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Abstract

We study winner-take-all crowdsourcing contests in a model of costly effort and
stochastic production introduced by Cavallo and Jain [5]. In this contest format, the
principal strategically selects a prize value P , agents simultaneously and strategically
exert costly effort towards production yielding stochastic quality results, and the agent
who produces the highest quality good is paid P by the principal. We derive some
general characteristics of the Nash equilibria of such contests, and then give a char-
acterization of pure strategy equilibria when qualities are distributed uniformly or
exponentially as a function of effort. Given the equilibrium characterization, we evalu-
ate expected efficiency. We find that the winner-take-all contest paradigm will achieve
the efficient outcome in equilibrium for a large range of instantiations of the principal’s
value-for-quality, though for other instantiations it cannot.

1 Introduction

Crowdsourcing is an increasingly popular model of procurement in today’s online market-
places. In this model, a principal seeks completion of some task, posts an open call for
submissions, and allows multiple agents to simultaneously submit solutions, awarding a
prize to the participant with the best solution. The number and size of online crowdsourcing
marketplaces has grown markedly in recent years, with some notable examples including
Taskcn, Topcoder, 99designs and CrowdFlower. Crowdsourcing tasks resemble contests in
that many agents simultaneously exert effort in order to win a prize, where the winner is
determined based on relative performance. The process of selecting a winner based on sub-
mission quality and awarding her a lump sum prize constitutes a mechanism class, which we
term winner-take-all.

In this paper, we initiate a study of winner-take-all contest mechanisms in the model of
costly effort and stochastic production introduced in [5]. We are motivated by the following
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questions: What level of effort towards production is induced by winner-take-all contest
schemes? How does this depend on the magnitude of the prize on offer? If the principal
sets the prize to maximize his value for the produced good minus the prize-price he must
pay, what prize will he choose? If the principal and agents have quasilinear (and thus
interpersonally-comparable) utility, what level of social welfare (efficiency) results?

Since we take agents to be self-interested and strategic, the answer to these questions
requires a game-theoretic approach—we will analyze what happens in equilibrium. We start
by deriving some general properties of equilibria in a stochastic model of crowdsourcing, and
then fully work out the implications in two specific models of stochastic production: one
where quality is uniformly distributed, but increasing as a function of effort, and one where
quality is exponentially distributed, again increasing with effort. We focus on pure strategy
equilibria, and find that under a natural restriction on the quality distribution (encompassing
the uniform and exponential cases as well as many others), each agent always has a unique
best response to the strategies of others, which simplifies our analysis. This allows us to
identify a unique pure-strategy equilibrium for the exponential distribution and uniform
distribution, with two agents. We compare the efficiency (social welfare) of this equilibrium
to that in the social-welfare maximizing outcome. This is a particularly relevant comparison
in light of [5], which shows how—for arbitrary quality distributions—the efficient outcome
can be achieved in equilibrium in a non-winner-take-all scheme. Thus this efficiency gap can
be considered the price one pays by adopting the simple winner-take-all format as opposed
to the more complex, but efficient, mechanism of [5]. We find that while there are instances
of the problem for which winner-take-all contests are inefficient, they are perfectly efficient
in Nash equilibrium for a range of cases.

2 Related Work

There has recently emerged a new line of work providing a theory of crowdsourcing con-
tests [7, 2, 6, 5]. Most of this work focuses on the case where agents have private skill infor-
mation and choose a private effort level. DiPalantino and Vojnovic [7] make the connection
to all-pay auctions and model a market with multiple contests, considering the principal’s
optimization problem in the limit-case as the number of agents and contests goes to infinity.
Archak and Sundararajan [2] and Chawla, Hartline, and Sivan [6] focus on the design of
a single contest; they seek to determine how many prizes should be awarded, and of what
value. Chawla et al. [6] make the connection between crowdsourcing contests and optimal
auction design, finding that the optimal crowdsourcing contest—from the perspective of the
principal seeking quality submissions—is a virtual valuation maximizer.

While the current paper follows the line of work of Cavallo and Jain [5], who initiate
a study of stochastic production models for crowdsourcing and focus on optimizing for ef-
ficiency, most of these other previous works consider a deterministic model of quality as
a function of effort and skill. In a deterministic model of production, if the principal’s
value is proportional to the maximum quality good produced, the crowdsourcing paradigm
is not well-motivated from an efficiency perspective. Perhaps naturally, then, outside of [5]
a principal-centric viewpoint has most frequently been adopted.

Much of the previous design-motivated work has focused on how to maximize submission
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quality, given a prize budget, whether it be the highest quality submission [18, 6] or the
total sum of submission qualities [17, 18, 16]. Still other work has focused on maximizing
the sum of the top k submissions minus the prize awarded [2]. Ghosh and Hummel [9]
consider a more general class of utility functions to optimize for in a setting with virtual
“points” (a type of currency); namely, they show that there is a best contribution mechanism
that can implement the principal-optimal outcome (in their model, the principal does not
experience disutility for the prize awarded). Another line of work in the economics literature
uses contests to extract effort under a hidden action [14, 10, 20]. Similar to our work, the
output is a stochastic function of the unobservable effort, but the setting is different in that
the principal obtains value from the cumulative effort of the agents, rather than just the
maximum result.

These works are related to a long literature in economics studying all-pay auctions. Prior
work has focused on providing equilibrium characterizations for a complete information all-
pay auction [23, 19, 3], complete information all-pay auctions with reserve prices [4], and
incomplete information all-pay auctions [24, 11, 13, 1]. Still other works study sequential
all-pay auctions [12, 21, 15]. There has also been work on multi-stage research tournaments
that award a single prize [22, 8].

Like the current paper, most of this previous related work examines outcomes with strate-
gic agents and thus consists largely of equilibrium analysis. However, a critical differentiator
of the current paper is the model: we adopt the model of [5], where quality is a stochastic
function of effort and skill. From an efficiency perspective, this stochasticity (combined with
a deadline under which procurement is required) is the most natural way to motivate the
crowdsourcing paradigm—the redundant costly-effort of simultaneous production is justified
by the principal’s value for high quality and inability to ensure receipt before the deadline,
if production is instead ordered sequentially. Cavallo and Jain [5] introduce this model and
design efficient mechanisms for the problem of crowdsourcing. Here we analyze winner-take-
all mechanisms, the prevailing crowdsourcing payment scheme seen in practice, under this
stochastic model of production. Our goal in doing so is to determine the effectiveness of
winner-take-all payment schemes in implementing the efficient outcome. We aim to quantify
the efficiency gap, or the tradeoff between implementing the more complicated yet efficient
mechanisms from [5], versus the simpler yet inefficient winner-take-all mechanisms. To the
best of our knowledge, no previous work has addressed the efficiency of winner-take-all con-
tests or studied them in a model of stochastic production.

3 Model

In the crowdsourcing paradigm, multiple units of a good are simultaneously produced and
submitted to a principal. There is a set of agents I = {1, . . . , n} capable of producing goods,
where each i ∈ I makes a privately observed choice of effort δi to expend on production. We
identify the effort level δi with the dollar value in costs ascribed to it by agent i. We assume
that δi ∈ [0, δmax], ∀i ∈ I, for some δmax ∈ <+. Agents are homogenous aside from their
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private effort choice.1 If an agent attempts production with effort δi, a good is produced
with quality that is a priori uncertain but is a function of δi.

Quality is identified with value to the principal in dollar-terms, and can be thought of as
the output of a non-deterministic function mapping effort to <+. The probability distribution
over relative quality, given any effort level, is publicly known; and the principal has value
v ∈ <+, a scale factor that maps relative quality levels to absolute quality (dollar-value).2

The principal obtains value commensurate with the maximum quality good produced. For
instance, if agents i and j expend effort δi and δj and produce goods with relative qualities
qi and qj, respectively, the principal’s utility from obtaining the goods equals the maximum
asbolute quality produced, which is max{vqi, vqj}.

For any non-zero effort level δi ∈ (0, δmax], we denote the p.d.f. and c.d.f. over resulting
relative quality as fδi and Fδi , respectively, where the support of fδi is in <+. We assume
symmetry across bidders in the sense that the private effort choice is the only differentiating
factor; i.e., for two agents making the same choice of effort level, the distribution over quality
they will produce is the same (though there is no presumed correlation so the resulting quality
may differ). We assume the probability density over quality, evaluated at any particular
quality level, is differentiable with respect to effort δi, for all δi ∈ (0, δmax]. We assume that
effort δi = 0 deterministically yields quality 0 (no effort yields no production), and then
for notational convenience we let F0(x) = 1, ∀x ≥ 0. We also assume that ∀x > 0, Fδi(x)
converges to 1 as δi goes to 0.3 Finally, we make the natural assumption that more effort
has first-order stochastic dominance over less effort with respect to quality, i.e.:

∀0 ≤ δi < δ′i ≤ δmax, ∀x ∈ [0, v], Fδi(x) ≥ Fδ′i(x) (1)

In this paper we analyze a particular family of mechanisms, winner-take-all mechanisms,
where the principal posts a fixed prize P (in dollars), allows the agents to compete for the
prize, and awards the lump sum prize P to the agent who submits the maximum quality
good. We seek to understand the effectiveness of winner-take-all mechanisms in implementing
the social welfare maximizing outcome. We adopt a quasilinear utility model and assume
all players are risk-neutral. Given our identification of the quality of the good (times the
principal’s scale-factor value v) with the dollar value ascribed to it by the principal, a rational
principal will seek to maximize his value for the maximum quality good minus the prize he
pays. Likewise, given our identification of effort level δi with the dollar value in costs ascribed
to it by agent i, a rational agent will seek to maximize his expected prize value received minus
the effort he expends towards production.

The winner-take-all paradigm defines a game wherein the principal chooses a prize value
P and each agent i ∈ I chooses an effort level δi. We will consider equilibrium outcomes, and
pay particular attention to the efficiency they yield. Letting Qi(v, δi) be a random variable

1In our previous paper [5] we considered the richer model where agents were also differentiated by private
skill information (see also [6]).

2Note that in [5], the principal’s value v was private. Here, because the principal is essentially setting the
mechanism by choosing a prize value, whether v is private or public is of no consequence to the equilibrium
outcomes that result.

3This entails that ∀δ−i ∈ [0, δmax]n−1 such that maxj∈I\{i} δj > 0,
∫∞
0
fδi(x)

∏
j∈I\{i} Fδj (x)dx converges

to 0 as δi goes to 0. In words: as long as some agent other than i is exerting non-zero effort, i’s probability
of winning the contest (and, with it, his expected utility) goes to 0 as his effort goes to 0.
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representing the absolute quality level produced by i ∈ I who expends effort δi, the expected
efficiency of an equilibrium in which each i ∈ I exerts effort δi is:

E[max
i∈I

Qi(v, δi)]−
∑
i∈I

δi (2)

(The prize value P does not factor into social welfare since it is subtracted from the principle’s
utility and added to the winning agent’s.) An efficient effort vector is a vector of effort levels
that maximizes Eq. (2) given v.4 We will ultimately compare the expected social welfare of
the equilibrium outcomes in winner-take-all contests to that of the efficient outcome.

Our results regarding equilibrium analysis for the agents will be parameterized by the
prize value P—we describe equilibrium agent effort levels for the principal’s choice of prize
value. We start with some distribution-independent facts about equilibria (Section 4), and
then move on to detailed analysis of special cases—exponentially distributed quality, where

fδi(x) = 1
δi
e
− x
δi , ∀x ∈ <+ (Section 5), and uniformly distributed quality, where fδi(x) = 1

δi
,

∀x ∈ [0, δi] and fδi(x) = 0 otherwise (Section 6). This equilibrium analysis will then allow us
to derive the principal’s equilibrium prize-setting behavior (in Sections 5.2 and 6.3, for the
exponential distribution and uniform distribution, respectively), which pins down a complete
equilibrium characterization and allows us to evaluate equilibrium efficiency (in Sections 5.3
and 6.4).

4 General best-response functions

Taking the principal’s choice of top-submission prize value P as given (for now), we determine
the best-response functions for an agent i in terms of her private effort choice δi.

Remark 4.1. The expected utility for agent i ∈ I who exerts effort δi > 0, when other agents
exert efforts δ−i, is given by: P

∫∞
0
fδi(x)

∏
j∈I\{i} Fδj(x)dx− δi.

Considering the first order condition for the best-response function, we can see that any
critical point satisfies:

∂

∂δi

(∫ ∞
0

fδi(x)
∏

j∈I\{i}

Fδj(x)dx
)
− 1

P
= 0 (3)

We identify a general condition below in the following remark that allows us to identify
all potential maxima of the best response function. We use this remark in the analysis of
exponentially distributed quality and uniformly distributed quality.

Remark 4.2. Fixing any δ−i, if ∂
∂δi

[
∫∞
0
fδi(x)

∏
j∈I\{i} Fδj(x)dx] − 1

P
is monotonically de-

creasing in δi over the interval (0, δmax] and Eq. (3) has a zero δ̂i ∈ (0, δmax), then the best-
response effort choice for i is δ̂i; if Eq. (3) has no zero in (0, δmax) then the best-response is
either non-participation or maximum-effort participation.

4That is, effort vector δ∗ is efficient if and only if δ∗ ∈ arg maxδ
(
E[maxi∈I Qi(v, δi)]−

∑
i∈I δi

)
.
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If ∂
∂δi

[
∫∞
0
fδi(x)

∏
j∈I\{i} Fδj(x)dx] is strictly monotonically decreasing in δi, there is at

most one value of δi that satisfies the above equation and if the zero exists, the value of the
derivative switches from positive to negative, so we have a maximum. For the case of expo-
nentially distributed quality, we show that in fact this expression is strictly monotonically
decreasing.

An equilibrium is a profile of strategies (δ1, . . . , δn; in our case, fixing P ) wherein every
agent is best-responding. Thus these basic properties will help point us to the equilibria of
winner-take-all contests with prize P . But before going on, without assuming anything more
about the environment we note that no equilibrium will ever involve cumulative agent effort
exceeding the prize value, and also no equilibrium will involve only a single agent exerting
non-zero effort. These facts will be useful in deriving the equilibrium characterizations to
come in the following sections.

Proposition 4.3. For arbitrary quality distributions, for arbitrary values of n ≥ 2 and
P ∈ <+, any equilibrium strategy profile has agents collectively exerting at most P units of
effort.

Proof. Consider arbitrary equilibrium effort profile δ1, . . . , δn. Each agent’s utility is
her expected prize reward (which we’ll denote Ri) minus any effort exerted, i.e., ui =
E[Ri(δ1, . . . , δn)]− δi. In equilibrium each agent must have an expected utility of at least 0
since an agent can exert 0 effort and receive an expected reward of 0. Therefore,

∑n
i=1 ui ≥ 0,

or
∑n

i=1(E[Ri(δ1, . . . , δn)] − δi) ≥ 0. We observe that
∑n

i=1 E[Ri(δ1, . . . , δn)] = P , so there-
fore,

∑n
i=1 δi ≤ P .

Proposition 4.4. For arbitrary quality distributions and arbitrary values of n ≥ 2, P ∈ <+,
and δmax > 0, no pure-strategy equilibrium has exactly one agent exerting non-zero effort.

Proof. Consider a candidate equilibrium profile with one agent exerting x units of effort,
where 0 < x ≤ δmax. This agent’s expected utility is P − x. If an agent reduces his effort to
x
2
, his expected payoff increases to P − x

2
, a profitable deviation.

5 Exponentially distributed quality

We now derive an equilibrium characterization of the case where output depends exponen-
tially on the choice of effort. Specifically, we define the mean of the quality distribution,

when δi ∈ (0, δmax], to be 1
λ

= δi, so fδi(x) = 1
δi
e
− x
δi and Fδi(x) = 1 − e−

x
δi . Our results for

this section are limited to the two-agent case. The proofs of all Lemmas are deferred to the
Appendix.

5.1 Equilibrium analysis with n = 2 agents (exponential)

We first use the structure provided in Remark 4.2 to show that in the case of exponentially
distributed quality, the best-response function has at most one critical point.

Lemma 5.1. In the exponentially distributed quality case with n = 2, ∀δ2 ∈ [0, δmax], the
function ∂

∂δ1

∫∞
0

[fδ1(x)Fδ2(x)dx]− 1
P

has at most one zero with respect to δ1 over the interval
(0, δmax], for any value of δ2.
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From this lemma, we can conclude that in the exponentially distributed quality case with
two agents, each agent always has a unique best-response, for any choice of effort level by the
other agent. We now see that if the prize value P is large enough, both agents participate
with maximal effort.

Proposition 5.2. In the exponentially distributed quality case with n = 2, when P ≥ 4δmax,
both agents will exert effort δmax in equilibrium and this is the only equilibrium.

Proof. If both agents exert effort δmax, then they both have an expected payoff of P
2
− δmax,

which is strictly greater than 0. Consider a deviation for an agent where she decides to
exert less effort, δ1 < δmax; her expected utility becomes P

∫∞
0
fδ1(x)Fδ2(x)dx − δ1. The

derivative of this with respect to δi equals P δmax
(δ1+δmax)2

− 1 > P δmax
(2δmax)2

− 1 = P−4δmax
4δmax

. So
when P ≥ 4δmax, the derivate is positive everywhere and thus δmax is the best-response.

Now suppose that agent 2 exerts effort δ2 < δmax, we consider the best-response to this.
Consider agent 1 exerting effort δ1. We claim that if agent 1 is best-responding, agent 1
should exert effort strictly greater than δ2. The best-response function has a critical point
at δ1 =

√
δ2(
√
P −

√
δ2) (applying Remark 4.2). Since δ2 < δmax and P ≥ 4δmax, then√

P −
√
δ2 >

√
δ2, so the derivative has a zero at δ1 > δ2. Note that if this zero occurs at

a value of δ1 > δmax, the derivative is positive over the interval δ1 ∈ [δ2, δmax]. Therefore, if
a player exerts δ2 < δmax effort, the best-response to this is exerting strictly greater effort.
Therefore, we know for any strategy profile (x, y), where x < y, the agent exerting lesser
effort is not best-responding. Similarly, any strategy profile (x, x), where x < δmax has both
players not best responding, which gives us the desired result.

We now see, through a set of three lemmas leading to a proposition, that if P ≤ 4δmax
the sole pure strategy equilibrium is interior.

Lemma 5.3. In the exponentially distributed quality case with n = 2, if agent 2 exerts δ2
units of effort, where 0 < δ2 <

P
4

, then agent 1’s unique best-response δ1 is in the interval
(δ2,

P
4

).

Lemma 5.4. In the exponentially distributed quality case with n = 2, if agent 2 exerts P
4

units of effort, agent 1’s unique best-response is δ1 = P
4

.

Lemma 5.5. In the exponentially distributed quality case with n = 2, if agent 2 exerts δ2
units of effort, where δ2 >

P
4

, then agent 1’s unique best response δ1 is in the interval [0, P
4

).

Proposition 5.6. In the exponentially distributed quality case with n = 2, when P < 4δmax,
the only pure-strategy Nash equilibrium for the winner-take-all contest has each player exert
effort P

4
.

Proof. From Proposition 4.4, we know that any equilibrium strategy profile must have both
players exerting non-zero effort. Suppose there exists an equilibrium profile with player 1
exerting x units of effort and player 2 exerting y units of effort, with x, y > 0. Without
loss of generality, we can assume that x ≤ y. First consider the case that 0 < x < P

4
.

If y < P
4

, Lemma 5.3 tells us that player 1’s best-response to y is to exert effort strictly
greater than y, so this cannot be part of a Nash equilibrium. If y = P

4
, then player 2 is not
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responding to player 1 according to Lemma 5.3. If y > P
4

, Lemma 5.3 tells us player 2 is not
best-responding. Now consider the case that x > P

4
(which implies y > P

4
). Lemma 5.5 tells

us that neither player 1 nor player 2 is best-responding. Now consider the case that x = P
4

.
If y > P

4
, Lemma 5.5 tells us that player 1 is not best-responding. If y = P

4
, we know from

Lemma 5.4 that both players are best-responding to each other. Thus (P
4
, P
4

) is the one pure
strategy Nash equilibrium.

Propositions 5.2 and 5.6 give us a complete characterization of the pure-strategy Nash
equilibrium in winner-take-all contests with two agents where quality is exponentially dis-
tributed, as a function of effort:

Theorem 5.7. In the exponentially distributed quality case with n = 2: in the winner-
take-all contest with P < 4δmax, the only pure-strategy Nash equilibrium has both agents
exert effort P

4
; in the winner-take-all contest with P ≥ 4δmax, the only pure-strategy Nash

equilibrium has both agents exert effort δmax.

One major motivator for analyzing the equilibria of winner-take-all contests is to quantify
the inefficiency of using such a scheme compared to an alternate scheme that always achieves
efficient effort levels in equilibrium. The equilibrium characterizations above provide most
of the picture, but we still need to consider the principal’s strategic choice of prize value P ,
given her value v. This will give us a complete picture of the equilibrium behavior, allowing
us—in Section 5.3—to compare the efficiency of a winner-take-all contest with the optimal
solution, which is achieved by the non-winner-take-all mechanism of [5].

5.2 Equilibrium prize value with n = 2 agents (exponential)

Given the equilibrium characterization above, we can now examine the principal’s utility-
maximizing choice of P as a function of her value v.

Proposition 5.8. In the exponentially distributed quality case with n = 2, in equilibrium:

• When v > 8
3
, the principal chooses P = 4δmax, with each agent exerting effort δmax.

• When v < 8
3
, the principal chooses P = 0.

• When v = 8
3
, the principal is indifferent between all prizes in the interval P ∈ [0, 4δmax].

Proof. We note that the principal need never offer a prize of greater than 4δmax since a prize
of 4δmax induces an equilibrium where both players exert effort δmax. If the prize is P where
0 ≤ P ≤ 4δmax, each agent will exert effort P

4
and the expected value to the principal of the

highest quality good will be vP
4

3
2
. The principal’s expected utility of setting a prize of P is

then vP
4

3
2
−P = P (v

4
3
2
−1). This is positive if and only if v > 8

3
. When v > 8

3
, the principal’s

utility is maximized by making P as large as possible without exceeding 4δmax, i.e., 4δmax.
When v = 8

3
, the principal’s utility is 0 for any prize value P ∈ [0, 4δmax]. When v < 8

3
, the

principal’s utility is negative for all P > 0, so he does not order production.
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5.3 Efficiency of winner-take-all contests (exponential)

Given the equilibrium characterizations of the agents and the principal, we compare the
outcome of the game under the winner-take-all mechanism as compared to the efficient out-
come. First, we need to determine what the efficient outcome for the exponential distribution
looks like. We show that the exponential distribution satisfies the extreme effort condition
from [5], which means that the efficient outcome has all agents either exert zero effort or full
effort. This will allow us to clearly compare the equilibrium efficiency of a winner-take-all
contest with the efficiency of the optimal effort policy.

Lemma 5.9. For the exponentially distributed quality case, there is an efficient policy in
which each agent i exerts either no effort δi = 0 or full effort δi = 1.

Given that the exponential distribution satisfies the extreme effort condition, determining
the efficient solution is equivalent to simply determining the number of agents to exert full
effort in order to maximize the social welfare.

In what follows, let v(i, i+ 1) denote the value of v at which the social welfare of having
i agents exert full effort is the same as the social welfare of having i + 1 agents exert full
effort, under the exponential distribution.

Lemma 5.10. For the exponentially distributed quality case, ∀i ∈ {1, . . . , n}, v(i− 1, i) = i.
Moreover, when v > v(i − 1, i), the social welfare of i agents exerting full effort is strictly
greater than the social welfare of i − 1 agents exerting full effort and when v < v(i − 1, i),
the social welfare of i− 1 agents exerting full effort is strictly greater than the social welfare
of i agents exerting full effort.

Proof. When i agents exert full effort, the expected value to the principal is vδmaxHi. There-
fore, the social welfare of having i agents exert full effort is: vδmaxHi − iδmax. To determine
v(i−1, i), we need v(i−1, i) to satisfy v(i−1, i)δmaxHi−iδmax = v(i−1, i)δmaxHi−1−(i−1)δmax
or in other words, v(i − 1, i)(Hi − Hi−1) = 1 or more simply, v(i − 1, i) = i. When
v > v(i − 1, i), vδmaxHi − iδmax > vδmaxHi−1 − (i − 1)δmax and when v < v(i − 1, i),
v(i− 1, i)δmaxHi − iδmax < vδmaxHi−1 − (i− 1)δmax.

Corollary 5.11. For the exponentially distributed quality case, ∀i ∈ {1, . . . , n − 1}, v(i −
1, i) < v(i, i+ 1).

Theorem 5.12. In the exponentially distributed quality case, if ∃i ∈ {0, ..., n− 1} such that
i < v < i + 1, the efficient solution involves i agents exerting full effort and n − i agents
exerting 0 effort. Alternatively, if v > n, the efficient solution involves n agents exerting full
effort. Finally, if ∃i ∈ {1, ..., n} such that v = i, there are two classes of efficient solutions:
one where i agents exert full effort and one where i−1 agents exert full effort (with the other
n− i or n− i+ 1 agents exerting 0 effort).

Proof. Since the exponential distribution satisfies the extreme effort condition, it suffices to
consider solutions where agents either exert full effort or no effort. We establish this theorem
via induction. We claim that for any value of v > v(i− 1, i), having i agents exert full effort
leads to strictly higher social welfare than having 0 ≤ j < i agents exert full effort (if any
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such j exists). When i = 0, there is no value of j, such that 0 ≤ j < i, so the claim trivially
holds for all v ≥ 0. For arbitrary integer i > 0, assume that we have proven the claim for
i− 1, which means that for v > v(i− 2, i− 1), having i− 1 agents exert full effort leads to
higher social welfare than having 0 ≤ j < i− 1 agents exert full effort. We know that there
exists a unique point v(i− 1, i) at which the social welfare of having i− 1 agents exert full
effort is the same as the social welfare of having i agents exert full effort. Moreover, we know
that for all v > v(i − 1, i), the social welfare of having i agents exert full effort is strictly
greater than the social welfare of having i− 1 agents exert full effort. Thus having i agents
exert full effort yields greater social welfare than having 0 ≤ j < i agents exert full effort
for any value v > v(i − 1, i). The final step of the inductive argument gives us that having
n agents exert full effort leads to greater social welfare than having 0 ≤ j < n agents exert
full effort for any value v > v(n− 1, n).

We can establish a similar argument via induction that at any value of v < v(i, i + 1),
having i agents exert full effort leads to strictly higher social welfare than having n ≥ j > i
agents exert full effort (if any such j exists). When i = n, there is no value of j, such that
n ≥ j > i, so the claim trivially holds for all v ≥ v(n − 1, n). For arbitrary integer i < n,
assume that we have proven the claim for i+1, which means that for v < v(i+1, i+2), having
i+ 1 agents exert full effort leads to higher social welfare than having n ≥ j > i+ 1 agents
exert full effort. We know that for all v < v(i, i+ 1), having i agents exert full effort leads to
greater social welfare than having i + 1 agents exert full effort. Thus for all v < v(i, i + 1),
having i agents exert full effort yields greater social welfare than having n ≥ j > i agents
exert full effort. Combining these two inductive arguments, with Corollary 5.11, gives us
that having i agents exert full effort when v(i−1, i) < v < v(i, i+1) maximizes social welfare
for all 1 ≤ i ≤ n− 1.

Proposition 5.8 and Theorem 5.12 allow us to conclude that the winner-take-all contest
can be inefficient for certain values of v.

Theorem 5.13. For the exponentially distributed quality case with n = 2, the winner-take-all
contest is inefficient when 1 < v < 8

3
.

We see from Theorem 5.12, that when v ≤ 1, the efficient outcome is for 0 agents to
exert effort, which is implemented by the winner-take-all contest. However, in the case that
1 < v ≤ 2, the efficient outcome is for 1 agent to exert full effort, but the equilibrium behavior
of a winner-take-all contest leads to 0 agents exerting effort. Finally, when 2 ≤ v < 8

3
, the

efficient outcome is for 2 agents to exert full effort, but the equilibrium behavior of a winner-
take-all contest leads to 0 agents exerting effort. Finally, when v ≥ 8

3
, the equilibrium

behavior of a winner-take-all contest leads to 2 agents exerting full effort, which is the
efficient outcome according to Theorem 5.12. This is perhaps surprising, in that, for the
exponential distribution with n = 2, the winner-take-all contest is either perfectly efficient
or perfectly inefficient.
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6 Uniformly distributed quality

In this section, we provide an analysis analogous to the above for the case of uniformly
distributed quality. More specifically, quality is uniformly distributed between 0 and δi, so
this distribution has a mean of δi

2
. For δi ∈ (0, δmax], this gives fδi(x) = 1

δi
when 0 ≤ x ≤ δi

and 0 otherwise, and Fδi(x) = x
δi

when 0 ≤ x ≤ δi and 1 when x > δi. We start with the
n = 2 case and provide a equilibrium characterization, which we generalize for larger n.
Spelling out the n = 2 case is useful since the technical lemmas are used in the general n
case (e.g. Lemma 6.11).

6.1 Equilibrium analysis with n = 2 agents (uniform)

We start by interpreting the condition from Remark 4.2 for the uniform distribution, which
means that for all but one special case, the best-response function has at most one critical
point.

Lemma 6.1. In the uniformly distributed quality case with n = 2, ∀δ2 ∈ [0, δmax], the
function ∂

∂δ1

∫∞
0

[fδ1(x)Fδ2(x)dx]− 1
P

has at most one zero with respect to δ1 over the interval

(0, δmax], for any value of δ2 6= P
2

.

Proposition 6.2. In the uniformly distributed quality case with n = 2, when P > 2δmax,
both agents will exert δmax in equilibrium and this is the only equilibrium.

Proof. If both agents exert effort δmax, then they both have an expected payoff of P
2
− δmax,

which is strictly greater than 0. Consider a deviation for an agent where she exerts less effort,
e.g. δ1 < δmax. Remark 4.2 tells us that a critical point must satisfy ∂

∂δ1
[
∫∞
0
fδ1(x)Fδ2(x)dx]−

1
P

= 0, or P
2δmax

− 1 = 0. But P
2δmax

− 1 > 0 for all P > 2δmax. Therefore, exerting effort δmax
is a best response to another player exerting δmax effort.

Now suppose that agent 2 exerts effort δ2 < δmax, we consider the best-response to this.
Consider agent 1 exerting effort δ1. Remark 4.2 tells us that a critical point must satisfy
∂
∂δ1

[
∫∞
0
fδ1(x)Fδ2(x)dx]− 1

P
= 0. If δ1 > δ2, this condition becomes δ2

2δ21
− 1

P
= 0, with a critical

point at δ1 =
√

Pδ2
2

. The derivative changes from positive to negative here, so we have a

maximum. Therefore, if a player exerts x < δmax effort, the best-response to this is exerting

strictly greater effort. Note that if δ1 <
√

Pδ2
2

, the derivative is positive over the interval

δ1 ∈ [δ2, δmax], so the maximum occurs at δmax, otherwise the max occurs at δ1 =
√

Pδ2
2

.

Therefore we know for any strategy profile (x, y), where x < y, the agent exerting lesser
effort is not best-responding. Similarly any strategy profile (x, x), where x < δmax has both
players not best-responding, which gives us the desired result.

This proposition gives us an equilibrium characterization for the P > 2δmax case. We
now see, through a set of three lemmas leading to a proposition, that if P ≤ 2δmax the sole
pure strategy equilibrium is interior.

Lemma 6.3. In the uniformly distributed quality case with n = 2, if agent 2 exerts δ2 units
of effort, where 0 < δ2 <

P
2

, then agent 1’s unique best-response δ1 is in the interval (δ2,
P
2

).

11



Lemma 6.4. In the uniformly distributed quality case with n = 2, if agent 1 exerts P
2

units
of effort, agent 2 has a (weak) best-response of exerting P

2
units of effort.

Lemma 6.5. In the uniformly distributed quality case with n = 2, if agent 2 exerts δ2 units
of effort, where δ2 >

P
2

, then agent 1’s unique best response will be to exert 0 effort.

Proposition 6.6. In the uniformly distributed quality case with n = 2, when P < 2δmax,
the only pure-strategy Nash equilibrium for the winner-take-all contest is the one in which
each player exerts effort P

2
.

Proof. From Proposition 4.4, any equilibrium strategy profile must have both players exert-
ing non-zero effort. Suppose there exists an equilibrium profile with player 1 exerting x units
of effort and player 2 exerting y units of effort, with x, y > 0. We can assume that x ≤ y.
First consider the case that 0 < x < P

2
. If y < P

2
, Lemma 6.3 tells us that player 1’s best-

response to y is a value strictly greater than y, so this cannot be part of a Nash equilibrium.
If y = P

2
, then player 2 is not best-responding to player 1 according to Lemma 6.3. If y > P

2
,

Lemma 6.5 tells us that player 1 is not best-responding. Now consider the case that x > P
2

.
Lemma 6.5 tells us that player 2 is not best-responding. Now consider the case that x = P

2
.

If y > P
2

, Lemma 6.5 tells us that player 1 is not best-responding. If y = P
2

, we know from
Lemma 6.4, that this is a weak best-response. Thus (P

2
, P
2

) is the only pure strategy Nash
equilibrium.

Propositions 6.2 and 6.6 give us a complete characterization of the pure-strategy Nash
equilibrium in winner-take-all contests with two agents in a model of costly effort and stochas-
tic production, which we state here:

Theorem 6.7. In the uniformly distributed quality case with n = 2: in the winner-take-all
contest with P < 2δmax, the only pure-strategy Nash equilibrium has both agents exert effort
P
2

; in the winner-take-all contest with P ≥ 2δmax, the only pure-strategy Nash equilibrium
has both agents exert effort δmax.

6.2 Equilibrium analysis for general n (uniform)

We extend the equilibrium analysis above to settings with general n and give a characteri-
zation of the pure-strategy Nash equilibrium.

Lemma 6.8. In the uniformly distributed quality case, for any value of P and δmax, any
equilibrium strategy profile has all agents who exert non-zero effort exerting the same amount
of effort.

Lemma 6.9. In the uniformly distributed quality case, when P ≥ nδmax, the only Nash
equilibrium has each agent exert full effort.

Lemma 6.10. In the uniformly distributed quality case, when P < nδmax there is no pure-
strategy symmetric Nash equilibrium in a winner-take-all contest with n ≥ 3.

Lemma 6.11. In the uniformly distributed quality case, when P ≤ 2δmax the only pure-
strategy Nash equilibrium is one in which 2 players exert effort P

2
and the remaining agents

exert 0 effort.
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Lemma 6.12. In the uniformly distributed quality case, when P ∈ (2δmax, nδmax), consider
i ∈ {2, . . . , n−1} such that P ∈ (iδmax, (i+1)δmax]. Any effort profile in which i agents exert
effort δmax and n−i agents exert effort 0 is a Nash equilibrium; moreover, if P = (i+1)δmax,
any effort profile in which i + 1 agents exert δmax effort (with n − i − 1 agents exerting 0
effort) is also a Nash equilibrium. This is an exhaustive characterization of the pure strategy
Nash equilibria.

Lemmas 6.9, 6.11 and 6.12 give us a complete pure-strategy equilibrium characterization
for winner-take-all contests for general n:

Theorem 6.13. In the case of uniformly distributed quality with n ≥ 2 agents:

• When P ≤ 2δmax, the only pure-strategy Nash equilibria are those in which exactly two
agents exert effort P

2
and all others exert 0 effort.

• If ∃i ∈ {2, . . . , n − 1} such that P ∈ (iδmax, (i + 1)δmax), the only pure-strategy Nash
equilibria are those in which exactly i agents exert effort δmax and all others exert 0
effort.

• If ∃i ∈ {2, . . . , n− 1} such that P = (i+ 1)δmax, there are two classes of pure-strategy
Nash equilibria: one in which exactly i agents exert effort δmax and all others exert 0
effort, and the other in which exactly i + 1 agents exert δmax and all others exert 0
effort.

• Finally, when P > nδmax, in the unique pure-strategy Nash equilibrium all n agents
exert effort δmax.

Given the equilibrium characterizations above, we can now determine the principal’s
strategic choice of prize value P , given her value v. This will allow us, in Section 6.4, to
compare the efficiency of a winner-take-all contest with the optimal solution.

6.3 Equilibrium prize value (uniform)

Since the principal’s best choice of prize depends on the equilibrium strategies of the agents,
it is difficult to say much about it independent of a given quality distribution. Here we ad-
dress the uniformly distributed quality case, and note that other cases such as exponentially
distributed quality can be handled similarly.5 We start by analyzing the principal’s problem
in the n = 2 case and then extend the analysis to the general n case.

Lemma 6.14. In the uniformly distributed quality case with n = 2, in equilibrium:

• When v > 3, the principal chooses P = 2δmax, with each agent exerting effort δmax.

• When v < 3, the principal chooses P = 0.

• When v = 3, the principal is indifferent between all prizes in the interval P ∈ [0, 2δmax].

5We make the assumption that when there are multiple equilibria for a given prize value set by the
principal, the principal can choose the more desirable equilibrium.
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Now we consider the principal’s problem in the general n case. Given the equilibrium
analysis in the previous section and the fact that the principal is strategic, it suffices to re-
strict attention to the minimal P to implement a given outcome, which leads to the following
lemma.

Lemma 6.15. ∀i ∈ {2, . . . , n − 1}, ∃v ∈ <+ such that the principal’s expected utility in
equilibrium is the same if he chooses the minimal P such i agents participate with full effort,
or the minimal P ′ such that i+ 1 agents participate with full effort.

In light of this lemma, we define notation v(i, i + 1), for arbitrary i ∈ {2, . . . , n − 1},
to be the value at which the principal is indifferent between choosing the minimal P that
gets i agents to participate with full-effort, or choosing the minimal P ′ that gets i + 1 to
participate with full-effort, given that they play the unique pure strategy equilibrium (see
Theorem 6.13).

Lemma 6.16. In the uniformly distributed quality case, ∀i ∈ {2, . . . , n − 2}, v(i, i + 1) <
v(i+ 1, i+ 2).

Lemma 6.17. In the uniformly distributed quality case, if ∃i ∈ {3, ..., n − 1} such that
v ∈ (i(i + 1), (i + 1)(i + 2)), the principal sets a prize of iδmax to have i agents exert full
effort. Alternatively if v > n(n+1), the principal sets a prize of nδmax to have n agents exert
full effort. Finally, if ∃i ∈ {3, ..., n − 1} such that v = i(i + 1), the principal is indifferent
between setting a prize of (i− 1)δmax and iδmax.

Lemmas 6.14 and 6.17 establish the following theorem for n ≥ 3:

Theorem 6.18. In the uniformly distributed quality case with n ≥ 3, in equilibrium:

• When v < 3, the principal sets P = 0.

• When v = 3, the principal is indifferent between all prizes in the interval P ∈ [0, 2δmax].

• When 3 < v < 12, the principal sets P = 2δmax in order to have 2 agents exert full
effort.

• When, for some i ∈ {3, . . . , n − 1}, v = i(i + 1), the principal is indifferent between
setting a prize of iδmax and a prize of (i− 1)δmax.

• When, for some i ∈ {3, . . . , n − 1}, v ∈ (i(i + 1), (i + 1)(i + 2)), the principal sets
P = iδmax to have i agents exert full effort.

• When v > n(n+ 1), the principal sets P = nδmax to have n agents exert full effort.

6.4 Efficiency of winner-take-all contests (uniform)

We will now use this equilibrium characterization to evaluate the efficiency of winner-take-all
when quality is uniformly distributed. Interestingly, we find that for a wide range of values
for the principal, a winner-take-all scheme will yield the efficient effort policy in equilibrium;
but for certain values, it will not.
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The following lemma may look virtually identical to Lemma 6.16 above, however we note
the following lemma is given with respect to social welfare, whereas Lemma 6.16 is given
with respect to the principal’s utility. In what follows v(i, i + 1) denotes the value of v at
which the social welfare of having i agents exert full effort is the same as the social welfare
of having i+ 1 agents exert full effort.

Lemma 6.19. In the uniformly distributed quality case, ∀i ∈ {1, . . . , n−1}, v(i−1, i) = i(i+
1). Moreover, when v > v(i−1, i), the social welfare of i agents exerting full effort is strictly
greater than the social welfare of i − 1 agents exerting full effort and when v < v(i − 1, i),
the social welfare of i− 1 agents exerting full effort is strictly greater than the social welfare
of i agents exerting full effort.

Proof. When i agents exert full effort, the expected value to the principal is i
i+1
δmaxv. Hence,

the social welfare of having i agents exert full effort is: i
i+1
δmaxv − iδmax. To determine

v(i− 1, i), we need v(i− 1, i) to satisfy: i
i+1
δmaxv(i− 1, i)− iδmax = i−1

i
δmaxv(i− 1, i)− (i−

1)δmax, or in other words, v(i − 1, i) = i(i + 1). When v > v(i − 1, i), i
i+1
δmaxv − iδmax >

i−1
i
δmaxv−(i−1)δmax and when v < v(i−1, i), i

i+1
δmaxv−iδmax < i−1

i
δmaxv−(i−1)δmax.

Corollary 6.20. In the uniformly distributed quality case, ∀i ∈ {1, . . . , n− 1}, v(i− 1, i) <
v(i, i+ 1).

Theorem 6.21. In the uniformly distributed quality case, if ∃i ∈ {0, ..., n − 1} such that
i(i+ 1) < v < (i+ 1)(i+ 2), the efficient solution involves i agents exerting full effort (with
n − i agents exerting 0 effort). Alternatively if v > n(n + 1), the efficient solution involves
all n agents exerting full effort. Finally, if ∃i ∈ {1, ..., n} such that v = i(i + 1), there are
two classes of efficient solutions: one where i agents exert full effort and one where i − 1
agents exert full effort (with the other n− i or n− i+ 1 agents exerting 0 effort).

Proof. Since the uniform distribution satisfies the extreme effort condition, it suffices to
consider solutions where agents either exert full effort or no effort. We establish this theorem
via induction. We claim that for any value of v > v(i− 1, i), having i agents exert full effort
leads to strictly higher social welfare than having 0 ≤ j < i agents exert full effort (if any
such j exists). When i = 0, there is no value of j, such that 0 ≤ j < i, so the claim trivially
holds for all v ≥ 0. For arbitrary integer i > 0, assume that we have proven the claim for
i− 1, which means that for v > v(i− 2, i− 1), having i− 1 agents exert full effort leads to
higher social welfare than having 0 ≤ j < i− 1 agents exert full effort. We know that there
exists a unique point v(i− 1, i) at which the social welfare of having i− 1 agents exert full
effort is the same as the social welfare of having i agents exert full effort. Moreover, we know
that for all v > v(i − 1, i), the social welfare of having i agents exert full effort is strictly
greater than the social welfare of having i− 1 agents exert full effort. Thus having i agents
exert full effort yields greater social welfare than having 0 ≤ j < i agents exert full effort
for any value v > v(i − 1, i). The final step of the inductive argument gives us that having
n agents exert full effort leads to greater social welfare than having 0 ≤ j < n agents exert
full effort for any value v > v(n− 1, n).

We can establish a similar argument via induction that at any value of v < v(i, i + 1),
having i agents exert full effort leads to strictly higher social welfare than having n ≥ j > i
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agents exert full effort (if any such j exists). When i = n, there is no value of j, such that
n ≥ j > i, so the claim trivially holds for all v ≥ v(n − 1, n). For arbitrary integer i < n,
assume that we have proven the claim for i+1, which means that for v < v(i+1, i+2), having
i+ 1 agents exert full effort leads to higher social welfare than having n ≥ j > i+ 1 agents
exert full effort. We know that for all v < v(i, i+ 1), having i agents exert full effort leads to
greater social welfare than having i + 1 agents exert full effort. Thus for all v < v(i, i + 1),
having i agents exert full effort yields greater social welfare than having n ≥ j > i agents
exert full effort. Combining these two inductive arguments, with Corollary 6.20, gives us
that having i agents exert full effort when v(i−1, i) < v < v(i, i+1) maximizes social welfare
for all 1 ≤ i ≤ n− 1.

Theorems 6.18 and 6.21 give us the following result—the winner-take-all contest can be
inefficient for a relevant range of principal’s values v, specifically, the range over which the
efficient solution requires that exactly one agent exert full effort with all ther agenst exerting
0 effort.

Theorem 6.22. In the uniformly distributed quality case, for any n ≥ 2, the winner-take-all
contest is inefficient in equilibrium for 2 ≤ v ≤ 6.

We note from Theorem 6.21 that when 0 ≤ v ≤ 2, the efficient outcome has 0 agents
exerting full effort and when 2 < v < 6, the efficient outcome has 1 agent exerting full
effort. When 0 ≤ v ≤ 2, the winner-take-all contest implements the efficient outcome.
When 2 < v < 3, the winner-take-all contest has 0 agents exerting effort in equilibrium
and is therefore perfectly inefficient. When 3 ≤ v < 6, the winner-take-all contest has 2
agents exerting full effort in equilibrium, when the efficient outcome is to have 1 agent exert
full effort in equilibrium. When v ≥ 6, the winner-take-all contest implements the efficient
outcome. It is perhaps surprising that for most values of v, the winner-take-all contest is in
fact efficient.

7 Conclusion

In this paper we provided a thorough analysis of winner-take-all contest mechanisms in a
model of stochastic production, deriving general characteristics of best response functions
and giving pure-strategy equilibrium characterizations for the cases of uniformly and expo-
nentially distributed quality. We found that in both the uniform case and the exponential
case, the winner-take-all contest can implement the efficient outcome for a large range of
values of v (the principal’s value), but not all.

It is important to emphasize that even in the cases where the winner-take-all paradigm
yields an efficient outcome in equilibrium, without a centralization procedure it is highly
questionable whether the equilibrium would obtain, as significantly non-trivial agent coor-
dination would be required; for instance, when the set of equilibria has 2 out of the n agents
participate with full effort, and the other n− 2 not participate, how would each agent deter-
mine whether to participate or not? Thus, perhaps a safer statement of the positive side of
our results is to say that for certain principal values a centrally coordinated implementation
of a winner-take-all contest may yield efficiency with rational strategic agents.
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A Technical Lemmas

Lemma 5.1. In the exponentially distributed quality case with n = 2, ∀δ2 ∈ [0, δmax], the
function ∂

∂δ1

∫∞
0

[fδ1(x)Fδ2(x)dx]− 1
P

has at most one zero with respect to δ1 over the interval
(0, δmax], for any value of δ2.

Proof. For the exponential distribution, we have:∫ ∞
0

fδ1Fδ2(x)dx =

∫ ∞
0

1

δ1
e−x/δ1(1− e−x/δ2) (4)

=

∫ ∞
0

1

δ1
e−x/δ1dx−

∫ ∞
0

1

δ1
e
−x( 1

δ1
+ 1
δ2

)
dx (5)

=
δ1

δ1 + δ2
(6)

Taking the derivative of this, we get: δ2
(δ1+δ2)2

, which is strongly monotonically decreasing in

δ1 at all values of δ1 > 0, for arbitrary δ2. Therefore, δ2
(δ1+δ2)2

− 1
P

is strongly monotonically

decreasing in δ1 and the expression has at most one zero, e.g. a value of δ1 ∈ (0, δmax] that
satisfies δ1 =

√
Pδ2−δ2. If there is a zero, it must be a maximum, following Remark 4.2.

Lemma 5.3. In the exponentially distributed quality case with n = 2, if agent 2 exerts δ2
units of effort, where 0 < δ2 <

P
4

, then agent 1’s unique best-response δ1 is in the interval
(δ2,

P
4

).

Proof. Applying Lemma 5.1, the critical point must satisfy δ2
(δ1+δ2)2

= 1
P

, with a zero at

δ1 =
√
δ2(
√
P −

√
δ2). Additionally from Lemma 5.1, this must be a maximum. Since

δ2 <
P
4

, we know that
√
P −
√
δ2 >

√
δ2 and the maximum occurs at δ1 > δ2.

Lemma 5.4. In the exponentially distributed quality case with n = 2, if agent 2 exerts P
4

units of effort, agent 1’s unique best-response is δ1 = P
4

.

Proof. Applying Lemma 5.1, the critical point must satisfy δ2
(δ1+δ2)2

− 1 = 1
P

, with a zero at

δ1 =
√
δ2(
√
P −
√
δ2). When δ2 = P

4
, δ1 = P

4
. Additionally from Lemma 5.1, this must be a

maximum.

Lemma 5.5. In the exponentially distributed quality case with n = 2, if agent 2 exerts δ2
units of effort, where δ2 >

P
4

, then agent 1’s unique best response δ1 is in the interval [0, P
4

).

Proof. From Lemma 5.1, the critical point must satisfy P · δ2
(δ1+δ2)2

− 1, with a zero at

δ1 =
√
δ2(
√
P −

√
δ2). Additionally from Lemma 5.1, this must be a maximum. Note that√

δ2(
√
P −
√
δ2) is maximized when δ2 = P

4
and so

√
δ2(
√
P −
√
δ2) <

P
4

, when δ2 >
P
4

.

Lemma 5.9. —em For the exponentially distributed quality case, there is an efficient policy
in which each agent exerts either no effort δi = 0 or full effort δi = 1.
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Proof. The expected marginal impact on efficiency from i exerting effort δi, given an arbitrary
β representing the maximum quality that is to be realized by the production of the other
agents equals:∫ ∞

β

vfδi(x)(x− β)dx− δi =

∫ ∞
β

v
1

δi
e−x/δi(x− β)dx− δi (7)

=

∫ ∞
β

v

δi
e−x/δixdx−

∫ ∞
β

vβ

δi
e−x/δidx− δ1 (8)

=
δiv

eβ/δi
− δi (9)

Taking the partial derivative with respect to δi, we get: ve−β/δi + β
δi
ve−β/δi − 1. The

derivative is increasing in δi, regardless of the value of β, thus the derivative never changes
from positive to negative and the maximum lies at one of the extremes.

Lemma 6.1. In the uniformly distributed quality case with n = 2, ∀δ2 ∈ [0, δmax], the
function ∂

∂δ1

∫∞
0

[fδ1(x)Fδ2(x)dx]− 1
P

has at most one zero with respect to δ1 over the interval

(0, δmax], for any value of δ2 6= P
2

.

Proof. If δ2 = 0 the lemma holds trivially. Assume δ2 > 0. Note that if δ1 ∈ (0, δ2],∫∞
0
fδ1(x)Fδ2(x)dx = δ1

2δ2
. Taking the derivative of this we get 1

2δ2
, a constant with respect

to δ1. Therefore, 1
2δ2
− 1

P
is also a constant with respect to d1. Moreover, when δ2 6= P

2
, this

expression is a non-zero constant. Now note that if δ1 ≥ δ2,
∫∞
0
fδ1(x)Fδ2(x)dx = 1 − δ2

2δ1
.

Taking the derivative, we get δ2
2δ21

, which is strictly decreasing in δ1. Therefore, δ2
2δ21
− 1

P
is

strictly decreasing in δ1 as well. We note that at δ1 = δ2,
δ1
2δ2

= 1 − δ2
2δ1

and that 1
2δ2

= δ2
2δ21

,

so both
∫∞
0
fδ1(x)Fδ2(x)dx and ∂

∂δ1
[
∫∞
0
fδ1(x)Fδ2(x)dx] are continuous functions. Therefore,

when δ2 6= P
2

, there is at most one zero with respect to δ1 over the interval (0, δmax].

Lemma 6.3. In the uniformly distributed quality case with n = 2, if agent 2 exerts δ2 units
of effort, where 0 < δ2 <

P
2

, then agent 1’s unique best-response δ1 is in the interval (δ2,
P
2

).

Proof. If agent 2 exerts δ2 units of effort and agent 1 exerts δ1 units of effort, where δ1 < δ2,
agent 1’s expected payoff becomes P

2
· δ1
δ2
−δ1 = δ1

δ2
(P
2
−δ2). Since we know that δ2 <

P
2

, agent
1’s utility is maximized when δ1 = δ2. Now suppose that agent 1 exerts δ1 > δ2 units of effort.

Lemma 6.1 tells us that a critical point must satisfy δ2
2δ21
− 1

P
= 0 or δ1 =

√
Pδ2
2

. The derivative

switches from positive to negative, so we have a maximum. Agent 1’s best-response will be

to exert δ1 =
√

Pδ2
2

. Since δ2 <
P
2

, δ2 < δ1 <
P
2

.

Lemma 6.4. In the uniformly distributed quality case with n = 2, if agent 1 exerts P
2

units
of effort, agent 2 has a (weak) best-response of exerting P

2
units of effort.

Proof. If agent 2 exerts δ2 units of effort and agent 1 exerts δ1 units of effort, where 0 ≤
δ1 ≤ δ2, agent 1’s expected payoff becomes P

2
· δ1
δ2
− δ1. This is equal to 0 for all 0 ≤ δ1 ≤ δ2.

Now suppose that agent 1 exerts δ1 > δ2 units of effort. The derivative of the best response
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function, when δ1 > δ2, is δ2
2δ21

= 1
P

. This has a maximum at δ1 =
√

Pδ2
2

= P
2

. For all

δ1 >
√

Pδ2
2

, the utility function is decreasing. Therefore, player 1 is indifferent from exerting

effort on the interval [0, P
2

], if player 2 exerts P
2

units of effort.

Lemma 6.5. In the uniformly distributed quality case with n = 2, if agent 2 exerts δ2 units
of effort, where δ2 >

P
2

, then agent 1’s unique best response will be to exert 0 effort.

Proof. If agent 2 exerts δ2 units of effort and agent 1 exerts δ1 units of effort, where 0 ≤
δ1 ≤ δ2, agent 1’s expected payoff becomes P

2
· δ1
δ2
− δ1 = δ1

δ2
(P
2
− δ2). Since we know that

P
2
< δ2, agent 1’s utility is negative over the entire interval 0 < δ1 ≤ δ2 and 0 when r = 0.

Now suppose that agent 1 exerts δ1 > δ2 units of effort. We know from Lemma 6.1, a critical

point must satisfy δ2
2δ21
− 1

P
= 0 with a maximum at δ1 =

√
Pδ2
2

. This occurs at a value of

δ1 < δ2 and the utility function is decreasing for all δ1 >
√

Pδ2
2

. Therefore, the maximum

of agent 1’s utility function over the interval δ1 ≥ δ2 occurs at δ1 = δ2, where the utility
function is P

2
− δ2, which is less than 0. Therefore agent 1 maximizes her utility by exerting

0 effort.

Lemma 6.8. In the uniformly distributed quality case, for any value of P and δmax, any
equilibrium strategy profile has all agents who exert non-zero effort exerting the same amount
of effort.

Proof. Consider an arbitrary strategy profile of efforts (δ1, ..., δn) that consists of i different
effort levels γ1 > γ2 > ... > γi, with a1, ..., ai number of agents exerting these efforts,
respectively. The expected payoff to an agent who exerts ei units of effort can be expressed

as:
γni

γ
a1
1 ·...·γ

ai
i

· P
n
− γi or γi · ( γn−1

i

γ
a1
1 ·...·γ

ai
i

· P
n
− 1). If this is part of an equilibrium strategy profile,

this utility must be at least 0. If an agent exerting γi deviates and exerts effort γi−1, her

payoff will be at least:
γni−1

γ
a1
1 ·...·γ

ai−1+ai
i−1

· P
n
− γi−1 or γi−1 · (

γn−1
i−1

γ
a1
1 ·...·γ

ai−1+ai
i−1

· P
n
− 1). Since γi−1 > γi

and
γni

γ
a1
1 ·...·γ

ai
i

<
γni−1

γ
a1
1 ·...·γ

ai−1+ai
i−1

, an agent exerting γi units of effort has a profitable deviation.

Since no agent can exert strictly less effort than another, this establishes the desired result.

Lemma 6.9. In the uniformly distributed quality case, when P ≥ nδmax, the only Nash
equilibrium has each agent exert full effort.

Proof. If all agents exert effort δmax, then they each have an expected payoff of P
n
− δmax,

which is strictly greater than 0. Consider a deviation for an agent where she exerts less effort,
e.g. δi < δmax. Her expected utility becomes: ( δi

δmax
)n−1 · P

n
− δi, or δi

δmax
· (( δi

δmax
)n−2 P

n
− δmax),

which is strictly less than P
n
− δmax. Therefore, exerting δmax is a best-response to all other

players exerting δmax.
Due to Lemma 6.8, we know that all agents exerting non-zero effort, must exert the

same effort, so it suffices to restrict our attention to such strategy profiles. Consider an
arbitrary such strategy profile with i agents exerting effort δ2 and n − i agents exerting
effort 0. Suppose an agent who exerts effort 0 decides to exert effort δ1 > δ2. Take the
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derivative of the best response, we find her utility is maximized at a point δ1 that satisfies
δ2
δ21
− δi2

(i+1)δ21
= 1

P
or δ1 =

√
P (δ2 − δi2

i+1
) >

√
Pδ2

i
i−1 >

√
Pδ2

1
n
. The derivative changes

from positive to negative so we have a maximum. Note that P
n
> δmax > δ2, so δ2 < δ1. If

δmax <
√
P (δ2 − δi2

i+1
), we know the derivative is positive over the interval δ1 ∈ [δ2, δmax], thus

the maximum occurs at δmax. If an agent who exerts δ2 effort decides to exert δ1 effort, she

would have a critical point at δ1 =

√
P (δ2 − δi−1

2

i
) >

√
Pδ2

i−1
i
>
√
Pδ2

1
n
. The derivative

changes from positive to negative so we have a maximum. Note that P
n
> δmax > δ2,

so δ2 < δ1. If δmax <
√
P (δ2 − δi2

i+1
), we know the derivative is positive over the interval

δ1 ∈ [δ2, δmax], thus the maximum occurs at δmax. Since for any value of δ2 and any value
of i, there exists a profitable deviation, the only equilibrium is the one in which all agents
exert full effort.

Lemma 6.10. In the uniformly distributed quality case, when P < nδmax there is no pure-
strategy symmetric Nash equilibrium in a winner-take-all contest with n ≥ 3.

Proof. Consider a strategy profile in which each player exerts effort 0 < δ2 < δmax. (Actually
we know that x ≤ P

n
.) The utility for each player in such a strategy profile is P

n
−x. Consider a

deviation for a player in which she decides to play effort δ1 > δ2. Taking the derivative of the

best response, we have a critical point at δ1 =

√
P (δ2 − δn−1

2

n
) >

√
Pδ2

n−1
n

. The derivative

changes from positive to negative so we have a maximum. Note that P (n−1)
n

> δmax, so

δ1 > δ2. Note that if

√
P (δ2 − δn−1

2

n
) > δmax, the derivative is positive over the interval δ1 ∈

[δ2, δmax]. Therefore, this player’s utility is maximized when δ1 = min(δmax,

√
P (δ2 − δn−1

2

n
).

Now consider the case that x = δmax. Each agent has an expected payoff of P
n
−δmax < 0.

Therefore, if an agent deviates and exerts 0, her expected utility becomes 0. Finally consider
the case that x = 0. Each player has an expected payoff of 0. An agent who exerts effort ε,
where ε < P has a profitable deviation.

Lemma 6.11. In the uniformly distributed quality case, when P ≤ 2δmax the only pure-
strategy Nash equilibrium is one in which 2 players exert effort P

2
and the remaining agents

exert 0 effort.

Proof. From Proposition 4.4, no equilibrium strategy profile involves a single agent who
exerts effort, so it suffices to consider strategy profiles where at least two agents exert effort.
We start by considering the case that exactly two agents exert effort. From Proposition 6.6,
we know that if two agents are exerting effort P

2
, they are best-responding to each other.

We also know from Proposition 6.6 that if two agents exert anything other than P
2

, they are
not best-responding to each other, thus any strategy profile with exactly two agents exerting
non-zero effort must have them each exerting effort P

2
, in order for this to be part of a Nash

equilibrium.
Consider whether an agent exerting 0 effort would wish to deviate. An agent exerting 0

effort, has an expected utility of 0. If this agents deviates and exerts δ1 <
P
2

units of effort,
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we get that her expected utility becomes ( δ1
P/2

)2 · P
3
− δ1, which is maximized when δ1 = P

2
.

However, when δ1 = P
2

, the utility becomes negative. Therefore this agent does not have a
profitable deviation when δ1 ≤ P

2
.

Consider δ1 >
P
2

. Taking the derivative of the best response function, a critical point

must satisfy: δ1 =
√
P (P

2
− (P/2)2

3
) > P√

3
> P

2
. The derivative changes from positive to

negative at this point so we have maximum. We notice that the derivative is positive over

the entire interval δ1 ∈ [P
2
,
√
P (P

2
− (P/2)2

3
)] and at δ1 =

√
P (P

2
− (P/2)2

3
), we find the utility

is negative. If
√
P (P

2
− (P/2)2

3
) ≤ δmax, this gives us that the utility function is negative for

all δ1 ≥ P
2

and thus the agent has no profitable deviation. If
√
P (P

2
− (P/2)2

3
) > δmax, we

know that the derivative is positive on the entire interval δ1 ∈ [P
2
, δmax] and that the utility

is negative at δ1 = P
2

and δ1 = δmax, thus the agent has no profitable deviation.
Finally, we must consider strategy profiles in which more than 2 agents exert non-zero

effort. In such a strategy profile each agent who exerts non-zero effort must be exerting the
same amount of effort (according to Lemma 6.8) and these agents collectively exert effort
at most P (according to Proposition 4.3). Thus any equilibrium profile that has i agents
exert non-zero effort (for i ≥ 3), must have these agents exert δ units of effort where δ is at
most P

i
. From the proof of Lemma 6.10, we know that an agent who exerts effort at most

P
i
, would gain from deviating and exerting more effort.

Lemma 6.12. In the uniformly distributed quality case, when P ∈ (2δmax, nδmax), consider
i ∈ {2, . . . , n−1} such that P ∈ (iδmax, (i+1)δmax]. Any effort profile in which i agents exert
effort δmax and n−i agents exert effort 0 is a Nash equilibrium; moreover, if P = (i+1)δmax,
any effort profile in which i + 1 agents exert δmax effort (with n − i − 1 agents exerting 0
effort) is also a Nash equilibrium. This is an exhaustive characterization of the pure strategy
Nash equilibria.

Proof. From Proposition 4.3, Lemma 6.8, and Proposition 4.4, it suffices to consider strategy
profiles where j agents exert effort δ2 and n− j agents exert effort 0, for any δ2 ≤ P

j
and any

j ≥ 2. If δ2 < δmax, consider a possible deviation where an agent decides to exert more effort
δ1, where δ2 ≤ δ1 ≤ δmax. Taking the derivative of the best response function, any critical

point must satisfy δ1 =

√
P (δ2 − δj−1

2

j
) >

√
P (j−1)δ2

j
. Thus we have a maximum when δ1 > δ2.

Note that if
√

P (j−1)x
j

> δmax, the derivative over the interval δ1 ∈ [δ2, δmax] is always positive.

Therefore the maximum of the utility function occurs at δ1 = min(δmax,

√
P (δ2 − δj−1

2

j
)) and

an agent who exerts effort δ2 < δmax has a profitable deviation.
Therefore, we can restrict attention to strategy profiles where j agents exert effort δmax

and and n − j agents exert effort 0. Consider an agent who exerts δmax effort. Her utility
is P

j
− δmax. In order for this to be an equilibrium, we need P

j
≥ δmax, otherwise an agent

can deviate and exert 0 effort. Finally, we consider possible deviations, where she exerts
lesser, non-zero effort, e.g. δ1 < δmax. Her utility becomes ( δ1

δmax
)j−1 · P

j
− δ1. We can write

this as δ1
δmax

(( δ1
δmax

)j−2 · P
j
− δmax). We note that ( δ1

δmax
)j−2 · P

j
− δmax < P

j
− δmax, therefore

exerting less effort cannot be a profitable deviation. Finally we consider an agent who exerts
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0 effort; her expected utility is 0. If an agent deviates and exerts more effort, e.g. δ1 ≤ δmax,
her payoff becomes ( δ1

δmax
)i P
j+1
− δ1. This quantity is maximized when δ1 = δmax. Thus if

P
j+1
− δmax ≤ 0 (or P

j+1
≤ δmax), this player does not have a profitable deviation and this

is an equilibrium. Otherwise, if P
j+1
− δmax > 0, this player has a profitable deviation (in

exerting δmax).

Lemma 6.14. In the uniformly distributed quality case with n = 2, in equilibrium:

• When v > 3, the principal chooses P = 2δmax, with each agent exerting effort δmax.

• When v < 3, the principal sets a prize of P = 0.

• When v = 3, the principal is indifferent between all prizes in the interval P ∈ [0, 2δmax].

Proof. We note that the principal need never offer a prize of greater than 2δmax, since a prize
of 2δmax induces an equilibrium where both players exert effort δmax. For 0 ≤ P ≤ 2δmax,
each agent will exert effort P

2
and the expected value to the principal of the highest quality

good will be vP
3

. Therefore, the principal’s utility is: vP
3
−P = P (v

3
−1) for all 0 ≤ P ≤ 2δmax.

If v > 3, the principal’s utility is always positive and maximized when P = 2δmax. When
v = 3, the principal’s utility is 0 for all P ∈ [0, 2δmax]. When v < 3, the principal’s utility is
negative for all P > 0.

Lemma 6.15.∀i ∈ {2, . . . , n − 1}, ∃v ∈ <+ such that the principal’s expected utility in
equilibrium is the same if he chooses the minimal P such i agents participate with full effort,
or the minimal P ′ such that i+ 1 agents participate with full effort.

Proof. Given that the principal is strategic, it suffices to consider the minimum value of P
to implement a desired outcome. Therefore, the action choices available to the principal are
awarding a prize of iδmax for all i ∈ {2, ..., n}. From our equilibrium analysis, we know that
when the principal awards a prize of iδmax, it is an equilibrium for i agents to exert full effort.
Thus when a principal awards a prize of iδmax, her utility becomes i

i+1
vδmax−iδmax and when

the principal awards a prize of (i + 1)δmax, her utility becomes i+1
i+2
vδmax − (i + 1)δmax. We

see that these two expressions are equal when v = (i+ 1)(i+ 2).

Lemma 6.16. In the uniformly distributed quality case, ∀i ∈ {2, . . . , n − 2}, v(i, i + 1) <
v(i+ 1, i+ 2).

Proof. When i agents exert full effort, the expected value to the principal is i
i+1
δmaxv. The

minimum prize value needed to have i agents exert full effort is iδmax, assuming that the
principal can pick between the multiple Nash equilibria that arise. Therefore, when i agents
exert full effort, the principal’s utility function becomes i

i+1
δmaxv − iδmax. To determine

v(i, i+ 1), we need v(i, i+ 1) to satisfy: i
i+1
δmaxv(i, i+ 1)− iδmax = i+1

i+2
δmaxv(i, i+ 1)− (i+

1)δmax, or in other words, v(i, i+ 1) = (i+ 1)(i+ 2).

Lemma 6.17. In the uniformly distributed quality case, if ∃i ∈ {3, ..., n − 1} such that
v ∈ (i(i + 1), (i + 1)(i + 2)), the principal sets a prize of iδmax to have i agents exert full
effort. Alternatively if v > n(n+1), the principal sets a prize of nδmax to have n agents exert
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full effort. Finally, if ∃i ∈ {3, ..., n − 1} such that v = i(i + 1), the principal is indifferent
between setting a prize of (i− 1)δmax and iδmax.

Proof. We first show by strong induction that at any value i(i + 1) < v < (i + 1)(i + 2) for
some 2 ≤ i ≤ n− 1, having i agents exert full effort yields the principal greater utility than
having j < i agents exert full effort. We know from from Lemma 6.14, that when i = 0,
the base case trivially holds for 0 ≤ v ≤ 3. Similary, we know from Lemma 6.14, that when
v > 3, having 2 agents exert full effort yields strictly greater utility than having 0 agents
exert full effort and it is not possible to set P so that one agent exert full effort. Hence the
base case holds. If the claim holds for i − 1, we know that for all v ∈ ((i − 1)i, i(i + 1)),
having i− 1 agents exert full effort yields strictly greater utility to the principal than having
j < i−1 agents exert full effort. We know that there exists a unique point v(i, i+1) at which
the utility to the principal of having i agents exert full effort is the same as the utility to the
principal of having i+1 agents exert full effort. Moreover, we know that for all v > v(i, i+1),
the utility to the principal of having i+ 1 agents exert full effort is strictly greater than the
utility to the principal of having i agents exert full effort and that for all v < v(i, i+ 1) the
utility to the principal of having i+ 1 agents exert full effort is strictly less than the utility
to the principal of having i agents exert full effort. Thus for any value of v > v(i, i + 1),
having i agents exert full effort yields strictly greater utility to the principal than having
j < i agents exert full effort.

We can construct a similar argument by strong induction that at any value i(i + 1) <
v < (i + 1)(i + 2) for some 2 ≤ i ≤ n − 1 having i agents exert full effort yields the the
principal greater utility than having j > i agents exert full effort. We start with i = n as the
base case and work our way backwards. Combining these two results, we get that having i
agents exert full effort maximizes the principal’s utility for any i(i+ 1) < v < (i+ 1)(i+ 2)
for some 2 ≤ i ≤ n− 1.
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