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Superfluid spin transport through antiferromagnetic insulators
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A theoretical proposal for realizing and detecting spin supercurrent in an isotropic antiferromagnetic insulator is
reported. Superfluid spin transport is achieved by inserting the antiferromagnet between two metallic reservoirs
and establishing a spin accumulation in one reservoir such that a spin bias is applied across the magnet.
We consider a class of bipartite antiferromagnets with Néel ground states, and temperatures well below the
ordering temperature, where spin transport is mediated essentially by the condensate. Landau-Lifshitz and
magnetocircuit theories are used to directly relate spin current in different parts of the heterostructure to the spin-
mixing conductances characterizing the antiferromagnet|metal interfaces and the antiferromagnet bulk damping
parameters, quantities all obtainable from experiments. We study the efficiency of spin angular-momentum
transfer at an antiferromagnet|metal interface by developing a microscopic scattering theory for the interface and
extracting the spin-mixing conductance for a simple model. Within the model, a quantitative comparison between
the spin-mixing conductances obtained for the antiferromagnet|metal and ferromagnet|metal interfaces is made.

DOI: 10.1103/PhysRevB.90.094408 PACS number(s): 75.78.−n, 75.70.Ak, 75.76.+j, 85.75.−d

I. INTRODUCTION

From the early days of spin-transport electronics (or
spintronics), the phenomenon of antiferromagnetism has
contributed to the development of the field. It was, for instance,
the discovery of antiferromagnetic interlayer coupling in
a Fe|Cr|Fe system [1] that led shortly thereafter to the
discovery of the giant magnetoresistance (GMR) effect [2].
Antiferromagnets (AFs) have also provided the exchange-
bias effect [3] used for enhancing magnetic stability of
a neighboring ferromagnetic layer in a GMR-based spin
valve. Apart from these supportive roles, antiferromagnetic
materials have not yet demonstrated a prominent presence in
the field of spintronics as compared to their ferromagnetic
counterpart. However, the recent years have witnessed a
growing interest in developing spintronic devices in which
AFs play a more active role [4]. Many of the key phenomena
that have fueled the success of ferromagnet-based spintronics,
such as GMR, current-induced torques, the spin-diode effect,
and magnetization switching [5], as well as anisotropic
magnetoresistance effects [6], have all been predicted and
observed in antiferromagnetic metals. The use of AFs, in
particular, has been suggested to be advantageous in reducing
the critical currents for magnetization switching and achieving
large magnetoresistance with relatively small applied external
fields. In more recent years, theoretical works have addressed
current-induced antiferromagnetic domain-wall motion [7]
and, more generally, coupled dynamics of conduction electrons
with background antiferromagnetic textures [8]. A very recent
experiment has investigated absorption mechanisms of spin
currents in antiferromagnetic metals, Ir20Mn80 and Fe50Mn50,
at room temperature [9].

On another front, the notion of spin superfluidity in
magnetic systems is currently gaining momentum [10–12].
Applying the ideas from conventional U(1) superfluidity and
superconductivity to insulating magnetic systems is a focus of
this endeavor. Relatively high ordering temperatures observed
in magnetic insulators would entail robust manifestations of
superfluidity in these systems and an exciting potential for

device applications. Very recently, a large nonlocal conduc-
tance between two metallic wires mediated by a spin superfluid
[12] and the manipulation of spin supercurrents using electric
fields [13] have been theoretically proposed in ferromagnetic
insulators and multiferroics, respectively. In this context,
antiferromagnetic insulators provide another attractive arena
to study spin superfluidity using electrical controls. Within
the exchange approximation, bipartite AFs host low-energy
bosonic excitations with a soundlike dispersion and can
support superfluid spin transport through their bulk [14].

Reference [12] developed a theory for nonequilibrium
superfluid spin transport in ferromagnets contacted by normal
metals. While planar magnetic anisotropy was necessary there
for superfluid-mediated spin transport in ferromagnets, such
transport is possible in both planar and isotropic AFs (with
the latter subjected to a uniform magnetic field) [10,14].
Furthermore, in comparison to the ferromagnetic order pa-
rameter, the antiferromagnetic Néel order does not couple
strongly to the magnetic field. The spin superfluid properties
are thus expected to be considerably less sensitive to random
magnetic fields (both external and weak stray fields) that
would inadvertently break the necessary U(1) symmetry of the
magnetic order. Therefore, AFs (which are relatively abundant
among insulating crystals) may in practice turn out to be a more
versatile and robust host for spin superfluidity.

Specifically, in this work, we develop a theory of nonequi-
librium superfluid spin transport through an isotropic antifer-
romagnetic insulator, and discuss its realization and detection
in a spintronics device. The theory applies to a class of bipartite
exchange AFs with Néel ground states. We focus on the
regime where thermal fluctuations of the spins are small,
corresponding to the limit of temperatures well below the
Néel ordering temperature, such that the transport is almost
fully mediated by the superfluid component. We show that
spin transport through an AF can be achieved and detected by
sandwiching the AF with two metallic reservoirs, establishing
a nonequilibrium spin accumulation (spin bias) in one of the
reservoirs, and measuring spin current ejected into the other
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FIG. 1. (Color online) Normal-metal|AF|normal-metal heterost-
ructure that can be used to probe spin-superfluid transport through
the AF. A charge current J c

l in the left reservoir establishes a spin
accumulation μs at the interface via the spin Hall effect, and the spin
current pumped into the right reservoir generates a transverse charge
current J c

r through the inverse spin Hall effect. Spin supercurrent
through the antiferromagnetic bulk is carried by a dynamically
precessing Néel texture. The two spin-sublattice moments are shown
in the AF by approximately antiparallel arrows. Their slight canting
out of the xy plane arises due to a uniform magnetic field applied in
the −z direction and is further perturbed by the spin accumulation.

reservoir (see Fig. 1). For an isotropic (Heisenberg) AF, we
assume the presence of an external magnetic field collinear
with the vectorial spin accumulation, such that the Néel order
parameter is forced to lie within the plane normal to the
spin-accumulation vector. In this geometry, the transmission
of spin, which bears close analogy with mass superfluidity,
is accomplished by the coherent rotation of the in-plane Néel
order. This is contrasted with the incoherent spin transport by
finite-wavelength thermal magnons, which could generally be
expected to have a diffusive character in the bulk limit.

A hydrodynamic theory for the AF, in terms of the relevant
slow variables parametrizing the staggered and total spin
densities, is used to derive its nonequilibrium dynamics in
the presence of the spin bias. We parametrize the physics
of spin injection and pumping at the AF|metal interfaces
using the spin-mixing conductance, which is obtained in close
analogy with the ferromagnetic case [15,16]. Magnetic losses
are taken into account by phenomenologically introducing
a form of Gilbert damping that is generally applicable
to the class of AFs considered in this work. Similar to
spin superfluidity in ferromagnets [12], where global spin
precession and inhomogeneous magnetic textures were crucial
for spin-superfluid transport, in AFs it is accomplished by
the self-consistently textured and precessing Néel order. We
relate the spin supercurrent flowing through the AF to the
interfacial spin-mixing conductances and the Gilbert damping
parameters using a combination of the bulk hydrodynamic
theory and magneto-circuit theory for spin transfer at the
AF|metal interfaces. A simple microscopic scattering theory is
developed to evaluate the spin-mixing conductance at a model
AF|metal interface, showing that it can be of the same order
of magnitude as that of the ferromagnet|metal interface.

The paper is organized as follows. In Sec. II, we review
the long-wavelength theory for the bulk AF, in the absence of
its coupling to the external reservoirs. Interfacial spin transfer

is studied in Sec. III. A microscopic scattering theory for the
spin-mixing conductance at an AF|metal interface is discussed
in Sec. IV. We summarize the work and offer an experimental
outlook in Sec. V.

II. BULK DYNAMICS

Let us consider insulating AFs where localized spin
moments in the crystal fully compensate one another in
equilibrium. In particular, we focus on bipartite AFs with
two sublattices that can be transformed into each other by
a symmetry transformation of the crystal. An effective long-
wavelength theory for this class of AFs can be developed
in terms of two slow continuum fields, n(x) and m(x),
which parametrize the staggered (Néel) and smooth (magnetic)
components of the spins, respectively, and vary slowly on the
scale of the lattice spacing. The local spin directions, each
belonging to one of the sublattices, can then be expressed in
terms of these continuum variables as [17]

Si/S = λi n(xi )
√

1 − m2(xi ) + m(xi ), (1)

where i labels the sites of the AF and λi = ±1 on the two
sublattices. These continuum fields are chosen to satisfy the
constraints |n(x)| = 1 and n(x) · m(x) = 0 for all x. The
presence of local Néel order implies |m(x)| � 1.

The AF is treated within the exchange approximation, such
that the dynamic equations for n and m remain invariant under
global spin rotations as well as space-group transformations of
the crystal. This implies, in particular, their invariance under
the interchange of the two sublattice spins, SA ↔ SB (A and B

labeling the two sublattices), such that n → −n and m → m.
In order to construct the Lagrangian density LAF for the AF,

we follow the standard spin-coherent path-integral formulation
of the problem [17]. The resultant Lagrangian density can
be separated into the geometric Berry-phase contribution Lk

and the dynamic contribution arising from the Hamiltonian.
Inserting (1) into the Heisenberg Hamiltonian (for example,
on a three-dimensional cubic lattice) and expanding up to
quadratic order in m and gradients of n, the Lagrangian density
for the AF in the continuum form then becomes

LAF[m,n] = Lk − A

2
(∂μn)2 − m2

2χ
− b · m, (2)

where we have introduced b = γ s B, in terms of the gyro-
magnetic ratio γ , saturated spin density s ≡ �S/V (V is the
volume per spin), and magnetic field B; the summation over
spatial coordinates μ is implied in the second term. (The above
Lagrangian expansion requires sufficiently weak fields; i.e.,
b � χ−1.) A is the Néel-order stiffness and χ is the spin
susceptibility. The kinetic (Berry-phase) term

Lk = sm · (n × ∂t n) (3)

governs the canonical conjugacy between n and m. Here, we
omit a topological contribution to the action that depends
on microscopic details but is irrelevant in the Néel phase.
Integrating out the field m in the above Lagrangian LAF would
reproduce the familiar Lagrangian density LN [n] = χ (s∂t n +
n × b)2/2 − A(∂μn)2/2 for the isotropic Néel dynamics [18].

We can probe the spin-superfluid transport through the AF
(of length L) by placing it between two metallic reservoirs as

094408-2



SUPERFLUID SPIN TRANSPORT THROUGH . . . PHYSICAL REVIEW B 90, 094408 (2014)

shown in Fig. 1. A large interface in the yz plane with full
translational symmetry and periodic boundary conditions is
assumed. The temperature is taken to be constant (and low)
across the entire heterostructure, so that spin transport is driven
purely by a spin bias in the absence of any thermal gradients.
Each metallic reservoir is modeled as a Fermi liquid made
up by spin-up and spin-down electrons. The nonequilibrium
spin accumulation, fomented, e.g., by the spin Hall effect, is
introduced in the left reservoir by assigning different chemical
potentials to the two spin species, μL↑ and μL↓, such that
each species occupies the single-particle states according to
the respective Fermi-Dirac distribution, nLσ (ε) = [eβ(ε−μLσ ) +
1]−1. In the right reservoir, the absence of spin accumulation
implies μR↑ = μR↓. The spin quantization axis is taken to be
parallel to the z axis, and so the vectorial spin accumulation is
defined as μs = (μL↑ − μL↓)ez ≡ μsez.

A. Classical dynamics for magnetic bulk

Let us first consider an isolated AF. Undamped Landau-
Lifshitz dynamics for the Néel unit vector n and the total
(normalized) spin density m can be obtained from Eq. (2)
by minimizing the action subject to the nonlinear constraints
|n| = 1 and n · m = 0. The resultant dynamics are given by

sṅ = χ−1m × n + b × n, (4)

sṁ = An × ∇2n + b × m. (5)

The nonlinear constraints are evidently obeyed in these
equations. These equations can be obtained by parametriz-
ing the Néel vector with two angles θ (relative to the
xy plane) and φ (relative to the x axis), i.e., n =
(cos θ cos φ, cos θ sin φ, sin θ ), and by defining two com-
ponents of the total magnetization transverse to the Néel
vector, mθ and mφ , such that m = (−mθ sin θ cos φ −
mφ sin φ,−mθ sin θ sin φ + mφ cos φ,mθ cos θ ).

In the presence of a uniform external field in the negative z

direction, i.e., b = −bez, the equilibrium solution to Eqs. (4)
and (5) is given by θ (0) = 0, m

(0)
θ = χb, and m

(0)
φ = 0. The

classical moments form a uniform staggered order with a slight
canting of spins out of the xy plane in the positive z direction,

x

y
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FIG. 2. (Color online) A pictorial representation of the classical
antiferromagnetic ground state in the presence of a magnetic field in
the negative z direction. SA and SB are the sublattice A and B spins,
respectively. n and m are the corresponding Néel order and the net
spin density (normalized by s). n is taken to lie in the xy plane, such
that θ = 0.

which minimizes the Zeeman term in energy. The azimuthal
angle φ can be arbitrary. This equilibrium state is represented
pictorially in Fig. 2.

B. Spin waves and spin current

Coupling the AF to the external reservoirs perturbs this
uniform static equilibrium state. In anticipation of this, we
consider small deviations ϑ , ξθ , and ξφ of θ , mθ , and mφ ,
respectively, from the equilibrium solution obtained above:
mθ = χb + ξθ , mφ = ξφ , and θ = ϑ , while allowing the
zero-mode coordinate φ to vary smoothly over space-time.
The precession of the Néel vector about the z axis will be
involved eventually in the collective (superfluid) spin transport
of interest. Writing Lagrangian (2) in terms of θ , φ, mθ , and
mφ , and expanding up to quadratic order in ϑ , ξθ , and ξφ , as
well as φ̇ and ∇φ, it becomes

LAF ≈ s(ξθ φ̇ − ξφϑ̇) − A

2
[(∇ϑ)2 + (∇φ)2]

− ξ 2
θ + ξ 2

φ

2χ
− χb2

2
ϑ2. (6)

This gives the linearized Euler-Lagrange equations

sφ̇ = χ−1ξθ , sξ̇θ = A∇2φ, (7)

sϑ̇ = −χ−1ξφ, sξ̇φ = −A∇2ϑ + χb2ϑ, (8)

which approximate Eqs. (4) and (5). For small-amplitude
fluctuations relative to a homogeneous equilibrium state,
the two pairs of variables, (φ,ξθ ) and (ϑ,ξφ), describe two
independent spin-wave branches of the AF: the former gapless
with linear dispersion ω = cq, in terms of the spin-wave speed
c = s−1√A/χ ; and the latter gapped with dispersion ω =√

(b/s)2 + (cq)2. The direction of the applied field defines
the axis of cylindrical symmetry of the system [with the
gapless spin-wave branch corresponding to the associated U(1)
Goldstone mode]. Therefore, in the absence of damping, the
total spin angular momentum polarized along the z axis is a
conserved quantity. The associated spin-supercurrent density
in the AF bulk can then be extracted from the continuity
equation sṁz = −∇ · J s as

J s(x) = −A∇φ, (9)

since ṁz = ξ̇θ , in our linearized treatment. Throughout this
work, we are interested only in this spin-current component,
which is polarized along the z axis.

C. Magnetic damping

Damping of the magnetic dynamics can be phenomeno-
logically incorporated by endowing Eqs. (4) and (5) with
appropriate dissipative terms. Adding viscous damping terms
that are first order in time derivative, are zeroth order in spatial
derivative, are time-reversal-symmetry breaking, obey a space-
group symmetry flipping n → −n while m → m, and satisfy
the constraints |n| = 1 and n · m = 0, the Landau-Lifshitz
equations (4) and (5) are modified to

s(ṅ + αn × ṁ) = χ−1m × n + b × n, (10)

s(ṁ + αm × ṁ + α′n × ṅ) = An × ∇2n + b × m. (11)
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Here, α and α′ are dimensionless Gilbert-damping parameters
(which can be equal or similar in simple models). Parametriz-
ing n and m in terms of θ , φ, mθ , and mφ and expanding
the equations to linear order in magnetic fluctuations, the
equations of motion (7) and (8) are now modified to

s(φ̇ − αξ̇θ ) = χ−1ξθ , s(ξ̇θ + α′φ̇) = A∇2φ, (12)

s(ϑ̇ + αξ̇φ) = −χ−1ξφ, s(ξ̇φ − α′ϑ̇) =−A∇2ϑ +χb2ϑ. (13)

III. NONLOCAL SPIN TRANSPORT

We now couple the AF to normal-metal reservoirs at its
two ends. The nonequilibrium spin accumulation μs = μsez

in the left reservoir causes the spins in the magnet to cant
further out of the xy plane (in addition to the already existing
canting due to the external field). This, in turn, triggers a (right-
hand) rotation of the Néel vector about the z axis according
to Eqs. (7). This describes the injection of spin angular
momentum at the left interface, which induces transport of spin
through the magnet. The precessing Néel vector at the right
interface eventually pumps spin current into the right reservoir
by a reciprocal process. In the heterostructure shown in Fig. 1,
the spin accumulation in the left reservoir can be established
via the spin Hall effect by driving a charge current along the y

axis. The spin current injected into the right reservoir can be
detected through the effective electric field in the y direction,
which is engendered by the inverse spin Hall effect.

The magnetization dynamics in the spin-carrying AF bulk
can be described by a steady-state solution to Eqs. (12) and
(13) of the form

ξθ = χs�, φ = ϕ(x) + �t, ϑ̇ = ξφ = 0, (14)

where � is the global precession frequency of the Néel vector
and ϕ(x) satisfies A∂2

xϕ = α′s�. Both ϕ(x) and � must be
found self-consistently from boundary conditions defined at
the two AF|metal interfaces.

A. Interfacial spin current

In order to establish boundary conditions for Eqs. (14), we
need to evaluate spin transfer across the AF|metal interfaces.
Throughout this work, we assume the absence of any spin-
nonconserving processes at the AF|metal interfaces such that
spin current is conserved there. In general, as long as the
magnetic order is internally collinear, we can quantify this by
a complex-valued quantity known as the (dimensionless) spin-
mixing conductance (per unit area), g↑↓ ≡ Re g↑↓ + i Im g↑↓.
Within the magnetocircuit theory [15], spin transport across
the interface can then be expressed in terms of the spin
accumulation μs in the metallic reservoir and the unit vector
n characterizing the direction of the magnetic order (which,
in our case, is the unit Néel vector n) [19]. For the static Néel
order without any magnetization, m ≡ 0, the vectorial (in spin
space) spin-current density entering the AF can be written
as [15]

J s
0 = Re g↑↓

4π
n × μs × n + Im g↑↓

4π
μs × n. (15)

The subscript “0” here represents the static limit. The general-
ization of this result to dynamic magnetic order at lowest order

in time derivatives is given by replacing

μs → μ̃s ≡ μs − �n × ṅ (16)

in Eq. (15), which can be shown directly in the scattering-
matrix formalism [16].

The static and dynamic contributions to the spin current
according to Eq. (16) are Onsager-reciprocal counterparts.
In order to see this, let us start with the static result,
Eq. (15), and invoke Onsager reciprocity to reproduce the
dynamic contribution, Eq. (16). For simplicity, let us consider a
homogeneous (monodomain) AF (with volume VAF) in contact
with a metallic reservoir (with volume VNM) having a uniform
spin accumulation along the z axis, μs = μsez. The total spin
angular momentum of the magnet is M = smVAF and that
of the metallic reservoir is S. From Eq. (2), the energy of a
monodomain AF is given by FAF = M2/2χs2VAF + γ B · M,
which should coincide with the (mean-field) free energy at
low temperatures. Although it is not essential, the following
discussion is simplified if we set Gilbert damping to zero.

The dynamics for the total magnetization M , in the presence
of a spin-current density J s flowing into the AF, is given by

Ṁ = A J s + · · · , (17)

where A is the cross-sectional area of the interface and the
ellipsis denotes terms arising due to the intrinsic Landau-
Lifshitz dynamics, Eq. (5). The flow of spin current into the
AF implies loss of angular momentum in the reservoir, giving
the dynamics for the total spin in the reservoir of the form

Ṡ = −A J s + · · · . (18)

Here, the ellipsis collects terms representing the intrinsic
dynamics of the reservoir spins in the absence of the coupling
to the magnet (e.g., precession in external field).

Separating the spin-current density J s into a static term,
J s

0, and a dynamic term, J s
1, induced by slow magnetization

dynamics in the AF, we write J s = J s
0 + J s

1, where J s
0 is given

by Eq. (15). Inserting this static component into Eqs. (17)
and (18) introduces terms linear in the spin accumulation
μs , which, by definition, is proportional to the force f S
conjugate to S: f S ≡ −δSFNM ≡ −μs/�, where FNM is the
free energy of the normal-metal reservoir. Onsager reciprocity
thus dictates an additional term in Eq. (18) of the form

Ṡ = −A J s
0 + A n ×

[
Re g↑↓

4π
n × f M + Im g↑↓

4π
f M

]
, (19)

where f M ≡ −δMFAF is the force conjugate to M. Noting
that, according to Eq. (4), the Néel dynamics obey ṅ =
− f M × n, we immediately identify the full expression for
the spin-current density flowing through the interface:

J s = Re g↑↓

4π
n × μ̃s × n + Im g↑↓

4π
μ̃s × n. (20)

The term ∝ Re g↑↓ describes the dissipative component of
the interfacial spin transfer, which is analogous to Andreev
reflection at superconductor|normal-metal interfaces.
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B. Linear response

We are now ready to complement Eqs. (14) with the appro-
priate boundary conditions for the spin-current continuity, in
the linear response to spin bias μs . Focusing on spin transfer
in the z direction (in spin space), the ∝Im g↑↓ term in Eq. (20)
can be disregarded, and we henceforth denote Re g↑↓ simply
by g↑↓. The spin current injected into the magnet at the left
interface and the spin current ejected out of the magnet at the
right interface are thus respectively given by

J s
l = g

↑↓
l

4π
(μs − ��) = − A∂xφ|x=0 ,

J s
r = g

↑↓
r

4π
�� = − A∂xφ|x=L ,

(21)

where we used Eq. (9) for the collective spin-current density
on the magnetic side at each interface. (L is the length
of the AF along the transport direction.) Here, subscripts l

and r label the spin current at the left and right interfaces,
respectively. Equation A∂2

xφ = α′s� is now solved together
with the boundary conditions (21), in order to find the profile
for phase φ along the x axis, global precession frequency �,
and the associated spin current throughout our structure.

In the absence of Gilbert damping in the bulk, the spin
current is continuous throughout, so that J s

l = J s
r , and we

find for the precession frequency and the spin-current density
flowing through the magnet

� = μs

�

g
↑↓
l

g
↑↓
l + g

↑↓
r

, J s = μs

4π

g
↑↓
l g

↑↓
r

g
↑↓
l + g

↑↓
r

. (22)

In the presence of magnetic damping, the spin-current loss
�Js ≡ J s

l − J s
r along the AF satisfies

�Js = −
∫ L

0
dx ∂xJ

s(x) =
∫ L

0
dx A∂2

xφ = α′s�L. (23)

We then obtain using (21) and (23) that

� = μs

�

g
↑↓
l

g
↑↓
l + g

↑↓
r + gα

, J s
r = μs

4π

g
↑↓
l g

↑↓
r

g
↑↓
l + g

↑↓
r + gα

, (24)

where gα ≡ 4πα′sL/�.
The above results, which are central to this work, are fully

analogous to those obtained for the easy-plane ferromagnet
[12]. Assuming the spin-mixing conductances at the two
interfaces are similar, i.e., g↑↓ ≡ g

↑↓
l ∼ g

↑↓
r , we define from

Eqs. (24) the length scale Lα ≡ �g↑↓/2πα′s. For L � Lα , the
magnetic damping in the bulk is important and the spin-current
ejected into the right reservoir decays inversely with the length
of the AF. For L � Lα , on the other hand, magnetic losses are
negligible, and we recover Eqs. (22).

IV. MICROSCOPIC SPIN TRANSFER

The efficiency of the spin transfer process at an AF|metal
interface is quantified using the spin-mixing conductance g↑↓,
which is both obtainable from microscopic theory and directly
measurable in experiments. In this section, we follow the
scattering-matrix formalism of Ref. [15] to determine g↑↓ for
the AF|metal interfaces. Imagine an electron impinging on an

x

y

antiferromagnet

N
 sites

a

0

cn

dn

in

2DEG

FIG. 3. (Color online) 2DEG in contact edge-on with a 2D
antiferromagnetic insulator. The space is discretized in the y direction
as shown by dashed lines. Tight-binding dispersion is assumed in the
y direction with a bandwidth 2W (see text for details). Here, we
have sketched a scattering process, in which an electron in transverse
channel n incoming from the left (labeled “in”) undergoes specular
(cn) and umklapp (dn) reflections.

antiferromagnetic insulator in a perfectly uniform Néel state.
Our estimate for g↑↓ pertains to a magnetically compensated
interface, which is invariant under the sublattice exchange of
the spin moments, up to a transverse displacement of the
domain by the lattice constant a (see Fig. 3). If an electron
spin is exchange-coupled to the antiferromagnetic spins at the
interface, such that the average magnetization exposed to elec-
trons is zero, one may naı̈vely expect a vanishing spin transfer.
We find, however, that the spin-mixing conductance, per unit
area, is generally nonvanishing in the thermodynamic limit,
even for a magnetically compensated interface (along with the
above-mentioned sublattice symmetry). In the following, we
consider a simple model that allows us to illustrate this point
in detail. We show that the mixing conductance is governed by
the umklapp reflection channel, with additional contributions
introduced by disorder. It is worthwhile to note, however,
that without the sublattice symmetry, one could generally
expect a finite mixing conductance due to specular reflection,
similarly to the ferrimagnetic case [21], even for a magnetically
compensated AF interface.

A. Scattering formalism

Let us consider a semi-infinite two-dimensional electron
gas (2DEG) in contact edge-on with a semi-infinite 2D
magnetic insulator, as shown in Fig. 3. In our model, we take
x as the continuum coordinate (in the transport direction), and
discretize the transverse coordinate y into an even number
of sites N labeled by iy . Tight-binding dispersion (with
bandwidth 2W ) is assumed in the transverse direction. A
large potential barrier U0 is imposed for x > 0, such that all
modes entering the magnet at the Fermi level are rendered
evanescent. In order to calculate g↑↓, we consider a static
staggered order in the AF. The specific order is modeled by a
translationally invariant arrangement of spins in the transport
(i.e., x) direction, which are staggered along the y axis, as
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sketched in Fig. 3. We orient both the spin-quantization axis
of the electrons and the Néel order along the x axis. The effect
of the underlying magnetic order on the evanescent electrons
is modeled by subjecting them to an oscillating exchange field
that modulates the insulating potential: U = U0 + ση0(−1)iy .
Here, σ = ± corresponds to up- and down-spin electrons
along the Néel vector (pointing in the positive x direction),
respectively, and η0 is the exchange-energy scale: it is taken
to be constant, such that electron spins are coupled uniformly
to the magnetic order. We remind the reader that we are not
allowing for any spin-nonconserving processes at the interface.

For periodic boundary condition in the y direction,
the transverse component of the wave function can be
expanded in terms of the complete eigenbasis: φn(iy) =√

1/N exp[i(2πniy/N )], where n runs from 0 to N − 1. The
scattering state for x < 0 originating from the 2DEG can then
be written as a superposition of mode n impinging on the
interface along with a set of reflected modes [20]:

ψ<
nEσ (x,iy) = φn(iy)eik<

n x√
2π�v<

n

+
∑
n′

rσ
n′n

φn′(iy)e−ik<
n′x√

2π�v<
n′

. (25)

Here, a particular scattering state is denoted by the transverse-
mode label n, energy E, electron spin σ , and < stands for
the region left of the interface. The momentum eigenvalues
are given by k<

n = √
2m(E − En)/�, the velocity by v<

n =
�k<

n /m, En = −W cos(2πn/N ) denotes the tight-binding
dispersion in the transverse direction, and m is the electron
mass in the transport direction. The key quantity of interest
here is the reflection coefficient, rσ

n′n. The area-integrated
(dimensionless) spin-mixing conductance, G↑↓ ≡ A g↑↓, is
then given by [15]

G↑↓ =
∑
nn′

(δnn′ − r
↑
nn′r

↓∗
nn′ ), (26)

where the summation is performed over all propagating Fermi-
level modes in the 2DEG.

B. The umklapp channel

The scaling of G↑↓ with the system size N is intimately tied
to the umklapp scattering channel for electrons, which opens
due to the staggered antiferromagnetic order. The 2a periodic-
ity arising from the staggered antiferromagnetic order couples
momentum modes that differ by wave number �k = π/a.
Therefore, the reflection coefficients can in general be written
as rσ

n′n = cσ
n δn′n + dσ

n δn′n̄, where n̄ = (n + N/2) mod N . The
second term represents an umklapp channel that couples
modes that are related by reciprocal lattice vectors of the
magnetic Brillouin zone. The relation between reflection
coefficients corresponding to the up- and down-spin electrons
can be determined as follows. We first note that the scattering
amplitudes for the down-spin electrons can be obtained from
those of the up-spin electrons by rotating the cylinder (our
spatial domain subject to the periodic boundary condition)
by the lattice constant a. Under this rotation, the reflection
coefficient of a process that couples two momenta differing
by �k gains an additional multiplicative phase factor of ei�ka .
Since the term proportional to cσ

n corresponds to reflection
processes with �k = 0, we expect c

↑
n = c

↓
n . On the other

hand, the coefficient for the umklapp channel, dσ
n , describes

reflection processes where �k = π/a. We then expect a
π phase shift and, therefore, d

↑
n = −d

↓
n . We thus find the

spin-dependent reflection coefficients to have the general form

rσ
n′n = cnδn′n + σdnδn′n̄. (27)

In the absence of propagating modes on the right side, the
spin-diagonal conductances should vanish, which, in turn,
implies |cn|2 + |dn|2 = 1 for all n that are propagating at the
Fermi level. Then, using Eq. (26), the spin-mixing conductance
becomes

G↑↓ = 2
∑

n

|dn|2, (28)

where the sum is performed over all transverse modes that
have umklapp channels available at the Fermi level. For this,
we need E > 0; if E > W , furthermore, all modes would
participate in spin transfer. Since |dn|2 is typically nonzero for
all relevant modes n, we see that G↑↓, even for the magnetically
compensated interface we are considering here, would scale as
N . We substantiate this result using a microscopic calculation
in Sec. IV C.

C. Microscopic calculation

We now return to carrying out the calculation for the setup
of Sec. IV A. The Hamiltonian on the magnetic side can be
written in the (n,n′) basis, spanned by φn(iy), as

Hσ
nn′ =

(
−�

2∂2
x

2m
+ U0 + En

)
δnn′ + ση0δn̄n′ . (29)

The off-diagonal term (proportional to η0) couples n and n̄

modes; i.e., it represents the umklapp channel. Diagonalizing
in the (n,n̄) subspace, the scattering state on the magnetic side
can then be written as

ψ>
nEσ (x,iy) =

∑
n′

tσn′n√
2π�v>

n′
ζn′(iy)eik>

n′x, (30)

where k>
n =

√
2m[E − U0 − sn(E2

n + η2
0)1/2]/� is the appro-

priate propagating or evanescent wave number and v>
n =

�k>
n /m. Here, sn = 1 for 0 � n < N/2 and sn = −1 for

N/2 � n < N . The eigenfunctions are given by ζn(iy) =
[anφn(iy) + σbnφn̄(iy)]eik>

n x for 0 � n < N/2 and ζn(iy) =
[σbnφn(iy) − anφn̄(iy)]eik>

n x for N/2 � n < N , where an =
ξn/(ξ 2

n + η2
0)1/2, bn = η0/(ξ 2

n + η2
0)1/2, and ξn = En + (E2

n +
η2

0)1/2.
For a given incoming channel n, only two reflection and

two transmission amplitudes are nonzero: the momentum-
conserving amplitudes rnn and tnn and the umklapp amplitudes
rn̄n and tn̄n. Imposing the continuity of the wave function and
its derivative at the interface, we obtain four equations for these
amplitudes,

1 + rσ
nn = α+

nσ tσnn + β+
nσ tσn̄n,

1 − rσ
nn = α−

nσ tσnn + β−
nσ tσn̄n,

rσ
n̄n = β+

n̄σ tσnn + α+
n̄σ tσn̄n,

−rσ
n̄n = β−

n̄σ tσnn + α−
n̄σ tσn̄n,

(31)

094408-6



SUPERFLUID SPIN TRANSPORT THROUGH . . . PHYSICAL REVIEW B 90, 094408 (2014)

where

αl
nσ = θn

(
k<
n

k>
n

)l/2

an + σθn̄

(
k<
n

k>
n

)l/2

bn,

βl
nσ = −θn

(
k<
n

k>
n̄

)l/2

an̄ + σθn̄

(
k<
n

k>
n̄

)l/2

bn̄,

(32)

and θn = (1 + sn)/2. Solving Eqs. (31), we find that the
reflection coefficients indeed have the form rσ

n′n = cσ
n δn′n +

dσ
n δn′n̄, where

cσ
n = A−

nσ A+
n̄σ − B−

nσB+
n̄σ

A+
nσ A+

n̄σ − B+
nσB+

n̄σ

, dσ
n = −A−

n̄σB+
n̄σ − B−

n̄σA+
n̄σ

A+
nσA+

n̄σ − B+
nσB+

n̄σ

,

(33)

A±
nσ = α+

nσ ± α−
nσ , and B±

nσ = β+
nσ ± β−

nσ . One can verify that
c+
n = c−

n while d+
n = −d−

n .

D. Disordered interfacial exchange coupling

This result can be generalized to the case when the
exchange field felt by the electrons is disordered along the
interface; i.e., η0 → η(iy) ≡ η0 + δη(iy). Here, we consider
a Gaussian-distributed disorder with zero mean and vari-
ance Vη, which is short-range correlated in the y direction:
〈δη(iy)〉 = 0 and 〈δη(iy)δη(jy)〉 = Vηδiyjy

. The Hamiltonian
on the magnetic side is now written in the (n,n′) basis as Hσ

nn′ =
(−�

2∂2
x /2m + U0)δnn′ + hσ

nn′ , where hσ
nn′ = Enδnn′ + ησ

nn′ and
ησ

nn′ = �iy φn(iy)ση(iy)φn′(iy). Diagonalizing hσ
nn′ with a

unitary matrix Wσ , i.e., [W †
σ hσWσ ]nn′ = dσ

nn′ = λσ
n δnn′ , the

eigenenergies and eigenmomenta become εσ
kn = �

2k2/2m +
U0 + λσ

n and k>
nσ = √

2m(E − U0 − λσ
n )/�, respectively. The

scattering state in the magnet can then be written as

ψ>
nEσ (x,iy) =

∑
n′

tσn′n√
2π�v>

n′σ
ζn′σ (iy)eik>

n′σ x, (34)

where ζnσ (iy) = ∑
m(W †

σ )nmφm(iy). We define two new
N × N matrices, Xσ

nn′ = √
k<
n /k>

n′σ (W ∗
σ )nn′ and Y σ

nn′ =√
k>
n′σ /k<

n (W ∗
σ )nn′ . Imposing the continuity of wave function

and its derivative at x = 0 gives two matrix equations

1N + rσ = Xσ tσ , 1N − rσ = Yσ tσ , (35)

where r and t are the N × N reflection and transmission
matrices, respectively, and 1N is the N × N identity matrix.
Solving for rσ , we obtain

rσ = −[1N + Xσ (Yσ )−1]−1[1N − Xσ (Yσ )−1]. (36)

The spin-mixing conductance is then obtained from Eq. (26)
by summing over nonevanescent modes in the 2DEG.

In Fig. 4, we have plotted the spin-mixing conductance
for the uniform interfacial exchange coupling, Vη = 0, as
well as for finite disorder in the interfacial coupling, with
standard deviations V

1/2
η = 0.1η0, 0.2η0, 0.3η0, and 0.4η0.

Disorder averaging was performed over 50 samples. We see
from Fig. 4 that for both uniform and disordered coupling, the
spin-mixing conductance scales linearly as a function of the
number of lattice sites N (i.e., the interface area). As shown in
the plot, the largest spin-mixing conductance (represented by
“plus” points) was obtained for a ferromagnet|metal interface,

FIG. 4. (Color online) Area-integrated spin-mixing conductan-
ce, G↑↓, as a function of the system size, N . We have used
U0 = 2.6W , η0 = 0.9W , E = 1.1W . The red circles represent results
for a perfectly uniform coupling η0. For a disordered coupling η(iy)
(see text for details), the spin-mixing conductance increases mono-
tonically as the variance is increased. Here, we have used normalized
standard deviations of V 1/2

η /η0 = 0.1,0.2,0.3,0.4. Disorder average
was performed over 50 samples. The “plus” points represent results
for the ferromagnet|metal interface, where we have applied the
formalism of this section with a (nonstaggered) uniform exchange
field η0.

where we have applied the formalism above with η0(iy) ≡
0.9W . It is seen from the figure that as disorder variance
Vη is increased, G↑↓ increases monotonically, and can reach
values that are similar to the spin-mixing conductance of the
ferromagnet|metal interface. This shows that despite full mag-
netization compensation in each of the antiferromagnetic unit
cells, transfer of spins from a metal into an AF can be nearly
as efficient as into a ferromagnet, especially in the presence of
disorder. In ferrimagnetic YIG, it was (numerically) shown that
disorder tends to enhance g↑↓ [21]. Very recently, an experi-
mental investigation showing large spin-mixing conductance
at AF|metal interfaces, consistent with our expectation, was
reported in Ref. [9], based on ferromagnetic resonance and
spin pumping. Further experimental studies of the spin-mixing
conductance for an AF|metal interface are desired.

V. SUMMARY AND DISCUSSION

In this work, we have theoretically discussed how spin-
superfluid transport can be realized in an antiferromagnetic in-
sulator. The phenomenon can be detected through a nonlocal-
conductance measurement similar to the one proposed in
Ref. [12]. Charge current J c

l along the y axis in the left reser-
voir establishes, via the spin Hall effect, a spin accumulation
at its interface to the AF, leading to the injection of spin into
the AF. The spin density then propagates collectively through
the AF and is pumped into the right reservoir, which can be
detected by measuring the transverse charge current J c

r (or
voltage, in an open circuit) generated in the negative y direction
through the inverse spin Hall effect (see Fig. 1). The (negative)
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drag coefficient is then obtained as the ratioD ≡ J c
r /J c

l . Using
Onsager reciprocity and spin continuity at the interfaces, it
was argued in the case of easy-plane ferromagnets that this
drag coefficient can be orders of magnitude larger than the
similar effect predicted for the incoherent transport of thermal
magnons [12]. The same enhancement in the drag coefficient is
also expected here. For comparable mixing conductances, we,
furthermore, expect a similar magnitude for D in both AF-
and ferromagnet-based heterostructures (which in Ref. [12]
was estimated to be of order 0.1 for a Pt|YIG|Pt sandwich
when L � Lα , where YIG stands for the yttrium iron garnet
ferrimagnet).

Two promising materials directly relevant for the proposal
presented here are antiferromagnetic insulators RbMnF3 and
KNiF3. These insulators have a perovskite structure, of which
the magnetic ions form a simple cubic lattice structure, both
with a lattice constant of a ≈ 4 Å [22], and are known to
be very good realizations of a nearest-neighbor isotropic 3D
Heisenberg AF [23]. RbMnF3 is a spin S = 5/2 AF with a Néel
temperature of TN ≈ 83 K. The large spin moment associated
with the Mn2+ ions arises from a half-filled 3d electronic
shell, and the nearest-neighbor antiferromagnetic exchange
originates from the superexchange mechanism through the
intervening F− ions. The nearest-neighbor exchange constant,
extracted from inelastic neutron scattering, is J ≈ 0.29 meV,
with the next-nearest-neighbor interaction measured to be
more than an order of magnitude smaller than this value [24].
Antiferromagnetic-resonance measurements show magnetic
anisotropy field of less than 10−5 of the exchange field [25].
KNiF3 is an S = 1 AF with a Néel temperature of TN ≈ 275 K.
This material is unique in that it retains its cubic crystal
symmetry down to temperatures well below TN , while the
other compounds in its class, e.g., KMnF3, KFeF3, KCoF3, and
KCuF3, lose their cubic crystal symmetry at low temperatures
[26]. The exchange constant is J ≈ 8 meV, and the magnetic
anisotropy field is of the order 10−5 of the exchange field [27].

As mentioned below Eqs. (24), the transmission of spin
current through the antiferromagnet is essentially lossless for
system sizes L � Lα ≡ �g↑↓/2πα′s, while the loss becomes
appreciable and the spin current decays algebraically as
Lα/L for L � Lα . We now give a quantitative estimate
for the crossover length Lα between these two regimes. A
reasonable upper bound for the spin-mixing conductance is
�1019 m−2, an experimental value recently reported for several
YIG|normal-metal interfaces [28], which shows that it is close
to the ideal Sharvin limit [16]. Let us use a more conservative
g↑↓ ∼ 1018 m−2 for our AF|metal interface, in light of our
results in Sec. IV. An estimate for the Gilbert damping
parameter α′ is made based on a series of antiferromagnetic
resonance (AFMR) experiments conducted on a body-centered
tetragonal antiferromagnet, MnF2. An early zero-field AFMR
study on single-crystal slabs of MnF2 has measured residual
low-temperature (T ≈ 25 K) normalized linewidth �ω/ωres ≈
6 × 10−3 with resonance frequency ωres/2π ≈ 250 GHz
[29]. This translates into a Gilbert damping parameter α′ ∼
(�ω/ωres)

√
Ha/He ∼ 7 × 10−4, where the anisotropy and

exchange fields for MnF2 are given by Ha ∼ 8 kOe and
He ∼ 500 kOe, respectively [29,30]. From the later, high-field
AFMR experiment using flat disk samples [30], where the
resonance frequencies are driven up into the mm-wave region,

an improved normalized linewidth �ω/ωres ≈ 6 × 10−4 was
reported with ωres/2π ≈ 23 GHz at T ≈ 4 K, translating
into α′ ∼ 8 × 10−5. Reference [30] argues that the narrower
linewidth observed for their uniform mode compared to
the 250-GHz experiment is due to a weaker scattering into
magnetostatic modes that are degenerate with the uniform
mode at lower frequencies. We also note here that the Gilbert
damping parameter for YIG has been experimentally reported
to be [28] α′ � 10−4, a value with potential relevance for
us because of the ferrimagnetic nature of YIG with partially
compensated magnetic moments inside its unit cell. Based on
these numbers, we take, somewhat conservatively, α′ ∼ 10−4

for our estimate of Lα . Using S = 5/2 and lattice constant
a ≈ 4 Å corresponding to RbMnF3, the crossover length reads
Lα ∼ 40 nm. For KNiF3, with S = 1 and a ≈ 4 Å, we obtain
Lα ∼ 100 nm. A lower α′ (which could be expected for
relevant cubic materials that have much weaker anisotropy)
and/or larger g↑↓ could possibly push Lα into the μm range.

In-plane magnetic anisotropy, which breaks the U(1)
symmetry of the magnetic order, can, furthermore, lead to
pinning of the Néel order parameter and thus quench the global
precession essential for superfluid transport. The anisotropy
therefore defines a critical spin-current density that needs
to be injected at the interface in order that the Néel vector
overcomes the pinning. An estimate for this critical spin
current can be made by supplementing Lagrangian density
(2) with an in-plane easy-axis anisotropy term of the form
κn2

x/2, where κ = γ sHa parametrizes its strength and nx is
the x component of the unit Néel vector. For sufficiently small
L, the antiferromagnet can be treated as a monodomain. Then
the (volume-integrated) Néel vector is subjected to a restoring
torque ∼κVAF as it rotates away from the easy axis in the
plane. This pinning torque needs to be overcome by the spin
torque from the spin Hall metal, A J s . The critical spin-current
density in this regime is then given by

J s
c ∼ κL. (37)

This critical spin current is proportional to length L, because
the spin torque is generated interfacially whereas the pinning
is taken to be due to a bulk anisotropy. However, as L increases
above a certain crossover length Lc, the critical spin current can
be expected to saturate as a function of L. This crossover length
can be self-consistently shown to obey Lc = 2πA(J s

c )−1|L=Lc

(corresponding to the helical pitch of an isotropic AF subjected
to spin current J s

c ), and is thus given by Lc = √
2πA/κ . For

L � Lc, the critical spin-current density thus reads

J̃ s
c ∼ κLc =

√
2πAκ. (38)

From a complementary perspective, this threshold corresponds
to the spin supercurrent carried by a static magnetic texture
maintained by appropriate boundary conditions, at which
the domain walls that separate regions with opposite Néel
orientations along the easy axis begin to coalesce [10,11].

We now make some quantitative estimates for the simple
cubic nearest-neighbor antiferromagnets, RbMnF3 and KNiF3.
In this case, the stiffness parameter entering Eq. (2) is given by
A = JS2/a. For RbMnF3, we get A ≈ 7 × 10−13 J m−1, and,
using Ha ≈ 4.5 Oe [23], the crossover length scale reads Lc ≈
100 nm. The critical spin-current density (38) is estimated
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to be J̃ s
c ∼ 10−5 J m−2. This is converted into the applied

electric-current density J c according to J s = (�/2e)θSHJ c,
where θSH is the effective electron spin Hall angle at the
metal|AF interface. Using θSH ∼ 0.1 appropriate for a plat-
inum contact [31], the necessary current density then becomes
J c ∼ 5 × 1011 A m−2. For KNiF3, A ≈ 3 × 10−12 J m−1, and,
using Ha ≈ 80 Oe [27], the crossover length in this case
is given by Lc ≈ 90 nm. The critical spin-current density
reads J̃ s

c ∼ 2 × 10−4 J m−2, increasing the electric current
to J c ∼ 7 × 1012 A m−2 for the platinum contact.

Superfluid spin transport studied here requires the Néel
vector to lie (and rotate) within the xy plane such that
the U(1) nature of the order parameter is maintained. The
planar confinement of the Néel vector is provided by the
perpendicular external magnetic field, which defines a critical
spin current above which the supercurrent state becomes
unstable with respect to the exit of the Néel vector from the
easy plane [10,11]. To realize the superfluid spin transport
proposed in this work, this upper critical current must exceed
the threshold current [Eqs. (37) and (38)] required to overcome
pinning. In the bulk limit (i.e., L � Lc), this condition is
satisfied as long as the magnitude of the external magnetic
field exceeds the critical value Bc ∼ √

HaHe. For the cubic
antiferromagnets RbMnF3 and KNiF3, Bc is respectively given
by 0.5 T and 2.5 T.

The focus of the work has been the low-temperature regime,
where spin is carried through the AF mostly by the condensate.
In contrast to easy-plane ferromagnets [12], however, spin
transport in AFs poses a much richer problem at higher tem-
peratures, where the thermal cloud can contribute appreciably

to the transport. In the case of the ferromagnet with an easy
xy plane, magnons are not capable of carrying spin current
polarized along the z axis in the bulk of the magnet. Injection of
spin into the thermal cloud at the ferromagnet|metal interface
quickly converts into the condensate over a healing length
∼√

A/K , where A and K are respectively ferromagnetic
stiffness and easy-plane anisotropy, and the spin is carried by
the condensate in the bulk. A theory of finite-temperature spin
transport in AFs, on the other hand, has a two-fluid character
involving the condensate and the thermal-cloud contributions.
In the long-wavelength limit within the collision-dominated
regime, for example, insight into spin transport through AFs
should be obtainable from the two-fluid hydrodynamic theory
developed for superfluid 4He by Landau and Khalatnikov
[32]. We therefore anticipate that the understanding of finite-
temperature spin transport through AFs will further deepen the
connection between spin superfluidity and conventional mass
superfluidity.

ACKNOWLEDGMENTS

S.T. and Y.T. would like to thank Mircea Trif for valuable
discussions and acknowledge support in part by FAME (an
SRC STARnet center sponsored by MARCO and DARPA), the
NSF under Grant No. DMR-0840965, and the Kavli Institute
for Theoretical Physics through Grant No. NSF PHY11-25915.
B.I.H. and A.Y. acknowledge support in part by the STC Center
for Integrated Quantum Materials under NSF Grant No. DMR-
1231319.

[1] P. Grünberg, R. Schreiber, Y. Pang, M. B. Brodsky, and
H. Sowers, Phys. Rev. Lett. 57, 2442 (1986).

[2] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau,
F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas,
Phys. Rev. Lett. 61, 2472 (1988); G. Binasch, P. Grünberg,
F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).

[3] W. H. Meiklejohn and C. P. Bean, Phys. Rev. 105, 904 (1957);
J. Nogués and I. K. Schuller, J. Magn. Magn. Mater. 192, 203
(1999).

[4] J. Basset, A. Sharma, Z. Wei, J. Bass, and M. Tsoi, Proc. SPIE
7036, 703605 (2008); A. H. MacDonald and M. Tsoi, Philos.
Trans. R. Soc., A 369, 3098 (2011).
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