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Abstract

Stackelberg security games (SSGs) are now established as a powerful tool in security

domains. In order to compute the optimal strategy for the defender in SSG model,

the defender needs to know the attacker’s preferences over targets so that she can predict

how the attacker would react under a certain defender strategy. Uncertainty over attacker

preferences may cause the defender to suffer significant losses. Motivated by that, my

thesis focuses on addressing uncertainty in attacker preferences using robust and learning

approaches.

In security domains with one-shot attack, e.g., counter-terrorism domains, the de-

fender is interested in robust approaches that can provide performance guarantee in the

worst case. The first part of my thesis focuses on handling attacker’s preference uncer-

tainty with robust approaches in these domains. My work considers a new dimension

of preference uncertainty that has not been taken into account in previous literatures:

the risk preference uncertainty of the attacker, and propose an algorithm to efficiently

compute defender’s robust strategy against uncertain risk-aware attackers.

In security domains with repeated attacks, e.g., green security domain of protecting

natural resources, the attacker “attacks” (illegally extracts natural resources) frequently,

so it is possible for the defender to learn attacker’s preference from their previous actions

ix



and then to use this information to better plan her strategy. The second part of my

thesis focuses on learning attacker’s preferences in these domains. My thesis models the

preferences from two different perspectives: (i) the preference is modeled as payoff and the

defender learns the payoffs from attackers’ previous actions; (ii) the preference is modeled

as a markovian process and the defender learns the markovian process from attackers’

previous actions.
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Chapter 1

Introduction

Stackelberg security games (SSGs) are now established as a successful tool in the infras-

tructure security domain [20,42,62]. In this domain, the security forces (defender) deploy

security resources to protect key infrastructures (targets) against potential terrorists (at-

tackers). With limited resources available, it is usually impossible to protect all targets

at all times. SSGs optimize the use of defender resources with the use of game-theoretic

approaches. In SSG model, the defender acts first and commits to a mixed strategy while

the attacker learns the mixed strategy after long-time surveillance and then chooses one

target to attack [55].

The success of SSGs in the infrastructure security domains has inspired researchers’

interest in applying game-theoretic models to other security domains with frequent in-

teractions between defenders and attackers, e.g., wildlife protection [12, 58]. However,

these two domains are different. In wildlife protection domain, attack (poaching) hap-

pens frequently so that it gives defenders (patrollers) the opportunity to learn attackers’

(poachers’) preferences from their previous actions and then to plan patrol strategies ac-

cordingly; while this learning opportunity does not arise in the counter-terrorism domain.
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1.1 Problem Addressed

The computation of the optimal strategy for the defender requires the defender to know

how the attacker views the importance of every target since it involves predicting the

attacker’s action under a certain defender strategy. If the defender is unable to predict

the attacker’s action correctly, she may suffer significant losses. Motivated by that, my

thesis focuses on addressing uncertainty in attacker preferences over targets using robust

and learning approaches.

The defender’s uncertainty about how the attacker views the importance of every

target may come from two different perspectives: (i) the uncertainty over attacker’s

payoffs, i.e., the defender is uncertain about the true payoffs of different targets for the

attacker; (ii) the uncertainty over attacker’s risk attitude, i.e., the attacker may not be

risk-neutral and the defender is uncertain about the attacker’s risk attitude.

In security domains with one-shot attack, e.g., counter-terrorism domains, the attack

happens rarely so there is no chance for the defender to learn attacker’s preference from

their previous actions. Thus, the defender is interested in robust approaches that can

provide performance guarantee in the worst case. The payoff uncertainty in SSGs has

been addressed in previous literature [19] while the risk attitude uncertainty has not been

addressed yet. Therefore, the first part of my thesis focuses on handling attacker’s risk

attitude uncertainty in SSGs with robust approaches.

In security domains with repeated attacks, e.g., green security domain of protecting

natural resources, the attacker “attacks” (illegally extracts natural resources) frequently,

so it is possible for the defender to learn attacker’s preference from their previous actions

2



and then to use this information to better plan her strategy. Therefore, the second part

of my thesis focuses on learning attacker’s preferences and then planning accordingly in

these domains. In this way, the learned preference is the preference in the attacker’s

mind, which takes both the payoff and risk attitude into account. My thesis models the

preferences from two different perspectives:

1. The preference is modeled as payoff and the defender learns the payoffs from at-

tackers’ previous actions and then plan accordingly. However, this work is based

on two key assumptions: (i) the attacker follows some certain behavioral patterns

that are known to the defender; (ii) both the defender and the attacker can observe

their opponent’s activities at all targets. However, these two assumptions may not

hold in some domains.

2. To relax these two assumptions, I model the preference as a markovian process

that transits according to defender’s strategies. The defender learns the markovian

process from attackers’ previous actions and then plans accordingly. This model

needs no prior information about the attacker’s behavioral patterns and is able to

handle the exploration-exploitation tradeoff in these domains, which is caused by

the fact that the defender is only able to observe the attack activities happening at

protected targets.

1.2 Contributions

My contributions include addressing uncertainty in attackers’ preference using robust and

learning approaches. My first contribution develops an algorithm to efficiently compute

3



the robust strategy against risk-aware attackers in SSGs. My second contribution models

the preference as payoffs and focuses on learning the payoffs and then planning accordingly

in green security domains. My third contribution models the preference as markovian pro-

cess that transits according to defender’s strategies to handle the exploration-exploitation

tradeoff in these domains.

1.2.1 Robust Strategy against Risk-aware Attackers in SSGs

The first part of my thesis [51] focuses on handling the uncertainty of attacker’s risk

preferences in security games. Previous work on game theory for SSGs emphasizes a

risk neutral attacker that is trying to maximize his expected reward. However, extensive

studies show that the attackers are in fact risk-aware, e.g., terrorist groups in counter-

terrorism domains [44, 46, 48] are shown to be risk-averse. If the defender fails to take

attacker’s risk preference into consideration when designing strategies, she may suffer

significant losses. Furthermore, risk awareness encompasses a wide range of behavior —

so to say that attackers are risk-aware is not enough for the defender. In other words,

the defender has uncertainty over the attacker’s degree of risk awareness. To address this

issue, the first part of my thesis computes a robust defender strategy that optimizes the

worst case against risk-aware attackers with uncertainty in the degree of risk awareness [1],

i.e., it provides a solution quality guarantee for the defender no matter how risk-aware

the attacker is.

To develop the robust strategy, I firstly build a robust SSG framework against an

attacker with uncertainty in level of risk awareness. Second, building on previous work

4



on SSGs in mixed-integer programs, I propose a novel mixed-integer bilinear program-

ming problem (MIBLP), and find that it only finds locally optimal solutions. While the

MIBLP formulation is also unable to scale up, it provides key intuition for my new al-

gorithm. This new algorithm, BeRRA (Binary search based Robust algorithm against

Risk-Aware attackers) is my third contribution, and it finds globally ǫ-optimal solutions

by solving O(n log(1ǫ ) log(
1
δ )) linear feasibility problems. The key idea of the BeRRA

algorithm is to reduce the problem from maximizing the reward with a given number of

resources to minimizing the number of resources needed to achieve a given reward. This

transformation allows BeRRA to scale up via the removal of the bilinear terms and integer

variables as well as the utilization of key theoretical properties that prove correspondence

of its potential “attack sets” [20] with that of the maximin strategy. Finally, I also show

that the defender does not need to consider attacker’s risk attitude in zero-sum games.

The experimental results show the solution quality and runtime advantages of my robust

model and BeRRA algorithm.

1.2.2 Learning Attacker’s Preference — Payoff Modeling

The second part of my thesis [50] focuses on learning the attacker’s payoffs in green

security domains where there are frequent interactions between the defender and the

attacker. In green security domains, the “defenders” (law enforcement agencies) try

to protect these natural resources and “attackers” (criminals) seek to exploit them. In

infrastructure security games, the attacker conducts extensive surveillance on the defender

and executes a one-shot attack, while in green security domains, the attacker also observes

the defender’s strategy but carries out frequent illegal extractions. Therefore, there are
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frequent interactions between the defender and the attacker, which gives the defender the

opportunity to learn the attacker’s payoffs by observing the attacker’s actions. Motivated

by this, the second part of my thesis develops the model and algorithm for the defender

to learn target values from attacker’s actions and then uses this information to better

plan her strategy.

In this work, I model these interactions between the defender and the attacker as a

repeated game. I then adopt a fixed model for the attacker’s behavior and recast this

repeated game as a partially observable Markov decision process (POMDP). However,

my POMDP formulation has an exponential number of states, making current POMDP

solvers like ZMDP [54] and APPL [25] infeasible in terms of computational cost. Silver

and Veness [53] have proposed the POMCP algorithm which achieves a high level of

performance in large POMDPs. It uses particle filtering to maintain an approximation

of the belief state of the agent, and then uses Monte Carlo Tree Search (MCTS) for

online planning. However, the particle filter is only an approximation of the belief state.

By appealing to the special properties of my POMDP, I propose the GMOP algorithm

(Gibbs sampling based MCTS Online Planning) which draws samples directly from the

exact belief state using Gibbs sampling and then runs MCTS for online planning. My

algorithm provides higher solution quality than the POMCP algorithm. Additionally, for

a specific subclass of my game with an attacker who plays a best response against the

defender’s empirical distribution, and a uniform penalty of being seized across all targets,

I provide an advanced sampling technique to speed up the GMOP algorithm along with

a heuristic that trades off solution quality for lower computational cost. Moreover, I

explore the case of continuous utilities where my original POMDP formulation becomes

6



a continuous-state POMDP, which is generally difficult to solve. However, the special

properties in the specific subclass of game mentioned above make possible the extension

of the GMOP algorithm to continuous utilities. Finally, I explore the more realistic

scenario where the defender is not only uncertain about the distribution of resources,

but also uncertain about the attacker’s behavioral model. I address this challenge by

extending my POMDP formulation and the GMOP algorithm.

1.2.3 Learning Attacker’s Preference — Markovian Modeling

My second contribution [50] assumes that defenders have knowledge of all poaching activ-

ities throughout the wildlife protected area. Unfortunately, given vast geographic areas

for wildlife protection, defenders do not have knowledge of poaching activities in areas

they do not protect. Thus, defenders are faced with the exploration-exploitation tradeoff

— whether to protect the targets that are already known to have a lot of poaching ac-

tivities or to explore the targets that haven’t been protected for a long time. My third

contribution [52] aims to solve this exploration-exploitation tradeoff.

The exploration-exploitation tradeoff here is different from that in the non-Bayesian

stochastic multi-armed bandit problem [4]. In stochastic multi-armed bandit problems,

the rewards of every arm are random variables with a stationary unknown distribution.

However, in this problem, patrol affects attack activities — more patrol is likely to de-

crease attack activities and less patrol is likely to increase attack activities. Thus, the

random variable distribution is changing depending on player’s choice — more selection

(patrol) leads to lower reward (less attack activities) and less selection (patrol) leads

to higher reward (more attack activities). On the other hand, adversarial multi-armed

7



bandit problem [5] is also not an appropriate model for this domain. In adversarial multi-

armed bandit problems, the reward can arbitrarily change while the attack activities in

this problem are unlikely to change rapidly in a short period. This makes the adversarial

multi-armed bandit model inappropriate for this domain.

In reality, how patrol affects attack activities would be reasonably assumed to follow a

consistent pattern that can be learned from historical data (defenders’ historical observa-

tions). I model this pattern as a Markov process and provide the following contributions

in this work. First, I formulate the problem into a restless multi-armed bandit (RMAB)

model to handle the limited observability challenge — defenders do not have observations

for arms they do not activate (targets they do not protect). Second, I propose an EM

based learning algorithm to learn the RMAB model from defenders’ historical observa-

tions. Third, I use the solution concept of Whittle index policy to solve the RMAB model

to plan for defenders’ patrol strategies. However, indexability is required for the existence

of Whittle index, so I provide two sufficient conditions for indexability and an algorithm

to numerically evaluate indexability. Fourth, I propose a binary search based algorithm

to find the Whittle index policy efficiently.

1.3 Overview of Thesis

This thesis is organized in the following manner. Chapter 2 discusses the necessary back-

ground materials for the research presented in this thesis. Chapter 3 provides an overview

of the relevant research. Chapter 4 discusses the algorithm to compute the robust strategy

against risk-aware attackers. Chapter 5 presents the model to learn attackers’ payoffs of

8



different targets and then use this information to better plan defenders’ patrol strategies.

Chapter 6 demonstrates the model where attacker’s preference is modeled as Markovian

process. Chapter 7 concludes this thesis and presents ideas for future work.

9



Chapter 2

Background

2.1 Stackelberg Security Games

An SSG [20,42,62] is a two-player game between a defender and an attacker. We consider

the problem with n targets where T = {1, 2, . . . , n} is the set of targets. The defender has a

total number ofm resources to allocate among these n targets to protect them from attack.

The defender commits to a mixed strategy c to protect these targets, where ci ∈ [0, 1] is

the probability that target i is protected. We have the resource constraint
∑

i∈T ci ≤ m.

The attacker observes the defender’s strategy c and then chooses one target to attack.

If the attacker attacks a protected target i, this attack is unsuccessful and the attacker

receives utility U c
a(i) while the defender receives utility U c

d(i). If the attacker attacks an

unprotected target i, this attack is successful and the attacker receives utility Uu
a (i) while

the defender receives utility Uu
d (i). Necessarily, U

u
d (i) < U c

d(i) and U c
a(i) < Uu

a (i),∀i ∈ T.

If Uu
d (i) + Uu

a (i) = 0 and U c
d(i) + U c

a(i) = 0,∀i ∈ T, this SSG is a zero-sum game.

We define Ua(i, c) , ciU
c
a(i)+ (1− ci)U

u
a (i) to be the expected utility for the attacker

when the defender’s strategy is c and the attacker chooses to attack target i; similarly,

10



Ud(i, c) , ciU
c
d(i) + (1 − ci)U

u
d (i) is the expected utility for the defender. Given the

defender strategy c, the attacker would attack the target that maximizes his expected

utility. When there are ties, the attacker is assumed to break ties in favor of the defender.

Thus, a mixed integer linear program (MILP) can be formulated to compute the defender’s

optimal strategy, as is shown in Problem (2.1). Here, {qi}i∈T are auxiliary variables to

represent if target i is chosen by the attacker, and M is a constant orders of magnitude

larger than all target utilities. The solution c is called the Strong Stackelberg Equilibrium

(SSE) strategy [11,24,55] of the game.

max
c,{qi}i∈T,v,d

v

s.t. 0 ≤ ci ≤ 1,∀i ∈ T

∑

i∈T

ci ≤ m

qi ∈ {0, 1},∀i ∈ T

∑

i∈T

qi = 1

v ≤ Ud(i, c) + (1− qi)M,∀i ∈ T

0 ≤ d− Ua(i, c) ≤ (1− qi)M,∀i ∈ T

(2.1)

2.2 POMDP

POMDP is a generalization of a Markov decision process (MDP) by assuming that the

agent cannot directly observe the underlying state. Instead, the agent observes “obser-

vation”, which reveals the underlying states via a probability distribution. Therefore,

the agent maintains a probability distribution over the set of possible states based on its

observations, and also plans its actions according to this distribution.
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The POMDP framework can be used to model sequential decision processes in uncer-

tain environments. At the beginning of each round, the agent has a probability distribu-

tion of the state it is current in, it then executes the optimal action under this distribution

and gets the corresponding observation, it finally uses the observation to update the belief

of its new state.

Formally, a POMDP is a 7-tuple (S,A, T,R,Ω, O, γ), where

• S is a set of states

• A is a set of actions

• T is a set of conditional transition probabilities between states

• R : S ×A→ R is the reward function

• Ω is a set of observations

• O is a set of conditional observation probabilities

• γ ∈ [0, 1] is the discount factor

For standard POMDP formulation, the belief update is:

b′(s′) =
P (o|s′, a)∑s∈S b(s)P (s′|s, a)

P (o|b, a) (2.2)

where

P (o|b, a) =
∑

s′∈S

P (o|s′, a)
∑

s∈S

b(s)P (s′|s, a)
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POMDP can be solved by value iteration algorithm, while I will briefly present below:

The value function is

V ′(b) = max
a∈A

(
∑

s∈S

b(s)R(s, a) + β
∑

o∈O

P (o|b, a)V (boa)

)

It can be broken up to simpler combinations of other value functions:

V ′(b) = max
a∈A

Va(b)

Va(b) =
∑

o∈O

V o
a (b)

V o
a (b) =

∑
s∈S b(s)R(s, a)

|O| + βP (o|b, a)V (boa)

All the value functions can be represented as V (b) = maxα∈D b · α since the update

process maintains this property, so we only need to update the set D when updating the

value function. The set D is updated according to the following process:

D′ = purge

(
⋃

a∈A

Da

)

Da = purge

(
⊕

o∈O

Do
a

)

Do
a = purge ({τ(α, a, o)|α ∈ D})

where τ(α, a, o) is the |D|-vector given by

τ(α, a, o)(s) = (1/|O|)R(s, a) + β
∑

s′∈S

α(s′)P (o|s′, a)P (s′|s, a)
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and purge(·) takes a set of vectors and reduces it to its unique minimum form (remove

redundant vectors that are dominated by other vectors in the set).
⊕

represents the cross

sum of two sets of vectors: A
⊕

B = {α + β|α ∈ A, β ∈ B}.

The update of D′ and Da is intuitive, so I briefly explain the update of Do
a here:

P (o|b, a)V (boa) = P (o|b, a)max
α∈D

∑

s′∈S

α(s′)P (s′|b, a, o)

= P (o|b, a)max
α∈D

∑

s′∈S

α(s′)
P (o|s′, a)∑s∈S b(s)P (s′|s, a)

P (o|b, a)

= max
α∈D

∑

s′∈S

α(s′)P (o|s′, a)
∑

s∈S

b(s)P (s′|s, a)

= max
α∈D

∑

s∈S

b(s) ·
(
∑

s′∈S

α(s′)P (o|s′, a)P (s′|s, a)
)

Here, P (s′|b, a, o) is the belief of state s′ in the next round when the belief in the

current round is b, the agent takes action a and get the observation o, which is the b(s′)

in Equation 2.2.

2.3 Restless Multi-armed Bandit (RMAB) Problem

In RMABs, each arm represents an independent Markov machine. At every round, the

player chooses k out of n arms (k < n) to activate and receives the reward determined

by the state of the activated arms. After that, the states of all arms will transition to

new states according to certain Markov transition probabilities. The problem is called

“restless” because the states of passive arms will also transition like active arms. The aim

of the player is to maximize his cumulative reward by choosing which arms to activate
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at every round. It has shown by Papadimitriou and Tsitsiklis that it is PSPACE-hard to

find the optimal strategy to general RMABs [41].

An index policy assigns an index to each state of each arm to measure how rewarding

it is to activate an arm at a particular state. At every round, the index policy chooses

to pick the k arms whose current states have the highest indices. Since the index of an

arm only depends on the properties of this arm, index policy reduces an n-dimensional

problem to n 1-dimensional problems so that the complexity is reduced from exponential

with n to linear with n.

Whittle proposed a heuristic index policy for RMABs by considering the Lagrangian

relaxation of the problem [57]. It has been shown that Whittle index policy is asymptot-

ically optimal under certain conditions as k and n tend to ∞ with k/n fixed [56]. When

k and n are finite, extensive empirical studies have also demonstrated the near-optimal

performance of Whittle index policy [3, 13]. Whittle index measures how attractive it is

to activate an arm based on the concept of subsidy for passivity. It gives the subsidy m to

passive action (not activate) and the smallest m that would make passive action optimal

for the current state is defined to be the Whittle index for this arm at this state. Whittle

index policy chooses to activate the k arms with the highest Whittle indices. Intuitively,

the larger the m is, the larger the gap is between active action (activate) and passive

action, the more attractive it is for the player to activate this arm. Mathematically, de-

note Vm(x; a = 0) (Vm(x; a = 1)) to be the maximum cumulative reward the player can
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achieve until the end if he takes passive (active) action at the first round at the state x

with subsidy m. Whittle index I(x) of state x is then defined to be:

I(x) , inf
m
{m : Vm(x; a = 0) ≥ Vm(x : a = 1)}

However, Whittle index only exists and Whittle index policy can only be used when

the problem satisfies a property known as indexability, which I define below. Define Φ(m)

to be the set of states for which passive action is the optimal action given subsidy m:

Φ(m) , {x : Vm(x; a = 0) ≥ Vm(x : a = 1)}

Definition 2.3.1. An arm is indexable if Φ(m) monotonically increases from ∅ to the

whole state space as m increases from −∞ to +∞. An RMAB is indexable if every arm

is indexable.

Intuitively, indexability requires that for a given state, its optimal action can never

switch from passive action to active action with the increase of m. The indexability of

an RMAB is often difficult to establish and computing Whittle index can be complex.
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Chapter 3

Related Work

3.1 Uncertainty in Stackelberg Security Games

Previous approaches that handle uncertainty in SSGs can be divided into two categories:

• model uncertainty in terms of different attacker types and solve a resulting Bayesian

Stackelberg game [42,62]

• apply robust optimization techniques to optimize the worst case for the defender

over the range of model uncertainty [19,34,60]

3.1.1 Bayesian Stackelberg Games

Bayesian Stackelberg game models uncertainty by allowing different attacker types, where

there is some prior probability corresponding to each attacker type. Although this method

is used to model payoff uncertainty in previous work [42,62], it can also be used to model

different degrees of attacker risk awareness in SSGs. However, this approach requires

a prior distribution of attacker types, which is usually inapplicable for many real-world
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security domains [34]. In addition, it is difficult to apply this approach to infinitely many

attacker types.

3.1.2 Robust Stackelberg Games

Maximin method Maximin method for addressing uncertainties in SSGs focuses on

maximizing the defender’s utility against the worst case of uncertainties. Yin et al. [60]

computes a defender strategy that is robust against defender execution uncertainty as

well as uncertainty in the attacker’s observations of the defender’s strategy. Kiekintveld

et al. [19] focus on interval uncertainty in the attacker’s payoffs. Nguyen et al. [34] develop

a robust strategy that takes the attacker’s bounded rationality into account as well as

the uncertainties [19,60] discuss.

Minimax regret method Minimax regret method captures another concept of robust-

ness when handling uncertainties in SSGs. In particular, it attempts to minimize the

maximum “regret” or distance of a decision (e.g., defender’s strategy) from the actual

optimal decision for any instance within the uncertainty. Nguyen et al. [36] uses this

concept of robustness in handling interval uncertainty in the attacker’s payoffs.

The previous work has addressed neither attacker risk awareness nor ambiguity about

the attacker risk profile. Although Kiekintveld et al. [19] and Nguyen et al. [36] try to

capture uncertainty in attacker’s utilities, they are unable to fully capture the attacker’s

risk awareness. The mapped utilities are coupled in the risk awareness setting since they

are mapping with the same utility function Û , and interval uncertainty is unable to model

that. For example, Suppose target t1 is of reward 1 and penalty −2; target t2 is of reward

2 and penalty −1. The coverage probability c1 = c2 = 0.5. A risk-averse attacker will
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always attack t2 since Û must be strictly increasing. However, the model with interval

uncertainty 1 would consider both t1, t2 to be potential targets for attack.

3.2 Adversary Behavioral Models

Some previous work explores human’s bounded rationality in decision making — humans

do not necessarily choose the strategy that provides them the highest expected utility [8].

Quantal response [31,32] argues that human are more likely to choose the strategy with

a higher expected utility. Yang et al. [59] apply the concept of quantal response to

security games and compute the optimal strategy for the defender assuming that the

attacker’s response follows Quantal response. Nguyen et al. [35] propose the SUQR

model by extending the quantal response concept with subjective utilities in security

games. However, these approaches do not model risk awareness, and nor do they model

uncertainty in risk awareness that I model in my thesis. In fact, models such as SUQR

essentially address concerns that are orthogonal to the issue of risk awareness; future

research may thus consider integrating bounded rationality models with risk awareness.

3.3 Learning Attacker Payoffs

There has been previous work on learning attacker payoffs in repeated security games [26,

30]. Letchford et al. [26] develop an algorithm to uncover the attacker type in as few

rounds as possible, while my work focuses on maximizing the defender’s utility. Marecki

et al. [30] use MCTS to maximize the defender’s utility in the first few rounds. However,

their algorithm is unable to offer guidance in later rounds because it does not allow for
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belief updating, which is a major component of my work. Additionally, Letchford et

al. [26] and Marecki et al. [30] both assume that the defender plays a mixed strategy and

the attacker plays a pure strategy that maximizes his expected utility given the defender’s

mixed strategy. However, illegal extractions happen frequently in resource green security

domains, so the assumption that the attacker carries out surveillance over a long time

to know the exact mixed strategy of the defender does not hold. Furthermore, I relax

the assumption that the attacker is perfectly rational to handle more general behavior

models such as quantal response.

3.4 Green Security Games

There is a significant body of literature discussing the activity of illegal extraction of

natural resources [2, 16, 29]. In particular, this topic has also become popular in the AI

community which emphasizes mathematical approaches [15, 18, 58]. Haskell et al. [15]

and Yang et al. [58] model the game between the defender and the attacker as a repeated

Stackelberg game where the defender plays a mixed strategy and the attacker plays a

pure strategy against the mixed strategy at every round. They assume that the attacker

is a non-rational SUQR playing agent [35] with unknown parameters. They use MLE

(Maximum Likelihood Estimation) to estimate those parameters from the attacker’s ac-

tions and optimize the defender’s strategy against the estimate. Fang et al. [12] extends

these works by assuming that the attacker responds to a certain convex combination of

the defender’s mixed strategies in previous few rounds.
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One main difference of my work from these previous works is that I consider a short

period as a round so that the defender plays a pure strategy at every round while previous

works consider a long period as a round so that the defender plays a mixed strategy at

every round. my model has the following advantages: (i) from the modeling perspec-

tive, it is difficult for the attacker to realize that the defender has switched from one

mixed strategy to another mixed strategy. Furthermore, the attacker carries out illegal

extractions frequently so the attacker might not have enough time to fully observe the

new mixed strategy; (ii) from the strategy flexibility perspective, my model is capable of

designing more flexible strategies since “playing a mixed strategy for a long period” can

be represented as “playing a randomized strategy according to some probability distri-

bution everyday during that period” while most short-period-based strategies can not be

represented by long-period-based strategies.

These previous works also suffer from another two limitations. First, this research

fails to capture the defender’s lack of observation of attacks — in the real world, given

a large area to patrol, the defender only has observations of attacks on the limited set

of targets she patrolled in any given round. She does not have full knowledge of all of

attackers’ actions as assumed in [12, 15, 18, 58], leading to an unaddressed exploration-

exploitation tradeoff for defenders: informally, should the defender allocate resources to

protect targets that have already been visited and have been observed to have suffered

a lot of attacks or should she allocate resources to protect targets that have not visited

for a long time and hence where there are no observations of attacks. Second, while

significant work in security games has focused on uncertainty over attackers’ observations

of defender actions [60], the reverse problem has received little attention. Specifically,
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given frequent interactions with multiple attackers, the defender herself faces observation

uncertainty in observing all of the attacker actions even in the targets she does patrol.

Addressing this uncertainty in the defender’s observation is important when estimating

attacks on targets and addressing the exploration-exploitation tradeoff.

3.5 Exploration-exploitation Tradeoff in Security Domains

The limited observability property and exploration-exploitation tradeoff is also noticed by

Kĺıma in the domain of border patrol where the border is large area [21,22]. They model

the problem as a stochastic/adversarial multi-armed bandit problem and use (sliding-

window) UCB algorithm [4]/EXP3 algorithm [5] to plan for patrollers’ strategies. How-

ever, the stochastic bandit formulation fails to model patrol’s effect on attackers’ actions

while the adversarial bandit formulation fails to capture attackers’ behavioral pattern.

3.6 Indexability of Restless Multi-armed Bandit Problem

There is a rich literature on indexability of restless multi-armed bandit problem. Glaze-

brook et al. [13] provide some indexable families of restless multi-armed bandit problems.

Nino-Mora [37] propose PCL-indexability and GCL-indexability and show that they are

sufficient conditions for indexability. Liu and Zhao [27] apply the concept of RMABs in

dynamic multichannel access. In their model, every arm is a two-state Markov chain and

the player only knows the state of the arm he chooses to activate. They prove the index-

ability of their problem and find the closed-form solution for the Whittle index. In [38],

Ny et al. also consider the same class of RMABs but motivated by the application of
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UAV routing. This problem shares some similarity with my problem but my problem is

more difficult in the following aspects: (i) I cannot directly observe the states (POMDP

vs. MDP); (ii) different actions lead to different transition matrices in my model; (iii) I

allow for more states and observations. A further extension to this work discusses the

case with probing errors where the player’s observation about the state might be incor-

rect [28]. This concept is similar to what I assume in my model, but the detailed settings

are different.
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Chapter 4

Robust Strategy against Risk-aware Attackers in SSGs

This Chapter discusses my contribution of computing the robust strategy against risk-

aware attackers. I will use the risk-averse attackers as an example to discuss the algorithm

to compute the robust strategy, and then extend the algorithm to handle other types of

risk-aware attackers.

A major motivation of this work is that the attacker is risk-averse in some domains,

e.g., terrorists in the counter-terrorism domain. George Habash of the Popular Front for

the Liberation of Palestine has said “the main point is to select targets where success is

100% assured ” [17]. A report from RAND corporation [33] discusses the role of deterrence

in counter-terrorism domain. They mention the evidence in the report that:

In the doctrine of groups like the Provisional Irish Republican Army, require-

ments for operational planning include explicit consideration of how pre-attack

surveillance can be used to manage and reduce operational risks. Similarly,

in a document captured from the Islamic State of Iraq/al Qaeda in Iraq, a

group member laments the deleterious effects on potential suicide bombers
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when they suspect that poor planning may result in their lives being wasted

on low-value targets.

The RAND report takes advantage of the fact that terrorists are risk-averse and hate

uncertainty and discusses several possible solutions in increasing the uncertainties for

terrorists to deter them. Besides that, creating uncertainty is already a key part of some

security planning. For example, the Transportation Research Board [40] suggests one

goal of security should be to ”create a high degree of uncertainty among terrorists about

their chances of defeating the system.”. A similar point was made by the Defense Science

Board [39] with respect to deterrence as part of national defense against nuclear terrorism:

The deterrent aspect of the protection equation involves the often-great dif-

ferences between how a defender and an attacker will view the relative ca-

pabilities of the defense. The long history of offense/defense competitions is

strongly characterized by both sides taking ownside-conservative views. More

particularly, the annals of terrorism and counterterrorism are replete with in-

stances in which a prospective attacker was deterred by aspects of the defense

that may have seemed relatively weak and ineffectual to the defender. The

terrorist may not be afraid to die, but he (or his master) does not want to

fail. Dissuasion/deterrence by the adversary’s fear of failure might work in

a variety of ways. One aspect is that an attacker will want to know enough

about the defense to design a robust, successful attack. If the capabilities of

the defense can be improved enough that the attacker must know the details

of defensive measures in place to understand how to best surmount them, then
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the attacker may expose himself to discovery during the planning phases of

the attack or be altogether dissuaded from the attempt. Creating uncertainty

in the attacker’s mind will be critical to maximizing the success of defenses

which, realistically, cannot aspire to perfection. To exploit the effects of un-

certainty, the defense should be deliberately designed and deployed to create

as much ambiguity for the attacker as possible as to where the boundaries of

defense performance lie.

There is another thread of work that studies terrorist risk attitudes [45,47,49]. In [47],

portfolio theory is applied to study a terrorist group’s decision making process, and this

research argues that terrorist strategies are risk-averse and are highly sensitive to the

group’s level of risk aversion. While this finding of risk aversion may appear to be

counter-intuitive, notice that it is the terrorist groups (and the planners in these groups)

that are found to be risk-averse due to resource limitation; not the individuals in the

organization who finally launch an attack. [45] studies the risk preferences of Al Qaeda

specifically and concludes that the group is risk-averse and consistently displays the same

degree of risk aversion in their activities. This work is further extended in [49] where the

degree of risk aversion for Al Qaeda is estimated empirically based on data of attacks

over the last decade.

I firstly build a robust SSG framework against an attacker with uncertainty in level

of risk aversion. Second, building on previous work on SSGs in mixed-integer programs,

I propose a novel mixed-integer bilinear programming problem (MIBLP), and find that

it only finds locally optimal solutions. While the MIBLP formulation is also unable to
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scale up, it provides key intuition for my new algorithm. This new algorithm, BeRRA

(Binary search based Robust algorithm against Risk-Averse attackers) is my third con-

tribution, and it finds globally ǫ-optimal solutions by solving O(n log(1ǫ ) log(
1
δ )) linear

feasibility problems. The key idea of the BeRRA algorithm is to reduce the problem from

maximizing the reward with a given number of resources to minimizing the number of

resources needed to achieve a given reward. This transformation allows BeRRA to scale

up via the removal of the bilinear terms and integer variables as well as the utilization

of key theoretical properties that prove correspondence of its potential “attack sets” [20]

with that of the maximin strategy. Finally, I also show that the defender does not need

to consider attacker’s risk attitude in zero-sum games. The experimental results show

the solution quality and runtime advantages of my robust model and BeRRA algorithm.

4.1 Model

The SSE strategy provides the optimal defender strategy when the attacker is risk-neutral.

However, as previously discussed, attackers are risk-averse rather than risk-neutral in

several key domains. If the defender executes the SSE strategy against a risk-averse

attacker, then the defender may suffer significant losses in solution quality. I show in

Example 1 that these losses can be arbitrarily large.

Example 4.1.1. Suppose there are two targets, t1 and t2, in the game, and their utilities

are as shown in Table 4.1. The defender has only 1 resource. The SSE strategy of the

game is c1 = 0.4, c2 = 0.6. If the attacker is risk-averse, he would choose to attack t1
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(these two targets are identical to the attacker in terms of expected utility, but a risk-

averse attacker prefers a small reward with high probability versus a high reward with low

probability), and the defender’s reward would be 0.4+0.6x for the SSE strategy. However,

if the defender executes the strategy of c1 = 1, c2 = 0, then the attacker would attack t2

and the defender would receive reward −1. Compared with −1, the loss of the SSE strategy

can be arbitrarily large since x can be arbitrarily small.

Table 4.1: Utility Example

Uc
d Uu

d Uc
a Uu

a

t1 1 x -1 1
t2 1 -1 -1 2

This example strongly motivates the need to consider risk-averse attackers. However,

real world defenders are uncertain about the attacker’s degree of risk aversion, and the

defender may suffer significant losses if she incorrectly estimates it. Therefore I focus

on a robust strategy in this work, i.e., my aim is to compute a defender strategy that is

robust against all possible risk-averse attackers.

In literature on risk, the utility function f , which maps values to utilities, is used to

specify the risk preference. f is concave for the risk-averse case and is convex for the

risk-seeking case, while the risk-neutral case corresponds to the function y = Cx,C > 0.

The agent makes decisions based on the mapped utilities.

In my problem, I define the mapping function Û that maps the utilities U c
a(i) and Uu

a (i)

to the attacker’s mapped utilities. I denote Ûa(i, c) , ciÛ(U c
a(i)) + (1 − ci)Û(Uu

a (i)) as

the attacker’s expected utility under the mapping Û . I restrict Û to be strictly increasing,

concave and satisfying the equality Û(0) = 0 — strictly increasing reflects the preference

for more to less; concavity corresponds to risk aversion; and Û(0) = 0 distinguishes
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between gains and losses. According to this definition, the risk-averse case includes the

risk-neutral case.

I define U to be the set of all valid mapping functions Û . Problem (4.1) describes

the robust defender strategy through a bilevel optimization problem. In the upper

level, the defender chooses c to maximize her expected utility Ud(k, c). The constraint

k ∈ argmaxi∈T Ûa(i, c) requires target k to have the highest expected utility for the at-

tacker under the utility mapping Û when the defender’s strategy is c. The lower level

demonstrates that the defender maximizes her worst-case reward over all possible attacker

responses with utility mapping functions Û ∈ U . The lower level also suggests that the

attacker breaks ties against the defender due to the concept of robustness. I define the

solution c to be the Robust Stackelberg Equilibrium (RSE) strategy of the game.

max
c

min
Û∈U ,k

{
Ud(k, c) : k ∈ argmax

i∈T
Ûa(i, c)

}

s.t. 0 ≤ ci ≤ 1,∀i ∈ T

∑

i∈T

ci ≤ m

(4.1)

4.2 Preliminaries

In its current form, the optimization problem (4.1) is not tractable because it is a bilevel

programming problem that requires the solution of uncountably many inner optimization

problems indexed by U [6]. To take steps towards tractability, in Section 4.2.1 and 4.2.2,

I provide key concepts that are used in my MIBLP formulation (Section 4.3) and my

BeRRA algorithm (Section 4.4).
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4.2.1 Risk Aversion Modeling

In this section, I write the condition Û ∈ U in a computationally tractable way via linear

constraints. For any utility function Û ∈ U , we are actually only interested in its values

at 0 and at the points of the attacker’s utility set U c
a(i) and Uu

a (i), which I denote as Θ:

Θ = {Uu
a (i), U

c
a(i),∀i ∈ T}

⋃
{0} = {θ1, . . . , θI} ,

where θ1 < θ2 < · · · < θI .

Lemma 4.2.1. Choose ǫu > 0.1 Û ∈ U is equivalent to satisfying the linear con-

straints (4.2) on the values
{
Û (θ)

}
θ∈Θ

, i.e., ∀Û ∈ U , Û satisfies the constraints (4.2);

∀
{
Û ′ (θ)

}
θ∈Θ

that satisfies constraints (4.2), ∃Û ∈ U such that
{
Û (θ) = Û ′ (θ)

}
θ∈Θ

.

Û (θ2)− Û (θ1)

θ2 − θ1
≥ Û (θ3)− Û (θ2)

θ3 − θ2

≥ . . . ≥ Û (θI)− Û (θI−1)

θI − θI−1
≥ ǫu

Û(0) = 0

(4.2)

Proof. If Û ∈ U , then
{
Û (θ)

}
θ∈Θ

satisfies constraints (4.2) by definition. Conversely,

if
{
Û ′ (θ)

}
θ∈Θ

satisfies constraints (4.2), the piecewise linear function that connects

{(θ1, Û ′(θ1)), (θ2, Û
′(θ2))}, {(θ2, Û ′(θ2)), (θ3, Û

′(θ3))}, . . . , {(θI−1, Û
′(θI−1)), (θI , Û

′(θI))}

belongs to U .
1Since Problem (4.1) is invariant under scaling of Û , i.e., the attacker makes the same decision under

either Û or αÛ,∀α > 0. Thus, the value of ǫu does not affect the result.
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Based on Lemma 4.2.1, the condition Û ∈ U is completely captured by constraints

(4.2). From now on I denote the constraints (4.2) compactly as Û ∈ U .

4.2.2 Possible Attack Set

In this section, to better understand Problem (4.1) I study the “possible attack set” Sp(c)

and its complement Si(c) = T− Sp(c).

Definition 4.2.2. Given the coverage probability c, Possible Attack Set Sp(c) is defined

to be the set of targets that may be attacked by a risk-averse attacker, i.e., it is the set of

targets that have the highest expected utility for the attacker for some Û ∈ U .

Si(c) = T−Sp(c) is defined to be the set of targets that the attacker will never attack,

i.e., the set of targets that for any Û ∈ U , there always exists another target i ∈ Sp(c)

with a higher expected utility for the attacker.

Given the coverage probability c, we can compute Sp(c) and Si(c) by testing the

feasibility of the following constraints for every target.

Ûa(i, c) ≥ Ûa(j, c),∀j ∈ T, j 6= i

Û ∈ U
(4.3)

If these constraints are feasible for a target i, there exists a mapping Û ∈ U under

which target i has the highest expected utility for the attacker, and thus i ∈ Sp(c);

otherwise, i ∈ Si(c).
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In Problem (4.1), when the defender’s strategy c is given, the defender’s (worst case)

reward is:

min
Û∈U ,k

{
Ud(k, c) : k ∈ argmax

i∈T
Ûa(i, c)

}

which is equivalent to:

min
i∈Sp(c)

{Ud(i, c)}

So Problem (4.1) can be written as

max
c

min
i∈Sp(c)

{Ud(i, c)}

s.t. 0 ≤ ci ≤ 1,∀i ∈ T

∑

i∈T

ci ≤ m

(4.4)

4.3 MIBLP Formulation

In this section, I formulate Problem (4.4) as an MIBLP problem to find the RSE strategy

for the defender. While this approach does not scale up to large-scale games, it provides

several insights for my BeRRA algorithm. As in Problem (2.1), I use integer variables
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{qi}i∈T to denote if target i belongs to Sp(c): I set qi = 1 if i ∈ Sp(c) and qi = 0 if

i ∈ Si(c). Problem (4.4) can then be converted to the formulation below

max
c

v

s.t. 0 ≤ ci ≤ 1,∀i ∈ T

∑

i∈T

ci ≤ m

qi ∈ {0, 1},∀i ∈ T

v ≤ Ud(i, c) + (1− qi)M,∀i ∈ T

i ∈ Sp(c)⇔ qi = 1

i ∈ Si(c)⇔ qi = 0

(4.5)

When i ∈ Sp(c), constraints (4.3) are feasible for target i. When i ∈ Si(c), for any

utility mapping Û ∈ U , there is always another target with a higher expected utility for

the attacker. I approximate this strict inequality with a small ǫc > 0:

min
Û∈U

{
max
j∈T

Ûa(j, c) − Ûa(i, c)

}
≥ ǫc

which states that for any Û ∈ U , there exists a target j ∈ T whose expected utility

for the attacker is at least ǫc more than the expected utility for target i. By substituting

maxj∈T Ûa(j, c) with the slack variable λ, the preceding bilevel optimization problem can

be reduced to:
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min
Û ,λ

λ− Ûa(i, c)

s.t. Ûa(j, c) ≤ λ,∀j ∈ T

Û ∈ U

(4.6)

If the solution of Problem (4.6) is larger than ǫc, then i ∈ Si(c). Otherwise, i ∈

Sp(c) (subject to the approximation error introduced by ǫc). Since Problem (4.6) is a

minimization problem, it cannot substitute the constraint i ∈ Si(c)⇔ qi = 0 in Problem

(4.5). So, I take the Lagrangian dual of Problem (4.6) to convert it into a maximization

problem:

max
α,β,γ,κ

βǫu

s.t.
∑

j∈T

γj = 1

∑

k∈T

γkck1{θj = U c
a(k)} + γk(1− ck)1{θj = Uu

a (k)}

− ci1{θj = U c
a(i)} − (1− ci)1{θj = Uu

a (i)}

+
αj−21{j ≥ 3}
θj − θj−1

− αj−11{I − 1 ≥ j ≥ 2}
θj+1 − θj

− αj−11{I − 1 ≥ j ≥ 2}
θj − θj−1

+
αj1{j ≤ I − 2}

θj+1 − θj

− β1{j = I}
θj − θj−1

+
β1{j = I − 1}

θj+1 − θj

+ κ1{θj = 0} = 0,∀j ∈ {1, 2, . . . , I}

αj ≥ 0,∀j ∈ {1, 2, . . . , I − 2}

β ≥ 0

γj ≥ 0,∀j ∈ T

(4.7)
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For succinct notation, I denote the constraints on the variables (α, β,γ, κ) in the

above formulation as (α, β,γ, κ) ∈ D. By applying Problem (4.3) and Problem (4.7) to

every target i to put constraints on qi, I summarize my final MIBLP formulation in the

next theorem.

Theorem 4.3.1. Problem (4.1) is (approximately)2 equivalent to

max v

s.t. 0 ≤ ci ≤ 1,∀i ∈ T

∑

i∈T

ci ≤ m

qi ∈ {0, 1},∀i ∈ T

v ≤ Ud(i, c) + (1− qi)M,∀i ∈ T

Û i
a(j, c) ≤ Û i

a(i, c) + (1− qi)M,∀i ∈ T,∀j ∈ T, j 6= i

Û i ∈ U ,∀i ∈ T

βiǫu ≥ ǫc − qiM,∀i ∈ T

(
α

i, βi,γi, κi
)
∈ D,∀i ∈ T

(4.8)

where the superscript i in
(
α

i, βi,γi, κi
)
and Û i marks different variables. Û i

a(j, c) is

attacker’s expected utility for target j under the mapping Û i and defender’s strategy c.

Proof. If qi = 1, the constraints Û i
a(j, c) ≤ Û i

a(i, c) + (1− qi)M,∀j ∈ T, j 6= i and Û i ∈ U

ensure that i ∈ Sp(c); if qi = 0, then these constraints are always feasible and can be

ignored.

If qi = 0, the constraints βiǫu ≥ ǫc−qiM and
(
α

i, βi,γi, κi
)
∈ D ensure that i ∈ Si(c)

(approximately) since there exists a solution
(
α

i, βi,γi, κi
)
∈ D that satisfies βiǫu ≥ ǫc.

2The approximation is due to the introduction of ǫc.
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Thus, the objective of Problem (4.7) is larger than ǫc, and i ∈ Si(c). For the other

direction, if the objective of Problem (4.7) is larger than ǫc, then these two constraints

are also satisfied; if qi = 1, these constraints are always feasible and can be ignored.

In summary, I have converted Problem (4.1) into Problem (4.8), which is an MIBLP:

{qi}i∈T are integer variables; Û i
a(j, c) = cjÛ

i(U c
a(j))+ (1− cj)Û

i(Uu
a (j)) contains bilinear

terms since both cj and Û i(U c
a(j))/Û

i(Uu
a (j)) are variables. Problem (4.8) is a non-convex

optimization problem and lacks efficient solvers. I used a powerful nonlinear solver —

KNITRO to search for local optimal solutions to Problem (4.8). However, this approach

does not scale up — the two-target scenario takes about 1 minute and the three-target

scenario takes about 15 minutes to solve. Faced with this scalability issue, I develop the

BeRRA algorithm that finds the ǫ-optimal solution and provides significant scalability.

4.4 BeRRA Algorithm

Problem (4.8) has two main hindrances to scaling up: the presence of Θ(n2) bilinear

terms and the presence of n integer variables. Thus, eliminating these bilinear terms and

integer variables should allow us to scale the problem up. The bilinear terms in Problem

(4.8) have two components: the coverage probability ci and the mapped attacker utilities

Û(U c
a(i))/Û (Uu

a (i)). Intuitively, we can avoid the bilinearity by fixing one of these two

terms. In addition, if the coverage probability c is fixed, then Sp(c) is also fixed and

we no longer need the integer variables {qi}i∈T to represent if i ∈ Sp(c). Based on the

idea of fixing the coverage probability c, I develop the BeRRA algorithm. This algorithm

computes an ǫ-optimal RSE strategy where ǫ can be made arbitrarily small.

36



The main idea of the BeRRA algorithm is to reduce the problem to computing the

minimum amount of resources needed to achieve a given reward, which can be solved

efficiently by using special properties of the problem. With this reduction, I use binary

search to find the highest reward that the defender can achieve with the given number

of resources. The high-level intuition of this reduction is that a fixed defender’s reward

leads to fixed defender maximin strategy, which eliminates the bilinear terms and integer

variables. Additionally, optimal strategy can be derived efficiently from the maximin

strategy via the property Sp(c
max) = Sp(c

opt).

4.4.1 Binary Search Reduction

Algorithm 1 lists the steps of my BeRRA algorithm. The input to Algorithm 1 is the

number of defender resources m and the defender’s and the attacker’s utilities U. The

output is the defender’s RSE strategy c and her reward lb. The lower bound lb and upper

bound ub are first set to be the lowest and the highest possible rewards, respectively, that

the defender may achieve (Line 2). The function MinimumResources(r, U) returns the

strategy p that uses the minimum number of resources for the defender to achieve reward

r. This function will be discussed in detail in Section 4.5. During the binary search

phase (Lines 3 ∼ 11), the lower bound is set to be the defender’s achievable reward (the

strategy p returned by the MinimumResources function is the solution) and the upper

bound is set to be an unachievable reward. Therefore, the BeRRA algorithm achieves

the ǫ-optimal solution and we can set ǫ arbitrarily small to get arbitrarily near-optimal

solutions.
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Algorithm 1 BeRRA Algorithm

1: function BeRRA (m,U)
2: lb← mini∈T U

u
d (i), ub← maxi∈T U

c
d(i)

3: while ub− lb ≥ ǫ do
4: p← MinimumResources( lb+ub

2 , U)
5: if

∑
i∈T pi ≤ m then

6: lb← lb+ub
2

7: c← p
8: else
9: ub← lb+ub

2
10: end if
11: end while
12: return (c, lb)
13: end function

4.5 Minimum Resources

I present Algorithm 2 in this section. This algorithm computes the defender strategy

that requires as few resources as possible to achieve a given reward r, i.e., the Minimum-

Resources function in Algorithm 1. I call this resource-minimizing strategy the optimal

strategy and denote it as copt for succinctness.

Algorithm 2 Minimum Resources

1: function MinimumResources(r,U)
2: (flag, cmax, Sp(c

max), Si(c
max))← Maximin(r,U)

3: if flag = false then
4: return (∞,∞, . . . ,∞)⊤

5: end if
6: copt ← Reduce(U, cmax, Sp(c

max), Si(c
max))

7: return copt

8: end function

Algorithm 2 consists of two functions: Maximin and Reduce. The Maximin function

computes the maximin strategy cmax for which the defender achieves reward r, as well

as the corresponding sets Sp(c
max) and Si(c

max). The variable flag is set to false

when the input reward is not achievable for any amount of defender resources. In this
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case, Algorithm 2 returns (∞,∞, . . . ,∞)⊤ (Lines 3 ∼ 5) so that Algorithm 1 knows

r is not achievable. I will prove in Theorem 4.5.7 that if the reward r is achievable,

then Sp(c
max) = Sp(c

opt) and Si(c
max) = Si(c

opt). Based on this property, the Reduce

function derives the optimal strategy copt from the maximin strategy cmax. Section 4.5.1

and Section 4.5.2 discuss these two functions in detail.

4.5.1 Maximin Function

The Maximin function is summarized in Algorithm 3. It first computes the maximin

strategy cmax for which the defender achieves reward r (Lines 2 ∼ 4) and then it assigns

each target to either Sp(c
max) or Si(c

max) (Lines 5 ∼ 15). If the reward r is not achievable

for any amount of resources, then it returns flag = false (Line 10).

Algorithm 3 Maximin

1: function Maximin(r,U)
2: for i = 1→ n do
3: cmax

i ← min{1,max{ r−Uu
d (i)

Uc
d(i)−Uu

d (i) , 0}}
4: end for
5: Sp(c

max), Si(c
max)← ∅

6: for i = 1→ n do
7: if Problem (4.3) is feasible for target i given cmax then
8: Sp(c

max)← Sp(c
max) ∪ {i}

9: if r > U c
d(i) then

10: return (false, cmax, Sp(c
max), Si(c

max))
11: end if
12: else
13: Si(c

max)← Si(c
max) ∪ {i}

14: end if
15: end for
16: return (true, cmax, Sp(c

max), Si(c
max))

17: end function

Lines 2 ∼ 4 compute the maximin strategy for a given reward r. Given a cover-

age probability c, the maximin setting assumes that the attacker attacks target i =
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argminj∈T Ud(j, c), and thus the defender’s reward will be mini∈T Ud(i, c). For the de-

fender to achieve reward r, we should have Ud(i, c) ≥ r,∀i ∈ T so that cmax
i =

r−Uu
d (i)

Uc
d(i)−Uu

d (i)

(which is bounded by [0, 1]).

Given the maximin strategy cmax, Lines 5 ∼ 15 iterate through all targets and assign

them to either Sp(c
max) or Si(c

max) by testing the feasibility of constraints (4.3). If

these constraints are feasible, then i ∈ Sp(c); otherwise, i ∈ Si(c). Next in Lemma 4.5.2 I

prove that ∃i ∈ Sp(c
max) that satisfies r > U c

d(i) if and only if reward r is not achievable.

In that case, Algorithm 3 returns flag = false (Lines 9 ∼ 11).

Lemma 4.5.1. Given coverage probability c, the defender’s reward is mini∈Sp(c) Ud(i, c).

Proof. Follows from the form of problem 4.4.

Lemma 4.5.2. Reward r is infeasible if and only if Algorithm 3 returns flag = false.

Proof. I first prove that if the reward r is infeasible, Algorithm 3 returns with flag =

false. If Algorithm 3 returns with flag = false, according to the steps of Algorithm 3,

∀i ∈ Sp(c
max), we have U c

d(i) ≥ r ⇒ Ud(i, c
max) ≥ r. So, according to Lemma 4.5.1, the

reward of the strategy cmax is at least r, so the reward r is feasible.

Next I prove that if Algorithm 3 returns with flag = false, then the reward r is

infeasible. If Algorithm 3 returns with flag = false, then there exists a target i ∈

Sp(c
max) such that r > U c

d(i), and we have cmax
i = 1 for this target. Since i ∈ Sp(c

max),

there exists a mapping Û ∈ U under which Ûa(i, c
max) = Û c

a(i) ≥ Ûa(j, c
max),∀j ∈

T, j 6= i. If the reward r is feasible, there must exist a strategy c which has reward at

least r where i ∈ Si(c), or else the reward will be at most U c
d(i) < r. Thus, there exists

a target j 6= i that maximizes the expected utility of the attacker under the mapping
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Û and strategy c such that Ûa(j, c) > Ûa(i, c). Thus Ûa(j, c) > Ûa(i, c) ≥ Û c
a(i) ≥

Ûa(j, c
max), so cj < cmax

j , which implies Ud(j, c) < Ud(j, c
max). However, cj < cmax

j ⇒

cmax
j > 0 ⇒ cmax

j = min{1, r−Uu
d (j)

Uc
d(j)−Uu

d (j)} ⇒ Ud(j, c
max) = min{U c

d(j), r} ≤ r, so we see

Ud(j, c) < Ud(j, c
max) ≤ r. Since j ∈ Sp(c), the strategy c has a reward less than r,

which contradicts the assumption that c has a reward at least r. In conclusion, r is

infeasible if Algorithm 3 returns with flag = false.

Theorem 4.5.7 demonstrates why we compute cmax, Sp(c
max) and Si(c

max). We see

that Sp(c
max) = Sp(c

opt) and Si(c
max) = Si(c

opt). Therefore, we get Sp(c
opt) and

Si(c
opt) by computing Sp(c

max) and Si(c
max). I introduce supporting lemmas before

proving Theorem 4.5.7.

The next two lemmas explain how the set Sp(c) changes when the coverage probability

for a certain target decreases. Lemma 4.5.3 shows that if the coverage probability for a

target i ∈ Sp(c) decreases, then the set Sp(c) “shrinks”. Lemma 4.5.4 shows that if the

coverage probability for a target i ∈ Si(c) decreases, then the set Sp(c) also “shrinks”

but target i might be added to it.

Lemma 4.5.3. Given coverage probability c and another coverage probability c′ which

satisfies c′i < ci for a target i ∈ Sp(c) and c′j = cj ,∀j ∈ T, j 6= i, we have Sp(c
′) ⊆ Sp(c).

Proof. We prove Si(c
′) ⊇ Si(c).

∀j ∈ Si(c), ∀Û ∈ U , ∃k ∈ Sp(c) such that Ûa(k, c) > Ûa(j, c). For this mapping

Û , the targets j and k, Ûa(k, c
′) ≥ Ûa(k, c) since c′k ≤ ck and Ûa(j, c

′) = Ûa(j, c) since

c′j = cj . So, we have Ûa(k, c
′) > Ûa(j, c

′) and thus j ∈ Si(c
′).
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Lemma 4.5.4. Given coverage probability c and another coverage probability c′ which

satisfies c′i < ci for a target i ∈ Si(c) and c′j = cj ,∀j ∈ T, j 6= i, we have Sp(c
′) ⊆

Sp(c)
⋃{i}.

Proof. We prove Si(c
′) ⊇ Si(c)\{i}.

∀j ∈ Si(c), j 6= i, ∀Û ∈ U , ∃k ∈ Sp(c) such that Ûa(k, c) > Ûa(j, c). For this mapping

Û , the targets j and k, Ûa(k, c
′) = Ûa(k, c) since c′k = ck and Ûa(j, c

′) = Ûa(j, c) since

c′j = cj , so we have Ûa(k, c
′) > Ûa(j, c

′) and thus j ∈ Si(c
′).

The next two lemmas discuss key properties of copt. Lemma 4.5.5 shows that the

coverage probability for a target i ∈ Sp(c
opt) must be max{ r−Uu

d (i)

Uc
d(i)−Uu

d (i) , 0}; Lemma

4.5.6 shows that the coverage probability for a target i ∈ Si(c
opt) is at most min{1,

max{ r−Uu
d (i)

Uc
d(i)−Uu

d (i) , 0}}. This property is used in the Reduce function that derives copt

from cmax, as well as in the proof of Theorem 4.5.7.

Lemma 4.5.5. Given a feasible reward r, all i ∈ Sp(c
opt) must satisfy U c

d(i) ≥ r and

have expected reward max{Uu
d (i), r} for the defender, i.e., copti = max{ r−Uu

d (i)

Uc
d(i)−Uu

d (i) , 0},∀i ∈

Sp(c
opt).

Proof. According to Lemma 4.5.1, ∀i ∈ Sp(c
opt), Ud(i, c

opt) ≥ r, so we have U c
d(i) ≥

Ud(i, c
opt) ≥ r. Additionally, Ud(i, c

opt) ≥ r ⇒ copti ≥ max{ r−Uu
d (i)

Uc
d(i)−Uu

d (i) , 0}. Next I will

prove copti = max{ r−Uu
d (i)

Uc
d(i)−Uu

d (i) , 0} by contradiction.

Suppose there exists a target i ∈ Sp(c
opt) with coverage probability copti > max

{ r−Uu
d (i)

Uc
d(i)−Uu

d (i) , 0}. I show that a more resource-conservative strategy c with ci = max

{ r−Uu
d (i)

Uc
d(i)−Uu

d (i) , 0} < copti , cj = coptj ,∀j ∈ T, j 6= i also has reward at least r for the defender.

According to Lemma 4.5.1, we have Ud(i, c
opt) ≥ r,∀i ∈ Sp(c

opt). According to Lemma
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4.5.3, Sp(c) ⊂ Sp(c
opt), so ∀k ∈ Sp(c), k ∈ Sp(c

opt), if k = i, Ud(k, c) = Ud(i, c) =

max{Uu
d (i), r} ≥ r; if k 6= i, Ud(k, c) = Ud(k, c

opt) ≥ r, so the strategy c also provides

reward at least r. Thus copt is not optimal, which is a contradiction.

Lemma 4.5.6. Given a feasible reward r, ∀i ∈ Si(c
opt), i has expected reward at most

min{U c
d(i),max{Uu

d (i), r}} for the defender, i.e., copti ≤ min{1,max{ r−Uu
d (i)

Uc
d(i)−Uu

d (i) , 0}},∀i ∈

Si(c
opt).

Proof. ∀i ∈ Si(c
opt), if U c

d(i) < r, max{ r−Uu
d (i)

Uc
d(i)−Uu

d (i) , 0} > 1, so we have min{1,max{
r−Uu

d (i)

Uc
d(i)−Uu

d (i) , 0}} = 1. Clearly, copti ≤ 1.

∀i ∈ Si(c
opt), if U c

d(i) ≥ r, min{1,max{ r−Uu
d (i)

Uc
d(i)−Uu

d (i) , 0}} = max{ r−Uu
d (i)

Uc
d(i)−Uu

d (i) , 0} ≤ 1. I

prove copti ≤ max{ r−Uu
d (i)

Uc
d(i)−Uu

d (i) , 0} by contradiction.

Suppose there exists a target i ∈ Si(c
opt) with coverage probability copti > max

{ r−Uu
d (i)

Uc
d(i)−Uu

d (i) , 0}. I show that a more resource-conservative strategy c where ci = max

{ r−Uu
d (i)

Uc
d(i)−Uu

d (i) , 0} < copti , cj = coptj ,∀j ∈ T, j 6= i has reward at least r for the defender.

According to Lemma 4.5.1, we have Ud(k, c
opt) ≥ r,∀k ∈ Sp(c

opt). According to Lemma

4.5.4, Sp(c) ⊂ Sp(c
opt)

⋃{i}. It follows that ∀k ∈ Sp(c), k ∈ Sp(c
opt)

⋃{i}, if k = i,

Ud(k, c) = Ud(i, c) = max{Uu
d (i), r} ≥ r; if k ∈ Sp(c

opt), Ud(k, c) = Ud(k, c
opt) ≥ r,

so the strategy c also provides reward at least r. Thus copt is not optimal, which is a

contradiction.

We are now ready to combine these preliminary lemmas to prove Theorem 4.5.7.

Theorem 4.5.7. Given a feasible reward r, Sp(c
max) = Sp(c

opt) and Si(c
max) =

Si(c
opt).
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Proof. First I present two results that will be used in the proof: (i) ∀i ∈ Sp(c
max), since

the reward r is feasible, Lemma 4.5.2 and Algorithm 3 imply that U c
d(i) ≥ r so that cmax

i =

max{ r−Uu
d (i)

Uc
d(i)−Uu

d (i) , 0}; (ii) ∀i ∈ Sp(c
opt), according to Lemma 4.5.5, U c

d(i) ≥ r and copti =

max{ r−Uu
d (i)

Uc
d(i)−Uu

d (i) , 0}. Furthermore, U c
d(i) ≥ r implies that cmax

i = max{ r−Uu
d (i)

Uc
d(i)−Uu

d (i) , 0}

according to Algorithm 3. Thus, cmax
i = copti ,∀i ∈ Sp(c

opt).

I will prove by contradiction that Sp(c
opt) ⊆ Sp(c

max). Suppose there exists a target

i ∈ Sp(c
opt) with i ∈ Si(c

max), we have cmax
i = copti according to result (ii). Since

i ∈ Sp(c
opt), Ûa(i, c

opt) ≥ Ûa(j, c
opt),∀j ∈ T, j 6= i under some mapping Û ∈ U by

definition. Since i ∈ Si(c
max), for this mapping Û , ∃j 6= i, j ∈ Sp(c

max) such that

Ûa(j, c
max) > Ûa(i, c

max) where cmax
j = max{ r−Uu

d (j)

Uc
d(j)−Uu

d (j) , 0} according to result (i).

So Ûa(j, c
max) > Ûa(i, c

max) = Ûa(i, c
opt) ≥ Ûa(j, c

opt), which leads to Ûa(j, c
max) >

Ûa(j, c
opt). Thus, we have coptj > cmax

j = max{ r−Uu
d (j)

Uc
d(j)−Uu

d (j)
, 0}, which contradicts Lemmas

4.5.5 and 4.5.6. So, it must be that i ∈ Sp(c
max) which implies Sp(c

opt) ⊆ Sp(c
max).

I will prove by contradiction that Si(c
opt) ⊆ Si(c

max). Suppose there exists a target

i ∈ Si(c
opt) with i ∈ Sp(c

max). We have cmax
i = max{ r−Uu

d (i)

Uc
d(i)−Uu

d (i) , 0} according to result

(i). Since i ∈ Sp(c
max) there exists a mapping Û ∈ U such that Ûa(i, c

max) ≥ Ûa(j, c
max),

∀j ∈ T, j 6= i. Since i ∈ Si(c
opt), for this mapping Û , ∃j 6= i, j ∈ Sp(c

opt) such that

Ûa(j, c
opt) > Ûa(i, c

opt) by definition. We have cmax
j = coptj according to result (ii).

Thus Ûa(i, c
max) ≥ Ûa(j, c

max) = Ûa(j, c
opt) > Ûa(i, c

opt), which yields Ûa(i, c
max) >

Ûa(i, c
opt). Then copti > cmax

i = max{ r−Uu
d (i)

Uc
d(i)−Uu

d (i) , 0}, which contradicts Lemma 4.5.6. It

follows that i ∈ Si(c
max) which implies Si(c

opt) ⊆ Si(c
max).

To conclude, Sp(c
opt) = Sp(c

max), Si(c
opt) = Si(c

max).
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4.5.2 Reduce Function: Derive copt from cmax

Section 4.5.1 demonstrated that Algorithm 2 returns (∞,∞, . . . ,∞)⊤ if the reward r

is infeasible; if the reward r is feasible, then Sp(c
max) and Si(c

max) are the same as

Sp(c
opt) and Si(c

opt). It follows that Algorithm 4 correctly derives the optimal strategy

copt from cmax.

Algorithm 4 Computing copt by reducing cmax

1: function Reduce(U, cmax, Sp(c
max), Si(c

max))
2: copt = cmax

3: for every i ∈ Si(c
max) do

4: lb← 0, ub← copti

5: while ub− lb ≥ δ do
6: copti ← lb+ub

2
7: if Problem (4.3) is feasible for target i given copt then
8: lb← lb+ub

2
9: else

10: ub← lb+ub
2

11: end if
12: end while
13: copti ← ub
14: end for
15: return copt

16: end function

Given cmax, Sp(c
max) and Si(c

max), Algorithm 4 returns copti = cmax
i for i ∈ Sp(c

max).

For i ∈ Si(c
max), Algorithm 4 uses binary search to find the minimum coverage proba-

bility ci such that any further decrease3 in coverage probability would add target i to the

set Sp(c
opt). The next lemma shows that this mechanism leads to the optimal strategy

copt.

Lemma 4.5.8. Given a feasible reward r, Algorithm 4 returns the optimal strategy copt.

3δ can be arbitrarily small
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Proof. Given a feasible reward r, we have Sp(c
opt) = Sp(c

max), Si(c
opt) = Si(c

max)

according to Theorem 4.5.7. Denote the output of Algorithm 4 to be c.

I first prove that c satisfies Sp(c) = Sp(c
opt), Si(c) = Si(c

opt) by proving Sp(c) =

Sp(c
max) and Si(c) = Si(c

max). The steps of Algorithm 4 ensures that Si(c
max) ⊆ Si(c),

so we have Sp(c) ⊆ Sp(c
max). Next I prove Sp(c

max) ⊆ Sp(c). ∀i ∈ Sp(c
max), ∃Û ∈ U

such that Ûa(i, c
max) ≥ Ûa(j, c

max),∀j ∈ T, j 6= i. If i ∈ Si(c), for this mapping

Û , ∃j ∈ Sp(c) ⊆ Sp(c
max) such that Ûa(j, c) > Ûa(i, c). According to the steps of

Algorithm 4, since i, j ∈ Sp(c
max), cmax

i = ci and cmax
j = cj , we have Ûa(j, c) > Ûa(i, c) =

Ûa(i, c
max) ≥ Ûa(j, c

max) = Ûa(j, c) , which leads to a contradiction. Thus i ∈ Sp(c) and

Sp(c
max) ⊆ Sp(c). So Sp(c) = Sp(c

max) = Sp(c
opt) and Si(c) = Si(c

max) = Si(c
opt).

Next I prove that the strategy c has reward at least r. ∀i ∈ Sp(c), i ∈ Sp(c
max).

According to the steps of Algorithm 4 and Algorithm 3, Ud(i, c) = Ud(i, c
max) ≥ r.

Finally, I prove c = copt. If c 6= copt, copt consumes fewer resources than c, so

∑
i∈T c

opt
i <

∑
i∈T ci. According to Lemma 4.5.5, copti = ci,∀i ∈ Sp(c

opt), so there exists

at least one target i ∈ Si(c
opt) with copti < ci. However, Algorithm 4 is designed so

that any further decrease in ci would lead to a mapping Û ∈ U such that Ûa(i, c) ≥

Ûa(j, c),∀j ∈ Sp(c
opt). Thus at least one target in Si(c

opt) would be added to Sp(c
opt),

which contradicts the assumption that copt is the optimal solution. I conclude c =

copt.

Theorem 4.5.9. Given reward r, Algorithm 2 either detects its infeasibility or provides

the optimal strategy copt.

Proof. Follows from Lemmas 4.5.2 and 4.5.8.
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4.6 Discussions

4.6.1 Computational Cost of BeRRA

The main computational cost of my BeRRA algorithm comes from evaluating the fea-

sibility of the linear constraints (4.3), which is a linear feasibility problem and can be

solved in polynomial time. Algorithm 2 is called O(log(1ǫ )) times, and every call to Algo-

rithm 2 involves solving Problem (4.3) O(n+ |Si(c
max)| log(1δ )) times, which is bounded

by O(n log(1δ )). Thus Problem (4.3) is solved O(n log(1ǫ ) log(
1
δ )) times in total for my

BeRRA algorithm.

4.6.2 Extensions of BeRRA to General Risk Awareness

Notice that we only require U to be increasing in the preceding proofs and algorithms.

Thus, my GMOP algorithm can also be used to compute the optimal robust strategy

against other kinds of risk-aware attacker types, e.g., risk-seeking criminals [7, 14]. Be-

sides, the attacker may be risk-averse for gains and risk-seeking for losses (S-shaped utility

mapping function as is shown in the right figure) as is suggested in the nobel-prize-winning

prospect theory (PT)4 model [31,32]. Here I use risk-seeking as an example to show how

to apply GMOP to other attacker types. If the attacker is risk-seeking, Û should be a

strictly increasing, convex function and satisfies Û(0) = 0. Therefore, when adapting

my GMOP algorithm to deal with risk-seeking attackers, the only difference is in testing

feasibility of constraints (4.3), where the condition Û ∈ U in constraints (4.3) should be

written as:

4PT also involves a mapping of the probability. I don’t consider this factor in this thesis.
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ǫu ≤
Û (θ2)− Û (θ1)

θ2 − θ1
≤ Û (θ3)− Û (θ2)

θ3 − θ2

≤ . . . ≤ Û (θI)− Û (θI−1)

θI − θI−1

Û(0) = 0

(4.9)

Figure 4.1: Prospect Theory

4.6.3 Zero-sum Game

When the game is a zero-sum game, the utilities for the defender and the attacker are

strongly correlated with correlation coefficient −1, i.e., U c
a(i) = −U c

d(i) and Uu
a (i) =

−Uu
d (i),∀i ∈ T. Based on this property, I obtain the following theorem.

Theorem 4.6.1. For zero-sum games, the defender’s Robust Stackelberg Equilibrium

(RSE) strategy and Maximin strategy are the same.

Proof. I first prove that given a defender’s strategy c, the defender’s reward is the same

in both settings.

Given the defender’s strategy c, the defender’s reward in the Maximin setting is

minj∈T Ud(j, c), which is a lower bound on the defender’s reward in the Robust Stackelberg

game setting since minj∈T Ud(j, c) is the minimum reward the defender can possibly
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achieve with c. Meanwhile, since the risk-neutral case is a special case of the risk-averse

case, i = argminj∈T Ud(j, c) = argmaxj∈T Ua(j, c) ∈ Sp(c). Thus, the attacker might

attack target i so that the expected reward the defender achieves if the attacker attacks

target i — minj∈T Ud(j, c) is also an upper bound on the defender’s reward in the Robust

Stackelberg game setting. Therefore, the defender’s reward in the Robust Stackelberg

game setting is minj∈T Ud(j, c).

Since the defender’s reward given the defender’s strategy c is the same in both settings,

the strategy c that maximizes the defender’s reward in both settings is also the same.

It is known that the solution concepts of Nash Equilibrium, minimax, maximin, and

SSE all give the same answer for finite two-person zero-sum games. Therefore, Theorem

4.6.1 adds RSE to this equivalence list.

4.7 Experimental Evaluation

I will evaluate the performance of my algorithms in this section through extensive nu-

merical experiments. Unless otherwise stated, all of the experiment results are averaged

over 20 instances. U c
d(i) and Uu

a (i) are generated as random variables between 11 and 40;

Uu
d (i) and U c

a(i) are generated as random variables between −11 and −40. To generate

payoff matrixes with correlation between the defender’s and the attacker’s utilities, I set

U c
a(i) ← −αU c

d(i) +
√
1− α2U c

a(i) and Uu
a (i) ← −αUu

d (i) +
√
1− α2Uu

a (i), where −α is

the correlation coefficient between U c
a(i)(U

u
a (u)) and U c

d(i)(U
u
d (i)). α = 1 corresponds to

zero-sum games. n is the number of targets in the game and m is the number of resources

the defender has.
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4.7.1 MIBLP vs BeRRA

I first compare the performance of the MIBLP formulation and my BeRRA algorithm.

Due to the scalability of the MIBLP, I only compare the case when n = 2 and n = 3. m

is set to be 1. The KNITRO solver is used to solve the MIBLP formulation.

MIBLP vs BeRRA: Solution Quality The solution quality of the MIBLP formu-

lation and my BeRRA algorithm is shown in Table 4.2. We can see from the table that

BeRRA algorithm has a higher average reward compared with MIBLP, and the difference

becomes larger as the number of targets n increases. This is because KNITRO can only

find the locally optimal solution while my BeRRA algorithm finds the globally ǫ-optimal

solution, and larger game scale leads to worse solution quality of the local optimum.

Table 4.2: MIBLP vs BeRRA in Solution Quality

(a) n = 2

MIBLP BeRRA

α = 0 3.18 3.41
α = 0.2 2.78 2.99
α = 0.4 2.45 2.62
α = 0.6 1.72 1.82
α = 0.8 0.75 0.81
α = 1.0 0.53 0.53

(b) n = 3

MIBLP BeRRA

α = 0 -5.69 -4.60
α = 0.2 -5.71 -5.32
α = 0.4 -6.75 -5.84
α = 0.6 -6.92 -6.31
α = 0.8 -7.24 -6.96
α = 1.0 -7.64 -7.64

MIBLP vs BeRRA: Runtime The runtime of the MIBLP formulation and my

BeRRA algorithm is shown in Table 4.3. We can see from the table that BeRRA is

much faster than MIBLP, and the difference becomes larger as the number of targets n

increases. This is because solving MIBLP is difficult and the computational complex-

ity increases exponentially with the problem size, while BeRRA only requires solving

O(n log(1ǫ ) log(
1
δ )) linear feasibility problems. For MIBLP, it takes about 15 minutes for

the very trivial case n = 3, which means it cannot scale up at all.
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Table 4.3: MIBLP vs BeRRA in Runtime (s)

(a) n = 2

MIBLP BeRRA

α = 0 70.4 0.95
α = 0.2 71.2 0.95
α = 0.4 72.0 0.94
α = 0.6 68.9 0.77
α = 0.8 73.4 0.48
α = 1.0 64.4 0.20

(b) n = 3

MIBLP BeRRA

α = 0 863.1 1.75
α = 0.2 1004.4 1.63
α = 0.4 958.8 1.53
α = 0.6 886.9 1.36
α = 0.8 1119.8 1.10
α = 1.0 859.3 0.27

Runtime of BeRRA Figure 4.2 further analyzes the runtime of my BeRRA algo-

rithm. m is set to be n/2 and all results are averaged over 100 instances. We observe that

the runtime increases almost linearly with the number of targets n, and the game with

50 targets only takes about 2 minutes to solve, which demonstrates BeRRA’s ability to

scale up to larger problems. The figure also shows that the runtime does not change sig-

nificantly with different α, but it decreases significantly when α is increased from 0.9999

to 1. This is because |Si(c
max)| is almost 0 in zero-sum games.
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Figure 4.2: Runtime of BeRRA
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4.7.2 Performance Evaluation of RSE strategy against Risk-averse Attackers

In this section, I will evaluate solution quality of the RSE strategy in detail. Since

BeRRA shows advantages in both solution quality and runtime compared with the MIBLP

formulation, I use BeRRA to evaluate the performance of RSE strategy.

Solution Quality in Worst Case Figures 4.3(a) and 4.3(b) show the solution quality

of RSE strategy in the worst case — the attacker attacks target i = argminj∈Sp(c) Ud(j, c).

I compare its performance with the SSE strategy, Maximin strategy and the robust strat-

egy against interval uncertainty of U c
a(i) and Uu

a (i) [19]. For values of the intervals, I

tried different intervals ranging from 1 to 20 and pick the best one among them.

Figure 4.3(a) shows how the performance comparison changes with different number of

resources m. The RSE strategy significantly outperforms all of the other strategies. Since

the robust strategy against interval uncertainty considers some type of “robustness”, it

outperforms the SSE strategy and the Maximin strategy. However, since the interval

uncertainty does not fully capture the risk aversion of the attacker, it is worse than the

RSE strategy. The Maximin strategy is a more conservative strategy compared with the

SSE strategy, leading to better performance when compared with SSE.

Figure 4.3(b) shows the performance comparison with different α. It shows the similar

patten that RSE > Interval Uncertainty > Maximin > SSE as in Figure 4.3(a). Another

observation is that the difference between these four strategies becomes less as α increases,

and when α = 1, these four strategies perform the same, as is proved in Theorem 4.6.15.

Solution Quality in Average Case Figures 4.4(a) and 4.4(b) show the solution

quality of the RSE strategy in the average case — the attacker randomly attacks a target

5Interval Uncertainty = Maximin can be proved with similar techniques in the proof of Theorem 4.6.1.
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Figure 4.3: Solution Quality of RSE in Worst Case

i in Sp(c). I explore this case since unknown risk-averse attackers in the real world

would not necessarily minimize the defender’s reward. The performance comparison of

these four strategies in the average case shows similar patterns compared with that in

the worst case. Thus even in the average case, the RSE strategy still performs the best

among them.
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Figure 4.4: Solution Quality of RSE in Average Case

“Price” of Being Robust Figure 4.5 compares the three strategies (SSE, Maximin,

RSE) when the attacker is risk-neutral and arbitrarily bad risk-averse. SSE is the optimal
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strategy when the attacker is risk-neutral and RSE is the optimal strategy when the

attacker is arbitrarily bad risk-averse.

We can see from the figure that the performance of SSE strategy drops significantly

if it wrongly estimates the attacker type (SSE-averse is very bad). However, for RSE

strategy, its performance is only a little worse than the SSE strategy even if the attack

is risk-neutral (compared with the bad performance of SSE-averse). This figure shows

that compared with the significant loss of wrongly estimating attacker type, the loss of

executing the robust strategy, which is the “price” of being robust, is acceptable.
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Figure 4.5: “Price” of Being Robust

4.7.3 Performance Evaluation of RSE strategy against other attacker

types

In this section, I will evaluate solution quality of the RSE strategy against risk-seeking at-

tackers and prospect theory attackers (S-shaped utility mapping function) in detail. Since

the GMOP algorithm shows advantages in both solution quality and runtime compared

with MIBLP, I use GMOP to evaluate the performance of RSE strategy.
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Figure 4.6: Solution Quality of RSE for Risk-aware Attackers

Figures 4.6(a) and 4.6(b) show the solution quality of RSE strategy against risk-

seeking attackers. I compare its performance with the SSE strategy, Maximin strategy

and the robust strategy against interval uncertainty of U c
a(i) and Uu

a (i) [19]. For values

of the intervals, I tried different intervals ranging from 1 to 20 and pick the best one.

Figure 4.6(a) shows how the performance comparison changes with different number of

resources m. The RSE strategy significantly outperforms all of the other strategies. Since

the robust strategy against interval uncertainty considers some type of “robustness”, it

outperforms the SSE strategy and the Maximin strategy. However, since the interval

uncertainty does not fully capture the risk awareness of the attacker, it is worse than the

RSE strategy. The Maximin strategy is a more conservative strategy compared with the

SSE strategy, leading to better performance when compared with SSE.
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Figure 4.6(b) shows the performance comparison with different α. The main observa-

tion is that the difference between these four strategies becomes less as α increases, and

when α = 1, these four strategies perform the same, as is proved in Theorem 4.6.16.

Figures 4.6(c) and 4.6(d) show the solution quality of RSE strategy against unknown

prospect-theory attackers (S-shaped utility mapping function). They show similar pat-

terns with the risk-seeking case.

Figure 4.6(e) and 4.6(f) show the performance comparison of the RSE strategy and

the BRPT and RPT algorithm [59] against unknown prospect theory attackers. The

RSE strategy computes the robust strategy against any S-shaped utility mapping at-

tackers (risk-averse for gains and risk-seeking for losses). BRPT algorithm computes the

defender’s best response against a specific utility mapping function. RPT algorithm adds

some “robustness” against interval uncertainty on the basis of the BRPT algorithm. We

can see from Figure 4.6(e) and Figure 4.6(f) that the performance of BRPT and RPT

is similar to that of SSE, and is much worse than the RSE strategy. The reason is that

both BRPT and RPT fail to capture the uncertainty in the degree of risk-awareness.

6The proof of Interval Uncertainty = Maximin is similar to that of Theorem 4.6.1.
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Chapter 5

Learning Attacker’s Preference — Payoff Modeling

In some security domains, e.g., wildlife protection domain, the attacker’s frequent attacks

provide the defender with the opportunity to learn about the attacker’s payoffs by ob-

serving the attacker’s behavior. I begin with the assumption that at every round, the

defender chooses one target to protect and the attacker simultaneously chooses one target

to attack. Both the attacker and the defender have full knowledge about each other’s

previous actions (I will discuss my model and assumptions in more detail in Section 5.1).

My work focuses on constructing an online policy for the defender to maximize her utility

given observations of the attacker.

In this work, I model these interactions between the defender and the attacker as a

repeated game. I then adopt a fixed model for the attacker’s behavior and recast this

repeated game as a partially observable Markov decision process (POMDP). However,

my POMDP formulation has an exponential number of states, making current POMDP

solvers like ZMDP [54] and APPL [25] infeasible in terms of computational cost. Silver

and Veness [53] have proposed the POMCP algorithm which achieves a high level of

performance in large POMDPs. It uses particle filtering to maintain an approximation
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of the belief state of the agent, and then uses Monte Carlo Tree Search (MCTS) for

online planning. However, the particle filter is only an approximation of the belief state.

By appealing to the special properties of my POMDP, I propose the GMOP algorithm

(Gibbs sampling based MCTS Online Planning) which draws samples directly from the

exact belief state using Gibbs sampling and then runs MCTS for online planning. My

algorithm provides higher solution quality than the POMCP algorithm. Additionally, for

a specific subclass of my game with an attacker who plays a best response against the

defender’s empirical distribution, and a uniform penalty of being seized across all targets,

I provide an advanced sampling technique to speed up the GMOP algorithm along with

a heuristic that trades off solution quality for lower computational cost. Moreover, I

explore the case of continuous utilities where my original POMDP formulation becomes

a continuous-state POMDP, which is generally difficult to solve. However, the special

properties in the specific subclass of game mentioned above make possible the extension

of the GMOP algorithm to continuous utilities. Finally, I explore the more realistic

scenario where the defender is not only uncertain about the distribution of resources,

but also uncertain about the attacker’s behavioral model. I address this challenge by

extending my POMDP formulation and the GMOP algorithm.

The rest of the chapter is organized as follows: Section 5.1 discusses my model and

POMDP formulation. Section 5.2 presents the GMOP algorithm in the basic scenario.

Section 5.3 speeds up the GMOP algorithm by exploring special structure when the

attacker plays a best response against the defender’s empirical distribution. Section 5.4

extends my GMOP algorithm to the continuous utility scenario and Section 5.5 extends
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the GMOP algorithm to the situation where the attacker model is also unknown. Section

5.6 provides extensive experimental results.

5.1 Model

5.1.1 Motivating Domain

My work is motivated by the domain of resource conservation, for example, illegal fishing,

illegal oil extraction, water theft, crop theft, and illegal diamond mining, etc. In each

case, illegal extractions happen frequently and the resources are spread over a large area

that is impossible for the defender to cover in its entirety.

In this model, I make the assumption that the defender and the attacker fully observe

their opponent’s actions. The defender is usually a powerful government agency that

has access to satellite imaging, multiple patrol assets, and the reports of local residents.

The attacker learns about law enforcement tactics by exchanging information internally,

covert observation, and by buying information from other sources.

The flagship example is the real-world problem faced by the U.S. Coast Guard (USCG)

in the Gulf of Mexico of illegal fishing by fishermen from across-the-border. In this do-

main, the defender (USCG) performs daily aircraft patrol surveillance1; satellites are also

used to monitor illegal fishing2. Furthermore, illegal fishermen have well-organized sup-

port from across-the-border; USCG provided evidence that fishermen perform surveillance

on USCG boats.

1http://www.uscg.mil/d8/sectCorpusChristi/
2http://wwf.panda.org/?206301/WWF-new-approach-to-fight-illegal-unreported-and-unregulated-

fishing
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5.1.2 Formal Model

I now formalize the preceding story into a two-player repeated game between a defender

and an attacker3. While both players are assumed to be humans or human organizations

in this game, I assume that the defender is aided by my decision aid but the attacker is not.

In my model, the amount of resources at each target will be fixed and the attacker will

have full knowledge of this distribution. The defender will have to learn this distribution

by observing the attacker’s behavior.

I operate over the finite time horizon t ∈ T , {1, . . . , T}. There are n targets indexed

by N , {1, 2, . . . , n} that represent the locations of the natural resource in question: the

attacker wants to steal resources from these targets and the defender wants to interdict

the attacker. I represent the value of the targets to the attacker in terms of their utilities.

Each target has a utility u(i) that is only known to the attacker. The utility space is

discretized into m levels, u(i) ∈ M , {1, 2, . . . ,m}. Human beings cannot distinguish

between tiny differences in utilities in the real world, so I am justified in discretizing these

utilities. For n targets and m utility levels, there are mn possible sets of utilities across

all targets. The distribution of resources is then captured by the vector of utilities at

each target, and the set of possible resource distributions is:

U , {(u (1) , u (2) , . . . , u (n)) : u (i) ∈M, ∀i ∈ N} = ×i∈NM. (5.1)

3Note that in this work I have begun with the assumption that there is a single extractor, and this
already leads to very significant research challenges, needing significant research contributions, that I
provide in this work. Generalizing to multiple extractors is clearly an important issue — that although
will require me to scale-up my algorithm, fits naturally within my algorithmic framework – but it is left
for future work.
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At the beginning of the game, the defender may have some prior knowledge about

the resource levels u(i) at each target i ∈ N. This prior knowledge is represented as

a probability density function p(u(i)) over M. If the defender does not know anything

about u(i), then I adopt a uniform prior for u(i) over M.

At each time t ∈ T, the defender chooses a target at ∈ N to protect and the attacker

simultaneously chooses a target ot ∈ N from which to steal. If at = ot, the defender

catches the attacker and the attacker is penalized by the amount P (ot) < 0; if at 6= ot,

the attacker successfully steals resources from target ot and gets a payoff of u(ot). For

clarity, the defender’s interdiction is always successful whenever she visits the same site as

the attacker. Additionally, the defender fully observes the moves of the attacker, likewise,

the attacker fully observes the moves of the defender. Note that the penalty P (i), i ∈ N is

known to both the defender and the attacker. I adopt a zero-sum game, so the defender

is trying to minimize the attacker’s payoffs. In most resource conservation domains, the

attacker pays the same penalty P if he is seized independent of the target he visits. I

allow for varying penalties across targets for greater generality.

In this work, I make the basic assumption that the attacker is more likely to steal

from targets with higher utilities u(i), lower penalties P (i), and that have not been

visited often by the defender. Based on this assumption, I assume that the attacker’s

actions depend on u(i), P (i), i ∈ N along with the defender’s actions in previous rounds.

A reasonable assumption about the attacker’s behavioral model is the fictitious Quantal

Response (FQR) model. Specifically, a fictitious attacker assumes the defender’s empirical

distribution will be his mixed strategy in the next round, and quantal response (QR) [31]
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has been shown to be effective in describing human’s behavior through human subject

experiments.

For the FQR model, the attacker’s behavior could be described in the following way:

in every round, he (i) computes the empirical coverage probability ci for every target i

based on the history of the defender’s actions; (ii) computes the expected utility EU(i) =

c(i)P (i)+ (1− c(i))u(i) for every target; (iii) attempts to steal from the target i with the

probability p(i) proportional to eλEU(i):

p(i) =
eλEU(i)

∑
j∈N eλEU(j)

,

where λ ≥ 0 is the parameter representing the rationality of the player (higher λ represents

a more rational player).

5.1.3 Protector’s POMDP Formulation

To implement the model from Section 5.1.2, I must resolve two technical questions. First,

at every round t, based on her current belief about u, how should the defender choose

targets to protect in the next round? Second, after each round, how should the defender

use the observation of the latest round to update her beliefs about u? I am studying

decision making and belief updating in a partially observable environment where the

payoffs u are unobservable and the attacker’s actions are observable, which is the exact

setup for a POMDP. I now setup my two-player game as a POMDP {S,A,O, T,Ω, R}

where the attacker follows a quantal response model.
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State space: The state space of my POMDP is S = U× Z
n, which is the cross product

of the utility space and the count space. U is the utility space as defined in Equation 5.1.

Z
n is the set of possible counts of the defender’s visits to each target, where Ct ∈ Z

n is

an integer-valued vector where Ct (i) , i ∈ N is the number of times that the defender has

protected target i at the beginning of round t ∈ T. A particular state s ∈ S is written

as s = (u,C), where u is the vector of utility levels for each target and C is the current

state count. The initial beliefs are expressed by a distribution over s = (u, 0), induced

by the prior distribution on u. I define ct(i) ,
Ct(i)
t−1 to be the frequency with which the

defender visits target i at the beginning of round t ∈ T. I set c1 , 0 by convention.

Action space: The action space A is N, representing the target the defender chooses to

protect.

Observation space: The observation space O is N, representing the target from which

the attacker attempts to steal.

Conditional transition probability: Let ea ∈ R
n denote the unit vector with a 1 in

slot a ∈ N and zeros elsewhere. The conditional transition probability T governing the

evolution of the state is

T
(
s′ =

(
u′, C ′

)
|s = (u,C) , a

)
=





1, u = u′, C ′ = C + ea,

0, otherwise.

Specifically, the evolution of the state is deterministic. The underlying utilities do not

change, and the count for the target visited by the defender increases by one while all

others stay the same.
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Conditional observation probability: I define EU(u,C) ∈ R
n to be the vector of

empirical expected utilities for the attacker for all targets when the actual utility is u and

the count is C,

[EU(u,C)](i) = c(i)P (i) + (1− c(i))u(i),∀i ∈ N,

when t ≥ 1. I set [EU (u, 0)] (i) = u(i) by convention. Hence, the observation probabili-

ties Ω are explicitly

Ω(o|s′ = (u,C), a) =
eλ[EU(u,C−ea)](o)

∑
i∈N eλ[EU(u,C−ea)](i)

,

the probability of observing the attacker takes action o when the defender takes action

a and arrives at state s′. Note that both a and o are the actions the defender/attacker

take at the same round.

Reward function: The reward function R is

R
(
s = (u,C), s′ = (u,C + ea), a, o

)
=





−P (o), a = o,

−u (o) , a 6= o.

5.2 GMOP Algorithm

In Section 5.1, I modeled the repeated game as a POMDP in order to update the de-

fender’s beliefs about the resource distribution and to allocate patrol assets. However,

the size of the utility space U is mn, and the size of the count space is O(Tn

n! ). The com-

putational cost of the latest POMDP solvers such as ZMDP and APPL soon becomes

unaffordable as the problem size grows. For a small instance like n = 4, m = 5 and 5
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rounds, there are 78750 states in the POMDP. Both the ZMDP and APPL solvers run out

of memory when attempting to solve this POMDP. This challenge is non-trivial because

the models in reality are much larger than this toy example.

Silver and Veness [53] have proposed the POMCP algorithm, which provides high

quality solutions for large POMDPs. The POMCP algorithm uses a particle filter to

approximate the belief state. Then, it uses Monte Carlo tree search (MCTS) for online

planning where (i) state samples are drawn from the particle filter and (ii) the action with

the highest expected utility based on Monte Carlo simulations is chosen. However, the

particle filter is only an approximation of the true belief state and is likely to move further

away from the actual belief state as the game goes on, especially when most particles get

depleted and new particles need to be added. Adding new particles will either (i) make

the particle filter a worse approximation of the exact belief state, if the added particles

do not follow the distribution of the belief state or (ii) be as difficult as drawing samples

directly from the belief state, if the added particles do follow the distribution of the belief

state. However, if we could efficiently draw samples directly from the exact belief state,

then there would be no need to use a particle filter.

This POMDP has specific structure that we can exploit. The count state in S is

known and the utility state does not change, making it possible to draw samples directly

from the exact belief state using Gibbs sampling. I propose the GMOP algorithm that

draws samples directly from the exact belief state using Gibbs sampling, and then runs

MCTS. The samples drawn directly from the belief state better represent the true belief

state compared to samples drawn from a particle filter. I thus conjecture that the GMOP
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algorithm will yield higher solution quality than the POMCP algorithm for the problem,

and this intuition is confirmed in the experiments.

5.2.1 GMOP Algorithm Framework

The GMOP algorithm is outlined in Algorithm 5. At a high level, in round t the defender

draws samples of state s from its belief state Bt(s) using Gibbs sampling and then it uses

MCTS to simulate what will happen in the next few rounds with those samples. Finally,

it executes the action with the highest average reward in the MCTS simulation. MCTS

starts with a tree that only contains a root node. Since the count state Ct is already

known, the defender only needs to sample the utility state u from Bt. The sampled state

s is comprised of the sampled utility u and the count Ct.

Algorithm 5 GMOP Algorithm Framework

1: function Play(Ct)
2: Initialize Tree
3: for i = 1→ numSamples do
4: u← GibbsSampling

5: Simulate(s = (u,Ct))
6: end for
7: at ← action with the highest average reward
8: end function

It has been shown that the UCT algorithm converges to the optimal value function

in fully observable MDPs [23]. Based on this result, Silver and Veness have established

the convergence of MCTS in POMDP online planning as long as the samples are drawn

from the true belief state Bt(s). It follows that the convergence of the GMOP algorithm

is guaranteed.

From Algorithm 5, we see that each iteration of the GMOP algorithm is composed of

two parts: GIBBSSAMPLING which draws samples u directly from Bt(u) using Gibbs
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sampling, and SIMULATE which does Monte Carlo simulation of the sampled states

s = (u,Ct) to find the “best” action to execute. The sampling technique will be discussed

in detail in Section 5.2.2 while the details of MCTS for POMDP are available in [53].

5.2.2 Drawing Samples

5.2.2.1 Gibbs Sampling Overview

Gibbs sampling [9] is a Markov chain Monte Carlo (MCMC) algorithm for sampling from

multivariate probability distributions. Let X = (x1, x2, . . . , xn) be a general random

vector with n components and with finite support described by the multivariate proba-

bility density p(X). Gibbs sampling only requires the conditional probabilities p(xi|x−i)

to simulate X, where x−i = (xj)j 6=i denotes the subset of all components of X except

component i. Gibbs sampling is useful when direct sampling from p(X) is difficult.

Suppose we want to obtain k samples of X = (x1, x2, . . . , xn). Algorithm 6 shows

how Gibbs sampling works in general to produce these samples using only the conditional

probabilities p(xi|x−i). It constructs a Markov chain whose steady-state distribution is

given by p(X), so that the samples we draw also follow the distribution p(X). The states

of this Markov chain are the possible realizations of X = (x1, x2, . . . , xn), and a specific

state Xi is denoted as Xi = (xi1, xi2, . . . , xin) (there are finitely many such states by

my assumption). The transition probabilities of this Markov chain, Pr(Xj |Xi), follow

from the conditional probabilities p(xi|x−i). Specifically, Pr(Xj |Xi) = p(xl|x−l) when

xjv = xiv for all v not equal to l, and is equal to zero otherwise, i.e., the state transitions

only change one component of the vector-valued sample at a time. This Markov chain is
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reversible (meaning p(Xi)Pr(Xj |Xi) = p(Xj)Pr(Xi|Xj),∀i, j) so p(X) is its steady-state

distribution.

Algorithm 6 Gibbs Sampling

1: Initialization: X = {x1, x2, . . . , xn} satisfying p(X) > 0
2: for i = 1→ k do
3: for j = 1→ n do
4: xj ∼ p(xj |x−j)
5: end for
6: Xi ← {x1, x2, . . . , xn}
7: end for

5.2.2.2 Applying Gibbs Sampling in GMOP

I let Bt be the probability distribution representing the defender’s beliefs about the true

utilities at the beginning of round t ≥ 1; B1 represents the defender’s prior beliefs when

the game starts. I adopt the notation Bt (u) to denote the probability of the vector of

utilities u with respect to the distribution Bt.

Let B be the prior belief distribution and B′ be the posterior belief distribution. The

Bayesian belief update rule to obtain B′ from B and the observation is explicitly

B′(s′ = (u,C)) =ηΩ(o|s′, a)
∑

s∈S

T (s′|s, a)B(s)

=ηΩ(o|s′, a)B(s = (u,C − ea)).
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If at and ot represent the actions that the defender and the attacker choose to take

at round t, we have

Bt(u) =ηBt−1(u)Ω(ot−1|s = (u,Ct), at−1)

=η′B1(u)Π
t−1
i=1Ω(oi|s = (u,Ci+1), ai).

(5.2)

It follows that the posterior belief Bt is proportional to the prior belief B1 multiplied

by the observation probabilities over the entire history. Since there are mn possible

utilities, it is impractical to store and update Bt when m and n are large, and thus it is

impossible to sample directly from Bt. Hence, I turn to Gibbs sampling, where we only

need the conditional probabilities p(ui|u−i),∀i ∈ N

p(ui|u−i) = ηp(ui, u−i) = ηBt(ui, u−i)

=η′B1(ui, u−i)Π
t−1
j=1Ω(oj |s = (u = (ui, u−i), Cj+1), aj)

=η′B1(ui)B1(u−i)Π
t−1
j=1Ω(oj|s = (u = (ui, u−i), Cj+1), aj)

=η′′B1(ui)Π
t−1
j=1Ω(oj|s = (u = (ui, u−i), Cj+1), aj).

(5.3)

This quantity is easy to compute where B1(ui) is the prior probability that target i has

utility ui. In this way, we are able to draw samples directly from the exact belief state

in this POMDP using Gibbs sampling. Thus, the GMOP algorithm has much better

solution quality compared with the POMCP algorithm which draws samples from the

approximate belief state maintained by particle filter.

Besides the conditional probability, we also need to find a valid u with Bt(u) > 0

to initialize Gibbs sampling as shown in Line 1 of Algorithm 6. Finding such a u is
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easy in my FQR model because any u with B1(u) > 0 satisfies Bt(u) > 0 since Bt(u) =

η′B1(u)Π
t−1
i=1Ω(oi|s = (u,Ci+1), ai) and Ω(oi|s = (u,Ci+1), ai) > 0,∀i = 1, 2, ..., t − 1. In

other behavior models, where finding a valid u is not so intuitive, one possibility is to

check the sampled utilities at the latest round to pick a valid one.

5.3 Fictitious Best Response

In this section, I focus attention on a limiting case of the FQR model, a fictitious best

response playing (FBR) attacker. An FBR attacker plays a best response against the

empirical distribution of the defender and breaks ties randomly, a similar assumption is

found in [26,30]. Additionally, I assume that all targets share the same penalty P . This

assumption is satisfied in most resource conservation games. We will see that these two

assumptions allow us to greatly speed up the GMOP algorithm. I also put forward a

computationally inexpensive heuristic that offers high quality solutions.

When the attacker is FBR, the POMDP is roughly the same as in the FQR case

except that the conditional observation probabilities Ω are now

Ω(o|s′ = (u,C), a) =





1
|A(u,C−ea)|

, o ∈ A (u,C − ea) ,

0, otherwise,

(5.4)

where A (u, C) is the set of targets with maximal empirical expected utility when the

actual utility is u and the count is C, i.e.,

A (u, C) = argmax
i∈N

[EU (u, C)] (i) ⊂ N.
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The FBR attacker is actually a limiting case of the more general FQR model: we

obtain this case by taking λ→∞. If we run the POMCP algorithm for an FBR attacker,

the particles produced by the particle filter will be depleted very quickly and most utility

states will take on probability 0 after only a few rounds. For example, if n = 10 and the

defender observes that the attacker visits target 3 in the first round, then approximately

90% of possible utility states take on probability 0. Compared with FQR, more new

particles must be added in the FBR case. Thus, the particle filter is a worse approximation

of the belief state, leading to worse performance of the POMCP algorithm.

5.3.1 Speeding Up GMOP

Gibbs sampling requires computation of the conditional probability p(ui|u−i) as described

in Equation 5.3. However, t grows as the game evolves and the computational cost in-

creases linearly with t. Under the assumptions of an FBR attacker and uniform penalties,

we can use an advanced algorithm to compute p(ui|u−i) with computational cost bounded

by constant time.

Define

It(i, j) ,





It−1(i, j), i 6= ot−1,

max{It−1(i, j),
1−ct−1(j)
1−ct−1(i)

}, i = ot−1,

and I1(i, j) , 0,∀i, j ∈ N. The quantities It(i, j) can be computed recursively from

It−1(i, j) at very little computational cost. Intuitively, It(i, j) maintains the minimum

allowed ratio u(i)−P
u(j)−P for any u satisfying Πt−1

j=1Ω(oj |s = (u,Cj+1), aj) > 0 as the game

evolves. By checking if u satisfies u(i)−P
u(j)−P ≥ It(i, j),∀i, j ∈ N, we can figure out if
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Πt−1
j=1Ω(oj|s = (u,Cj+1), aj) is equal to 0 or not. I then compute the exact value of

Πt−1
j=1Ω(oj|s = (u,Cj+1), aj) whenever this probability is not 0.

Proposition 5.3.1. For a specific u, Πt−1
i=1Ω(oi|s = (u,Ci+1), ai) > 0 ⇐⇒ u(i)−P

u(j)−P ≥

It(i, j),∀i, j ∈ N.

Proof. From Equation 5.3 and 5.4, Πt−1
j=1Ω(oj|s = (u,Cj+1), aj)> 0 ⇐⇒ oj ∈ A(u,Cj),∀j ∈

{1, 2, . . . , t− 1}.

o ∈ A(u,C) ⇐⇒ [EU(u,C)](o) ≥ [EU(u,C)](i),∀i ∈ N

c(o)P + (1− c(o))u(o) ≥ c(i)P + (1− c(i))u(i),∀i ∈ N

u(o)− P

u(i) − P
≥ 1− c(i)

1− c(o)
,∀i ∈ N

∀u that u(i)−P
u(j)−P ≥ It(i, j),∀i, j ∈ N, we have oj ∈ A(u,Cj),∀j ∈ {1, 2, . . . , t − 1}

by the definition of It(i, j); ∀u that ∃i, j ∈ N
u(i)−P
u(j)−P < It(i, j), for that i, j, ∃ round

k ∈ {1, 2, . . . , t− 1} that 1−ck(j)
1−ck(i)

= It(i, j) and i = ok, so we have ok /∈ A(u,Ck) because

u(i)−P
u(j)−P < It(i, j) = 1−ck(j)

1−ck(i)
. Here I proved oj ∈ A(u,Cj),∀j ∈ {1, 2, . . . , t − 1} ⇐⇒

u(i)−P
u(j)−P ≥ It(i, j),∀i, j ∈ N.

By checking if u satisfies u(i)−P
u(j)−P ≥ It(i, j),∀i, j ∈ N, we can figure out if Πt−1

j=1Ω(oj|s =

(u,Cj+1), aj) equals 0. I now explain how to compute Πt−1
j=1Ω(oj |s = (u,Cj+1), aj) if it

does not equal 0. Define Vt(i) , {k : ok = i, k ∈ {1, 2, . . . , t − 1}},∀i ∈ N to be the set

of rounds where the attacker attempts to steal from target i; define V eq
t (i, j) , {k : j ∈

A(u,Ck), k ∈ Vt(i)},∀i, j ∈ N to be the set of rounds where the attacker attempts to steal

from target i, but where target j gives the attacker the same expected utility. I define
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V neq
t (i, j) , {k : j /∈ A(u,Ck), k ∈ Vt(i)},∀i, j ∈ N to be the set of rounds where the

attacker attempts to steal from target i and target j gives the attacker lower expected

utility. Additionally, I define

Tiet(i, j) , {k : It(i, j) =
1− ck(j)

1− ck(i)
, k ∈ Vt(i)},∀i, j ∈ N

Like It(i, j), Tiet(i, j) can be computed recursively at very little cost. By definition,

V eq
t (i, j) ∩ V neq

t (i, j) = φ, V eq
t (i, j) ∪ V neq

t (i, j) = Vt(i) and Tiet(i, j) ⊆ Vt(i), ∀i, j ∈ N.

Proposition 5.3.2. If u(i)−P
u(j)−P = It(i, j), V eq

t (i, j) = Tiet(i, j), V neq
t (i, j) = Vt(i) −

Tiet(i, j); If
u(i)−P
u(j)−P > It(i, j), V

neq
t (i, j) = Vt(i), V

eq
t (i, j) = φ.

Proof. If u(i)−P
u(j)−P = It(i, j):

∀k ∈ V eq
t (i, j), ck(i)P +(1−ck(i))u(i) = ck(j)P +(1−ck(j))u(j) since i, j ∈ A(u,Ck),

so 1−ck(j)
1−ck(i)

= u(i)−P
u(j)−P = It(i, j), k ∈ Tiet(i, j). So we have V eq

t (i, j) ⊆ Tiet(i, j)

∀k ∈ Tiet(i, j),
u(i)−P
u(j)−P = It(i, j) =

1−ck(j)
1−ck(i)

, so ck(i)P + (1− ck(i))u(i) = ck(j)P +(1−

ck(j))u(j), j ∈ A(u,Ck). So we have Tiet(i, j) ⊆ V eq
t (i, j).

Till now I proved when u(i)−P
u(j)−P = It(i, j), V

eq
t (i, j) = Tiet(i, j), so V neq

t (i, j) = Vt(i)−

Tiet(i, j) by definition. The proof when u(i)−P
u(j)−P > It(i, j) is similar so I omit it here.

Algorithm 7 shows how my advanced sampling technique resamples u(k) from the

conditional probabilities p(ui|u−i) by using the quantities It and Tiet. The input u

is the current set of sampled utilities; k is the index of u to be resampled according to

p(uk|u−k); and I and ‘Tie’ are the latest I and ‘Tie’ that have been computed recursively.
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I set #A(j) = |A(u,Cj)| to denote the number of sites that have maximal expected utility

for the attacker at round j, and I initialize these quantities to be 1 because ok ∈ A(u,Ck)

by definition. Then, I check every pair of targets i, j ∈ N: (i) if u(i)−P
u(j)−P < It(i, j),

then I set Bt(u) = 0 according to Proposition 5.3.1; (ii) if u(i)−P
u(j)−P = It(i, j), then I set

V eq
t (i, j) = Tiet(i, j) according to Proposition 5.3.2, and I increase #A(k) by 1 for those

k ∈ Tiet(i, j) because j ∈ A(u,Ck),∀k ∈ V eq
t (i, j) = Tiet(i, j); (iii) if u(i)−P

u(j)−P > It(i, j),

then V eq
t (i, j) = φ according to Proposition 5.3.2, so I do nothing. After checking all

pairs i, j ∈ N, I determine: (i) whether Bt(u) = 0 and (ii) #A(k),∀k ∈ {1, 2, . . . , t− 1} if

Bt(u) > 0. Based on these evaluations, the conditional probability Prob = p(ui|u−i) used

to resample u(k) is computed according to Equation 5.3. Finally, Prob is normalized and

then I sample the new u(k).

Algorithm 7 Advanced Sampling Technique

1: function DrawSample(u, k, I, T ie)
2: Prob = B1(uk)
3: for i = 1→ m do
4: u(k)← i
5: #A(j)← 1,∀j = 1→ currRound− 1
6: for p = 1→ n, q = 1→ n do
7: if u(p)−k

u(q)−k < I(p, q) then

8: Prob(i)← 0
9: break

10: else if u(p)−k
u(q)−k = I(p, q) then

11: #A(j)← #A(j) + 1,∀j ∈ Tie(p, q)
12: end if
13: end for
14: if Prob(i) 6= 0 then
15: Prob(i)← Prob(i) ∗ΠcurrRound−1

j=1
1

#A(j)
16: end if
17: end for
18: Normalize Prob
19: u(k) ∼ Prob
20: return u
21: end function
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5.3.2 Myopic Planning Heuristic

For GMOP algorithm, larger sample sizes in MCTS leads to higher solution quality but

at the expense of greater computational cost. Some domains require decisions to be made

very quickly, so the defender may get poor performance with the GMOP algorithm due

to an insufficient number of samples. With this motivation, I provide a myopic planning

heuristic. This heuristic offers slightly lower solution quality compared with GMOP, but

costs much less computing time.

The myopic planning heuristic works as follows: it (i) approximately computes the

posterior marginal probabilities of all targets’ utilities based on all previous observations;

(ii) computes the expected u(i) for each target using the posterior marginal probabilities;

(iii) plans myopically—protects the target with the highest estimated expected utility

for the attacker based on the expected u(i) computed in step (ii) and the empirical visit

counts C (ties are broken with even probabilities).

The key issue lies in step (i)—the computation of the posterior marginal probabilities

of the utilities u(i). This step can be viewed as inference in a Bayesian network. An

example Bayesian network where n = 4 is shown in Figure 5.1. Here, u(i),∀i ∈ N are

treated as the unobserved random variables in the Bayesian network, and they have prior

probabilities B1(u(i)) for all i ∈ N. I define f(u(i), u(j)),∀i, j ∈ N to be observable binary

random variables that depend on u(i), u(j):

f(u(i), u(j)) ,





1, u(i)−P
u(j)−P ≥ It(i, j),

u(j)−P
u(i)−P ≥ It(j, i),

0, otherwise.
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variable
node

factor
node

u(1) u(2) u(3) u(4)

f(u(1), u(2)) f(u(1), u(3)) f(u(3), u(4))

Figure 5.1: Bayesian Network when n = 4

In the Bayesian Network, we have observations of f(u(i), u(j)) = 1,∀i, j ∈ N, and the

aim is to infer the posterior marginal probabilities for u(i),∀i ∈ N. According to Propo-

sition 5.3.1, these factor nodes f(u(i), u(j)) = 1,∀i, j ∈ N fully describe the conditions a

specific u must satisfy in order to have a positive posterior probability. I then use the

widely known belief propagation algorithm [43] for inference, which yields approximate

marginal probabilities.

Note that this heuristic does not take into consideration possible ties in the attacker’s

decision-making. In particular, recall that u(i)−P
u(j)−P = It(i, j) and u(i)−P

u(j)−P > It(i, j) corre-

spond to two different cases, as I have shown in Proposition 5.3.2, and they are treated

separately in Algorithm 7. Yet, the Bayesian network is unable to distinguish between

these two cases and it treats them both as u(i)−P
u(j)−P ≥ It(i, j). Hence, the Bayesian network

does not utilize all of the information that the defender has obtained and thus cannot offer

an accurate description of the true belief state. Subsequently, the posterior probability

I compute from the Bayesian network is inaccurate even if an exact inference algorithm

is used. However, I note that in the experiments, I get satisfactory solution quality even

though both the Bayesian network formulation and the belief propagation algorithm are

inexact.
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5.4 Continuous Utility Scenario

In previous sections, I discussed the model with discretized utilities with the justification

that humans can not distinguish between tiny differences, and this can be captured in a

discrete model with a sufficiently large m. However, it is difficult to tell how “large” is

large enough; furthermore, larger m leads to more computational cost so that we can not

increase m arbitrarily. In this section, I try to extend my model to continuous utilities,

i.e., u(i) ∈ [0, 1], making it more expressive in describing human’s perception of utilities.

In Section 5.1.3, the POMDP was built for discrete utilities. When the utilities are

continuous, this formulation remains the same except that the utility space U becomes

U , {(u (1) , u (2) , . . . , u (n)) : u (i) ∈ [0, 1], ∀i ∈ N}

which is in continuous space. Thus, the previous POMDP formulation becomes a continuous-

state POMDP, which lacks efficient solutions.

The GMOP algorithm is composed of two steps: sampling from the utility space and

running MCTS with those samples. For continuous utilities, the latter step remains the

same so that the key issue here is to sample from the continuous utility space, which

involves the computation of the conditional probability:

p(ui|u−i) = η′′B1(ui)Π
t−1
j=1Ω(oj |s = (u = (ui, u−i), Cj+1), aj).

In general cases, this computation involves the multiplication of several functions (Πt−1
j=1Ω(oj|

s = (u = (ui, u−i), Cj+1), aj) with ui as the variable), which is generally hard to compute
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unless those functions have special properties, e.g., when the attacker is a FBR attacker

and all sites share the same penalty P .

Proposition 5.4.1. When the attacker is an FBR player and all sites share the same

penalty P , Πt−1
j=1Ω(oj|s = (u = (ui, u−i), Cj+1), aj) is a boxcar function4 with non-zero

interval [a, b], where a = maxj∈N,j 6=i{P + It(i, j)(u(j)−P )}, b = minj∈N,j 6=i{P + u(j)−P
It(j,i)

},

and the height at [a, b] equals 1
b−a .

Proof. When the attacker is an FBR player and all sites share the same penalty P ,

Ω(oj |s = (u = (ui, u−i), Cj+1), aj) are all boxcar functions, so that their multiplication is

also a boxcar function.

Recall Proposition 5.3.1:

Πt−1
i=1Ω(oi|s = (u,Ci+1), ai) > 0 ⇐⇒ u(i)− P

u(j)− P
≥ It(i, j),∀i, j ∈ N

In this situation, u−i is given, and we are trying to find the smallest and largest ui

satisfying Πt−1
i=1Ω(oi|s = (u,Ci+1), ai) > 0, i.e., u(i)−P

u(j)−P ≥ It(i, j),∀i, j ∈ N. So we have:

ui ≥ P + (uj − P )It(i, j),∀j ∈ N, j 6= i,

ui ≤ P +
uj − P

It(j, i)
,∀j ∈ N, j 6= i.

Since the total area under the boxcar function is 1 (it is a probability distribution), the

height is 1
b−a .

4A boxcar function is any function which is zero over the entire real line except for a single interval
where it is equal to a constant.
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With Proposition 5.4.1, we can compute Πt−1
j=1Ω(oj |s = (u = (ui, u−i), Cj+1), aj) very

efficiently by only computing the lower limit a and upper limit b, making it possible for

us to draw samples from the continuous state space using Gibbs sampling and then to

search for the best strategy with MCTS.

Finally, clearly at this stage the continuous utility scenario only works in restricted

cases; nonetheless, the restriction of all sites sharing a single penalty is reasonable in

some real-world domains, and the FBR restriction on the extractor may be a useful

approximation for some situations. Understanding the appropriate use of the continuous

utility scenario given the need to model human extractors, scaling it up and relaxing the

restrictions imposed all remain a topic for future work.

5.5 Unknown Extractor Scenario—Model Ensemble

The discussions in previous sections are based on the assumption that the attacker is an

FQR attacker, and the defender knows the true attacker model. However, in real-world

applications, the attacker may follow other behavioral models, and the defender may

only have some rough idea what the behavioral model is instead of knowing it exactly.

In this section, I will firstly discuss how to extend the POMDP formulation and GMOP

algorithm to other behavioral models, and then discuss the scenario where the defender

is uncertain about the attacker’s behavioral model.

5.5.1 Dealing with Other Behavioral Models

In addition to the FQR model, there are other human behavioral models that might well

describe the attacker’s actions. For example, the attacker may have limited memory or
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weigh recent defender activities more heavily, and optimizes against this limited memory

or “biased” memory. For most generality, I only keep the very basic assumption that

the attacker’s decisions depend on u(i), P (i), i ∈ N along with the defender’s actions in

previous rounds, i.e., the probability that the attacker visits target i, i ∈ N is a function

of u, P , and a. In this section, I will discuss how the POMDP formulation and GMOP

algorithm can be modified accordingly to deal with this broader category of behavioral

models.

With this broader category of behavioral models, the attacker’s decision making de-

pends on the sequence of the defender’s actions more than the count C, the previous

state S = U× Z
n is no longer enough to determine the attacker’s actions. In response, I

modify the previous POMDP formulation using a more expressive state space.

State space: The state space of the POMDP becomes S = U×{Ni : i ∈ {0, 1, 2, . . . , T}}.

U is still the utility space and {Ni : i ∈ {0, 1, 2, . . . , T}} is now the entire history of the

defender’s actions, where h ∈ {Ni : i ∈ {0, 1, 2, . . . , T}} is a vector where h(t), t ∈ T is the

target the defender visits at round t ∈ T. A particular state s ∈ S is written as s = (u, h),

where u is the vector of utility levels for each target and h is the current history of the

defender’s actions. The initial beliefs are expressed by a distribution over s = (u, ∅),

induced by the prior distribution on u.

Action space: The action space A remains N, representing the target the defender

chooses to protect.

Observation space: The observation space O remains N, representing the target from

which the attacker attempts to steal.
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Conditional transition probability: The conditional transition probability is modified

to describe how the defender’s action history evolves.

T
(
s′ =

(
u′, h′

)
|s = (u, h) , a

)
=





1, u = u′, h′ = h+ a,

0, otherwise.

The notation “+” here means appending a at the end of h.

Conditional observation probability: Suppose the behavioral model function f(u, P, h, o)

determines the attacker’s probability of stealing from target o with the utilities u, the

penalties P and the history h, the conditional observation probability is defined as

Ω(o|s′ = (u, h), a) = f(u, P, h− a, o).

The notation − here means removing a from the end of h.

Reward function: The reward function R becomes

R
(
s = (u, h), s′ = (u, h+ a), a, o

)
=





−P (o), a = o,

−u (o) , a 6= o.

With the new definition of POMDP, the GMOP algorithm remains the same except

that the computation of the conditional probability during Gibbs sampling becomes

p(ui|u−i) = ηB1(ui)Π
t−1
j=1Ω(oj |s = (u = (ui, u−i), hj+1), aj). (5.5)
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5.5.2 Dealing with Unknown Extractor

In the real world, it is more likely that the defender only has some rough idea what the

attacker’s behavioral model is rather than knowing it exactly. In this section, I extend

my model to this scenario. To formally define the problem, I model the defender’s “rough

idea” of the attacker’s behavioral model as a set of candidate behavioral models, and the

defender is uncertain about which model best fits the attacker’s behavior. As the game

goes on, the defender gets a better idea about the utilities of different targets as well as

the attacker’s behavioral model.

Suppose that there are k candidate attacker behavioral models Type 1,Type 2, ...,

Type k that might model the attacker’s behavior. I define the attacker’s behavioral

model space B to be the set of these k behavioral models:

B = {Type 1,Type 2, ...,Type k}.

When the defender has perfect knowledge about the attacker’s behavioral model, I

formulate a POMDP formulation where the state space is the cross product of the utility

space and the defender’s action history space: S = U × {Ni : i ∈ {0, 1, 2, . . . , T}} since

they are the only two variables that determine the attacker’s actions. However, when

the defender is uncertain what the attacker’s behavioral model is, the attacker’s action

is also dependent on his behavioral model in addition to these two variables. Thus, the

attacker’s behavioral model should also be included in the state space of the POMDP

formulation.
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State space: The state space becomes the cross product of the behavioral model space

B, the utility space U and the history space {Ni : i ∈ {0, 1, 2, . . . , T}}: S = B × U × N
i.

A particular state s ∈ S is written as s = (b, u, h) where b ∈ B represents the attacker’s

behavioral model.

Action space: The action space A remains N, representing the target the defender

chooses to protect.

Observation space: The observation space O remains N, representing the target from

which the attacker attempts to steal.

Conditional transition probability: The conditional transition probability is modified

accordingly.

T
(
s′ =

(
b′, u′, h′

)
|s = (b, u, h) , a

)
=





1, b = b′, u = u′, h′ = h+ a,

0, otherwise.

The notation + here means appending a at the end of h.

Conditional observation probability: Suppose the behavioral model function f(b, u,

P, h, o) determines the attacker’s probability of stealing from target o with the behavioral

model b, the utilities u, the penalties P and the history h, the conditional observation

probability is defined as

Ω(o|s′ = (b, u, h), a) = f(b, u, P, h− a, o).

The notation − here means removing a from the end of h.
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Reward function: The reward function R becomes

R
(
s = (b, u, h), s′ = (b, u, h + a), a, o

)
=





−P (o), a = o,

−u (o) , a 6= o.

For this new POMDP, we need to draw samples from the behavioral model space in

addition to the utility space for GMOP algorithm. We can combine the behavioral model

variable b and the utility variable u together to be a new multivariate. Gibbs sampling

is then used to draw samples of b and u, which are fed into MCTS to find the optimal

action for the defender to take. In Gibbs sampling, the computation of the conditional

probability for utility variable ui becomes

p(ui|u−i, b) = ηB1(ui)Π
t−1
j=1Ω(oj |s = (b, u = (ui, u−i), hj+1), aj). (5.6)

Similarly, the computation of the conditional probability for behavioral model variable b

is

p(b|u) = ηp(b, u) = ηBt(b, u)

=η′B1(b, u)Π
t−1
j=1Ω(oj|s = (b, u, hj+1), aj)

=η′′B1(b)Π
t−1
j=1Ω(oj |s = (b, u, hj+1), aj).

(5.7)

In the original formulation, the multivariate we sample in Gibbs sampling is the n-

dimensional utility variable u. In this extension, the multivariate is a combination of the

behavioral model variable b and the utility variable u, which is of the dimension n + 1.
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Thus, this extension to unknown extractor costs roughly n+1
n times the computational

time in the original formulation, and the extra time is used to compute p(b|u).

5.6 Experimental Evaluation

I evaluate the performance of my models and algorithms in this section through exten-

sive numerical experiments. The results strongly support the benefits of the techniques

introduced in this work. For the experiment settings, unless stated otherwise, I follow:

n = 10, m = 10, the penalty across all targets is P = −50, and the prior probability

distribution B1(ui), i ∈ N is uniform. All results are averaged over 1000 simulation runs.

For each simulation run, I randomly draw the true utilities u(i), i ∈ N and then simu-

late the actions the defender and the attacker would take over the rounds of the game.

Solution quality is assessed in terms of the average reward that the defender gets in the

first few rounds of the game. There are two parameters in MCTS for the GMOP algo-

rithm: numSamples is the number of samples that are used to simulate in the MCTS

and maxHorizon is the depth of the tree, i.e., the number of time steps we look ahead

in the POMDP.

5.6.1 GMOP Algorithm Evaluation

In this section, I will use the FBR and FQR attacker model to evaluate the performance

of the GMOP algorithm in both the discrete and continuous utility scenario.
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5.6.1.1 GMOP vs ZMDP/APPL

To begin, I compare the GMOP algorithm with the ZMDP solver [54] and the APPL

solver [25], both are general POMDP solvers. I show that the GMOP algorithm achieves

almost the same solution quality as ZMDP/APPL solvers on small problem instances.

For a small problem instance like n = 4, m = 5 and total rounds maxHorizon = 5, there

are 78750 states in the POMDP. Both ZMDP and APPL solvers run out of memory

even in this small problem instance. Hence, I test the two solvers together on an even

smaller instance with n = 3, m = 5, P = −10 and maxHorizon = 5, so that the

resulting POMDP has only 7000 states. As a base line, I also include a fixed policy

where the defender randomly chooses one site to protect at each round. Table 5.1 reports

the average reward of these three algorithms for both the FQR (λ = 0.5, 1 and 1.5) and

FBR attacker. In this table, the columns titled Hi for i = 1, . . . , 5 represent the GMOP

algorithm withmaxHorizon set to be i and numSamples set to be 10000. We see that the

GMOP algorithm with maxHorizon varying from 1 to 5 and the APPL/ZMDP solvers

are very close in terms of average reward, and all algorithms outperform the random

policy for the FQR and FBR attacker models.

Table 5.1: ZMDP/APPL vs GMOP in Solution Quality

Random ZMDP APPL H1 H2 H3 H4 H5

FQR(0.5) 1.13 3.85 3.85 3.90 3.89 3.95 3.90 3.91
FQR(1) 1.05 4.84 4.81 4.75 4.80 4.87 4.97 4.79
FQR(1.5) 1.03 5.35 5.39 5.35 5.36 5.42 5.36 5.34

FBR 1.09 6.32 6.31 6.25 6.24 6.27 6.32 6.36
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5.6.1.2 Analysis of GMOP

Now I investigate the effect of numSamples and maxHorizon on the performance of

MCTS in the GMOP algorithm for discrete utilities. Figure 5.2(a)/5.2(b) reports the

results for the FQR model while Figure 5.4(a)/5.4(b) reports the results for the FBR

model. Figure 5.2(a)/5.4(a) show that the performance of MCTS improves as I increase

numSamples while holdingmaxHorizon fixed, demonstrating the convergence of MCTS.

Figures 5.2(b)/5.4(b) together show that: (i) if numSamples is large enough to ensure

convergence for both larger maxHorizon and smaller maxHorizon (numSamples =

10000 here), planning with more horizons ahead (larger maxHorizon) increases the re-

ward the defender can get; (ii) if numSamples is not large enough to ensure convergence

for larger maxHorizon (numSamples = 100 here), the reward the defender can get de-

creases as maxHorizon increases because larger maxHorizon indicates a deeper Monte

Carlo tree so that more samples are needed to ensure convergence and it deteriorates the

performance of MCTS if convergence is not reached.

Figure 5.3(a)/5.3(b) reports the results for FBR model for continuous utilities. Note

that we are unable to solve problems with FQR model in the continuous utility scenario.

Those figures show similar patterns as Figure 5.2(a)/5.2(b) and Figure 5.4(a)/5.4(b).

However, an interesting observation is that continuous utilities requires more samples to

ensure convergence. numSamples = 10000 is reasonably large enough for convergence in

discrete utilities while it is not large enough for continuous utilities. The reason is that it

involves a far larger utility space in continuous utilities so that it requires more samples

to reach convergence.
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An interesting phenomenon observed in Figure 5.2(b)/5.4(b)/5.3(b) is that the per-

formance difference between different maxHorizon is tiny. However, this is not always

the case. Here I provide an example where maxHorizon makes a big difference in per-

formance. Suppose that we have 3 targets: u(1) = 5; u(2) is 10 with the probability 40%

and 4 with the probability 60%; u(3) has the same utility as u(2). The penalties across

all targets are all 0. We have 2 rounds in total. In round 1, if the defender chooses to

protect target 1, the attacker gets 0.4 ∗ 10 = 4; if the defender chooses to protect target

2 or 3, the attacker gets 0.4 ∗ 0.5 ∗ 10 + 0.6 ∗ 5 = 5. Thus the defender will choose to

protect target 1 if the maxHorizon = 1. In round 2, if the defender chooses to protect

target 1 in round 1, the attacker attacks target 2 or 3 with equal probability, so he will

get 0.5 ∗ 0.6 ∗ 4 + 0.5 ∗ 0.4 ∗ 10 = 3.2, which gives the attacker the utility 7.2 in total; if

the defender chooses to protect target 2 or 3 in round 1, the defender will learn exactly

where the attacker is going to attack, and the attacker gets 0, which gives the attacker

the utility 5 in total. Thus the defender will choose to protect target 2 or 3 in round 1 if

maxHorizon = 2 and gets the expected utility −5 in these two rounds while getting the

utility −7.2 if maxHorizon = 1.

5.6.1.3 POMCP (Particle Filter) vs GMOP (Gibbs Sampling)

In this work I use Gibbs sampling to drive MCTS instead of the particle filter, as in the

original POMCP algorithm [53]. In this way, the distribution of the samples is closer to

the actual belief state. I now compare the performance of these two sampling techniques.

The runtime of Gibbs sampling roughly increases linearly with numSamples; the runtime

of the particle filter roughly increases linearly with the size of the particle filter (number
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of particles). For a fair comparison, I fix the particle filter size as well as numSamples

in Gibbs sampling.

For the FQR model, I set the particle filter size to be 100000 and numSamples

in Gibbs sampling to be 100. The total runtimes are recorded in Table 5.2, where we

see that the runtime of the GMOP algorithm is shorter than the runtime of POMCP

as numSamples varies from 100 to 100000. However, Figure 5.2(c) demonstrates that

the performance of the GMOP algorithm with 100 samples exceeds the performance

of the POMCP algorithm regardless of the value of numSamples. This performance

gap between GMOP and POMCP grows with time because the particle filter gives an

increasingly worse approximation of the belief state as time evolves.

Table 5.2: GMOP vs POMCP in Runtime(s)

GMOP-100 POMCP-100 POMCP-1000 POMCP-10000 POMCP-100000

31.71 75.86 72.92 75.89 92.26

Fictitious Quantal Response (λ = 1.5), maxHorizon = 1

Table 5.3 and Figure 5.4(c) show the runtime and reward of GMOP with numSamples =

1000 vs POMCP with filter size 10000, for the FBR attacker. For the FBR attacker, we

see the same pattern but with an even larger gap in solution quality. In the FBR at-

tacker model, the particles are depleted much more quickly than in the FQR model so

that more new particles must be added. However, these new particles do not follow the

distribution induced by the current belief state, which is detrimental to the quality of the

approximation of the belief state and thus leads to worse performance.

Table 5.3: GMOP vs POMCP in Runtime(s)

GMOP-1000 POMCP-100 POMCP-1000 POMCP-10000 POMCP-100000

83.48 224.35 240.83 257.40 282.71

Fictitious Best Response, maxHorizon = 1
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5.6.1.4 Robustness

While the extension to unknown extractor can deal with the situation where the defender

does not know the true value of λ that measures the attacker’s rationality, I try to

investigate here how the performance changes if the attacker’s true value of λ is only

slightly different from the defender’s estimation. If the performance is very sensitive to

the estimation of λ, we will have to include a lot attacker behavioral models with various

λ in the extension where the attacker’s behavioral model is unknown. However, if the

performance is “robust” against the estimation of λ, it is not necessary to include a lot

models in the extension. In this experiment, I allow the attacker’s true value of λ to vary

in a small scale—take values in 0.5, 1, 1.5, and I allow the defender to estimate λ to be any

of 0.5, 1, 1.5, for a total of 9 combinations of the true λ and its estimate. Figure 5.2(d)

presents the results of this experiment. It turns out that the defender only does slightly

worse when she incorrectly estimates the attacker’s true λ, which shows the “robustness”

of the original framework.

5.6.1.5 Evaluation of the Advanced Sampling Technique in FBR Model

In Section 5.3.1, I proposed an advanced way to compute conditional probabilities when

using Gibbs sampling in the FBR model. This technique is less computationally expensive

than the general method. Table 5.4 compares the runtimes of the general sampling

technique with the advanced sampling technique. As the number of rounds increases

from 20 to 100, the total runtime of the advanced sampling technique increases linearly,

implying that the sampling cost at each round is approximately the same. On the other

hand, the total runtime of the general sampling technique increases with the square of
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the number of rounds in the game, implying that the sampling cost is increasing linearly

in each round.

Table 5.4: General vs Advanced Sampling in Runtime(s)

20 40 60 80 100

General 51.77 209.31 469.80 835.15 1303.95
Advanced 43.83 62.04 77.24 92.77 108.67

Fictitious Best Response, numSamples = 1000, maxHorizon = 1

5.6.1.6 GMOP vs Myopic Planning Heuristic

The myopic heuristic trades solution quality for computational efficiency for a FBR at-

tacker. Figure 5.4(d) compares the solution quality of the myopic planning heuristic

versus GMOP, and Table 5.5 compares their total runtimes. For a fair comparison, I set

maxHorizon to be 1 in the GMOP algorithm. Figure 5.4(d) indicates that the heuristic

gives better solutions than GMOP with numSamples = 100. However, the solution qual-

ity of the heuristic is worse than the one produced by GMOP when numSamples equals

1000 or 10000. According to Table 5.5, the runtime of the myopic heuristic is much less

than the runtime of GMOP.

Table 5.5: GMOP vs Heuristic in Runtime(s)

Heuristic GMOP-100 GMOP-1000 GMOP-10000

0.49 8.38 83.48 689.87

Fictitious Best Response

5.6.2 Model Ensemble Evaluation

In this section, I will evaluate the performance of GMOP algorithm with the model

ensemble idea. I use 6 different attacker models in the experiments. They are defined as:
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• Model 1—Fictitious Quantal Response with λ = 10

• Model 2—Fictitious Quantal Response with λ = 1

• Model 3—Fictitious Quantal Response with the memory of the recent 20 rounds

and λ = 10

• Model 4—Fictitious Quantal Response with the memory of the recent 20 rounds

and λ = 1

• Model 5—Fictitious Quantal Response with exponentially reduced memory (expo-

nential factor = 0.9)5 and λ = 10

• Model 6—Fictitious Quantal Response with exponentially reduced memory (expo-

nential factor = 0.9) and λ = 1

In this experiment, I try to compare the performance of the ensemble agent that takes

into consideration all the 6 different models and the single agent that assumes the attacker

has an exact behavioral model. Figure 5.5(a) shows the performance of those agents when

the real attacker follows model 1. Similarly, Figure 5.5(b), Figure 5.5(c), Figure 5.5(d),

Figure 5.5(e) and Figure 5.5(f) show the performance when the real attacker follows model

2, 3, 4, 5 and 6. The legend “Ensemble” represents the ensemble agent that takes into

consideration all the 6 different models, while the legend “model i” represents the agent

that assumes the attacker is of model i. Figures 5.5(a)/5.5(b)/5.5(c)/5.5(d)/5.5(e)/5.5(f)

show how the performance of these 7 agents evolves as the game goes on. The observation

is that as the game goes on, the performance of “Ensemble” comes very close to that of

5defender’s action i rounds ago is of the weight 0.9i such that more recent actions weigh more.
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“Model i” when the real attacker follows model i, and outperforms the other single agents

that assume the wrong attacker model. The ensemble agent gets a better idea as to the

attacker’s behavioral model as the game goes on, and thus the ensemble agent performs

better than the single agent when the attacker model is unknown to the defender.

In Table 5.6, I compare the runtime of the ensemble agent and the single agent. We

can see that using an ensemble agent only brings a little extra computational cost.

Table 5.6: Ensemble vs Single in Runtime(s)

Ensemble Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

3059.33 2912.09 2764.36 2925.66 2757.56 3802.97 2980.68

Deal with attacker of model 1, 50 rounds

95



10 20 30 40 50
0

10

20

30

Round

A
ve

ra
ge

 R
ew

ar
d

 

 

Ensemble
Model 1
Model 2
Model 3
Model 4
Model 5
Model 6

(a) Deal with attacker of model 1 (50 rounds)
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(b) Deal with attacker of model 2 (50 rounds)
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(c) Deal with attacker of model 3 (50 rounds)
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(d) Deal with attacker of model 4 (50 rounds)
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(e) Deal with attacker of model 5 (50 rounds)
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(f) Deal with attacker of model 6 (50 rounds)

Figure 5.5: Model Ensemble
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Chapter 6

Learning Attacker’s Preference — Markovian Modeling

My work discussed in Chapter 5 assumes that defenders have knowledge of all poaching

activities throughout the wildlife protected area. Unfortunately, given vast geographic

areas for wildlife protection, defenders do not have knowledge of poaching activities in

areas they do not protect. Thus, defenders are faced with the exploration-exploitation

tradeoff — whether to protect the targets that are already known to have a lot of poaching

activities or to explore the targets that haven’t been protected for a long time. The work

in this chapter aims to solve this exploration-exploitation tradeoff.

The exploration-exploitation tradeoff here is different from that in the non-Bayesian

stochastic multi-armed bandit problem [4]. In stochastic multi-armed bandit problems,

the rewards of every arm are random variables with a stationary unknown distribution.

However, in my problem, patrol affects attack activities — more patrol is likely to decrease

attack activities and less patrol is likely to increase attack activities. Thus, the random

variable distribution is changing depending on player’s choice — more selection (patrol)

leads to lower reward (less attack activities) and less selection (patrol) leads to higher

reward (more attack activities). On the other hand, adversarial multi-armed bandit
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problem [5] is also not an appropriate model for this domain. In adversarial multi-armed

bandit problems, the reward can arbitrarily change while the attack activities in my

problem are unlikely to change rapidly in a short period. This makes the adversarial

multi-armed bandit model inappropriate for this domain.

In reality, how patrol affects attack activities would be reasonably assumed to follow a

consistent pattern that can be learned from historical data (defenders’ historical observa-

tions). I model this pattern as a Markov process and provide the following contributions

in this work. First, I formulate the problem into a restless multi-armed bandit (RMAB)

model to handle the limited observability challenge — defenders do not have observations

for arms they do not activate (targets they do not protect). Second, I propose an EM

based learning algorithm to learn the RMAB model from defenders’ historical observa-

tions. Third, i use the solution concept of Whittle index policy to solve the RMAB model

to plan for defenders’ patrol strategies. However, indexability is required for the existence

of Whittle index, so I provide two sufficient conditions for indexability and an algorithm

to numerically evaluate indexability. Fourth, I propose a binary search based algorithm

to find the Whittle index policy efficiently.

6.1 Model

6.1.1 Motivating Domains and their Properties

My work is mainly motivated by the domain of wildlife protection such as protecting

endangered animals and fish stocks [12, 58]. Other motivating domains include police

patrol to catch fare-evaders in a barrier-free transit system [61], border patrol [21, 22],
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etc. The model I will describe in this work is based on the following assumptions about

the nature of interactions between defenders and attackers in these domains. Except the

frequent interactions between defenders (patrollers/police) and attackers (poachers/fare-

evaders/smugglers), these domains share another two important properties: (i) patrol

affects attacking activities (poaching/fare evasion/smuggling); (ii) limited/partial observ-

ability. I will next use the wildlife protection domain as the example to illustrate these

two properties.

Poaching activity is a dynamic process affected by patrol. If patrollers patrol in a

certain location frequently, it is very likely that the poachers poaching in this location

will switch to other locations for poaching. On the other hand, if a location hasn’t been

patrolled for a long time, poachers may gradually notice that and switch to this location

for poaching.

In the wildlife protection domain, both patrollers and poachers do not have perfect

observation of their opponents’ actions. This observation imperfection lies in two aspects:

(i) limited observability — patrollers/poachers do not know what happens at locations

they do not patrol/poach; (ii) partial observability — patrollers/poachers do not have

perfect observation even at locations they patrol/poach — the location might be large

(e.g., a 2km × 2km area) so that it is possible that patrollers and poachers do not see

each other even if they are at the same location.

These two properties make it extremely difficult for defenders to optimally plan their

patrol strategies. For example, defenders may find a target with a large number of attack

activities at the beginning so they may start to protect this target frequently. After a

period of time, attack activities at this target may start to decrease due to the frequent
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patrol. At this time, defenders have to decide whether to keep protecting this target

(exploitation) or to switch to other targets (exploration). However, defenders do not

have knowledge of attack activities at other targets at that moment, which makes this

decision making extremely difficult for defenders.

Fortunately, the frequent interactions between defenders and attackers make it possi-

ble for defenders to learn the effect of patrol on attackers from the historical data. With

this learned effect, defenders are able to estimate attack activities at targets they do not

protect. Based on this concept, I model these domains as a restless multi-armed ban-

dit problem and use the solution concept of Whittle index policy to plan for defenders’

strategies.

6.1.2 Formal Model

I now formalize the story in Section 6.1.1 into a mathematical model that can be for-

mulated as a restless multi-armed bandit problem. There are n targets that are indexed

by N , {1, . . . , n}. Defenders have k patrol resources that can be deployed to these n

targets. At every round, defenders choose k targets to protect. After that, defenders

will have an observation of the number of attack activities for targets they protect, and

no information for targets they do not protect. The objective for defenders is to decide

which k targets to protect at every round to catch as many attackers as possible.

Due to the partial observability on defenders’ side — defenders’ observation of attack

activities is not perfect even for targets they protect, I introduce a hidden variable attack

intensity, which represents the true degree of attack intensity at a certain target. Clearly,

this hidden variable attack intensity cannot directly be observed by defenders. Instead,
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defenders’ observation is a random variable conditioned on this hidden variable attack

intensity, and the larger the attack intensity is, the more likely it is for defenders to

observe more attack activities during their patrol.

I discretize the hidden variable attack intensity into ns levels, denoted by S =

{0, 1, . . . , ns − 1}. Lower i represents lower attack intensity. For a certain target, its

attack intensity transitions after every round. If this target is protected, attack intensity

transitions according to a ns × ns transition matrix T 1; if this target is not protected,

attack intensity transitions according to another ns×ns transition matrix T 0. The tran-

sition matrix represents how patrol affects attack intensity — T 1 tends to reduce attack

intensity and T 0 tends to increase attack intensity. The randomness in the transition

matrix models attackers’ partial observability discussed in Section 6.1.1. Note that dif-

ferent targets may have different transition matrices because some targets may be more

attractive to attackers (for example, some locations may have more animal resources in

the wildlife protection domain) so that it is more difficult for attack intensity to go down

and easier for attack intensity to go up.

I also discretize defenders’ observations of attack activities into no levels, denoted by

O = {0, 1, . . . , no − 1}. Lower i represents less attack activities defenders observe. Note

that defenders will only have observation for targets they protect. A ns× no observation

matrix O determines how the observation depends on the hidden variable attack intensity.

Generally, the larger the attack intensity is, the more likely it is for defenders to observe

more attack activities during their patrol. Similar to transition matrices, different target

may have different observation matrices.
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While defenders get observations of attack activities during their patrol, they also re-

ceive rewards for that — arresting poachers/fare-evaders/smugglers bring benefit. Clearly,

the reward defenders receive depends on their observation and I thus define the reward

function R(o), o ∈ O — larger i leads to higher reward R(i). For example, if o = 0

represents finding no attack activity and o = 1 represents finding attack activities, then

R(0) = 0, R(1) = 1. Note that defenders only get rewards for targets they protect.

To summarize, for the targets defenders protect, defenders get an observation de-

pending on its current attack intensity, get the reward associated with the observation,

and then the attack intensity transitions according to T 1; for the targets defenders do

not protect, defenders do not have any observation, get reward 0 and the attack intensity

transitions according to T 0. Figure 6.1 demonstrates this process. In this model, the state

discretization level ns, observation discretization level no and reward function R(o) are

pre-specified by defenders; the transition matrices T 1 and T 0, observation matrix O and

initial belief π can be learned from defenders’ previous observations. I will briefly discuss

the learning algorithm in Section 6.1.3. After those parameters are learned, this model

is formulated into a restless multi-armed bandit model to plan for defenders’ strategies.

6 6

- - - -
� � � �

� �
R(o0) R(o3)

a0 = 1 a1 = 0 a2 = 0 a3 = 1

T 1 T 0 T 0 T 1

observation

attack
intensity s0 s1 s2 s3

o0 o3

Figure 6.1: Model Illustration
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6.1.3 Learning Model From Defenders’ Previous Observations

Given defenders’ action history {ai} and observation history {oi}, my objective is to learn

the transition matrices T 1 and T 0, observation matrix O and initial belief π. Due to the

existence of hidden variables {si}, expectation-maximization (EM) algorithm is used for

learning.

Expectation-maximization algorithm repeats the following steps until convergence:

1. compute Q(θ, θd) =
∑

z∈Z P (z|x; θd) log[P (x, z; θ)]

2. set θ(d+1) = argmaxθ Q(θ, θd)

where z are latent variables, and are the hidden state sequence in my problem; x are

observed data, and are the observation sequence in my problem; θ are the parameters

to be estimated, and are the transition matrix T 1/T 0 (transition matrix when action

a = 1/0), output matrix O and the initial hidden state distribution π.

P (z|x; θd) = P (x,z;θd)
P (x;θd)

, so we can write

θ(d+1) = argmax
θ

∑

z∈Z

P (x, z; θd) log[P (x, z; θ)]

Denote Q̂(θ, θd) ,
∑

z∈Z P (x, z; θd) log[P (x, z; θ)], so θ(d+1) = argmaxθ Q̂(θ, θd).

P (x, z; θ) = πz1

T−1∏

t=1:at=1

T 1
ztzt+1

T−1∏

t=1:at=0

T 0
ztzt+1

T∏

t=1:at=1

Oztxt

Taking the log gives us

log P (x, z; θ) = log πz1 +
T−1∑

t=1:at=1

log T 1
ztzt+1

+
T−1∑

t=1:at=0

log T 0
ztzt+1

+
T∑

t=1:at=1

logOztxt
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Then we have

Q̂(θ, θd) =
∑

z∈Z

P (x, z; θd) log πz1

+
∑

z∈Z

T−1∑

t=1:at=1

P (x, z; θd) log T 1
ztzt+1

+
∑

z∈Z

T−1∑

t=1:at=0

P (x, z; θd) log T 0
ztzt+1

+
∑

z∈Z

T∑

t=1:at=1

P (x, z; θd) logOztxt

We also have the constraints:

ns−1∑

i=0

πi = 1

ns−1∑

j=0

T 1
ij = 1,∀i = 0, 1, . . . , ns − 1

ns−1∑

j=0

T 0
ij = 1,∀i = 0, 1, . . . , ns − 1

no−1∑

j=0

O1
ij = 1,∀i = 0, 1, . . . , ns − 1

Using Lagrange multipliers we have:

L̂(θ, θd) = Q̂(θ, θd)− λπ(

ns−1∑

i=0

πi − 1)−
ns−1∑

i=0

λT 1
i
(

ns−1∑

j=0

T 1
ij − 1)

−
ns−1∑

i=0

λT 0
i
(

ns−1∑

j=0

T 0
ij − 1)−

ns−1∑

i=0

λOi(

no−1∑

j=0

Oij − 1)
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Take derivatives and set it to be 0, we get the update steps:

π
(d+1)
i = P (s1 = i|x; θd)

T
1(d+1)
ij =

∑T−1
t=1:at=1 P (st = i, st+1 = j|x; θd)
∑T−1

t=1:at=1 P (st = i|x; θd)

T
0(d+1)
ij =

∑T−1
t=1:at=0 P (st = i, st+1 = j|x; θd)
∑T−1

t=1:at=0 P (st = i|x; θd)

O
(d+1)
ij =

∑T
t=1:at=1 P (st = i|x; θd)I(ot = j)
∑T

t=1:at=1 P (st = i|x; θd)

So we need to compute P (st = i|x; θd) and P (st = i, st+1 = j|x; θd). It cam be

computed through forward-backward algorithm.

Let αi(t) = P (o1 = x1, . . . , ot = xt, st = i; θ). It can be computed recursively:

αi(1) =





πiOix1
, a1 = 1,

πi, a1 = 0.

αj(t+ 1) =





Ojxt+1

∑ns−1
i=0 αi(t)T

1
ij , at = 1, at+1 = 1,

Ojxt+1

∑ns−1
i=0 αi(t)T

0
ij , at = 0, at+1 = 1,

∑ns−1
i=0 αi(t)T

1
ij , at = 1, at+1 = 0,

∑ns−1
i=0 αi(t)T

0
ij , at = 0, at+1 = 0.
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Define βi(t) = P (ot+1 = xt+1, . . . , oT = xT |st = i; θ). It can also be computed

recursively:

βi(T ) = 1

βi(t) =





∑ns−1
j=0 βj(t+ 1)T 1

ijOjxt+1
, at = 1, at+1 = 1,

∑ns−1
j=0 βj(t+ 1)T 0

ijOjxt+1
, at = 0, at+1 = 1,

∑ns−1
j=0 βj(t+ 1)T 1

ij , at = 1, at+1 = 0,

∑ns−1
j=0 βj(t+ 1)T 0

ij , at = 0, at+1 = 0.

so we have:

P (st = i|x; θ) = αi(t)βi(t)∑ns−1
j=0 αj(t)βj(t)

P (st = i, st+1 = j|x; θ) =





αi(t)T 1
ijβj(t+1)Ojxt+1∑ns−1

k=0
αk(t)βk(t)

, at = 1, at+1 = 1,

αi(t)T 0
ijβj(t+1)Ojxt+1∑ns−1

k=0
αk(t)βk(t)

, at = 0, at+1 = 1,

αi(t)T
1
ijβj(t+1)

∑ns−1

k=0
αk(t)βk(t)

, at = 1, at+1 = 0,

αi(t)T
0
ijβj(t+1)

∑ns−1

k=0
αk(t)βk(t)

, at = 0, at+1 = 0.

6.2 Restless Bandit for Planning

In this section, I will formulate the model discussed in Section 6.1.2 as a restless multi-

armed bandit problem and plan defenders’ strategies using the solution concept of Whittle

index policy.
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6.2.1 Restless Bandit Formulation

It is straightforward to formulation the model discussed in Section 6.1.2 into a restless

multi-armed bandit problem. Every target is viewed as an arm and defenders choose k

arms to activate (k targets to protect) at every round. Consider a single arm (target),

it is associated with ns (hidden) states, no observations, ns × ns transition matrices T 1

and T 0, ns×no observation matrix O and reward function R(o), o ∈ O as is described in

Section 6.1.2. For the arm defenders activate, defenders get an observation, get reward

associated with the observation, and the state transitions according to T 1. Note that

defenders’ observation is not the state. Instead, it is a random variable conditioned on

the state, and reveals some information about the state. For the arms defenders do not

activate, defenders do not have any observation, get reward 0 and the state transitions

according to T 0.

Since defenders can not directly observe the state, defenders maintain a belief b of the

states for each target, based on which defenders make decisions. The belief is updated

according to the Bayesian rules. The following equation shows the belief update when

defenders protect this target (a = 1) and get observation o or defenders do not protect

this target (a = 0).

b′(s′) =





η
∑

s∈S b(s)OsoT
1
ss′ , a = 1

∑
s∈S b(s)T

0
ss′ , a = 0,

(6.1)

where η is the normalization factor. When defenders do not protect this target (a =

0), defenders do not have any observation, so their belief is updated according to the
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state transition rule; When defenders protect this target (a = 1), their belief is firstly

updated according to their observation o (bnew(s) = ηb(s)Oso according to Bayes’ rule),

and then the new belief is then updated according to the state transition rule: b′(s′) =

∑
s∈S bnew(s)T

1
ss′ =

∑
s∈S ηb(s)OsoT

1
ss′ = η

∑
s∈S b(s)OsoT

1
ss′

I now present the mathematical definition of Whittle index for this problem. Denote

Vm(b) to be the value function for belief state b with subsidy m; Vm(b; a = 0) to be

the value function for belief state b with subsidy m and defenders take passive action;

Vm(b; a = 1) to be the value function for belief state b with subsidy m and defenders take

active action. The following equations show these value functions:

Vm(b; a = 0) = m+ βVm(ba=0)

Vm(b; a = 1) =
∑

s∈S

b(s)
∑

o∈O

OsoR(o)

+ β
∑

o∈O

∑

s∈S

b(s)OsoVm(boa=1)

Vm(b) = max{Vm(b; a = 0), Vm(b; a = 1)}

When defenders take passive action, they get the immediate reward m and the β-

discounted future reward — value function at new belief ba=0, which is updated from b

according to the case a = 0 in Equation 6.1. When defenders take active action, they

get the expected immediate reward
∑

s∈S b(s)
∑

o∈O OsoR(o) and the β-discounted future

reward. The future reward is composed of different observation cases —
∑

s∈S b(s)Oso is

defenders’ probability to have observation o at belief state b, and Vm(boa=1) is the value

function at new belief boa=1 that is updated from b according to the case a = 1 with
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observation o in Equation 6.1. The value function Vm(b) is the maximum of Vm(b; a = 0)

and Vm(b; a = 1). Whittle index I(b) of belief state b is then defined to be :

I(b) , inf
m
{m : Vm(b; a = 0) ≥ Vm(b : a = 1)}

The passive action set Φ(m), which is the set of belief states for which passive action

is the optimal action given subsidy m is then defined to be:

Φ(m) , {b : Vm(b; a = 0) ≥ Vm(b : a = 1)}

6.2.2 Sufficient Conditions for Indexability

In this section, I provide two sufficient conditions for indexability when no = 2 and ns = 2.

Denote the transition matrices to be T 0 and T 1, observation matrix to be O. Clearly in

this problem, O11 > O01, O00 > O10 (higher attack intensity leads to higher probability

to see attack activities when patrolling); T 1
11 > T 1

01, T
1
00 > T 1

10; T
0
11 > T 0

01, T
0
00 > T 0

10

(positively correlated arms).

Define α , max{T 0
11−T 0

01, T
1
11−T 1

01}. Since it is a two-state problem with S = {0, 1},

I use one variable x to represent the belief state: x , b(s = 1), which is the probability

of being in state 1.

Define Γ1(x) = xT 1
11+(1−x)T 1

01, which is the belief for the next round if the belief for

the current round is x and the active action is taken. Similarly, Γ0(x) = xT 0
11+(1−x)T 0

01,

which is the belief for the next round if the belief for the current round is x and the passive

action is taken.
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I present below two theorems demonstrating two sufficient conditions for indexability.

The proof is in Appendix B.

Theorem 6.2.1. When β ≤ 0.5, the process is indexable, i.e., for any belief x, if

Vm(x; a = 0) ≥ Vm(x; a = 1), then Vm′(x; a = 0) ≥ Vm′(x; a = 1), ∀m′ ≥ m

Theorem 6.2.2. When αβ ≤ 0.5 and Γ1(1) ≤ Γ0(0), the process is indexable, i.e., for

any belief x, if Vm(x; a = 0) ≥ Vm(x; a = 1), then Vm′(x; a = 0) ≥ Vm′(x; a = 1),

∀m′ ≥ m

6.2.3 Numerical Evaluation of Indexability

For problems other than those that have been proved to be indexable in Section 6.2.2,

we can numerically evaluate their indexability. I first provide the following proposition.

Proposition 6.2.3. If m < R(0) − βR(no−1)−R(0)
1−β , Φ(m) = ∅; if m > R(no − 1), Φ(m)

is the whole belief state space.

Proof. If m < R(0) − βR(no−1)−R(0)
1−β , denote Vm(b; a = 0) = m + βW0; Vm(b; a = 1) =

R(o)+βW1, whereW1 andW0 represent the maximum future reward. SinceW0 ≤ R(no−1)
1−β

(achieving reward R(no− 1) at every round), W1 ≥ R(0)
1−β (achieving reward R(0) at every

round), R(o) ≥ R(0), we have Vm(b; a = 1) − Vm(b; a = 0) = R(o) −m+ β(W1 −W0) ≥

R(0) −m + βR(0)−R(no−1)
1−β > 0. Thus, being active is always the optimal action for any

state so that Φ(m) = ∅.

If m > R(no−1), then the strategy of always being passive dominates other strategies

so Φ(m) is the whole belief state space.
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Thus, we only need to determine whether the set Φ(m) monotonically increases for

m ⊆ [R(0)−βR(no−1)−R(0)
1−β , R(no−1)]. Numerically, we can discretize this limited m range

and then evaluate if Φ(m) monotonically increases with the increase of discretized m.

Given the subsidy m, Φ(m) can be determined by solving a special POMDP model whose

conditional observation probability is dependent on start state and action. I will discuss

the algorithm in detail in Section 6.3. This algorithm returns a set D which contains

ns-length vectors d1, d2, . . . , d|D|. Every vector di is associated with an optimal action

ei. Given the belief b, the optimal action is determined by aopt = ei, i = argmaxj b
Tdj .

Thus, Φ(m) =
⋃

i:ei=0{b : bTdi ≥ bTdj ,∀j}.

Given m0 < m1, my aim is to check whether Φ(m0) ⊆ Φ(m1). Use the superscript

0 or 1 for set D, vector d, action e to distinguish between the returned solutions with

subsidy m0 and m1. The following mixed-integer linear program (MILP) can be used to

determine whether Φ(m0) ⊆ Φ(m1).
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min
b,z0,z1,ξ0,ξ1

|D0|∑

i=1

z0i e
0
i −

|D1|∑

i=1

z1i e
1
i

s.t. bi ∈ [0, 1],∀i ∈ S,
∑

i∈S

bi = 1

z0i ∈ {0, 1},∀i ∈ {1, 2, . . . , |D0|},
∑

i

z0i = 1

bT d0i ≤ ξ0,∀i ∈ {1, 2, . . . , |D0|}

ξ0 ≤ bTd0i +M(1− z0i ),∀i ∈ {1, 2, . . . , |D0|}

z1i ∈ {0, 1},∀i ∈ {1, 2, . . . , |D1|}
∑

i

z1i = 1

bT d1i ≤ ξ1,∀i ∈ {1, 2, . . . , |D1|}

ξ1 ≤ bTd1i +M(1− z1i ),∀i ∈ {1, 2, . . . , |D1|}

If the result of the above MILP is 0 or 1, Φ(m0) ⊆ Φ(m1). In the MILP, M is a

given large number, b is the belief state, z
0/1
i is a binary variable that indicates whether

bTd
0/1
i ≥ bTd

0/1
j ,∀j (1 indicates yes and 0 indicates no), ξ0/1 is an auxiliary variable that

equals maxi b
Td

0/1
i ,

∑|D0/1|
i=1 z

0/1
i e

0/1
i is the optimal action for the problem with subsidy

m0/1. If the result of this MILP is 0 or 1, it means that there does not exist a belief b under

which the optimal action for the problem with subsidy m0 is passive (0) and the optimal

action for the problem with subsidy m1 is active (1). This means Φ(m0) ⊆ Φ(m1).
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6.2.4 Computation of Whittle Index Policy

Given the indexability, Whittle index can be found by doing a binary search within the

range m ⊆ [R(0)−βR(no−1)−R(0)
1−β , R(no−1)]. Given the upper bound ub and lower bound

lb, the problem with middle point lb+ub
2 as passive subsidy is sent to the special POMDP

solver to find the optimal action for the current belief. If the optimal action is active,

then the Whittle index is greater than the middle point so lb← lb+ub
2 ; or else ub← lb+ub

2 .

This binary search algorithm can find Whittle index with arbitrary precision. Naively,

we can compute the Whittle index policy by computing the ε-precision indices of all arms

and then picking the k arms with the highest indices.

However, since we are actually only interested in which k arms have the highest

Whittle index and we do not care what exactly their indices are, we can do better than

this naive method, which is demonstrated in Algorithm 8.

In Algorithm 8, A is Whittle index policy to be returned and is set to be ∅ at the

beginning. S is the set of arms that we have not known whether belong to A or not and

is set to be the whole set of arms at the beginning. Before it finds top-k arms (the loop

between Line 4 and Line 21), it tests all the arms in S about their optimal action with

subsidy ub+lb
2 . If the optimal action is 1, it means this arm’s index is higher than ub+lb

2

and we add it to S1; if the optimal action is 0, it means this arm’s index is lower than

ub+lb
2 and we add it to S0 (Lines 6− 13). At this moment, we know that all arms in S1

have higher indices than all arms in S0. If there is enough space in A to include all arms

in S1, we add S1 to A, remove them from S and set the upper bound to be ub+lb
2 because

we already know that S1 belongs to Whittle index policy set and all the rest arms have
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Algorithm 8 Algorithm to Compute Whittle Index Policy

1: function FindWhittleIndexPolicy

2: lb← R(0)− βR(no−1)−R(0)
1−β , ub← R(no − 1)

3: A← ∅, S ← {1, 2, . . . , n}
4: while |A| < k do
5: S1 ← ∅, S0 ← ∅
6: for i ∈ S do
7: aopt ← POMDPSolve(Pi,

lb+ub
2 )

8: if aopt = 1 then
9: S1 ← S1

⋃{i}
10: else
11: S0 ← S0

⋃{i}
12: end if
13: end for
14: if |S1| ≤ k − |A| then
15: A← A

⋃
S1, S ← S − S1

16: ub← lb+ub
2

17: else
18: S ← S − S0

19: lb← lb+ub
2

20: end if
21: end while
22: return A
23: end function
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the index lower than ub+lb
2 (Lines 14− 16). If there is not enough space in A, we remove

S0 from S and set the lower bound to be ub+lb
2 because we already know that S0 does

not belong to Whittle index policy set and all the rest arms have the index higher than

ub+lb
2 (Lines 17− 19).

6.3 Computation of Passive Action Set

In this section, I will discuss the algorithm to compute the passive action set Φ(m)

with the subsidy m. This problem can be viewed as solving a special POMDP model

whose conditional observation probability is dependent on start state and action while

the conditional observation probability is dependent on end state and action in standard

POMDPs. Figure 6.2 demonstrates the difference. The left figure represents special

POMDPs and the right figure represents standard POMDPs. In both cases, the original

state is s, the agent takes action a, and the state transitions to s′ according to P (s′|s, a).

However, the observation o the agent get during this process is dependent on s and a in

my special POMDPs; while it depends on s′ and a in standard POMDPs.

observation

state
�a

6

-
P (s′|s, a)s s′

o

P (o|s, a)

�a

6

-
P (s′|s, a)s s′

o

P (o|s′, a)

Figure 6.2: Special POMDPs vs Standard POMDPs
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Despite this difference, the solution concept of value iteration algorithm in standard

POMDPs can be used to solve my special POMDP formulations with appropriate modi-

fications. I will discuss the special POMDP formulation for my problem in Section 6.3.1

and present the modified value iteration algorithm in Section 6.3.2.

6.3.1 Special POMDP Formulation

The special POMDP formulation for my problem is straightforward.

state space The state space is S = {0, 1, . . . , ns − 1}.

action space The action space is A = {0, 1}, where a = 0 represents passive action (do

not protect) and a = 1 represents active action (protect).

observation space The observation space is O = {−1, 0, 1, . . . , no−1}. It adds a “fake”

observation o = −1 to represent no observation when taking action a = 0. It’s called

“fake” because defenders have probability 1 to observe o = −1 no matter what the state

is when they take action a = 0, so this observation does not provide any information.

When defenders take action a = 1, they may observe observations O\{−1}.

conditional transition probability The conditional transition probability P (s′|s, a) is

defined to be: P (s′ = j|s = i, a = 1) = T 1
ij and P (s′ = j|s = i, a = 0) = T 0

ij .

conditional observation probability The conditional observation probability P (o|s, a)

is defined to be P (o = −1|s, a = 0) = 1,∀s ∈ S; P (o = j|s = i, a = 1) = Oij . Note that

the conditional observation probability here is dependent on the start state s and action

a, while it depends on end state s′ and action a in standard POMDP models. Intuitively,

defenders’ observation of attack activities today depends on the attack intensity today,

not the transitioned attack intensity tomorrow.
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reward function The reward function R is

R
(
s, s′, a, o

)
=





0, a = 0,

R(o), a = 1.

With the transition probability and observation probability, R(s, a) can be computed.

Note that this formulation is also slightly different due to the different definition of ob-

servation probability.

R(s, a) =
∑

s′∈S

P (s′|s, a)
∑

o∈O

P (o|s, a)R(s, s′, a, o)

6.3.2 Value Iteration for My Special POMDP

Different from standard POMDP formulation, the belief update in the special POMDP

formulation is

b′(s′) =

∑
s∈S b(s)P (o|s, a)P (s′|s, a)

P (o|b, a) (6.2)

where

P (o|b, a) =
∑

s′∈S

∑

s∈S

b(s)P (o|s, a)P (s′|s, a) =
∑

s∈S

b(s)P (o|s, a)

Note that the belief update process is also consistent with that in Equation 6.1. Similar

to standard POMDP formulation, we have the value function

V ′(b) = max
a∈A

(
∑

s∈S

b(s)R(s, a) + β
∑

o∈O

P (o|b, a)V (boa)

)

117



which can be broken up to simpler combinations of other value functions:

V ′(b) = max
a∈A

Va(b)

Va(b) =
∑

o∈O

V o
a (b)

V o
a (b) =

∑
s∈S b(s)R(s, a)

|O| + βP (o|b, a)V (boa)

All the value functions can be represented as V (b) = maxα∈D b·α since the update process

maintains this property, so we only need to update the set D when updating the value

function. The set D is updated according to the following process:

D′ = purge

(
⋃

a∈A

Da

)

Da = purge

(
⊕

o∈O

Do
a

)

Do
a = purge ({τ(α, a, o)|α ∈ D})

where τ(α, a, o) is the |D|-vector given by

τ(α, a, o)(s) = (1/|O|)R(s, a) + βP (o|s, a)
∑

s′∈S

α(s′)P (s′|s, a)

and purge(·) takes a set of vectors and reduces it to its unique minimum form (remove

redundant vectors that are dominated by other vectors in the set).
⊕

represents the

cross sum of two sets of vectors: A
⊕

B = {α+ β|α ∈ A, β ∈ B}.
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The update of D′ and Da is intuitive, so I briefly explain the update of Do
a
1 here:

P (o|b, a)V (boa) = P (o|b, a)max
α∈D

∑

s′∈S

α(s′)P (s′|b, a, o)

= P (o|b, a)max
α∈D

∑

s′∈S

α(s′)

∑
s∈S b(s)P (o|s, a)P (s′|s, a)

P (o|b, a)

= max
α∈D

∑

s′∈S

α(s′)
∑

s∈S

b(s)P (o|s, a)P (s′|s, a)

= max
α∈D

∑

s∈S

b(s) ·
(
P (o|s, a)

∑

s′∈S

α(s′)P (s′|s, a)
)

Here, P (s′|b, a, o) is the belief of state s′ in the next round when the belief in the current

round is b, the agent takes action a and get the observation o, which is the b(s′) in

Equation 6.2.

6.4 Planning from POMDP View

I have discussed in Section 6.3.1 that every single target can be modeled as a special

POMDP model. Given that, we can combine these POMDP models at all targets to

form a special POMDP model that describe the whole problem, and solving this special

POMDP model leads to defenders’ exact optimal strategy. Use the superscript i to denote

target i. Generally, the POMDP model for the whole problem is the cross product of the

single-target POMDP models at all targets with the constraint that only k targets are

protected at every round.

state space The state space is S = S1 × S2 × . . . × Sn. Denote s = (s1, s2, . . . , sn)

1Actually the only difference of value iteration algorithm for the special POMDP formulation compared
with that for the standard POMDP formulation is the different update of Do

a.
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action space The action space isA = {(a1, a2, . . . , an)|aj ∈ {0, 1},∀j ∈ N,
∑

j∈N aj =

k}, which represents that only k targets can be protected at a round. Denote a =

(a1, a2, . . . , an)

observation space The observation space is O = O1 × O2 × . . . × On. Denote

o = (o1, o2, . . . , on)

conditional transition probability The conditional transition probability is P (s′|s, a)

=
∏

j∈N P j(s′j |sj, aj).

conditional observation probability The conditional observation probability is

P (o|s, a) =∏j∈N P j(oj |sj , aj).

reward function The reward function is R(s, s′, a, o) =
∑

j∈N R(sj, s′j , aj , oj)

Naively, the modified value iteration algorithm discussed in Section 6.3.2 can be used

to solve this special POMDP formulation. However, this POMDP formulation suffers

from curse of dimensionality — the problem size increases exponentially with the number

of targets. Thus, the computational cost of value iteration algorithm will soon become

unaffordable as the problem size grows.

Silver and Veness [53] have proposed POMCP algorithm, which provides high quality

solutions and is scalable to large POMDPs. The POMCP algorithm only requires a

simulator of the problem so it also applies to my special POMDPs. At a high level,

the POMCP algorithm is composed of two parts: (i) it uses a particle filter to maintain

an approximation of the belief state; (ii) it draw state samples from the particle filter

and then use MCTS to simulate what will happen next to find the best action. It uses a

particle filter to approximate the belief state because it is even computationally impossible

in many problems to update belief state due to the extreme large size of the state space.
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However, in my problem, the all-target POMDP model is the cross product of the single-

target POMDP models at all targets. The single-state POMDP model is small so that it

is computationally inexpensive to maintain its belief state. Thus, we can easily sample

the state si at target i from its belief state and then compose them together to get the

state sample s = (s1, s2, . . . , sn) for the all-target POMDP model.

The details of MCTS in POMDP are available in [53] so I omit it here. Although

the POMCP algorithm shows better scalability than the exact POMDP algorithm, its

scalability is also limited because the action space and observation space are also expo-

nential with k in my problem. Consider the problem instance of n = 10, k = 3 and

no = 2, the number of actions is
(10
3

)
= 10∗9∗8

1∗2∗3 = 120 and the number of observations

is
(10
3

)
∗ 23 = 960. Since actions and observations are the branches in the MCTS, the

tree size will soon become extremely large when planning more rounds ahead. This leads

to two problems: (i) it will soon run out of memory when planning more rounds ahead;

(ii) a huge number of state samples is needed to establish the convergence. Thus, the

POMCP algorithm only applies to problem instances with small k. The experimental

evaluation shows that the POMCP algorithm is unable to plan 3 horizons forward (runs

out of memory) for the problem instance of n = 10, k = 3 and no = 2. It means that for

large problem instances, the POMCP algorithm is reduced to myopic policy (only look

one round ahead when planning).
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6.5 Experimental Evaluation

In this section, I will firstly evaluate the Whittle Index Policy in Section 6.5.1 and then

evaluate the RMAB model in Section 6.5.2. The performance is evaluated in terms of the

cumulative reward received within the first 20 rounds with discounting factor β = 0.9.

All results are averaged over 500 simulation runs.

6.5.1 Evaluation of Whittle Index Policy

I will compare the Whittle Index policy with four baseline algorithms:

Random: The defenders randomly choose k targets to protect at every round.

Myopic: The defenders choose k targets with the highest immediate reward to pro-

tect at every round.

Exact POMDP: The defenders uses the modified value iteration algorithm to solve

the special POMDP problem discussed in Section 6.4 to plan for patrol strategies at every

round. Note that it only works for small-scale problems and is the exact optimal patrol

strategy defenders may take

POMCP: The defenders uses POMCP algorithm to solve the special POMDP prob-

lem discussed in Section 6.4 to plan for patrol strategies at every round.

The computation of Whittle Index policy and exact POMDP algorithm involve solving

special POMDPs using the modified value iteration algorithm as is discussed in Section

6.3.2. I implement the modified value iteration algorithm by modifying the POMDP solver

written by Anthony R. Cassandra2. The detailed algorithm I use for value iteration is

the incremental pruning algorithm [10].

2http://pomdp.org/code/
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There are two parameters in the POMCP algorithm: the number of state samples

and the depth of the tree, i.e., the number of rounds we look ahead when planning. With

the increase of the number of state samples, the performance of the POMCP algorithm

improves; while the runtime also increases at the same time. Thus, for a fair comparison,

during my experiment, I choose the number of state samples so that its runtime is similar

to that of Whittle index policy. For the depth of the tree, I choose the one with the

largest cumulative reward.

Small Scale: Compare with Exact POMDP Algorithm I then evaluate these

five planning algorithms in a small problem instance with n = 2, k = 1, ns = 2 and no = 2.

The result is shown in Table 6.1. From the table, we can see that my Whittle index policy

and POMCP algorithm perform very close to the optimal Exact POMDP solution and

are much better than the myopic optimal policy and random policy, demonstrating their

high solution quality.

Table 6.1: Planning Algorithm Evaluation in Solution Quality for Small-scale Problem
Instances

Random Myopic Optimal POMCP Exact POMDP Whittle Index

2.6534 3.1384 3.1694 3.1798 3.1740

Large Scale: I then evaluate my planning algorithms in a larger problem instance

with n = 10. Figure 6.3(a) shows the solution quality comparison when ns = 2 and no = 2.

The x-axis shows the number of defenders (k) and the y-axis shows the cumulative reward.

From this figure, we can see that Whittle index policy performs better than the POMCP

algorithm and myopic optimal policy, and all of these three algorithms perform much

better than the random policy. One thing to note is that the POMCP algorithm shows

poor scalability with regard to k — it is unable to plan 3 horizons forward (runs out of
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memory) with k = 3. Figure 6.3(b) shows the solution quality comparison when ns = 3

and no = 3, and demonstrates similar patterns as Figure 6.3(a).
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Figure 6.3: Planning Algorithm Evaluation in Solution Quality for Large-scale Problem
Instances

An Example When Myopic Policy Fails We can see from Figures 6.3(a) and

6.3(b) that the myopic policy performs only slightly worse compared with the Whittle

index policy. Here I provide an example where the myopic policy performs significantly

worse. Consider the case with 2 targets and 1 defender.

For target 0:

T 0 =




0.95 0.05

0.05 0.95


T

1 =




0.99 0.01

0.1 0.9


O =




0.9 0.1

0.2 0.8




For target 1:

T 0 =




0.4 0.6

0.1 0.9


 T 1 =




0.7 0.3

0.4 0.6


 O =




0.7 0.3

0.3 0.7




124



Figure 6.4 shows the performance of different algorithms. In this case, the myopic

policy performs similar to the random policy, and is much worse compared with Whittle

Index policy.
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Figure 6.4: Example when Myopic Policy Fails

Runtime Analysis of Whittle Index Policy: Figure 6.5 analyzes the runtime of

Whittle index policy. The x-axis shows the number of targets (n) and the y-axis shows

the average runtime. From the figure, we can see that the runtime increases linearly with

the number of targets. This is because Whittle index policy reduces an n-dimensional

problem to n 1-dimensional problems so that the complexity is linear with n. Another

observation is that the number of defenders (k) does not affect the runtime a lot for a

given n.

6.5.2 Evaluation of RMAB Modeling

In this section, I will compare my RMAB model with the algorithms (UCB, SWUCB,

EXP3) used in [21] with a group of simulated attackers. The performance is evaluated in

terms of the cumulative reward received within the first 20 rounds after several rounds

learning (β = 0.9).
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Figure 6.5: Runtime Analysis of Whittle Index Policy: ns = 2, no = 2

Figure 6.6(a) demonstrates how the performance changes with different learning rounds

and ns(no). It shows that when learning rounds is smaller (100), the model with ns =

no = 2 performs the best. This is because the model with higher ns(no) suffers overfitting

with limited data at this time. When the data is relatively abundant (learning rounds

= 1000), the model with higher ns(no) performs better. However, we noticed that the

difference is not significantly large.

Figure 6.6(b) shows that comparison of my RMAB model with the Random/UCB/

SWUCB/EXP3 algorithms. When learning rounds is smaller (100), my RMAB model

performs similar to UCB algorithm, and is better than other algorithms. When learning

rounds becomes larger, my RMAB model shows significant advantage over other algo-

rithms.
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Figure 6.6: Evaluation of RMAB Modeling
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Chapter 7

Conclusion

7.1 Contributions

My contributions include addressing uncertainty in attackers’ preference using robust and

learning approaches. My first contribution develops an algorithm to efficiently compute

the robust strategy against risk-aware attackers in SSGs. My second contribution models

the preference as payoffs and focuses on learning the payoffs and then planning accordingly

in green security domains. My third contribution models the preference as markovian pro-

cess that transits according to defender’s strategies to handle the exploration-exploitation

tradeoff in these domains.

Robust Strategy against Risk-aware Attackers in SSGs My first contribution

focuses on handling attacker’s risk preference uncertainty in security games with robust

approaches. I computes a robust defender strategy that optimizes the worst case against

risk-aware attackers with uncertainty in the degree of risk awareness [1], i.e., it provides

a solution quality guarantee for the defender no matter how risk-aware the attacker is.
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To develop the robust strategy, I firstly build a robust SSG framework against an

attacker with uncertainty in level of risk awareness. Second, building on previous work

on SSGs in mixed-integer programs, I propose a novel mixed-integer bilinear program-

ming problem (MIBLP), and find that it only finds locally optimal solutions. While the

MIBLP formulation is also unable to scale up, it provides key intuition for my new al-

gorithm. This new algorithm, BeRRA (Binary search based Robust algorithm against

Risk-Aware attackers) is my third contribution, and it finds globally ǫ-optimal solutions

by solving O(n log(1ǫ ) log(
1
δ )) linear feasibility problems. The key idea of the BeRRA

algorithm is to reduce the problem from maximizing the reward with a given number of

resources to minimizing the number of resources needed to achieve a given reward. This

transformation allows BeRRA to scale up via the removal of the bilinear terms and integer

variables as well as the utilization of key theoretical properties that prove correspondence

of its potential “attack sets” [20] with that of the maximin strategy. Finally, I also show

that the defender does not need to consider attacker’s risk attitude in zero-sum games.

The experimental results show the solution quality and runtime advantages of my robust

model and BeRRA algorithm.

Learning Attacker’s Preference — Payoff Modeling My second contribution

focuses on learning attacker’s payoffs in green security domains where there are frequent

interactions between the defender and the attacker. I model attacker’s preference as

payoffs and the frequent interactions give the defender the opportunity to learn the at-

tacker’s payoffs by observing the attacker’s actions. Motivated by this, my work develops

the model and algorithm for the defender to learn target values from attacker’s actions

and then uses this information to better plan her strategy.
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I model these interactions between the defender and the attacker as a repeated game.

I then adopt a fixed model for the attacker’s behavior and recast this repeated game as a

partially observable Markov decision process (POMDP). However, my POMDP formula-

tion has an exponential number of states, making current POMDP solvers like ZMDP [54]

and APPL [25] infeasible in terms of computational cost. Silver and Veness [53] have

proposed the POMCP algorithm which achieves a high level of performance in large

POMDPs. It uses particle filtering to maintain an approximation of the belief state of

the agent, and then uses Monte Carlo Tree Search (MCTS) for online planning. However,

the particle filter is only an approximation of the belief state. By appealing to the special

properties of my POMDP, I propose the GMOP algorithm (Gibbs sampling based MCTS

Online Planning) which draws samples directly from the exact belief state using Gibbs

sampling and then runs MCTS for online planning. My algorithm provides higher solu-

tion quality than the POMCP algorithm. Additionally, for a specific subclass of my game

with an attacker who plays a best response against the defender’s empirical distribution,

and a uniform penalty of being seized across all targets, I provide an advanced sampling

technique to speed up the GMOP algorithm along with a heuristic that trades off solution

quality for lower computational cost. Moreover, I explore the case of continuous utilities

where my original POMDP formulation becomes a continuous-state POMDP, which is

generally difficult to solve. However, the special properties in the specific subclass of

game mentioned above make possible the extension of the GMOP algorithm to continu-

ous utilities. Finally, I explore the more realistic scenario where the defender is not only

uncertain about the distribution of resources, but also uncertain about the attacker’s
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behavioral model. I address this challenge by extending my POMDP formulation and

the GMOP algorithm.

There are two assumptions in this model: (i) both the defender and the attacker are

able to observe their opponent’s actions even if they are protecting/attacking different

targets; (ii) the defender knows the attacker’s behavioral model (or several candidate

behavioral models). These two assumptions may not hold in some real-world domains.

Thus in response, I have the third contribution that do not need these two assumptions.

Learning Attacker’s Preference — Markovian Modeling My second contri-

bution assumes that defenders have knowledge of all poaching activities throughout the

wildlife protected area. Unfortunately, given vast geographic areas for wildlife protec-

tion, defenders do not have knowledge of poaching activities in areas they do not protect.

My third contribution then relaxes this assumption by modeling attacker’s preference as

Markovian processes.

I assume that how patrol affects attack activities can be assumed to follow a consistent

pattern that can be learned from historical data (defenders’ historical observations). I

model this pattern as a Markovian process and provide the following contributions in this

work. First, I formulate the problem into a restless multi-armed bandit (RMAB) model

to handle the limited observability challenge — defenders do not have observations for

arms they do not activate (targets they do not protect). Second, I propose an EM based

learning algorithm to learn the RMAB model from defenders’ historical observations.

Third, I use the solution concept of Whittle index policy to solve the RMAB model to

plan for defenders’ patrol strategies. However, indexability is required for the existence

of Whittle index, so I provide two sufficient conditions for indexability and an algorithm
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to numerically evaluate indexability. Fourth, I propose a binary search based algorithm

to find the Whittle index policy efficiently.

In this contribution, it does not assume full observability or attacker’s exact behavioral

model. Instead, it assumes that the attacker’s behavior follows certain pattern that does

not change rapidly over time since all the planning algorithm is based on the adversary

model learned from attacker’s previous actions. In addition, since the planning algorithm

fully trusts the learned adversary model, it assumes that the learned adversary model is

correct. One possible extension is to include some robustness in the learned adversary

model.

To summarize, since my thesis have two different contributions on learning, and they

are also related to the green security game modeling [12,58], I show in the following table

the comparison between these models.

Table 7.1: Comparison Between Different Models
AAMAS’14 AAMAS’16 Green Security Game

Strategy pure strategy pure strategy mixed strategy
Observability by defender full observability limited observability full observability
Observability by attacker full observability limited observability full observability

assumption on behavioral models QR no SUQR

These models have their advantages and disadvantages, and their combination may

lead to possible directions for future work. For example, although the AAMAS’14 model

is unable to handle the limited observability challenge and it assumes for attacker’s be-

havioral model, it provides a more precise prediction result for attacker’s preference.

Similarly, although the mixed strategy setting in the green security game modeling has

its limitations in the real world, its combination with my model might be possible to

improve the performance.
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7.2 Future Work

My thesis has discussed the algorithm to handle attacker’s preference with robust and

learning approaches. However, these two methods are all passively responding to at-

tacker’s preferences. Thus, an interesting question to ask is — is it possible for the

defender to “manipulate” attacker’s actions utilizing their preferences? An intuitive idea

is that the defender may “manipulate” the attacker’s actions by “manipulating” attacker’s

penalties in domains where the attacker’s penalties are determined by the defender. For

example, in the domain of protecting fish, some areas may be more “important” so that

the defender may set the penalties higher in these areas. Therefore, it becomes a challenge

for the defender as to how to set the penalties optimally to get a higher reward?

One other possible direction for future work is to combine the payoff uncertainty

and attacker’s risk attitude uncertainty together. Previous research [19] proposes the

algorithm to compute the robust strategy against payoff uncertainty and my work [51]

discusses the algorithm to compute the robust strategy against risk attitude uncertainty.

Considering the fact that these two uncertainties may exist at the same time in real-world

applications, a necessary next step is to develop an algorithm that can handle these two

uncertainties at the same time.

Another possible direction for future work concerns with further improvements of the

model for green security domains. My current model is based on a set of simplifying

assumptions about the domain. For example, it discretizes the forest into a couple of

grids and views each grid as a single target. In this way, it ignores the geometric relations

between different grids — the poaching activities at neighboring grids may be correlated.
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Moreover, it assumes that the defender protects a grid at every round. However, the

defender may take a patrol route that goes across several targets at every round. A

necessary next step is to take those domain features into account.
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Appendix A

An Example of BeRRA Algorithm

Consider the example below with 3 targets and 1 resource.

Table A.1: Example of BeRRA Algorithm

Target Uu
d Uc

d Uu
a Uc

a

t0 −26 39 18 −14
t1 −25 15 25 −27
t2 −39 39 30 −24

In Algorithm 1, the upper bound for defender’s reward is 39 and the lower bound

is −39 at the beginning. Then it tries to find whether the reward 0 (the midpoint of

upper bound and lower bound) is achievable with 1 resource. Algorithm 3 computes the

maximin strategy cmax to achieve the reward 0 for the defender is cmax
0 = 0.4, cmax

1 =

0.625, cmax
2 = 0.5 and the possible attack set under the maximin strategy only contains

t0, so Sp(c
max) = {t0} and Si(c

max) = {t1, t2}. Then it uses binary search in Algorithm

4 to reduce the coverage probability for targets in Si(c
max) and get the optimal strategy

copt, which is copt0 = 0.4, copt1 = 0.380769, copt2 = 0.459269. It returns back to Algorithm 1

and Algorithm 1 computes that the minimum number of resources needed to achieve the

reward 0 is 1.240038, which is larger than the resource we have, which is 1. Therefore,

the reward 0 is not achievable for the defender with 1 resource and the upper bound of
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defender’s reward is then set to be 0. This process goes on and on and until the upper

bound and the lower bound become closer enough.
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Appendix B

Proof for Indexability

I am going to prove Theorem 6.2.1 and Theorem 6.2.2 demonstrating two sufficient con-

ditions for indexability. Consider the case with no = 2 and ns = 2.

Transition matrix:

T 0 =




T 0
00 T 0

01

T 0
10 T 0

11




T 1 =




T 1
00 T 1

01

T 1
10 T 1

11




Observation matrix:

O =




O00 O01

O10 O11




In this problem, O11 > O01, O00 > O10 (higher attack intensity leads to higher

probability to see attack activities when patrolling); T 1
11 > T 1

01, T
1
00 > T 1

10; T
0
11 > T 0

01,

T 0
00 > T 0

10 (positively correlated arms).

Define α , max{T 0
11 − T 0

01, T
1
11 − T 1

01}.
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Since it is a two-state problem with S = {0, 1}, I use one variable x to represent the

belief state: x , b(s = 1), which is the probability of being in state 1.

Define Γ1(x) = xT 1
11+(1−x)T 1

01, which is the belief for the next round if the belief for

the current round is x and the active action is taken. Similarly, Γ0(x) = xT 0
11+(1−x)T 0

01,

which is the belief for the next round if the belief for the current round is x and the passive

action is taken. We have Γ1(x2)− Γ1(x1) = (T 1
11 − T 1

01)(x2 − x1) ≤ α(x2 − x1),∀x2 > x1

and Γ0(x2) − Γ0(x1) = (T 0
11 − T 0

01)(x2 − x1) ≤ α(x2 − x1),∀x2 > x1 according to the

definition of α.

We normalize the reward function R(o) so that R(0) = 0 and R(1) = 1.

B.1 Preliminaries

Further expand the value function presented in thesis, we have:

Vm(x; a = 0) = m+ βVm(Γ0(x))

Vm(x; a = 1) = xO11 + (1− x)O01

+ β[xO11 + (1− x)O01]Vm(Γ1(
xO11

xO11 + (1− x)O01
))

+ β[xO10 + (1− x)O00]Vm(Γ1(
xO10

xO10 + (1− x)O00
))

Vm(x) = max{Vm(x; a = 0), Vm(x; a = 1)}

where Vm(x) is the value function for belief state x with subsidy m, Vm(x; a = 0) is

the value function for belief state x with subsidy m and defenders take passive action,
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and Vm(x; a = 1) is the value function for belief state x with subsidy m and defenders

take active action.

Define V t
m(x) to be the value function for state x with subsidy m when there are t

rounds left. V t
m(x; a = 0) and V t

m(x; a = 1) are also defined similarly. Clearly,

lim
t→+∞

V t
m(x) = Vm(x)

lim
t→+∞

V t
m(x; a = 0) = Vm(x; a = 0)

lim
t→+∞

V t
m(x; a = 1) = Vm(x; a = 1)

Proposition B.1.1. The value function for the last round is: V 1
m(x) = max{m,xO11 +

(1− x)O01}

Proof. It can be easily computed by assuming V 0
m(x) = 0,∀x ∈ [0, 1].

Figure B.1 shows an example of V 1
m(x) with m = 0.2, O11 = 0.4, O01 = 0.1

0 0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure B.1: An example of V 1
m(x)
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My proof below is based on mathematical induction — I first prove the conclusion

holds true for V 1
m(x); then prove it holds true for V t+1

m (x) if it holds true for V t
m(x). Then

it holds true for V ∞
m (x), in other words, the conclusion holds true for Vm(x).

B.2 Proof of Theorem 6.2.1

To prove Theorem 6.2.1, I first prove a couple of lemmas.

Lemma B.2.1. Vm′(x) ≥ Vm(x), ∀m′ ≥ m,∀x

Proof. Clearly, V 1
m′(x) ≥ V 1

m(x), ∀m′ ≥ m,∀x

If V t
m′(x) ≥ V t

m(x), ∀m′ ≥ m,∀x, since V t+1
m′ (x; a = 0) ≥ V t+1

m (x; a = 0) and

V t+1
m′ (x; a = 1) ≥ V t+1

m (x; a = 1), we have V t+1
m′ (x) ≥ V t+1

m (x), ∀m′ ≥ m,∀x

Lemma B.2.2. Vm′(x)− Vm(x) ≤ m′−m
1−β ,∀m′ ≥ m,∀x

Proof. Clearly, V 1
m′(x)− V 1

m(x) ≤ m′ −m ≤ m′−m
1−β ,∀m′ ≥ m,∀x

If V t
m′(x)− V t

m(x) ≤ m′−m
1−β ,∀m′ ≥ m,∀x, we have:

V t+1
m′ (x; a = 0)− V t+1

m (x; a = 0) = m′+ βV t
m′(Γ0(x))−m−βV t

m(Γ0(x)) ≤ (m′−m)+

βm′−m
1−β = m′−m

1−β

V t+1
m′ (x; a = 1)− V t+1

m (x; a = 1) ≤ βm′−m
1−β ≤ m′−m

1−β

so V t+1
m′ (x)− V t+1

m (x) ≤ m′−m
1−β ,∀m′ ≥ m,∀x

Now we are ready to prove Theorem 6.2.1.

Theorem (6.2.1). When β ≤ 0.5, the process is indexable, i.e., for any belief x, if

Vm(x; a = 0) ≥ Vm(x; a = 1), then Vm′(x; a = 0) ≥ Vm′(x; a = 1), ∀m′ ≥ m
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Proof. According to Lemma B.2.1: Vm′(x; a = 0) − Vm(x; a = 0) = m′ + βVm′(Γ0(x)) −

m− βVm(Γ0(x)) ≥ m′ −m

According to Lemma B.2.2: Vm′(x; a = 1)− Vm(x; a = 1) ≤ βm′−m
1−β ≤ m′ −m

so Vm′(x; a = 0) − Vm(x; a = 0) ≥ Vm′(x; a = 1)− Vm(x; a = 1), therefore Vm′(x; a =

0) ≥ Vm′(x; a = 1)

B.3 Proof of Theorem 6.2.2

To prove Theorem 6.2.2, we first prove the following lemma.

Lemma B.3.1. When αβ ≤ 0.5, we have:

• the value function Vm(x) is an increasing function with x

• the optimal policy is a threshold policy with smaller x leads to a = 0 and larger x

leads to a = 1

• Vm(x2)− Vm(x1) ≤ (x2−x1)(O11−O01)
1−αβ ,∀x2 > x1

Proof. Obviously, it holds true for t = 1.

Suppose it holds true for V t
m(x), i.e., V t

m(x) is an increasing function with x, the

optimal policy is a threshold policy with smaller x leads to a = 0 and larger x leads to

a = 1, and V t
m(x2)− V t

m(x1) ≤ (x2−x1)(O11−O01)
1−αβ ,∀x2 > x1, consider V

t+1
m (x).

(i) We first prove that the optimal policy is a threshold policy for V t+1
m (x) with smaller

x leads to a = 0 and larger x leads to a = 1. It is equivalent to prove that:

if V t+1
m (x2; a = 0) ≥ V t+1

m (x2; a = 1), then V t+1
m (x1; a = 0) ≥ V t+1

m (x1; a = 1),∀x1 <

x2

146



if V t+1
m (x1; a = 1) ≥ V t+1

m (x1; a = 0), then V t+1
m (x2; a = 1) ≥ V t+1

m (x2; a = 0),∀x1 <

x2

These conclusions are correct if V t+1
m (x2; a = 1) − V t+1

m (x1; a = 1) ≥ V t+1
m (x2; a =

0)− V t+1
m (x1; a = 0),∀x2 > x1.

V t+1
m (x2; a = 0)− V t+1

m (x1; a = 0)

=m+ βV t
m(Γ0(x2))−m− βV t

m(Γ0(x1))

=β(V t
m(Γ0(x2))− V t

m(Γ0(x1)))

≤β (Γ0(x2)− Γ0(x1))(O11 −O01)

1− αβ

≤αβ (x2 − x1)(O11 −O01)

1− αβ

≤(x2 − x1)(O11 −O01)

V t+1
m (x2; a = 1)− V t+1

m (x1; a = 1)

=(O11 −O01)(x2 − x1)

+ β[x2O11 + (1− x2)O01]V
t
m(Γ1(

x2O11

x2O11 + (1− x2)O01
))

+ β[x2O10 + (1− x2)O00]V
t
m(Γ1(

x2O10

x2O10 + (1− x2)O00
))

− β[x1O11 + (1− x1)O01]V
t
m(Γ1(

x1O11

x1O11 + (1− x1)O01
))

− β[x1O10 + (1− x1)O00]V
t
m(Γ1(

x1O10

x1O10 + (1− x1)O00
))

≥(O11 −O01)(x2 − x1)

The last inequality is due to the increasing property of V t
m(x).
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So we have V t+1
m (x2; a = 1) − V t+1

m (x1; a = 1) ≥ V t+1
m (x2; a = 0) − V t+1

m (x1; a =

0),∀x2 > x1, and thus the optimal policy is a threshold policy with smaller x leads to

a = 0 and larger x leads to a = 1 for V t+1
m (x).

(ii) We next prove that V t+1
m (x) is an increasing function with the increase of x. This

is true because V t+1
m (x; a = 1) and V t+1

m (x; a = 0) are all increasing functions (because

V t
m(x) is an increasing function) so that their maximization is also an increasing function.

(iii) Last we prove that V t+1
m (x2) − V t+1

m (x1) ≤ (x2−x1)(O11−O01)
1−αβ ,∀x2 > x1. This can

be proved by proving V t+1
m (x2; a = 0)− V t+1

m (x1; a = 0) ≤ (x2−x1)(O11−O01)
1−αβ ,∀x2 > x1 and
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V t+1
m (x2; a = 1) − V t+1

m (x1; a = 1) ≤ (x2−x1)(O11−O01)
1−αβ ,∀x2 > x1. The former one when

a = 0 has been proved in (i). We will next prove the latter one when a = 1.

V t+1
m (x2; a = 1)− V t+1

m (x1; a = 1)

=(O11 −O01)(x2 − x1)

+ β[x2O11 + (1− x2)O01]V
t
m(Γ1(

x2O11

x2O11 + (1− x2)O01
))

+ β[x2O10 + (1− x2)O00]V
t
m(Γ1(

x2O10

x2O10 + (1− x2)O00
))

− β[x1O11 + (1− x1)O01]V
t
m(Γ1(

x1O11

x1O11 + (1− x1)O01
))

− β[x1O10 + (1− x1)O00]V
t
m(Γ1(

x1O10

x1O10 + (1− x1)O00
))

=(O11 −O01)(x2 − x1)

+ β[x1O11 + (1− x1)O01](V
t
m(Γ1(

x2O11

x2O11 + (1− x2)O01
))− V t

m(Γ1(
x1O11

x1O11 + (1− x1)O01
)))

+ β[x2O10 + (1− x2)O00](V
t
m(Γ1(

x2O10

x2O10 + (1− x2)O00
))− V t

m(Γ1(
x1O10

x1O10 + (1− x1)O00
)))

+ β(x2 − x1)(O11 −O01)(V
t
m(Γ1(

x2O11

x2O11 + (1− x2)O01
))− V t

m(Γ1(
x1O10

x1O10 + (1− x1)O00
)))

≤(O11 −O01)(x2 − x1) + β
O11 −O01

1− αβ
α(

x2O11(x1O11 + (1− x1)O01)

x2O11 + (1− x2)O01
− x1O11)

+ β
O11 −O01

1− αβ
α(x2O10 −

x1O10(x2O10 + (1− x2)O00)

x1O10 + (1− x1)O00
)

+ β(x2 − x1)(O11 −O01)
(O11 −O01)

(1− αβ)
α

x2O11(1− x1)O00 − x1O10(1− x2)O01

(x2O11 + (1− x2)O01)(x1O10 + (1− x1)O00)

=(O11 −O01)(x2 − x1)(1 +
αβ

1− αβ
) =

(O11 −O01)(x2 − x1)

1− αβ
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During the proof of Lemma B.3.1, we have the following result, which will be used in

proving Lemma B.3.3.

Remark B.3.2. When αβ ≤ 0.5, we have:

• V t
m(x2; a = 0)− V t

m(x1; a = 0) ≤ (x2 − x1)(O11 −O01),∀x2 > x1,∀t

• (O11 − O01)(x2 − x1) ≤ V t
m(x2; a = 1) − V t

m(x1; a = 1) ≤ (O11−O01)(x2−x1)
1−αβ ,∀x2 >

x1,∀t

Lemma B.3.3. When αβ ≤ 0.5 and Γ1(1) ≤ Γ0(0), we have:

• Vm′(x1)− Vm(x1) ≥ Vm′(x2)− Vm(x2),∀x1 ≤ x2

• Vm′(0) − Vm(0)− Vm′(1) + Vm(1) ≤ m′ −m

• Vm′(x; a = 0)− Vm(x; a = 0) ≥ Vm′(x; a = 1)− Vm(x; a = 1),∀x

Proof. Consider the following sets of conclusions:

• V t
m′(x1)− V t

m(x1) ≥ V t
m′(x2)− V t

m(x2),∀x1 ≤ x2

• V t
m′(0) − V t

m(0)− V t
m′(1) + V t

m(1) ≤ m′ −m

• V t+1
m′ (x; a = 0)− V t+1

m (x; a = 0) ≥ V t+1
m′ (x; a = 1)− V t+1

m (x; a = 1),∀x

Obviously, it holds true for t = 0. Suppose it holds true for t. Consider t+ 1:
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(i) We first prove V t+1
m′ (x1)− V t+1

m (x1)− V t+1
m′ (x2) + V t+1

m (x2) ≥ 0

V t+1
m′ (x1)− V t+1

m (x1)− V t+1
m′ (x2) + V t+1

m (x2)

=max{V t+1
m′ (x1; a = 0), V t+1

m′ (x1; a = 1)}

−max{V t+1
m (x1; a = 0), V t+1

m (x1; a = 1)}

−max{V t+1
m′ (x2; a = 0), V t+1

m′ (x2; a = 1)}

+max{V t+1
m (x2; a = 0), V t+1

m (x2; a = 1)}

• Case 1: V t+1
m (x1; a = 0) ≥ V t+1

m (x1; a = 1) and V t+1
m′ (x2; a = 0) ≥ V t+1

m′ (x2; a = 1)

V t+1
m′ (x1)− V t+1

m (x1)− V t+1
m′ (x2) + V t+1

m (x2)

≥V t+1
m′ (x1; a = 0) − V t+1

m (x1; a = 0)− V t+1
m′ (x2; a = 0) + V t+1

m (x2; a = 0)

=m′ + βV t
m′(Γ0(x1))−m− βV t

m(Γ0(x1))−m′ − βV t
m′(Γ0(x2)) +m+ βV t

m(Γ0(x2))

=β(V t
m′(Γ0(x1))− V t

m(Γ0(x1))− V t
m′(Γ0(x2)) + V t

m(Γ0(x2))) ≥ 0

• Case 2: V t+1
m (x1; a = 0) ≥ V t+1

m (x1; a = 1) and V t+1
m′ (x2; a = 0) < V t+1

m′ (x2; a = 1)

V t+1
m′ (x1)− V t+1

m (x1)− V t+1
m′ (x2) + V t+1

m (x2)

≥V t+1
m′ (x1; a = 0)− V t+1

m (x1; a = 0)− V t+1
m′ (x2; a = 1) + V t+1

m (x2; a = 1)

≥V t+1
m′ (x1; a = 0)− V t+1

m (x1; a = 0)− V t+1
m′ (x2; a = 0) + V t+1

m (x2; a = 0)

≥0
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• Case 3: V t+1
m (x1; a = 0) < V t+1

m (x1; a = 1) and V t+1
m′ (x2; a = 0) ≥ V t+1

m′ (x2; a = 1)

V t+1
m′ (x1)− V t+1

m (x1)− V t+1
m′ (x2) + V t+1

m (x2)

≥V t+1
m′ (x1; a = 0)− V t+1

m (x1; a = 1)− V t+1
m′ (x2; a = 0) + V t+1

m (x2; a = 1)

≥− (x2 − x1)(O11 −O01) + (O11 −O01)(x2 − x1) = 0

The last inequality is based on Remark 1.

• Case 4: V t+1
m (x1; a = 0) < V t+1

m (x1; a = 1) and V t+1
m′ (x2; a = 0) < V t+1

m′ (x2; a = 1)

V t+1
m′ (x1)− V t+1

m (x1)− V t+1
m′ (x2) + V t+1

m (x2)

≥V t+1
m′ (x1; a = 1)− V t+1

m (x1; a = 1)− V t+1
m′ (x2; a = 1) + V t+1

m (x2; a = 1)

=β[x2O11 + (1− x2)O01](V
t
m′(Γ1(

x1O11

x1O11 + (1− x1)O01
))− V t

m(Γ1(
x1O11

x1O11 + (1− x1)O01
))

− V t
m′(Γ1(

x2O11

x2O11 + (1− x2)O01
)) + V t

m(Γ1(
x2O11

x2O11 + (1− x2)O01
)))

+ β[x2O10 + (1− x2)O00](V
t
m′(Γ1(

x1O10

x1O10 + (1− x1)O00
))− V t

m(Γ1(
x1O10

x1O10 + (1− x1)O00
))

− V t
m′(Γ1(

x2O10

x2O10 + (1− x2)O00
)) + V t

m(Γ1(
x2O10

x2O10 + (1− x2)O00
)))

+ β(x2 − x1)(O11 −O01)(V
t
m′(Γ1(

x1O10

x1O10 + (1− x1)O00
))− V t

m(Γ1(
x1O10

x1O10 + (1− x1)O00
))

− V t
m′(Γ1(

x1O11

x1O11 + (1− x1)O01
)) + V t

m(Γ1(
x1O11

x1O11 + (1− x1)O01
)))

≥0
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(ii) We then prove that V t+1
m′ (0)− V t+1

m (0)− V t+1
m′ (1) + V t+1

m (1) ≤ m′ −m

V t+1
m′ (0)− V t+1

m (0)− V t+1
m′ (1) + V t+1

m (1)

=max{m′ + βV t
m′(Γ0(0)), O01 + βV t

m′(Γ1(0))}

−max{m+ βV t
m(Γ0(0)), O01 + βV t

m(Γ1(0))}

−max{m′ + βV t
m′(Γ0(1)), O11 + βV t

m′(Γ1(1))}

+max{m+ βV t
m(Γ0(1)), O11 + βV t

m(Γ1(1))}

• Case 1: m′ + βV t
m′(Γ0(0)) ≥ O01 + βV t

m′(Γ1(0)) and m + βV t
m(Γ0(1)) ≥ O11 +

βV t
m(Γ1(1))

V t+1
m′ (0)− V t+1

m (0) − V t+1
m′ (1) + V t+1

m (1)

≤m′ + βV t
m′(Γ0(0)) −m− βV t

m(Γ0(0)) −m′ − βV t
m′(Γ0(1)) +m+ βV t

m(Γ0(1))

=β(V t
m′(Γ0(0)) − V t

m(Γ0(0)) − V t
m′(Γ0(1)) + V t

m(Γ0(1)))

≤β(V t
m′(0) − V t

m(0) − V t
m′(1) + V t

m(1)) ≤ m′ −m
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• Case 2: m′ + βV t
m′(Γ0(0)) ≥ O01 + βV t

m′(Γ1(0)) and m + βV t
m(Γ0(1)) < O11 +

βV t
m(Γ1(1))

V t+1
m′ (0) − V t+1

m (0)− V t+1
m′ (1) + V t+1

m (1)

≤m′ + βV t
m′(Γ0(0)) −m− βV t

m(Γ0(0)) −O11 − βV t
m′(Γ1(1)) +O11 + βV t

m(Γ1(1))

=m′ −m+ β(V t
m′(Γ0(0))− V t

m(Γ0(0)) − V t
m′(Γ1(1)) + V t

m(Γ1(1))) ≤ m′ −m

• Case 3: m′ + βV t
m′(Γ0(0)) < O01 + βV t

m′(Γ1(0)) and m + βV t
m(Γ0(1)) ≥ O11 +

βV t
m(Γ1(1))

This case is impossible. This case means V t+1
m′ (0; a = 0) < V t+1

m′ (0; a = 1) and

V t+1
m (1; a = 0) ≥ V t+1

m (1; a = 1). V t+1
m′ (0; a = 0) < V t+1

m′ (0; a = 1) leads to

V t+1
m′ (1; a = 0) < V t+1

m′ (1; a = 1) since it is a threshold policy for V t+1
m′ (x) with

smaller x leads to a = 0 and higher x leads to a = 1. Add V t+1
m (1; a = 0) ≥

V t+1
m (1; a = 1) and V t+1

m′ (1; a = 0) < V t+1
m′ (1; a = 1) together contradicts the

condition that Vm′(x; a = 0)− Vm(x; a = 0) ≥ Vm′(x; a = 1)− Vm(x; a = 1),∀x

• Case 4: m′ + βV t
m′(Γ0(0)) < O01 + βV t

m′(Γ1(0)) and m + βV t
m(Γ0(1)) < O11 +

βV t
m(Γ1(1))

V t+1
m′ (0)− V t+1

m (0) − V t+1
m′ (1) + V t+1

m (1)

≤O01 + βV t
m′(Γ1(0)) −O01 − βV t

m(Γ1(0)) −O11 − βV t
m′(Γ1(1)) +O11 + βV t

m(Γ1(1))

=β(V t
m′(Γ1(0)) − V t

m(Γ1(0)) − V t
m′(Γ1(1)) + V t

m(Γ1(1))) ≤ m′ −m
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(iii) We finally prove that V t+2
m′ (x; a = 0) − V t+2

m (x; a = 0) ≥ V t+2
m′ (x; a = 1) −

V t+2
m (x; a = 1),∀x

V t+2
m′ (x; a = 0)− V t+2

m (x; a = 0)− V t+2
m′ (x; a = 1) + V t+2

m (x; a = 1)

=m′ + βV t+1
m′ (Γ0(x))−m− βV t+1

m (Γ0(x))

− xO11 − (1− x)O01 − β[xO11 + (1− x)O01]V
t+1
m′ (Γ1(

xO11

xO11 + (1− x)O01
))

− β[xO10 + (1− x)O00]V
t+1
m′ (Γ1(

xO10

xO10 + (1− x)O00
))

+ xO11 + (1− x)O01 + β[xO11 + (1− x)O01]V
t+1
m (Γ1(

xO11

xO11 + (1− x)O01
))

+ β[xO10 + (1− x)O00]V
t+1
m (Γ1(

xO10

xO10 + (1− x)O00
))

=m′ −m+ β(V t+1
m′ (Γ0(x))− V t+1

m (Γ0(x)))

− β[xO11 + (1− x)O01](V
t+1
m′ (Γ1(

xO11

xO11 + (1− x)O01
))− V t+1

m (Γ1(
xO11

xO11 + (1− x)O01
)))

− β[xO10 + (1− x)O00](V
t+1
m′ (Γ1(

xO10

xO10 + (1− x)O00
))− V t+1

m (Γ1(
xO10

xO10 + (1− x)O00
)))

≥m′ −m+ β(V t+1
m′ (1) − V t+1

m (1)− V t+1
m′ (0) + V t+1

m (0))

≥m′ −m+ β(m−m′) ≥ 0

Now we are ready to prove Theorem 6.2.2.

Theorem (6.2.2). When αβ ≤ 0.5 and Γ1(1) ≤ Γ0(0), the process is indexable, i.e.,

for any belief x, if Vm(x; a = 0) ≥ Vm(x; a = 1), then Vm′(x; a = 0) ≥ Vm′(x; a = 1),

∀m′ ≥ m
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Proof. It follows from Lemma B.3.3 that when αβ ≤ 0.5 and Γ1(1) ≤ Γ0(0), Vm′(x; a =

0)− Vm(x; a = 0) ≥ Vm′(x; a = 1)− Vm(x; a = 1),∀x. So if Vm(x; a = 0) ≥ Vm(x; a = 1),

then Vm′(x; a = 0) ≥ Vm′(x; a = 1), ∀m′ ≥ m.

156


