b(x)− c(x)

B(x)
− b(x)

B2(x)
(B(x)− C(x)− (B(do)− C(do))

Then the optimal allocation for any given budget E will equal φ(x) for x ∈ [do, dn]. The

total cost of this is E(do) =
´ d∗
do

2π(1 − x)φ(x)dx. If b(x) and c(x) are polynomial functions,

then φ(x) is a rational function, and so E(do) is solvable analytically, by the method of partial

fractions. In this case, we can evaluate E(do) in constant time (for fixed b(x) and c(x)) in a

real-number computation model. Alternatively, E(do) can be approximated within additive error

ε in time O(1/ε), using standard numerical integration methods.

We can compute the smallest do for which E(do) ≤ E by binary search. (e is also found by

binary search, within error ε3
1

2πφ(0) , which is a constant; recall that φ(x) is a decreasing function.)

104



0 1 2 3 4 5 6 7
budget E

0.0

0.1

0.2

0.3

0.4

0.5

0.6

tr
es

pa
ss

 d
is

ta
nc

e 
d
p

Border
Homogeneous
Best ring (10¡1 )
Best ring (10¡3 )
Optimal

0.0 0.1 0.2 0.3 0.4 0.5 0.6
location x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Á
o
(d
)

(a) b(x) = 2 − x− x2, c(x) = 3x2
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(b) b(x) = 1 − x20, c(x) = x
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Figure 5.4: Patrol strategy effectiveness for sample b(·), c(·) functions.

Algorithm 4 Computing the best ring patrol(b, c, E, ε)
(d1, d2)← (0, dn)
binary search: while d1 < d2 − ε or φ2 not set do

d← (d1 +d2)/2 φ(d)← E/(2π ·((1−d)−w/2) ·w) Φ← φ ·w e← x s.t. (1−Φ)b(x) =
c(x) pos←

´ e
d (1− Φ)b(x)− c(x)dx neg ← Φ ·B(d) {d2 ← d, φ2 ← φ} if neg ≥ pos

else d1 ← d
end
return (d2, φ2)

This yields a total running time of either O(log2 1/ε) or O(1/ε log 1/ε), depending on whether

E(do) is solved analytically or approximated.

The varying-density allocation of Algorithm may be difficult or impractical to implement;

moreover, each iteration of the loop requires an expensive iterative approximation parameterized

by s, if E(do) is not solvable analytically. Now we present a more efficient algorithm that pro-

duces easier-to-implement allocations. Assuming b(·) and c(·) can be integrated analytically and

that their intersection can be found analytically, Algorithm 4 runs in time O(log 1/ε).

Theorem 5. Algorithm 4 produces a near-optimal ring patrol (i.e., within additive error at

most ε).
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Proof. For a candidate trespass distance d, allocating the budget E to a width-w ring (where w

is negligible) of radius d yields φ = E/(2π · ((1 − d) − w/2) · w) and Φ = φ · w. In order to

discourage the extractor from passing point d, it must be the case that the expected cost of doing

so (the potential loss due to confiscated, weighted by probability: Φ ·B(d)) exceeds the expected

benefit (the remaining net benefit, weighted by probability: (1− Φ)
´ dn
d b(x)− c(x)dx). We do

binary search for the smallest such value d.

Theorem 6. Algorithm 4 provides a 1/2-approximation, both in trespass distance reduction

and pristine radius.

Proof. Let rn = 1− dn be the radius of the natural core. Let ro = 1− do be the pristine area ra-

dius under the optimal patrol allocation φo(·). We know that φo(·) will be nonzero over the range

[do, dn]. Consider locations x within this range. As x grows from do to dn, the marginal benefit

b(x) falls monotonically while c(x) grows, and the cumulative benefit B(x) and cumulative cap-

ture probability Φ(x) both grow monotonically. Thus by Eq. 5.2, φ(x) falls monotonically over

[do, dn].

Now consider the radius rr = (ro+rn)/2 and the corresponding location dr = 1−rr, which

divides the range [do, dn] into two halves. Because φ(x) is monotonic decreasing, φ(x) has at

least as much total mass in the first half than in the second, i.e.,
´ dr
do
φ(x)dx ≥

´ dn
dr
φ(x)dx.

Because the total cost of patrol density φ(x) at location x, rotated about the entire circle, is

2πφ(x), “flattening” φ(x) over the range [do, dn] (i.e., setting it equal to 1
dn−do

´ dn
do
φ(x)dx) will

only lower the total cost. (Though doing so will sacrifice the guarantee of trespass distance do.)

Then “compressing” this total probability mass
´ dn
do
φ(x)dx from the range [do, dn] to the point
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dr will not change the cost any further, since the mean circle circumference for radii in [ro, rn] is

2π(ro + rn)/2, which is the same as that for radius rr.

We now claim that the constructed negligible-width ring patrol at dr will deter the extractors

from crossing it, by accounting for the two “halves” of φo(x). First, the “left” half of φo(x)

transferred to dr will yield a cumulative detect probability of Φo(dr), just as under the optimal

patrol. Second, the “right” half of φo(x) will inflict the same total reduction in net benefits for

the action of traversing [dr, dn] as the optimal patrol does. After passing dr, each additional step

would provide a positive net marginal benefit, until regaining the pre-dr cumulative net benefit

only at point dn, after which all net marginal benefits are negative. Thus every stopping point

after dr will have cumulative net benefit lower than this value immediately before dr.

We have constructed a ring patrol allocation that reduces the trespass distance by at least half

the optimal such value, i.e., (rn − ro)/2, yielding pristine radius rr = (ro + rn)/2 ≥ ro/2, and

so the result follows.

We note that the approximation ratio is tight. To see this, problem instances can be con-

structed satisfying the following: c(x) = 0 and b(x) is constant (and small) over the interval

[do, dn] (which meets an empty natural core, i.e. dn = 1), and E is very small and hence [do, dn]

is very narrow. In this case, Φi(x) grows very slowly over the patrol region, and φo(x) declines

very slowly over it. In the extreme case, the weight of φo(x)’s probability mass to the right of dr

approaches the weight to the left.

5.2.1 Algorithmic extensions

Multiple patrol units. We can extend from one to multiple patrol units, weighted equally or

unequally. Given k patrol units, each given budget Ei (e.g., 1/k) with E =
∑
Ei, we partition
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the forest into k sectors, each of angle 2πEi/E. We run one of our algorithms below, with budget

E. Then we position patrol unit i at a location within sector i, chosen according to the computed

φ(·).

Other forest shapes. In the noncircular forest context, permitting extractors to traverse any

length-bounded path from their starting points implies that the pristine area determined by a

given patrol strategy will again be an erosion of the forest. Computing the erosion of an arbitrary

shape is computationally intensive (Soille, 2004), but it is easily computable for convex polygons,

which will approximate many realistic forests. In order to be practically implementable in such

cases, the patrol should be symmetric around the forest area. Our algorithms above adapt easily to

the setting of convex polygon forest shapes, where pristine areas are erosions, by integrating the

cost of a patrol around the forest boundary. In both cases, we replace the circle circumferences

2π(1− x) with the cost of the corresponding polygon circumference. For large polygons with a

reasonable number of sides, the resulting error due to corners will be insignificant.

5.3 Experiments

We implemented both our algorithms, as well as the baseline solutions of homogenous and bound-

ary patrols. We tested these algorithms on certain realistic pairs of benefit and cost functions (with

forest radius 1; see four examples in Fig. 5.2). We now summarize our observations on these re-

sults.

In each setting (see left subfigures), we vary the patrol budget, computing the patrol allocation

function and hence the extractor’s trespass distance dp, for each. First, the optimal algorithm

indeed dominates all the others. Both our algorithms perform much better overall than the two
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baselines, however, up until the point at which the budget is sufficient to deter any entry into the

forest, using boundary and best ring. Best ring will consider a ring at the boundary, so it cannot

do worse than boundary, and so the two curves must intersect at zero. Prior to this best ring

does outperform boundary. As observed above, neither homogeneous nor boundary consistently

dominates the other.

We computed ring patrols for two ring widths, one very narrow (1/104) and one less so (0.1).

Interestingly, neither ring size dominates the other. With a sufficiently large budget, the rings will

lie on the boundary, but a wider ring will permit some nonnegligible trespass (part way across

the ring itself). With smaller budgets the rings will lie in the interior of the forest. In this case,

the narrow ring will spend the entire budget at one (expensive) density level, whereas the wider

ring can (more cheaply, and hence more successfully) spend some of its budget at lower-density

levels.

Next (see middle subfigures), we plot the optimal φo(·) functions under many different bud-

gets. As can be seen, these curves sweep out different regions of the plane, depending on the

b(·), c(·) pair.

Finally (see right subfigures), we illustrate the result of applying Algorithm 3 to a rectangular

forest, with one sample budget (3.5, normalized to the dimensions of the forest). The patrol

density is represented by the level of shading. The border of the natural core is also shown.

5.4 Chapter Summary

In this chapter, we have presented a Stackelberg security game setting that differs significantly

from those previously considered in the AI literature, which necessitates the use of very different
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techniques from those used in the past. At the same time, this work opens up an exciting new

area of research for AI at the intersection of forest economics and game theory. Eventually, as

with counterterrorism Stackelberg games studied in the literature, we aim to deploy our solutions

in real-world settings. Potential sites for such deployments include Tanzania’s aforementioned

Kibaha Ruvu Forest Reserves and the mangrove forests of Mnazi Bay Ruvuma Estuary Marine

Park.
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Chapter 6

Reasoning with Frequent and Repeated Attacks

Another spatio-temporal aspect that is addressed in my thesis is reasoning with frequent and re-

peated attacks in domains such as protecting fisheries from over-fishing (Qian, Haskell, Jiang, &

Tambe, 2014; Haskell et al., 2014a) and protecting rhinos and tigers from illegal poaching (Yang

et al., 2014a). Poaching and illegal over-fishing are critical international problems leading to a

destruction of ecosystems. For example, three out of nine tiger species have gone extinct in the

past 100 years, and others are now endangered due to poaching (Secretariat, 2013). Law enforce-

ment agencies in many countries are hence challenged with applying their limited resources to

protecting endangered animals and fish stocks.

Building upon the success of applying SSGs to protect infrastructure including airports (Pita,

Jain, Western, Portway, Tambe, Ordonez, Kraus, & Paruchuri, 2008), ports (Shieh, An, Yang,

Tambe, Baldwin, DiRenzo, Maule, & Meyer, 2012b) and trains (Yin, Jiang, Johnson, Tambe,

Kiekintveld, Leyton-Brown, Sandholm, & Sullivan, 2012a), researchers are now applying game

theory to green security domains, e.g., protecting fisheries from over-fishing (Brown et al., 2014;

Haskell et al., 2014b) and protecting wildlife from poaching (Yang et al., 2014b).
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There are several key features in green security domains that introduce novel research chal-

lenges. First, the defender is faced with multiple adversaries who carry out repeated and frequent

illegal activities (attacks), yielding a need to go beyond the one-shot SSG model. Second, in

carrying out such frequent attacks, the attackers generally do not conduct extensive surveillance

before performing an attack and spend less time and effort in each attack, and thus, it becomes

more important to model the attackers’ bounded rationality and bounded surveillance. Third,

there is more attack data available in green security domains than in infrastructure security do-

mains, which makes it possible to learn the attackers’ decision-making model from data.

Previous work in green security domains (Yang et al., 2014b; Haskell et al., 2014b) models

the problem as a game with multiple rounds and each round is an SSG (Yin et al., 2010) where the

defender commits to a mixed strategy and the attackers respond to it. In addition, they address

the bounded rationality of attackers using the SUQR model (Nguyen, Yang, Azaria, Kraus, &

Tambe, 2013b). While such advances have allowed these works to be tested in the field, there are

three key weaknesses in these efforts. First, the Stackelberg assumption in these works — that the

defender’s mixed strategy is fully observed by the attacker via extensive surveillance before each

attack – can be unrealistic in green security domains as mentioned above. Indeed, the attacker

may experience a delay in observing how the defender strategy may be changing over time, from

round to round. Second, since the attacker may lag in observing the defender’s strategy, it may

be valuable for the defender to plan ahead; however these previous efforts do not engage in any

planning and instead rely only on designing strategies for the current round. Third, while they

do exploit the available attack data, they use Maximum Likelihood Estimation (MLE) to learn

the parameters of the SUQR model for individual attackers which we show may lead to skewed

results.
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Figure 6.1: Snare poaching

In this chapter, we offer remedies for these limitations. First, we introduce a novel model

called Green Security Games (GSGs). Generalizing the perfect Stackelberg assumption, GSGs

assume that the attackers’ understanding of the defender strategy may not be up-to-date and can

be instead approximated as a convex combination of the defender strategies used in recent rounds.

Previous models in green security domains, e.g., such as (Yang et al., 2014b; Haskell et al., 2014b)

can be seen as a special case of GSGs, as they assume that the attackers always have up-to-date

information, whereas GSGs allow for more generality and hence planning of defender strategies.

Second, we provide two algorithms that plan ahead — the generalization of the Stackelberg

assumption introduces a need to plan ahead and take into account the effect of defender strategy

on future attacker decisions. While the first algorithm plans a fixed number of steps ahead, the

second one designs a short sequence of strategies for repeated execution.

Third, the chapter also provides a novel framework that incorporates learning of parameters

in the attackers’ bounded rationality model into the planning algorithms where, instead of using

MLE as in past work, we use insights from Bayesian updating. All proposed algorithms are fully

implemented and we provide detailed empirical results.

6.1 Motivation and Defining GSGs

Our motivating example assumes a perfectly rational attacker purely for simplicity of exposition.

In the rest of the chapter, we consider attackers with bounded rationality.
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Example 1. Consider a ranger protecting a large area with rhinos. The area is divided into

two subareas N1 and N2 of the same importance. The ranger chooses a subarea to guard every

day and she can stop any snaring by poachers in the guarded area. The ranger has been using

a uniform random strategy throughout last year. So for this January, she can choose to continue

using the uniform strategy throughout the month, catching 50% of the snares. But now assume

that the poachers change their strategy every two weeks based on the most recently observed

ranger strategy. In this case, the ranger can catch 75% of the snares by always protecting N1

in the first two weeks of January, and then switching to always protecting N2: At the beginning

of January, the poachers are indifferent between the two subareas due to their observation from

last year. Thus, 50% of the snares will be placed in N1 and the ranger can catch these snares in

the first half of January by only protecting N1. But after observing the change in ranger strategy,

the poachers will switch to only putting the snares in N2. The poachers’ behavior change can

be expected by the ranger and the ranger can catch 100% of the snares by only protecting N2

starting from mid-January. (Of course the poachers must then be expected to adapt further).

This example conceptually shows that the defender can benefit from planning strategy

changes in green security domains. We now define GSG as an abstraction of the problem in

green security domains (borrowing some terminology from Stackelberg Security Games (Yin

et al., 2010)).

Definition 12. A GSG is a T (< ∞) round repeated game between a defender and L GSG

attackers and (i) The defender has K guards to protect N (≥ K) targets. (ii) Each round has

multiple episodes and in every episode, each guard can protect one target and each attacker can

attack one target. (iii) In round t, the defender chooses a mixed strategy at the beginning of the

round, which is a probability distribution over all pure strategies, i.e., N choose K assignments
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from the guards to targets. In every episode, the guards are assigned to targets according to

an assignment randomly sampled from the mixed strategy. (iv) Each target i ∈ [N ] has payoff

values P ai , Rai , P di , Rdi (“P” for “Penalty”, “R” for “Reward”, “a” for “attacker” and “d”

for “defender”). If an attacker attacks target i which is protected by a guard, the attacker gets

utility P ai , and the defender gets Rdi . If target i is not protected, the attacker gets utility Rai , and

the defender gets P di . Rdi > P di and Rai > P ai . (v) The defender’s utility in round t is the total

expected utility calculated over all attackers.

Each round of the repeated game corresponds to a period of time, which can be a time interval

(e.g., a month) after which the defender (e.g., warden) communicate with local guards to assign

them a new strategy. We divide each round into multiple episodes for the players to take actions.

Consistent with previous work on green security games (Yang et al., 2014b; Haskell et al.,

2014b), we divide the protected area into subareas or grid cells and treat each subarea or cell as

a target. Different targets may have different importance to the defender and the attackers due

to differences in resource richness and accessibility. We therefore associate each target i ∈ [N ]

with payoff values. A mixed defender strategy can be represented compactly by a coverage

vector c = 〈ci〉 where 0 ≤ ci ≤ 1 is the probability that target i is covered by some guard and

it satisfies
∑N

i=1 ci ≤ K (Kiekintveld, Jain, Tsai, Pita, Ordonez, & Tambe, 2009b; Korzhyk,

Conitzer, & Parr, 2010b). If an attacker attacks target i, the expected utility for the defender is

Udi (c) = ciR
d
i + (1− ci)P di given defender strategy c. We denote the mixed defender strategy in

round t as ct.

Definition 13. A GSG attacker is characterized by his memory length Γ, coefficients α0, ...αΓ

and his parameter vector ω. In round t, A GSG attacker with memory length Γ responds to a
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convex combination of the defender strategy in recent Γ + 1 rounds, i.e., he responds to ηt =∑Γ
τ=0 ατ c

t−τ where
∑Γ

τ=0 ατ = 1 and ct = c0 if t ≤ 0. In every episode of round t, a GSG

attacker follows the SUQR model and chooses a random target to attack based on his parameter

vector ω in the SUQR model.

We aim to provide automated decision aid to defenders in green security domains who defend

against human adversaries such as poachers who have no automated tools — hence we model the

poachers as being boundedly rational and having bounded memory. We approximate a GSG

attacker’s belief of the defender’s strategy in round t as a convex combination of the defender

strategy in the current round and the last Γ rounds. This is because the attackers may not be

capable of knowing the defender’s exact strategy when attacking; naturally, they will consider

the information they get from the past. Further, human beings have bounded memory, and the

attackers may tend to rely on recent information instead of the whole history. The Stackelberg

assumption in (Yang et al., 2014b; Haskell et al., 2014b) can be seen as a special case of this

approximation with α0 = 1. In this chapter, we assume all attackers have the same memory

length Γ, coefficients ατ and these values are known to the defender. c0 is the defender strategy

used before the game starts and is known to players.

To model the bounded rationality of the human attackers such as poachers, we use the SUQR

model, which has performed the best so far against human subjects in security games (Nguyen

et al., 2013b). In this model, an attacker’s choice is based on key properties of each target,

including the coverage probability, the reward and the penalty, represented by the parameter
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Notation
T,N,K # of rounds, targets and guards, re-

spectively.
L,Γ # of attackers and memory length

of attackers.
ct Defender strategy in round t.
ηt Attackers’ belief of defender strat-

egy in round t, which is a convex
combination of ct.

ατ Coefficient of ct−τ when calculat-
ing ηt.

ωl Parameter vector of the SUQR
model for attacker l. ωl1, ωl2 and ωl3
are the coefficient on ci, Rai , P ai re-
spectively in the SUQR model.

qi The probability of attacking target i.
Et Defender’s expected utility in round

t.

Table 6.1: Summary of key notations.

vector ω = (ω1, ω2, ω3). Given η as the attacker’s belief (with ηi the belief of the coverage

probability on target i), the probability that an attacker with parameter ω attacks target i is

qi(ω, η) =
eω1ηi+ω2Ra

i +ω3Pa
i∑

j e
ω1ηj+ω2Ra

j +ω3Pa
j

(6.1)

Following the work of Yang et. al (Yang et al., 2014b), in this chapter, we assume the group of

attackers may have heterogeneous weighting coefficients, i.e., each attacker l ∈ [L] is associated

with a parameter vector ωl = (ωl1, ω
l
2, ω

l
3).

A GSG defender strategy profile [c] is defined as a sequence of defender strategies with

length T , i.e., [c] = 〈c1, ..., cT 〉. The defender’s expected utility in round t is Et([c]) =∑
l

∑
i qi(ω

l, ηt)Udi (ct). The objective of the defender is to find the strategy profile with the

highest average expected utility over all rounds, i.e., to maximize E([c]) =
∑T

t=1E
t([c])/T .
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Algorithm 5 Plan Ahead(ω, M )
Output: a defender strategy profile [c] for t=1 to T do

ct = f-PlanAhead(ct−1, ω,min{T − t+ 1,M})
end

6.2 Planning in GSGs

The defender can potentially improve her average expected utility by carefully planning changes

in her strategy from round to round in a GSG. In this section, we consider the case where the

attackers’ parameter vectors ω1, ..., ωL, are known to the defender. For clarity of exposition, we

will first focus on the case where α0 = 0 and Γ = 1. This is the special case when the attackers

have one round memory and have no information about the defender strategy in the current round,

i.e., the attackers respond to the defender strategy in the last round. We discuss the more general

case in Section 6.4.

To maximize her average expected utility, the defender could optimize over all rounds simul-

taneously. However, this approach is computationally expensive when T is large: it needs to

solve a non-convex optimization problem with NT variables (cti) as the defender must consider

attacker response, and the attacking probability has a non-convex form (see Equation 7.3). An

alternative is a myopic strategy, i.e., the defender can always protect the targets with the highest

expected utility in the current round. However, this myopic choice may lead to significant quality

degradation as it ignores the impact of ct in the next round.

Therefore, we propose an algorithm named PlanAhead-M (or PA-M) that looks ahead a few

steps (see Algorithm 5). PA-M finds an optimal strategy for the current round as if it is the

M th last round of the game. If M = 2, the defender chooses a strategy assuming she will

play a myopic strategy in the next round and end the game. When there are less than M − 1
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Target Rd
i P d

i

N1 2 1
N2 X 3

future rounds, the defender only needs to look ahead T − t steps (Line 5). PA-T corresponds

to the optimal solution and PA-1 is the myopic strategy. Unless otherwise specified, we choose

1 < M < T . Function f-PlanAhead(ct−1, ω,m) solves the following mathematical program

(MP).

maxct,ct+1,...ct+m−1

∑m−1
τ=0 E

t+τ (6.2)

s.t Eτ =
∑

l

∑
i qi(ω

l, ητ )Udi (cτ ), τ = t, .., t+m− 1 (6.3)

ητ = cτ−1, τ = t, .., t+m− 1 (6.4)

∑
i c
τ
i ≤ K, τ = t, .., t+m− 1 (6.5)

This is a non-convex problem when m > 0 and can be solved approximately with local search

approaches.

Although we show in the experiment section that PA-2 can provide a significant improvement

over baseline approaches in most cases, there exist settings where PA-2 can perform arbitrarily

badly when compared to the optimal solution. The intuition is that the defender might make a

suboptimal choice in the current round with an expectation to get a high reward in the next round;

however, when she moves to the next round, she plans for two rounds again, and as a result, she

never gets a high reward until the last round.

Example 2. Consider a guard protecting two subareas with payoff values shown on the right

(X � 1). For simplicity of the example, assume the defender can only choose pure strategies.

There is one poacher with a large negative coefficient on coverage probability, i.e., the poacher
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Algorithm 6 Fixed Sequence
Output: defender strategy profile [c] (a1, ..., aM ) = f-FixedSequence(ω,M). for t=1 to T do

ct = a(t mod M)+1

end

will always snare in the subarea that is not protected in the last round. The initial defender

strategy is protecting N1, meaning the attacker will snare in N2 in round 1. According to PA-2,

the defender will protect N1 in round 1 and plan to protect N2 in round 2, expecting a total utility

of 3 + X . However, in round 2, the defender chooses N1 again as she assumes the game ends

after round 3. Thus, her average expected utility is 3(T−1)+X
T ≈ 3. On the other hand, if the

defender alternates between N1 and N2, she gets a total utility of X + 2 for two consecutive

rounds, and her average utility is at least X2 � 3.

PA-2 fails in such cases because it over-estimates the utility in the future. To remedy this, we

generalize PA-M to PA-M-γ by introducing a discount factor 0 < γ ≤ 1 for future rounds when

T − t < M − 1, i.e., substituting Equation 6.2 with

maxct,ct+1,...ct+m−1

∑m−1

τ=0
γτEt+τ (6.6)

While PA-M-γ presents an effective way to design sequential defender strategies, we provide

another algorithm called FixedSequence-M (FS-M) for GSGs (see Algorithm 6). FS-M not only

has provable theoretical guarantees, but may also ease the implementation in practice. The idea

of FS-M is to find a short sequence of strategies with fixed length M and require the defender to

execute this sequence repeatedly. If M = 2, the defender will alternate between two strategies

and she can exploit the attackers’ delayed response. It can be easier to communicate with local

guards to implement FS-M in green security domains as the guards only need to alternate between
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several types of maneuvers. Function f-FixedSequence(ω,M) calculates the best fixed sequence

of length M through the following MP.

maxa1,...,aM
∑M

t=1E
t (6.7)

s.t Et =
∑

l

∑
i qi(ω

l, ηt)Udi (at), t = 1, ...,M (6.8)

η1 = aM (6.9)

ηt = at−1, t = 2, ...,M (6.10)

∑
i a
t
i ≤ K, t = 1, ..,M (6.11)

Theorem 7 shows that the solution to this MP provides a good approximation of the optimal

defender strategy profile.

Theorem 7. In a GSG with T rounds, α0 = 0 and Γ = 1, for any fixed length 1 < M ≤ T ,

there exists a cyclic defender strategy profile [s] with period M that is a (1 − 1
M )Z−1

Z+1 approxi-

mation of the optimal strategy profile in terms of the normalized utility, where Z = d TM e.

The intuition is to divide the optimal sequence into sections with length M −1 and bound the

defender’s expected utility in each section.

Definition 14. A cyclic defender strategy profile for a GSG is a profile consisting of a cyclic

sequence of strategies, i.e., ∃T̄ , such that ∀t > T̄ , ct = ct−T̄ , T̄ is denoted as the period of the

strategy profile.

Proof of Theorem 7: Use U(x1, x2) to denote the defender’s normalized expected utility in

a round where defender strategy x2 is used in this round and defender strategy x1 is used in the
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previous round. Then 0 ≤ U(x1, x2) ≤ 1. For the optimal defender strategy profile [c], denote

the normalized utility as Uopt.

〈b1, ..., bM 〉 is a strategy sequence whose average normalized expected utility for the last

M − 1 rounds, i.e., Ub =
∑M

t=2 U(bt−1,bt)
M−1 , is maximized. 〈a1, ..., aM 〉 is a strategy sequence

such that the average normalized expected utility of the sequence when it forms a cycle, i.e.,

Ua =
U(aM ,a1)+

∑M
t=2 U(at−1,at)
M , is maximized. Then

M ∗ Ua = U(aM , a1) +
∑M

t=2
U(at−1, at)

≥ U(bM , b1) +
∑M

t=2
U(bt−1, bt)

≥
∑M

t=2
U(bt−1, bt)

= (M − 1) ∗ Ub

Let Z = d TM e. Construct a cyclic defender strategy profile [s] by repeating the strategy

sequence 〈a1, ..., aM 〉. Then

T ∗ U([s]) = U(c0, s1) +
∑T

t=2
U(st−1, st) (6.12)

≥ (Z − 1) ∗M ∗ Ua (6.13)

≥ (Z − 1) ∗ (M − 1) ∗ Ub (6.14)

Strategy profile [s] contains Z − 1 complete cycles (starting with a2) with an average normalized

utility Ua. The first inequality is derived by ignoring the first round and the last incomplete cycle

when mod(T,M) 6= 1.
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On the other hand, for the optimal defender strategy profile [c] = [c]opt, we know that for any

consecutive sequence of length M , the average normalized utility of last M − 1 rounds can be

no more than Ub. So we divide the strategy profile into d T
M−1e pieces, each piece with length

M − 1 except the last piece. Then for each piece, the sum of normalized utility is no more

than Ub ∗ (M − 1). Otherwise, if the sum of normalized utility of the ith piece is higher than

Ub ∗ (M −1), then the strategy sequence < c(i−1)(M−1), ..., ci(M−1) > contradicts the optimality

of < b1, ..., bM >. Thus,

T ∗ Uopt = U(c0, c1) +
∑T

t=2
U(ct−1, ct) (6.15)

≤ Ub ∗ (M − 1) ∗ d T

M − 1
e (6.16)

≤ (T +M − 1) ∗ Ub (6.17)

The last inequality is yield by conceptually completing the last piece. Combining these re-

sults, we get

U([s])

Uopt
≥ (Z − 1) ∗ (M − 1)

T +M − 1

≥ (Z − 1) ∗ (M − 1)

Z ∗M +M

= (1− 1

M
) ∗ Z − 1

Z + 1

So [s] is a (1− 1
M )Z−1

Z+1 approximation of the optimal strategy profile in terms of the normal-

ized utility.
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According to Theorem 7, when the game has many rounds (T � M ), the cyclic sequence

constructed by repeating a1, ...aM is a 1 − 1/M approximation. While in experiments this non-

convex MP is solved approximately, with a large number of random restarts, we may be able to

achieve this 1− 1/M approximation.

According to Theorem 7, when a GSG has many rounds (T � M ), the cyclic sequence

constructed by repeating a1, ...aM is a 1− 1/M approximation.

6.3 Learning and Planning in GSGs

In Section 6.2, we assume that the parameter vectors ω1, ..., ωL in the attackers’ bounded ratio-

nality model are known. Since the defender may not know these parameter values precisely at the

beginning of the game in practice, we now aim to learn the attackers’ average parameter distribu-

tion from attack data. Previous work in green security domains (Yang et al., 2014b; Haskell et al.,

2014b) treats each data point, e.g., each snare or fishnet, as an independent attacker and applies

MLE to select the most probable parameter vector. However, some of the assumptions made in

previous work in proposing MLE may not always hold as MLE works well when a large number

of data samples are used to estimate one set of parameters (Eliason, 1993). Here we show that

estimating ω from a single data point using MLE can lead to highly biased results.

Example 3. Consider a guard protecting two targets in round 1. The payoff structure and

initial defender strategy are shown in Table 6.2 where X � 1 and 0 < δ � 1. An attacker with

parameter vector ω = (−1, 0, 0) will choose N1 or N2 with the probability ≈ 0.5, as ω1 = −1

means he has a slight preference on targets with lower coverage probability (see Equation 7.3).

If the attacker attacks N1, applying MLE will lead to an estimation of ω = (+∞, ·, ·), meaning
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the attacker will always choose the target with higher coverage probability. This is because

the probability of attacking N1 is 1 given ω1 = +∞, which is higher than that of any other

parameter value. Similarly, if the attacker attacks N2, an extreme parameter of (−∞, ·, ·) is

derived from MLE. These extreme parameters will mislead the defender in designing her strategy

in the following round.

Target Rdi P di Rai P ai c0
i

N1 1 −1 1 −1 0.5 + δ

N2 1 −X 1 −1 0.5− δ

Table 6.2: Payoff structure of Example 3.

We, therefore, leverage insights from Bayesian Updating. For each data point, we estimate

a probability distribution over parameter values instead of selecting the ω vector that maximizes

the likelihood of the outcome. This approach is also different from maximum a posteriori prob-

ability (MAP) because MAP still provides single value estimates, whereas Bayesian Updating

uses distributions to summarize data.

Algorithm 7 describes the learning algorithm for one round of the game. Rather than learning

single parameter values, one from each attack, we learn a probability distribution. The input of the

algorithm includes the number of attacks χi found on each target i ∈ [N ], the attackers’ belief of

the defender strategy η, and the prior distribution p = 〈p1, ..., pS〉 over a discrete set of parameter

values {ω̂} = {ω̂1, ..., ω̂S}, each of which is a 3-element tuple. If an attacker attacks target i, we

can calculate the posterior distribution of this attacker’s parameter by applying Bayes’ rule based

on the prior distribution p (Line 7). We then calculate the average posterior distribution p̄ over all

attackers (Line 7).

Based on Algorithm 7, we now provide a novel framework that incorporates the learning al-

gorithm into PA-M(-γ) as shown in Algorithm 8. The input p1 is the prior distribution of the
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Algorithm 7 Learn-BU (η, χ,{ω̂}, p)

Output: p̄ – a probability distribution over {ω̂} = {ω̂1, ..., ω̂S}. for i=1 to N do
for s=1 to S do

p̄i(s) = p(s)qi(ω̂
s,η)∑

r p(r)qi(ω̂
r,η)

end
end
for s=1 to S do

p̄(s) =
∑

i χip̄i(s)∑
i χi

end

Algorithm 8 BU-PA-M-γ(p1)
Output: Defender strategy profile 〈c1, ...cT 〉. for t=1 to T do

ct = f-PlanAhead(ct−1, ω,min{T − t,M − 1}) p̄t = Learn-BU(ct−1, χt, {ω̂}, pt) pt+1 =
p̄t

end

attackers’ parameters before the game starts. This prior distribution is for the general population

of attackers and we need to learn the distribution of the L attackers we are facing in one game.

The main idea of the algorithm is to use the average posterior distribution calculated in round t

(denoted as p̄t) as the prior distribution in round t + 1 (denoted as pt+1), i.e.,pt+1 = p̄t. Given

prior pt, Function f-PlanAhead in Line 8 is calculated through Equation 6.2 – 6.5 by substituting

Equation 6.3 with Et = L
∑

s

∑
i p
t(s)qi(ω̄

s, ct−1)Udi (ct). Note that there was no probability

term in Equation 6.3 because there we know exactly the parameter values of the attackers. After

we collect data in round t, we apply Learn-BU (Algorithm 7) again and update the prior for next

round (Line 8). This is a simplification of the more rigorous process which enumerates the match-

ings (exponentially many) between the data points and attackers and updates the distribution of

each attacker separately when the attack data is anonymous (the guard may only find the snares

placed on ground without knowing the identity of the poacher).

When incorporating Algorithm 7 into FS-M, we divide the game into several stages, each

containing more than M rounds, and only update the parameter distribution at the end of each
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stage. As FS-M may not achieve its average expected utility if only a part of the sequence is

executed, updating the parameter distribution in every round may lead to a low utility.

6.4 General Case

Generalization from Γ = 1 and α0 = 0 to Γ > 1 and/or α0 ∈ [0, 1] can be achieved via gener-

alizing ηt. PA-M(-γ) can be calculated by substituting Constraint 6.4 with ητ =
∑M

k=0 αkc
τ−k,

and FS-M can be calculated by changing Constraints 6.9-6.10 accordingly. Theorem 8 shows the

theoretical bound of FS-M with Γ > 1 and the proof is similar to that of Theorem 7.

Theorem 8. In a GSG with T rounds, for any fixed length Γ < M ≤ T , there exists a cyclic

defender strategy profile [s] with period M that is a (1 − Γ
M )Z−1

Z+1 approximation of the optimal

strategy profile in terms of the normalized utility, where Z = dT−Γ+1
M e.

Proof of Theorem 8: Use U([x], x0) to denote the defender’s normalized expected reward

in a round where defender strategy x0 is used in this round, and defender strategy sequence

[x] = 〈x−Γ, ..., x−1〉 is used in the previous Γ rounds. Then 0 ≤ U([x], x0) ≤ 1. For the optimal

defender strategy profile [c], denote the normalized utility as Uopt.

〈b1, ..., bM 〉 is a strategy sequence whose average normalized expected utility for last M − Γ

rounds, is maximized and the value is denoted as Ub. 〈a1, ..., aM 〉 is a strategy sequence such that

the average normalized expected utility of the sequence when it forms a cycle is maximized and

the value is denoted as Ua. Then

M ∗ Ua ≥
∑M

t=Γ+1
U(bt−1, bt)

= (M − Γ) ∗ Ub
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Construct a defender strategy profile [s] by repeating the strategy sequence 〈a1, ..., aM 〉. Then

T ∗ U([s]) ≥ (Z − 1) ∗M ∗ Ua (6.18)

≥ (Z − 1) ∗ (M − Γ) ∗ Ub (6.19)

Strategy profile [s] contains bT−Γ
M c complete cycles (starting from the first round with aΓ) with

average normalized reward Ua. As Z = dT−Γ+1
M e, bT−Γ

M c = Z − 1. The inequality 6.18 is

derived by ignoring the first round and the last incomplete cycle if any (when mod(T,M) 6= Γ).

On the other hand, for the optimal defender strategy profile [c] = [c]opt, we know that for any

consecutive sequence of length M , the average normalized reward of last M − Γ rounds can be

no more than Ub. So we divide the strategy profile into d T
M−Γe pieces, each piece with length

M − Γ except the last piece. Then for each piece, the sum of normalized reward is no more than

Ub ∗ (M − Γ). Thus,

T ∗ Uopt ≤ Ub ∗ (M − Γ) ∗ d T

M − Γ
e (6.20)

≤ (T +M − Γ) ∗ Ub (6.21)

The inequality 6.21 is yield by conceptually completing the last piece. Combine 6.18 - 6.21, we

get

U([s])

Uopt
≥ (Z − 1) ∗ (M − Γ)

T +M − Γ

≥ (Z − 1) ∗ (M − Γ)

M + Z ∗M

= (1− Γ

M
) ∗ Z − 1

Z + 1
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Equation is derived from the definition of Z, as T − Γ ≤ Z ∗M − 1 ≤ Z ∗M . So the cyclic

strategy profile [s] is a (1 − Γ
M )Z−1

Z+1 approximation of the optimal strategy profile in terms of

normalized utility.

6.5 Experimental Results
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Figure 6.2: Experimental results show improvements over algorithms from previous work.

We test all the proposed algorithms on GSGs motivated by scenarios in green security do-

mains such as defending against poaching and illegal fishing. Each round corresponds to 30

days, and each poacher/fisherman will choose a target to place snares/fishnets every day. All

algorithms are implemented in MATLAB with the fmincon function used for solving MPs and

tested on 2.4GHz CPU with 128 GB memory. All key differences noted are statistically signifi-

cant (p < 0.05).
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6.5.1 Planning Algorithms

We compare proposed planning algorithms PA-M(-γ) and FS-M with baseline approaches FS-

1 and PA-1. FS-1 is equivalent to calculating the defender strategy with a perfect Stackelberg

assumption, which is used in previous work (Yang et al., 2014b; Haskell et al., 2014b), as the de-

fender uses the same strategy in every round and the attackers’ belief coincides with the defender

strategy. PA-1 is the myopic strategy which tries to maximize the defender’s expected utility in

the current round. We assume c0 is the MAXIMIN strategy.

We first consider the special case (α0 = 0, Γ = 1) and test on 32 game instances of 5

attackers, three targets, one guard and 100 rounds with random reward and penalty chosen from

[0, 10] and [−10, 0] respectively (denoted as Game Set 1). We run 100 restarts for each MP. Figure

6.2(a) shows that PA-M(-γ) and FS-M significantly outperform FS-1 and PA-1 in terms of the

defender’s average expected utility (AEU). This means using the perfect Stackelberg assumption

would be detrimental to the defender if the attackers respond to last round’s strategy. For PA-M,

adding a discount factor γ may improve the solution. Figure 6.2(b) shows FS-M takes much less

time than PA-M overall as FS-M only needs to solve one MP throughout a game while PA-M

solves an MP for each round.

We also test on 32 games with 100 attackers, ten targets, four guards and 100 rounds (denoted

as Game Set 2) in the special case (see Figure 6.2(c)). We set a 1-hour runtime limit for the

algorithms and again, FS-M and PA-M(-γ) significantly outperform FS-1 and PA-1 in solution

quality.

We then test general cases on Game Set 2. Figure 6.2(d) shows the defender’s AEU with

varying α0 when Γ = 1. In the extreme case of α0 = 1, i.e., the attackers have perfect knowledge
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of the current defender strategy, the problem reduces to a repeated Stackelberg game, and all

approaches provide similar solution quality. However, when α0 < 0.5, FS-2 and PA-2 provide a

significant improvement over FS-1 and PA-1, indicating the importance of planning.

We further test the robustness of FS-2 when there is slight deviation in α0 with Γ = 1 (see

Figure 6.3). For example, the value of 5.891 in the 2nd row, 1st column of the table is the de-

fender’s AEU when the actual α0 = 0 and the defender assumes (estimates) it to be 0.125 when

calculating her strategies. Cells in the diagonal show the case when the estimation is accurate.

Cells in the last row show result for baseline algorithm FS-1. FS-1 uses the Stackelberg assump-

tion, and thus, the estimated value makes no difference. When the actual value slightly deviates

from the defender’s estimate (cells adjacent to the diagonal ones in the same column), the so-

lution quality does not change much if the actual α0 > 0.5. When the actual α0 < 0.5, FS-2

outperforms FS-1 significantly even given the slight deviation.

In Figure 6.2(e), we compare algorithms assuming Γ = 2, α1 = α2 = 0.5 and α0 = 0.

As expected, PA-M with M > 1 and FS-M with M > 2 significantly outperforms FS-1 and

PA-1. The improvement of FS-2 over FS-1 is negligible, as any fixed sequence of length 2 can be

exploited by the attackers with memory length = 2.

Figure 6.2(f) shows the solution quality of PA-M when the defender assumes the attackers’

memory length is 3, but the actual value of Γ varies from 1 to 4. When Γ is slightly over-estimated

(actual Γ = 1 or 2), PA-M still significantly outperforms the baseline algorithm FS-1 and PA-

1. However, when Γ is under-estimated (actual Γ = 4), the attackers have a longer memory

than the defender’s estimate and thus the attackers can exploit the defender’s planning. This

observation suggests that it is more robust to over-estimate the attackers’ memory length when

there is uncertainty in Γ. We defer to future work to learn ατ and Γ from attack data.
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Figure 6.3: Robustness against uncertainty in α0 when Γ = 1

6.5.2 Learning and Planning Framework

When the parameter vectors {ωl} are unknown, we compare Algorithm 7 with the baseline

learning algorithm that uses MLE (denoted as MLE) when incorporated into planning algo-

rithms. In each game of Game Set 2, we randomly choose {ωl} for the 100 attackers from

a three-dimensional normal distribution with mean µ = (−17.81, 0.72, 0.47) and covariance

Σ =


209.48 −2.64 −0.71

−2.64 0.42 0.24

−0.71 0.24 0.36

. We use BU to denote the case when an accurate prior (µ

and Σ) is given to the defender. Recall that the defender plays against 100 attackers throughout a

game, and BU aims to learn the parameter distribution of these 100 attackers. BU′ represents the

case when the prior distribution is a slightly deviated estimation (a normal distribution with ran-

dom µ′ and Σ′ satisfying ‖µi − µ′i‖ ≤ 5 and ‖Σ′ii − Σii‖ ≤ 5). KnownPara represents the case

when the exact values of {ωl} are known to the defender. We set a time limit of 30 minutes for

the planning algorithms. Figure 6.2(g) – 6.2(h) show that BU and BU′ significantly outperform

MLE. Indeed, the solution quality of BU and BU′ is close to that of KnownPara, indicating the

effectiveness of the proposed learning algorithm. Also, BU and BU′ run much faster than MLE

as MLE solves a convex optimization problem for each target in every round.
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6.6 Chapter Summary

So far, the field had been lacking an appropriate game-theoretic model for green security domains:

this chapter provides Green Security Games (GSG) to fill this gap. GSG’s generalization of the

Stackelberg assumption which is commonly used in previous work has led it to provide two new

planning algorithms as well as a new learning framework, providing a significant advance over

previous work in green security domains (Yang et al., 2014b; Haskell et al., 2014b).

Additional related work includes criminological work on poaching and illegal fishing

(Lemieux, 2014; Beirne & South, 2007), but a game-theoretic approach is completely missing

in this line of research.
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Chapter 7

Reasoning about Spatial Constraints

In bringing a defender strategy represented by coverage probability to the real world, my thesis

addresses one important aspect which is to deal with spatial constraints. Efforts have been made

by law enforcement agencies in many countries to protect endangered animals; the most com-

monly used approach is conducting foot patrols. However, given their limited human resources,

improving the efficiency of patrols to combat poaching remains a major challenge.

To address this problem, prior work introduced a novel emerging application called PAWS

(Protection Assistant for Wildlife Security) (Yang et al., 2014b); PAWS is proposed as a game-

theoretic decision-aid to optimize the use of human patrol resources to combat poaching. PAWS

is an application in the general area of “security games” (Tambe, 2011); security-game-based

decision support systems have previously been successfully deployed in the real-world in pro-

tecting critical infrastructure such as airports, flights, ports, and metro trains. PAWS was inspired

by this success, and was the first of a new wave of proposed applications in the subarea now

called “green security games” (Fang, Stone, & Tambe, 2015; Kar, Fang, Fave, Sintov, & Tambe,

2015). Specifically, PAWS solves a repeated Stackelberg security game, where the patrollers (de-

fenders) conduct randomized patrols against poachers (attackers), while balancing the priorities
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of different locations with different animal densities. Despite its promise, the initial PAWS effort

did not test the concept in the field.

This chapter reports on PAWS’s significant evolution over the last two years from a proposed

decision aid to a regularly deployed application. We report on the innovations made in PAWS

and lessons learned from the first tests in Uganda in Spring 2014, through PAWS’s continued

evolution to current regular use in Malaysia (in collaboration with two Non-Governmental Or-

ganizations: Panthera and Rimba). Indeed, the first tests revealed key shortcomings in PAWS’s

initial algorithms and assumptions (we will henceforth refer to the initial version of PAWS as

PAWS-Initial, and to the version after our enhancement as PAWS). First, a major limitation, the

severity of which was completely unanticipated, was that PAWS-Initial ignored topographic in-

formation. Yet in many conservation areas, high changes in elevation and the existence of large

water bodies may result in a big difference in the effort needed for patrollers’ movement. These

factors also have a direct effect on poachers’ movement. Second, PAWS-Initial assumed animal

density and relevant problem features at different locations to be known. However, in practice,

there are uncertainties in the payoffs of different locations, due to uncertainty over the animal

movement. Not considering such uncertainty may lead to high degradation in patrol quality.

Third, PAWS-Initial could not scale to provide detailed patrol routes in large conservation ar-

eas. Detailed routes require fine-grained discretization, which leads to a large number of feasible

patrol routes. Finally, PAWS-Initial failed to consider patrol scheduling constraints.

In this chapter, we outline novel research advances which remedy the aforementioned limi-

tations, making it possible to deploy PAWS on a regular basis. First, we incorporate elevation

information and land features and use a novel hierarchical modeling approach to build a virtual

“street map” of the conservation area. This virtual “street map” helps scale-up while providing
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fine-grained guidance, and is an innovation that would be useful in many other domains requir-

ing patrolling of large areas. Essentially, the street map connects the whole conservation area

through easy-to-follow route segments such as a ridgeline, streams and river banks. The rationale

for this comes from the fact that animals, poachers, and patrollers all use these features while

moving. To address the second and third limitations, we build on the street map concept with

a novel algorithm that uniquely synthesizes two threads of prior work in the security games lit-

erature; specifically, the new PAWS algorithm handles payoff uncertainty using the concept of

minimax regret (Nguyen, Fave, Kar, Lakshminarayanan, Yadav, Tambe, Agmon, Plumptre, Dri-

ciru, Wanyama, & Rwetsiba, 2015), while simultaneously ensuring scalability – using our street

maps – via the cutting plane framework (Yang, Jiang, Tambe, & OrdoÂŽnez, 2013). To address

the final limitation, we incorporate in PAWS’s algorithm the ability to address constraints such

as patrol time limit and starting and ending at the base camp. In the final part of the chapter, we

provide detailed information about the regular deployment of PAWS.

7.1 Background

Criminologists have begun to work on the problem of combating poaching, from policy design

to illegal trade prevention (Lemieux, 2014). Geographic Information Systems (GIS) experts

(Hamisi, 2008) and wildlife management staff (Wato, Wahungu, & Okello, 2006) have carefully

studied the identification of poaching hotspots. In recent years, software tools such as SMART

(SMART, 2013), MIST (Stokes, 2010) have been developed to help conservation managers record

data and analyze patrols retrospectively. We work on a complementary problem of optimizing the

patrol planning of limited security staff in conservation areas.
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In optimizing security resource allocation, previous work on Stackelberg Security Games

(SSGs) has led to many successfully deployed applications for the security of airports, ports and

flights (Pita et al., 2008; Fang, Jiang, & Tambe, 2013). Based on the early work on SSG, recent

work has focused on green security games (Kar et al., 2015), providing conceptual advances in

integrating learning and planning (Fang et al., 2015) and the first application to wildlife security

PAWS-Initial. PAWS-Initial (Yang et al., 2014b) models the interaction between the patroller

(defender) and the poacher (attacker) who places snares in the conservation area (see Figure 7.1)

as a basic green security game, i.e., a repeated SSG, where every few months, poaching data

is analyzed, and a new SSG is set up to improve patrolling strategies. The deployed version of

PAWS adopts this framework.

We provide a brief review of SSGs, using PAWS as a key example. In SSGs, the defender

protects T targets from an adversary by optimally allocating a set of R resources (R < T ) (Pita

et al., 2008). In PAWS, the defender discretizes the conservation area into a grid, where each

grid cell is viewed as a target for poachers, to be protected by a set of patrollers. The defender’s

pure strategy is an assignment of the resources to targets. The defender can choose a mixed

strategy, which is a probability distribution over pure strategies. The defender strategy can be

compactly represented as a coverage vector c = 〈ci〉 where ci is the coverage probability, i.e.,

the probability that a defender resource is assigned to be at target i (Korzhyk, Conitzer, & Parr,

2010c). The adversary observes the defender’s mixed strategy through surveillance and then

attacks a target. An attack could refer to the poacher, a snare, or some other aspect facilitating

poaching (e.g., poaching camp). Each target is associated with payoff values which indicate the

reward and penalty for the players. If the adversary attacks target i, and i is protected by the

defender, the defender gets reward Udr,i and the adversary receives penalty Uap,i. Conversely, if
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not protected, the defender gets penalty Udp,i and the adversary receives reward Uar,i. Given a

defender strategy c, the players’ expected utilities when target i is attacked are:

Uai = ciU
a
p,i + (1− ci)Uar,i (7.1)

Udi = ciU
d
r,i + (1− ci)Udp,i (7.2)

The game in PAWS is zero-sum, Udr,i = −Uap,i, Udp,i = −Uar,i. Uar,i is decided by animal density –

higher animal density implies higher payoffs.

In SSGs, the adversary’s behavior model decides his response to the defender’s mixed strat-

egy. Past work has often assumed that the adversary is perfectly rational, choosing a single target

with the highest expected utility (Pita et al., 2008). PAWS is the first deployed application that

relaxes this assumption for a bounded rationality model called SUQR, which models the adver-

sary’s stochastic response to defender’s strategy (Nguyen et al., 2013b). SUQR was shown to

perform the best in human subject experiments when compared with other models. Formally,

SUQR predicts the adversary’s probability of attacking i as follows:

qi =
ew1ci+w2Ua

r,i+w3Ua
p,i∑

j e
w1cj+w2Ua

r,j+w3Ua
p,j

(7.3)

where (w1, w2, w3) are parameters indicating the importance of three key features: the coverage

probability and the attacker’s reward and penalty. The parameters can be learned from data.
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Figure 7.1: A picture of a snare placed by poachers.

7.2 First Tests and Feedback

We first tested PAWS-Initial (Yang et al., 2014b) at Uganda’s Queen Elizabeth National Park

(QENP) for 3 days. Subsequently, with the collaboration of Panthera and Rimba, we started

working in forests in Malaysia since September 20141. These protected forests are home to en-

dangered animals such as the Malayan Tiger and Asian Elephant but are threatened by poachers.

One key difference of this site compared to QENP is that there is high changes in elevation, and

the terrain is much more complex. The first 4-day patrol in Malaysia was conducted in November

2014. These initial tests revealed four areas of shortcomings, which restricted PAWS-Initial from

being used regularly and widely.

The first limitation, which was surprising given that it has received no attention in previous

work on security games, is the critical importance of topographic information that was ignored in

PAWS-Initial. Topography can affect patrollers’ speed in key ways. For example, lakes are inac-

cessible for foot patrols. Not considering such information may lead to the failure of completing
1For security of animals and patrollers, no latitude/longitude information is presented in this chapter.
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Figure 7.2: One patrol route during the test in Uganda.

(a) Deployed route (b) Patrollers

Figure 7.3: First 4-day patrol in Malaysia. Figure 7.3(a) shows one suggested route (orange
straight lines) and the actual patrol track (black line). Figure 7.3(b) shows the patrollers walking
along the stream during the patrol.

the patrol route. Figure 7.2 shows one patrol route during the test in Uganda. The suggested

route (orange straight line) goes across the water body (lower right part of figure), and hence the

patrollers decided to walk along the water body (black line). Also, changes in elevation require

extra patrol effort, and extreme changes may stop the patrollers from following a route. For ex-

ample, in Figure 7.3(a) [Malaysia], PAWS-Initial planned a route on a 1km by 1km grid (straight

lines), and suggested that the patrollers walk to the north area (Row 1, Column 3) from the south

side (Row 2, Column 3). However, such movement was extremely difficult because of the high

changes in elevation. So patrollers decided to head towards the northwest area as the elevation
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(a) Ridgeline (b) Feasible
routes

(c) Coverage

Figure 7.4: Illustrative examples.

change is more gentle. In addition, it is necessary to focus on terrain features such as ridge-

lines and streams (Figure 7.3(b)) when planning routes for three reasons: (i) they are important

conduits for certain mammal species such as tigers; (ii) hence, poachers use these features for

trapping and moving about in general; (iii) patrollers find it easier to move around here than on

slopes. Figure 7.4(a) shows a prominent ridgeline.

The second limitation is that PAWS-Initial assumes the payoff values of the targets — e.g.,

Uar,i – are known and fixed. In the domain of wildlife protection, there can be uncertainties due

to animal movement and seasonal changes. Thus, considering payoff uncertainty is necessary for

optimizing patrol strategy.

The third limitation is that PAWS-Initial cannot scale to provide detailed patrol routes in large

conservation areas, which is necessary for successful deployment. Detailed routes require fine-

grained discretization, which leads to an exponential number of routes in total.

The fourth limitation is that PAWS-Initial considers covering individual grid cells, but not fea-

sible routes. In practice, the total patrolling time is limited, and the patrollers can move to nearby

areas. A patrol strategy for implementation should be in the form of distribution over feasible

patrol routes satisfying these constraints. Without taking these scheduling (routing) constraints

into account, the optimal coverage probabilities calculated by PAWS-Initial may not be imple-

mentable. Figure 7.4(b) shows an example area that is discretized into four cells and the base

camp is located in the upper left cell. There are three available patrol routes, each protecting two
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targets. The coverage probabilities shown in Figure 7.4(c) cannot be achieved by a randomization

over the three routes because the coverage of the upper left cell (Target 1) should be no less than

the overall coverage of the remaining three cells since all routes start from the base camp.

7.3 PAWS Overview and Game Model

Figure 7.5 provides an overview of the deployed version of PAWS. PAWS first takes the input data

and estimates the animal distribution and human activity distribution. Based on this information,

an SSG based game model is built, and the patrol strategy is calculated. In wildlife protection,

there is repeated interaction between patrollers and poachers. When patrollers execute the patrol

strategy generated by PAWS over a period (e.g., three months), more information is collected and

can become part of the input in the next round.

PAWS provides significant innovations in addressing the aforementioned limitations of

PAWS-Initial. In building the game model, PAWS uses a novel hierarchical modeling approach to

build a virtual street map, while incorporating detailed topographic information. PAWS models

the poachers bounded rationality as described by the SUQR model and considers uncertainty in

payoff values. In calculating the patrol strategy, PAWS uses ARROW (Nguyen et al., 2015) algo-

rithm to deal with payoff uncertainty and adopts cutting plane approach and column generation

to address the scalability issue introduced by scheduling constraints.
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Figure 7.5: PAWS Overview

7.3.1 Input and Initial Analysis

The input information includes contour lines which describe the elevation, terrain information

such as lakes and drainage, base camp locations, previous observations (animals and human ac-

tivities), as well as previous patrol tracks. However, the point detections of animal and human

activity presence are not likely to be spatially representative. As such, it is necessary to predict the

animal and human activity distribution over the entire study area. To this end, we used: 1) JAGS

(Plummer, 2003) to produce a posterior predictive density raster for tigers (as a target species)

derived from a spatially explicit capture-recapture analysis conducted in a Bayesian framework;

and 2) MaxEnt (Phillips, Anderson, & Schapire, 2006) to create a raster of predicted human ac-

tivity distribution based on meaningful geographical covariates (e.g., distance to water, slope,

elevation) in a Maximum Entropy Modelling framework.

7.3.2 Build Game Model

Based on the input information and the estimated distribution, we build a game model abstracting

the strategic interaction between the patroller and the poacher as an SSG. Building a game model

involves defender action modeling, adversary action modeling, and payoff modeling. We will
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discuss all three parts but emphasize defender action modeling since this is one of the major chal-

lenges to bring PAWS to a regularly deployed application. Given the topographic information,

modeling defender actions in PAWS is far more complex than any other previous security game

domain.

7.3.2.1 Defender Action Modeling

Based on the feedback from the first tests, we aim to provide detailed guidance to the patrollers.

If we use a fine-grained grid and treat every fine-grained grid cell as a target, computing the

optimal patrolling strategy is exceptionally computationally challenging due to the large number

of targets and the exponential number of patrol routes. Therefore, a key novelty of PAWS is to

provide a hierarchical modeling solution, the first such model in security game research. This

hierarchical modeling approach allows us to attain a good compromise between scaling up and

providing detailed guidance. This approach would be applicable in many other domains for large

open area patrolling where security games are applicable, not only other green security games

applications, but others including patrolling of large warehouse areas or large open campuses via

robots or UAVs.

More specifically, we leverage insights from hierarchical abstraction for heuristic search such

as path planning (Botea, MÃŒller, & Schaeffer, 2004) and apply two levels of discretization

to the conservation area. We first discretize the conservation area into 1km by 1km Grid Cells

and treat every grid cell as a target. We further discretize the grid cells into 50m by 50m Raster

Pieces and describe the topographic information such as elevation in 50m scale. The defender

actions are patrol routes defined over a virtual “street map” – which is built in the terms of raster

pieces while aided by the grid cells in this abstraction as described below. With this hierarchical
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Figure 7.6: KAPs (black) for 2 by 2 grid cells.

modeling, the model keeps a small number of targets and reduces the number of patrol routes

while allowing for details at the 50m scale.

The street map is a graph consisting of nodes and edges, where the set of nodes is a small

subset of the raster pieces and edges are sequences of raster pieces linking the nodes. We denote

nodes as Key Access Points (KAPs) and edges as route segments. The street map not only helps

scalability but also allows us to focus patrolling on preferred terrain features such as ridgelines.

The street map is built in three steps: (i) determine the accessibility type for each raster piece, (ii)

define KAPs and (iii) find route segments to link the KAPs.

In the first step, we check the accessibility type of every raster piece. For example, raster

pieces in a lake are inaccessible, whereas raster pieces on ridgelines or previous patrol tracks are

easily accessible. Ridgelines and valley lines are inferred from the contour lines using existing

approaches in hydrology (Tarboton, Bras, & Rodriguez-Iturbe, 2007).

The second step is to define a set of KAPs, via which patrols will be routed. We want to

build the street map in such a way that each grid cell can be reached. So we first choose raster

pieces which can serve as entries and exits for the grid cells as KAPs, i.e., the ones that are on

the boundary of grid cells and are easily accessible. In addition, we consider existing base camps

and mountain tops as KAPs as they are key points in planning the patroller’s route. We choose
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additional KAPs to ensure KAPs on the boundary of adjacent cells are paired. Figure 7.6 shows

identified KAPs and easily accessible pieces (black and gray raster pieces respectively).

The last step is to find route segments to connect the KAPs. Instead of inefficiently finding

route segments to connect each pair of KAPs on the map globally, we find route segments locally

for each pair of KAPs within the same grid cell, which is sufficient to connect all the KAPs.

When finding the route segment, we design a distance measure which estimates the actual patrol

effort and also gives high priority to the preferred terrain features. The effort needed for three-

dimensional movement can be interpreted as the equivalent distance on flat terrain. For example,

for gentle slopes, equivalent “flat-terrain” distance is obtained by adding 8km for every 1km of

elevation ascent according to Naismith’s rule (Thompson, 2011). In PAWS, we apply Naismith’s

rule with Langmuir corrections (Langmuir, 1995) for gentle slopes (< 20) and apply Tobler’s

hiking speed function (Tobler, 1993) for steep slopes (≥ 20). Very steep slopes (> 30) are not

allowed. We penalize not walking on preferred terrain features by adding extra distance. Given

the distance measure, the route segment is defined as the shortest distance path linking two KAPs

within the grid cell.

The defender’s pure strategy is defined as a patrol route on the street map, starting from the

base camp, walking along route segments and ending with base camp, with its total distance

satisfying the patrol distance limit (all measured as the distance on flat terrain). The patroller

confiscates the snares along the route and thus protects the grid cells. More specifically, if the

patroller walks along a route segment which covers a sufficiently large portion (e.g., 50% of

animal distribution) of a grid cell, the cell is considered to be protected. The defender’s goal is to

find an optimal mixed patrol strategy — a probability distribution over patrol routes.
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7.3.2.2 Poacher Action Modeling and Payoff Modeling

The poacher’s actions are defined over the grid cells to aid scalability. In this game, we assume

the poacher can observe the defender’s mixed strategy and then chooses one target (a grid cell)

and places snares in this target. Following earlier work, the poacher in this game is assumed to

be boundedly rational, and his actions can be described by the SUQR model.

Each target is associated with payoff values indicating the reward and penalty for the pa-

trollers and the poachers. As mentioned earlier, PAWS models a zero-sum game and the reward

for the attacker (and the penalty for the defender) is decided by the animal distribution. However,

in this game model, we need to handle uncertainty in the players’ payoff values since key domain

features such as animal density which contribute to the payoffs are difficult to precisely estimate.

In addition, seasonal or dynamic animal migration may lead to payoffs to become uncertain in the

next season. We use intervals to represent payoff uncertainty in PAWS; the payoffs are known to

lie within a certain interval whereas the exact values are unknown. Interval uncertainty is, in fact,

a well-known concept to capture uncertainty in security games (Nguyen, Yadav, An, Tambe, &

Boutilier, 2014; Nguyen et al., 2015). We determine the size of the payoff intervals at each grid

cell based on patrollers’ patrol efforts at that cell. Intuitively, if the patrollers patrol a cell more

frequently, there is less uncertainty in the players’ payoffs at that target and thus a smaller size of

the payoff intervals.

7.4 Calculate Patrol Strategy

We build on algorithms from the rich security game literature to optimize the defender strategy.

However, we find that no existing algorithm directly fits our needs as we need an algorithm that
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ARROW: compute optimal coverage vec-
tor ĉ given a set of linear constraints S.

Separation Oracle
Find Cutting Plane: Find a hyperplane

separating ĉ and feasible region C. If exists,
ĉ /∈ C and a new constraint s is found.

Route Generation: find routes that
constitute the separation hyperplane.

Is ĉ ∈ C? S = S ∪ s

Figure 7.7: New integrated algorithm

can scale-up to the size of the domain of interest, where: (i) we must generate patrol routes

over the street map over the entire conservation area region, while (ii) simultaneously addressing

payoff uncertainty and (iii) bounded rationality of the adversary. While the ARROW (Nguyen

et al., 2015) algorithm allows us to address (ii) and (iii) together, it cannot handle scale-up over

the street map. Indeed, while the (virtual) street map is of tremendous value in scaling up as

discussed earlier, scaling up given all possible routes (≈ 1012 routes) on the street map is still a

massive research challenge. We, therefore, integrate ARROW with another algorithm BLADE

(Yang et al., 2013) for addressing the scalability issue, resulting in a novel algorithm that can

handle all the three aforementioned challenges. The new algorithm is outlined in Figure 7.7. In

the following, we explain how ARROW and BLADE are adapted and integrated.

ARROW attempts to compute a strategy that is robust to payoff uncertainty given that poach-

ers’ responses follow SUQR. The concept of minimizing maximum regret is a well-known con-

cept in AI for decision making under uncertainty (Wang & Boutilier, 2003). ARROW uses the

solution concept of behavioral minimax regret to provide the strategy that minimizes regret or

utility loss for the patrollers in the presence of payoff uncertainty and bounded rational attackers.

In small-scale domains, ARROW could be provided all the routes (the defender’s pure strategies),
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on the basis of which it would calculate the PAWS solution – a distribution over the routes. Un-

fortunately, in large scale domains like ours, enumerating all the routes is infeasible. We must,

therefore, turn to an approach of incremental solution generation, which is where it interfaces

with the BLADE framework.

More specifically, for scalability reasons, ARROW first generates the robust strategy for the

patrollers in the form of coverage probabilities over the grid cells without consideration of any

routes. Then a separation oracle in BLADE is called to check if the coverage vector is imple-

mentable. If it is implementable, the oracle returns a probability distribution over patrol routes

that implements the coverage vector, which is the desired PAWS solution. If it is not imple-

mentable – see Figure 7.4(c) for an example of coverage vector that is not implementable – the

oracle returns a constraint (cutting plane) that informs ARROW why it is not. For the example

in Figure 7.4(b)-7.4(c), if ARROW generates a vector as shown in Figure 7.4(c), the constraint

returned could be c1 ≥
∑4

i=2 ci since all implementable coverage vector should satisfy this con-

straint. This constraint helps ARROW refine its solution. The process repeats until the coverage

vector generated by ARROW is implementable.

As described in BLADE (Yang et al., 2013), to avoid enumerating all the routes to check

whether the coverage vector is implementable, the separation oracle iteratively generate routes

until it has just enough routes (usually after a small number of iterations) to match the coverage

vector probabilities or get the constraint (cutting plane). At each iteration of this route generation

(shown in the bottom-most box in Figure 7.7), the new route is optimized to cover targets of

high value. However, we cannot directly use any existing algorithm to find the optimal route at

each iteration due to the presence of our street map. But we note similarities to the well-studied
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orienteering problem (Vansteenwegen, Souffriau, & Oudheusden, 2011) and exploit the insight

of the S-algorithm for orienteering (Tsiligiridis, 1984).

In particular, in this bottom-most box of in Figure 7.7, to ensure each route returned is of high

quality, we run a local search over a large number of routes and return the one with the highest

total value. In every iteration, we start from the base KAP and choose which KAP to visit next

through a weighted random selection. The next KAP to be visited can be any KAP on the map,

and we assume the patroller will take the shortest path from the current KAP to the next KAP.

The weight of each candidate KAP is proportional to the ratio of the additional target value that

can be accrued and distance from current KAP. We set the lower bound of weight to be ε > 0

to make sure every feasible route can be chosen with positive probability. The process continues

until the patroller has to go back to the base to meet the patrol distance limit constraint. Given a

large number of such routes, our algorithm returns a route close to the optimal solution.

Integrating all these algorithms, PAWS calculates the patrol strategy consisting of a set of

patrol routes and the corresponding probability for taking them.

7.5 Deployment and Evaluation

PAWS patrols are now regularly deployed at a conservation area in Malaysia. This section pro-

vides details about the deployment and both subjective and objective evaluations of PAWS patrols.

PAWS patrol aims to conduct daily patrols from base camps. Before the patrol starts, PAWS

generates the patrol strategy starting from the base camp selected by patrol team leader. The

patrol distance limit considered by PAWS is 10km per day (equivalent flat terrain). As shown

in Table 7.1, this leads to about 9000 raster pieces to be considered. Thus, it is impossible
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Average # of Reachable Raster
Pieces 9066.67

Average # of Reachable Grid
Cells (Targets) 22.67

Average # of Reachable KAPs 194.33

Table 7.1: Problem Scale for PAWS Patrols.
Average Trip Length 4.67 Days

Average Number of Patrollers 5
Average Patrol Time Per Day 4.48 hours

Average Patrol Distance Per Day 9.29 km

Table 7.2: Basic Information of PAWS Patrols.
to consider each raster piece as a separate target or consider all possible routes over the raster

pieces. With the two-level of discretization and the street map, the problem scale is reduced, with

8.57(= 194.33/22.67) KAPs and 80 route segments in each grid cell on average, making the

problem manageable. The strategy generated by PAWS is a set of suggested routes associated

with probabilities and the average number of suggested routes associated with probability >

0.001 is 12.

Each PAWS patrol lasts for 4-5 days and is executed by a team of 3-7 patrollers. The patrol

planner will make plans based on the strategy generated by PAWS. After reaching the base camp,

patrollers execute daily patrols, guided by PAWS’s patrol routes. Table 7.2 provides a summary

of basic statistics about the patrols. During the patrol, the patrollers are equipped with a printed

map, a handheld GPS, and data recording booklet. They detect animal and human activity signs

and record them with detailed comments and photos. After the patrol, the data manager will put

all the information into a database, including patrol tracks recorded by the hand-held GPS, and

the observations recorded in the log book.

Figure 7.8 shows various types of signs found during the patrols. Table 7.3 summarizes all

the observations. These observations show that there is a serious ongoing threat from the poach-

ers. Column 2 shows results for all PAWS patrols. Column 3 shows results for explorative PAWS

151



(a) Tiger sign (Nov. 2014) (b) Human sign (lighter;
Jul. 2015)

(c) Human sign (old
poacher camp; Aug. 2015)

(d) Human sign (tree mark-
ing; Aug 2015)

Figure 7.8: Various signs recorded during PAWS patrols.

patrols, the (partial) patrol routes which go across areas where the patrollers have never been

before. To better understand the numbers, we show in Column 4 the statistics about early-stage

non-PAWS patrols in this conservation area, which were deployed for tiger survey. Although it is

not a fair comparison as the objectives of the non-PAWS patrols and PAWS patrols are different,

comparing Column 2 and 3 with Column 4 indicates that PAWS patrols are effective in finding

human activity signs and animal signs. Finding the human activity signs is important to identify

hotspots of poaching activity, and patrollers’ presence will deter the poachers. Animals signs are

not directly evaluating PAWS patrols, but they indicate that PAWS patrols prioritize areas with

higher animal density. Finding these signs is aligned with the goal of PAWS – combat poaching

to save animals – and thus is a proof for the effectiveness of PAWS. Comparing Column 3 with

Column 2, we find the average number of observations made along the explorative routes is com-

parable to and even higher than that of all PAWS patrol routes. The observations on explorative

routes are important as they lead to a better understanding of the unexplored area. These re-

sults show that PAWS can guide the patrollers towards hotspots of poaching activity and provide

valuable suggestions to the patrol planners.

Along the way of PAWS deployment, we have received feedback from patrol planners and

patrollers. The patrol planners mentioned that the top routes in PAWS solution (routes with high-

est probability) come close to an actual planner’s routes, which shows PAWS can suggest feasible
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Patrol Type

All
PAWS
Pa-
trol

Explorative
PAWS
Patrol

Previous
Patrol

for
Tiger

Survey
Total Distance

(km) 130.11 20.1 624.75

Average # of
Human Activity

Signs per km
0.86 1.09 0.57

Average # of
Animal Signs

per km
0.41 0.44 0.18

Table 7.3: Summary of observations.

Figure 7.9: One daily PAWS Patrol route in Aug. 2015.

routes and potentially reduce the burden of planning effort. As we deploy PAWS in the future at

other sites, the cumulative human planners’ effort saved by using PAWS will be a considerable

amount. In addition, patrollers commented that PAWS was able to guide them towards poach-

ing hotspots. The fact that they found multiple human signs along the explorative PAWS patrol

routes makes them believe that PAWS is good at finding good ridgelines that are taken by animals

and humans. Patrollers and patrol planners also agree that PAWS generates detailed suggested

routes which can guide the actual patrol. Patrollers commented that the suggested routes were

mostly along the ridgeline, which are easier to follow, compared with the routes from the first

trial by PAWS-Initial. Figure 7.9 shows one suggested route (orange line) and the actual patrol

track (black line) during PAWS patrol in Aug. 2015 (shown on 1km by 1km grid). Due to the

precision of the contour lines we get, we provide a 50m buffer zone (light orange polygon) around
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the suggested route (orange line). The patrollers started from the base camp (green triangle) and

headed to the southeast. The patrollers mostly followed PAWS’s suggested route, indicating that

the route generated by PAWS is easy to follow (contrast with PAWS-Initial as shown in Figure

7.3(a)). Finally, the power of randomization in PAWS solution can be expected in the long-term.

7.6 Lessons Learned

During the development and deployment process, we faced several challenges, and here we out-

line some lessons learned.

First, first-hand immersion in the security environment of concern is critical to understanding

the context and accelerating the development process. The authors (from USC and NTU) inten-

tionally went for patrols in the forest with the local patrolling team to familiarize themselves with

the area. The first-hand experience confirmed the importance of ridgelines, as several human

and animal signs are found along the way, and also confirmed that extreme changes in elevation

require a considerable extra effort of the patrollers. This gave us the insight for building the street

map.

Second, visualizing the solution is important for communication and technology adaptation.

When we communicate with domain experts and human planners, we need to effectively convey

the game-theoretic strategy generated by PAWS, which is a probability distribution over routes.

We first visualize the routes with probability > 0.01 using ArcGIS so that they can be shown on

the topographic map and the animal distribution map. Then for each route, we provide detailed

information that can assist the human planners’ decision-making. We not only provide basic

statistics such as probability to be taken and total distance, but also estimate the difficulty level
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for patrol, predict the probability of finding animals and human signs, and provide an elevation

chart that shows how the elevation changes along the route. Such information can help planners’

understanding the strategy.

Third, minimizing the need for extra equipment/effort would further ease PAWS future de-

ployment, i.e., patrollers would prefer having a single handheld device for collecting patrol data

and displaying suggested patrol routes. If PAWS routes could be embedded in the software that is

already in use for collecting data in many conservation areas, e.g., SMART, it would reduce the

effort required of planners. This is one direction for future development.

7.7 Chapter Summary

PAWS is a first deployed “green security game” application to optimize human patrol resources

to combat poaching. We provided key research advances to enable this deployment; this has

provided a practical benefit to patrol planners and patrollers. The deployment of PAWS patrols

will continue at the site in Malaysia. Panthera has seen the utility of PAWS, and we are taking

steps to expand PAWS to its other sites. This future expansion and maintenance of PAWS will

be taken over by ARMORWAY (ARMORWAY, 2015), a “security games” company (starting

in Spring 2016); ARMORWAY has significant experience in supporting security-games-based

software deployments.
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Chapter 8

Conclusion and Future Directions

8.1 Contributions

Whereas the first generation of ”security games” research provided algorithms for optimizing

security resources in mostly static settings, my thesis advances the state-of-the-art to a new gen-

eration of security games, handling massive games with complex spatio-temporal settings and

leading to real-world applications that have fundamentally altered current practices of security

resource allocation. My work spans many different domains, including protecting ferry systems,

forest, fisheries and wildlife. My thesis provides the first algorithms and models for advanc-

ing several key aspects of spatio-temporal challenges in security games, including actions over

continuous time and space, frequent and repeated attacks as well as complex spatial constraints.

First, for games with moving targets such as ferries and refugee supply lines, players’ actions

are taken over continuous time, and I provide an efficient linear-programming-based solution

while accurately modeling the attacker’s continuous strategy. This work has been deployed by

the US Coast Guard for protecting the Staten Island Ferry in New York City in past few years

and fundamentally altering previously used tactics. Second, for games where actions are taken

156



over continuous space (for example games with forest land as the target), I provide an algorithm

computing the optimal distribution of patrol effort. Third, my work addresses challenges with one

key dimension of complexity – frequent and repeated attacks. Motivated by the repeated inter-

action of players in domains such as preventing poaching and illegal fishing, I introduce a novel

game model that accounts for temporal behavior change of opponents and provide algorithms to

plan effective sequential defender strategies. Furthermore, I incorporate complex terrain informa-

tion and design the PAWS application to combat illegal poaching, which generates patrol plans

with detailed patrol routes for local patrollers. PAWS has been deployed in a protected area in

Southeast Asia, with plans for worldwide deployment.

While these challenges are brought by different domains, the proposed approaches of ad-

dressing these challenges share some high-level ideas that can shed light on future research. The

spatio-temporal aspects often lead to a large and even infinite action space, and my work has

shown that it is often possible to exploit the spatio-temporal structure to abstract the players’

action space and strategy space.

In my work, I have used four approaches for abstraction. The first approach is to investigate

the dominance relationship among the players’ actions, and partitioning the action space can be

helpful in finding such dominance relationship. In the problem of moving target protection, I par-

tition the attacker’s action set over continuous time and show that in each partitioned subset, there

exists one time point that (weekly) dominates others. Therefore, it is sufficient to consider a finite

number of attacker actions when calculating the optimal defender strategy. The second approach

is to use a compact representation for the defender strategy based on equivalence relationship.

Two defender strategies are equivalent if they lead to the same expected utility for the defender.

If the defender strategies can be classified into several equivalent classes, and each class can be
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represented using a small number of parameters, a compact representation is found and solving

the problem with the compact representation can be much more efficient. The third approach is

to exploit the property of the optimal defender strategy to reduce the search space. In the problem

of area protection, we made the key observation that the defender should allocate the resources in

a way such that the attacker gets zero benefit by going beyond the equilibrium distance. With this

property, the defender’s strategy can be uniquely decided once the equilibrium distance is known.

Therefore, finding an optimal strategy for the defender is simplified to finding the equilibrium

distance. The last approach is to use hierarchical modeling or hierarchical discretization. When

a fine-grained discretization is necessary but computationally expensive, an alternative is to use

multi-layers of abstraction. In my work, I have used two layers of abstraction for addressing the

spatial constraints brought by topographical information. The higher layer is a coarse grid-based

discretization, and in the lower layer, sub-graphs are built based on terrain features.

8.2 Future Directions

My thesis provides algorithms and models for advancing several key aspects of spatio-temporal

dynamics in security games, and one extension would be to explore domains with the presence of

several spatio-temporal aspects simultaneously. For example, consider games with both spatial

continuity and repeated attacks. The first challenge of calculating optimal strategy in these games

is to how to compactly represent the defender’s strategy space. The second challenge is how

to efficiently calculate the optimal patrol strategy for the defender given the complexity of the

problem.
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In dealing with spatio-temporal aspects in security games, my thesis has provided several ap-

proaches for exploiting the spatio-temporal structure and abstracting the players’ action space or

strategy space. The first three approaches mentioned in Section 8.1 can be seen as lossless abstrac-

tion since the abstraction does not lead to the degradation of solution quality. The last approach

can be lossy in certain cases, but it is not yet clear in which cases a hierarchical discretization can

be lossless or what kind of guarantee can be found. Furthermore, adaptive discretization may be

a better way of balancing the solution quality and computation efficiency. It is important to un-

derstand the tradeoff in various problems. These questions lead to a need for further investigation

on the problem of abstraction and discretization in security games.

Another direction of future work could be dealing with dynamic defender-attacker interac-

tions in the presence of data. In domains such as wildlife conservation and urban security, re-

peated interactions between the defender and the attacker(s) are involved. The players can (par-

tially) observe the other players’ actions and the observation data collected from informants and

surveillance may lead to a change in their behavior in the future. The basic questions remain open,

for example, how to model these factors in a game-theoretic model and under what conditions

a desirable equilibrium can be reached. In fact, a new solution concept may be required when

the infinite time horizon of the game, the uncertainty in the observed actions and the bounded

rationality of the attackers are considered.

In addition to infrastructure security domains and green security domains, a bunch of research

problems are open for applying game theory to cyber-security. Cyber-security has become an

increasingly significant problem. It is impossible to fully protect cyber assets at all times, and

an important research direction is to develop game-theoretic solutions to inform decisions about

what to protect and when. A key future research challenge is learning human behavior models
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from data collected from human behavior logs and system logs, where timestamps could be an

important attribute of attack. However, cyber-security brings a third crucial player, the human

user; that was absent in my previous work. This raises fundamental new challenges in attacker-

defender game settings which normally have only two players.
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Yang, R., Jiang, A. X., Tambe, M., & OrdoÂŽnez, F. (2013). Scaling-up security games with
boundedly rational adversaries: A cutting-plane approach. In IJCAI.

Yang, R., Ordonez, F., & Tambe, M. (2012). Computing optimal strategy against quantal response
in security games. In Proceedings of the 11th International Conference on Autonomous
Agents and Multiagent Systems-Volume 2, pp. 847–854. International Foundation for Au-
tonomous Agents and Multiagent Systems.

Yin, Z. (2013). Addressing Uncertainty in Stackelberg Games for Security: Models and Algo-
rithms. Ph.D. thesis, University of Southern California.

Yin, Z., Jiang, A., Johnson, M., Tambe, M., Kiekintveld, C., Leyton-Brown, K., Sandholm, T., &
Sullivan, J. (2012a). TRUSTS: Scheduling randomized patrols for fare inspection in transit
systems. In IAAI.

Yin, Z., Jiang, A. X., Johnson, M. P., Kiekintveld, C., Leyton-Brown, K., Sandholm, T., Tambe,
M., & Sullivan, J. P. (2012b). TRUSTS: Scheduling randomized patrols for fare inspec-
tion in transit systems. In Proceedings of the Twenty-Fourth Conference on Innovative
Applications of Artificial Intelligence (IAAI), pp. 2348–2355.

Yin, Z., Korzhyk, D., Kiekintveld, C., Conitzer, V., & Tambe, M. (2010). Stackelberg vs. nash in
security games: Interchangeability, equivalence, and uniqueness. In AAMAS.

Yin, Z., & Tambe, M. (2011). Continuous time planning for multiagent teams with temporal con-
straints. In Proceedings of the Twenty-Second international joint conference on Artificial
Intelligence - Volume Volume One, IJCAI’11, pp. 465–471. AAAI Press.

Yin, Z., & Tambe, M. (2012). A unified method for handling discrete and continuous uncertainty
in bayesian stackelberg games. In International Conference on Autonomous Agents and
Multiagent Systems (AAMAS).

168


