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1. INTRODUCTION
Voting is often used as a method for achieving consensus among a group of individuals.
This may happen, for example, when a committee chooses a representative or some
friends go out to watch a movie. When the group is small, this process is relatively
easy; however, for larger groups, the typical requirement of ranking all candidates
becomes impractical and rough heuristics are often applied to narrow down opinions
to a few representative ones before a vote is taken.

This problem of large-scale preference aggregation is even more interesting in light
of the rising potential of crowdsourcing. For instance, suppose a university were to pose
the following question to all its alumni, students and faculty: “What is an ideal cur-
riculum for computer science undergraduates?” Or suppose a city government asked
its constituencies: “What is the ideal budget that also cuts 50 percent of the deficit?”
Indeed, the second question is not too far from what has been discussed in the wake
of the recent federal budget stalemates. Several websites, such as Widescope1, have
sprung up around the idea that crowdsourcing may even be useful as a tool towards
solving political questions.

However, while it is easy to solicit proposals to these questions, aggregation seems
challenging. In particular, it may not be practical for a participant to even look through
the resulting set of proposals, making seemingly simple tasks such as choosing top
ranked proposals, difficult.

In this paper, we propose a randomized voting rule for the previously mentioned
consensus scenarios. In our problem setting, each participant proposes exactly one
proposal, representing his or her stance on the question of interest. A random triad of
participants is then selected and each selected member is made to vote between the
other two. Roughly speaking (details are elaborated in Section 2), if there is a three-
way tie, the participants are thrown out from the election; otherwise, the losers are

1widescope.stanford.edu
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replaced by ‘copies’ of the winner. This process is then repeated until there is only a
single participant remaining, who is declared the winner.

We show that for single dimensional participant spaces, Triadic Consensus con-
verges approximately to the Condorcet winner2 with high probability, while only re-
quiring an average of ∼ log2 n (conjectured to be ∼ log n) comparisons per individual.
As we will point out in Section 4.2.1, this approximation is quite reasonable for this
application. For instance, suppose participants are random samples from [0, 1]. Then if
the true median were used to select the winner, it would be distributed with approxi-
mately the same probability distribution as that of Triadic Consensus.

In addition, in the same one-dimensional setting, Triadic Consensus is quasi-
truthful for concave utilities. In particular, even though we show in Section 2.1 that
the truthful strategy is not a Nash equilibrium, a different Nash equilibrium exists
which chooses the winner with the same probability distribution as in truthful voting.
Surprisingly, we achieve this result by counterintuitively allowing voters to express
cyclical preferences (e.g. a > b, b > c, and c > a). Though this may seem to allow ad-
ditional strategies for manipulations, it is shown to also allow strategies that prevent
manipulation.

1.1. Related Work and Our Contributions
Given the long history of work on voting theory, it is not surprising that the problems
we tackle have been, for the most part, thought about before. Here, we give a brief
overview of related work, followed by a summary of our contributions (Section 1.1.5).
For in-depth reading, we refer the reader to Brandt et al. [2012].

1.1.1. Voting rule criteria. One of the earliest criterion introduced for evaluating voting
rules is known as the Condorcet criterion, introduced by Marquis de Condorcet3. It
states that if a candidate exists who would win against every other candidate in a ma-
jority election, then this candidate should be elected. Unfortunately, such a candidate
does not always exist. Since then, many other criteria have been introduced as ways
to evaluate voting rules. However, in the surprising result known as Arrow’s Impos-
sibility Theorem, Arrow [1950] proved that there were three desirable criterion that
no deterministic voting rule could satisfy. This was expanded by Pattanaik and Peleg
[1986] to show that a similar result holds for probabilistic voting rules.

1.1.2. Strategic manipulation. This sparked a wave of impossibility results, including
the classical Gibbard-Satterthwaite Impossibility Theorem. Define a voting rule to
be strategy-proof if it is always in a voter’s interest to submit his true preference,
regardless of the other voter rankings. Gibbard [1973] and Satterthwaite [1975] in-
dependently showed that all deterministic voting rules that were strategy-proof must
either be dictatorships or never allow certain candidates to win. This was extended
to show that among all probabilistic voting rules, only very simple voting rules were
strategy-proof[Gibbard 1977].

Numerous attempts at circumventing these impossibility result have been made.
Bartholdi et al. [1989] first proposed using computational hardness as a barrier
against manipulation in elections. However, despite many NP-hardness results on ma-
nipulation of voting rules[Faliszewski and Procaccia 2010], it was shown that there do
not exist any voting rules that are usually hard to manipulate[Conitzer and Sandholm
2006].

2The Condorcet winner is a candidate who would beat any other candidate in a pairwise majority election.
In single dimensional spaces, this happens to be the median participant.
3See Young [1988] for a fascinating historical description of the early work of Condorcet.
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Procaccia [2010] used the simple probabilistic voting rules of Gibbard [1977] to ap-
proximate common voting rules in a strategy-proof way, but the approximations are
weak and they show that, for many of these voting rules, no strategy-proof approxima-
tions can be much stronger. Birrell and Pass [2011] extended this idea to approximately
strategy-proof voting, proving that there exist tight approximations of any voting rule
that are close to strategy-proof. Recently, Alon et al. [2011] studied a special case of
approval voting and showed that even though no deterministic strategy-proof mecha-
nism has a finite approximation ratio, a randomized strategy-proof mechanism exists
which has a good approximation ratio.

1.1.3. Communication complexity. When the number of candidates is large, it is also im-
portant to study voting rules from the perspective of the burden on voters. This prob-
lem was studied by Conitzer and Sandholm [2005] in the context of communication
complexity. In their work, they study the worst case number of bits that voters need
to communicate in order to determine the ranking or corresponding winner of com-
mon voting rules; for many of these voting rules, it was shown that the number of
bits required is essentially the same as what is required for reporting the entire rank-
ing. In addition, Conitzer and Sandholm [2002] showed another disappointing result:
for many common voting rules, determining how to elicit preferences efficiently is NP-
complete, even in the case when perfect knowledge about voter preferences is assumed.
These previous results are all for exact rank or winner determination. Lu and Boutilier
[2011] proposed several algorithms for elicitation under approximate winner determi-
nation. Though no theoretical guarantees are given, they support their algorithms
with experimental simulations.

1.1.4. Single-peaked preferences. One special case that avoids the many discouraging
results above is that of single-peaked preferences[Black 1948] (or other domain re-
strictions). Single-peaked preferences are those for which candidates can be described
as lying on a line. Every voter’s utility function is peaked at one candidate and drops off
on either side. For such preferences, a Condorcet winner always exists and is the can-
didate who is the median of all voter peaks. This winner can be found by the classical
median voting rule, which has each voter provide their peak and returns the median
peak. It turns out that the median voting rule is both strategy-proof[Moulin 1980] and
has a low communication complexity of O(n logm)[Escoffier et al. 2008], where n is
the number of voters and m is the number of candidates. Conitzer [2009] also studies
the problem of eliciting voter preferences or the aggregate ranking using comparison
queries.

It is useful to point out that the strategy-proof result relies primarily on restricting
the allowed input from the voter, i.e. restricting the domain of the voting rule. Simi-
larly, it should be noted that the low communication complexity of the median voting
rule relies on the ability to calculate the median of peaks, which comes from an as-
sumed knowledge of the underlying axis. When this axis is unknown, Escoffier et al.
[2008] provide an O(mn) algorithm that finds and returns the axis.

1.1.5. Our contributions. We introduce the following novel concepts:

(1) A localized consensus mechanism for large groups. We propose Triadic Consensus
as an approach for large groups to make decisions using small decentralized de-
cisions among groups of three, where the only central processing required is in
random number generation (alternatively, random mixing in a group of partici-
pants).

(2) Quasi-truthful voting rules and cyclical preferences. When each participant is a
voter and a candidate, we demonstrate that allowing participants to express cycli-
cal preferences (a > b, b > c, and c > a) can introduce strategies that detect and
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protect against strategic manipulation (as shown in Section 4). We call a voting
rule that admits such a strategy quasi-truthful since they achieve truthful results
with votes that are not, strictly speaking, truthful.

In addition, we are able to apply these ideas to overcome some previous limitations
of rules for single-peaked preferences. Specifically, Triadic Consensus does not assume
prior knowledge of an axis and does not restrict voter preference domains, but still has
the following properties:

(1) It finds a (1−ε/
√
n) approximation of the Condorcet winner with high probability4.

(2) It has a communication complexity of O( nε2 log2 n
ε2 ) for the above approximation

factor, i.e. ∼ n log2 n (conjectured to be ∼ n log n) for a 1− 1√
n

approximation.
(3) It has a quasi-truthful Nash equilibrium when participants have concave utility

functions.

The fact that these proofs do not rely on the previously mentioned assumptions are im-
portant since they provide directions for finding generalizations to higher dimensional
spaces. Indeed, there may be many situations in which proposals may lie in high di-
mensional spaces, but are approximately single dimensional (small second singular
value); in such a situation, it would not be possible to assume an axis.

As a contrast to our results, consider the classical median voting rule which is
strategy-proof, gives an exact Condorcet winner, and has O(n logm) time. However,
since it assumes prior knowledge of an axis and restricts voter preference domains,
there are no possible generalizations to higher dimensional spaces. Also, when prior
knowledge of an axis is unknown, the calculation of this axis will increase the time
complexity to O(mn) time. When we consider the median voting rule from a practical
perspective, it is not clear how to ask people to “state their peak”. The most typical
example of single-peaked preferences is in two-party politics, which has a conserva-
tive to liberal axis. But what does it mean for a participant to say, “I am 70 percent
republican”?

Triadic Consensus solves this practical question by using pairwise comparisons: par-
ticipants simply state their opinions on policies and then make pairwise comparisons
on which opinions they prefer.

1.1.6. Outline of the paper. Before continuing, we briefly describe the structure of the
remaining sections. In Section 2, we detail Triadic Consensus and introduce the no-
tion of quasi-truthfulness. This is followed by Section 3, in which we give a technical
overview of the main intuitions and techniques of our proofs. The main body of the
approximation and communication complexity proofs will be contained in Section 4,
which will be followed by the main body of the quasi-truthfulness proofs in Section 5.
Finally, we will conclude with a discussion on future directions in Section 6.

2. TRIADIC CONSENSUS AND QUASI-TRUTHFULNESS
Triadic Consensus is applicable in a setting with n individuals, each of which has
a candidate solution to the problem of interest and an internal ranking over all the
proposed candidates. Formally, each individual is represented as a point x in some
space X and his or her preference ranking is determined by a distance metric d(x, y) on
X. If d(x, y1) ≤ d(x, y2), then x will rank y1 higher than y2; that is, x prefers proposals
that are closer to him. Our proofs will apply to the case when X is the set of reals R

4A precise statement of this can be found in Section 4.
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ALGORITHM 1: Triadic Consensus
Input: An urn with k labeled balls for each participant 1, 2, . . . , n
Output: A winning candidate i.
if nk ≡ 0 mod 3 then

Duplicate one ball in the urn uniformly at random;
while there is more than one label do

Sample three balls (with labels x, y, z) uniformly at random with replacement;
w = TriadicVote(x, y, z);
if w = ∅ then

Remove the three sampled balls from the urn;
else

Relabel all the sampled balls with the winning label w;

return Remaining label;

ALGORITHM 2: TriadicVote
Input: Candidates x, y, z
Output: One of {x, y, z} if there is a winner, ∅ otherwise
if two of more of x, y, z have the same id then

return the majority candidate;
x votes between y and z;
y votes between x and z;
z votes between x and y;
if each received exactly one vote then

return ∅;
else

return the candidate with two votes;

and d(x, y) is the Euclidean distance, but the algorithm is well defined for the general
setting5.

The best way to understand Triadic Consensus (Algorithm 1) is to imagine an urn
with balls, each of which is labeled by a participant id. The urn starts with k balls
for each of the n participants6. Then, at each step, the algorithm samples three balls
uniformly at random (with replacement) and performs a TriadicVote (Algorithm 2) on
the three corresponding participants.

If the three participants x, y, and z are unique, the TriadicVote subroutine consists
of a single comparison for each of the selected participants: x votes between y and z,
y between x and z, and z between x and y. These votes can be distributed in some
permutation of 2, 1, 0 or split 1, 1, 1. In the first case, the participant who received two
votes is returned as the winner. In the second case, a tie (represented as ∅) is returned.
If two or more of the selected ids are the same, i.e. are the same person, then he or she
is automatically returned as the winner without any votes7.

If a winner was returned from the TriadicVote, then the three balls are relabeled
with the winning id and placed back into the urn; otherwise, the three balls are re-
moved. This process is repeated until there is only one participant id remaining, which

5Slight modifications are needed when there can be truthful ties.
6Increasing k makes the approximation tighter, but requires more comparisons to converge, so choosing k is
essentially choosing a tradeoff between approximation and time.
7This can be viewed as the result of a vote where each of the majority id votes for the other which means
one of them must win.
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ALGORITHM 3: Truthful voting
Input: Voter x, candidates y, z
Output: One of {y, z}
if d(x, y) ≤ d(x, z) then

return y;
else

return z;

ALGORITHM 4: Quasi-truthful voting
Input: Voter x, candidates y, z
Output: One of {y, z}
if d(y, z) ≥ d(y, x) and d(y, z) ≥ d(z, x) then

return y or z according to some strategy (such as the one in Section 3.3);
else

return a truthful comparison between y and z;

is declared the winner. It is helpful to point out that the action of removing balls can be
thought of as a deterrent for manipulation. This is because, in the case of candidates
in a Euclidean space, a three way tie should rarely occur if participants are voting
truthfully8.

There is one remaining caveat to the algorithm. Notice that the total number of balls
in the urn remains constant except for the case of a tie, in which the total number
of balls is reduced by three. Then, if the initial number of balls kn is a multiple of
three, there is some possibility of ending up with no balls in the urn before a winner
is declared. To avoid this, we randomly choose a participant at the beginning of the
algorithm and start him off with k + 1 labeled balls.

2.1. Truthfulness and Quasi-truthfulness
Consider a TriadicVote between participants x, y, and z. Recall that truthful voting
means that each participant will vote for the other closest participant. If participants
do vote truthfully (Algorithm 3), then it is fairly easy to understand what will happen;
a voter x will simply vote for whichever candidate out of y and z lies closer to his or her
own position. Unfortunately, voting truthfully is not a Nash equilibrium as illustrated
in the following example.

Example 2.1. Four participants lie at positions 0, 5, 6, and 7. Suppose participants
0, 5, and 7 are selected for a TriadicVote. Since they are voting truthfully, 0 votes for
5, 5 votes for 7, and 7 votes for 5. As a result, 5 wins and the resulting urn consists of
three balls for 5 and one token for 6.

Now suppose participant 7 did not vote truthfully and voted for participant 0. Then
there would be a three-way tie, which means that all selected balls are eliminated,
leaving an urn with only participant 6. Clearly, participant 7 would prefer this second
non-truthful situation.

However, Triadic Consensus admits another notion of truthfulness. Imagine a Tri-
adicVote between x, y, and z, and assume without loss of generality, that x would have
been the winner if everyone voted truthfully. This can only occur if both y and z vote

8The only possible exception is when candidates are located on the points of an equilateral triangle. Though
we do not face this issue in 1D, this can be addressed by allowing participants to express a tie in the
TriadicVote.
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for x. In such a situation, it does not matter who x votes for; since x has already re-
ceived two votes, he will win regardless of whether he votes for y or z. We call such
voting behavior quasi-truthful (Algorithm 4) since the result is the same as truthful
voting. We will show that when participants have utility functions that are concave
in the distance of a given proposal, x can use his vote to disincentivize y and z from
manipulating the TriadicVote. For the time being, we will illustrate it for the same
example.

Example 2.2. Four participants lie at positions 0, 5, 6, and 7, all of whom would
like to minimize the expected distance of the winning proposal to their position. Now
suppose participants 0, 5, and 7 are selected for a TriadicVote. A quasi-truthful strategy
would be for 0 to vote for 5, 5 to vote for 0 and 7 to vote for 5. Since 5 got two votes, he
wins and the resulting urn consists of three balls for 5 and one token for 6.

Now suppose participant 7 deviates from this strategy and votes for 0. Then partic-
ipant 0 gets two votes and he wins. The resulting urn consists of three balls for 0 and
one token for 6, which is clearly worse for participant 7. Likewise, suppose participant
0 deviates from this strategy and votes for 7. Then there is a three-way tie and all
selected balls get eliminated. The resulting urn consists of a single token for 6, which
is clearly worse for participant 0.

In this example, even though participant 5 did not vote truthfully, the end result of
the TriadicVote was the same as if truthful votes were cast. In addition, no players can
benefit from deviating from this strategy.

3. TECHNICAL OVERVIEW AND INTUITION
In this section, we provide a proof sketch for the main results in Sections 4 and 5, and
also describe intuitions for these results.

3.1. Approximation of the Condorcet Winner
The primary idea in proving the approximation result is to reduce the Triadic Consen-
sus urn to previously known results for fixed size urns. Suppose we color all balls with
participant ids 1 to i red and all balls with participant ids i + 1 to n blue. Then each
time we perform a TriadicVote, there is some probability of recoloring a red ball blue
or a blue ball red which depends on a function of the current fraction of red and blue
balls. For this particular urn with k = 1, we can apply known theorems[Lee and Bruck
2012] to derive the probability Pr[w ≤ i] of the winner being one of the red balls 1 to i.
Then the probability that participant i is the winner is simply Pr[w ≤ i]−Pr[w ≤ i−1],
which is surprisingly the binomial distribution Bin(n− 1, 12 ), i.e.

Pr[w = i] =

(
1

2

)n−1(
n− 1

i− 1

)
Following this, some algebraic computations show that uniformly duplicating a ball
does not change this expression. For the general case, a similar argument would yield
the binomial distribution Bin

(
nk − 1, 12

)
for the probability that a given ball wins9.

Note that the standard deviation of Pr[w = i] is 1
2

√
n. This means that if there are

1000 participants, then Triadic Consensus will produce a winner between [468, 532]
with ninety-five percent probability. As we explain more rigorously in Section 4.2.1,
we should not work too hard to reduce this magnitude of error. If these 1000 partici-
pants are random samples from an underlying distribution, the exact Condorcet win-
ner would be distributed with the same magnitude of error away from the true Con-

9This is not technically well-defined. However, as we point out in Section 4, we can use this expression for
the winning probability of a ball without changing the overall winning probability of participants.
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dorcet winner of the underlying distribution. We also note in Section 4.2.2 that Triadic
Consensus has the property of quickly eliminating outliers since each participant must
convince two others to vote for him. This is stated more formally by a simple compar-
ison to another randomized voting rule that only uses pairwise comparisons without
the use of triads.

3.2. Communication Complexity
To derive the communication complexity results, we use the same reduction to fixed
size urns. Let E[T ] be the expected time before all balls are either on participants 1 to i
or on participants i+ 1 to n. By applying known theorems[Lee and Bruck 2012] on the
expected time of convergence for the corresponding urn with k = 1, we get the bound

E[T ] ≤ n lnn+O(n)

Note that this bound is true for all i. Then we can use it as a bound for the expected
time to halve unique participants ids. After log n of these iterations, there can only be
one remaining participant who must be the winner, which means that Triadic Con-
sensus takes O(n log2 n) comparisons when k = 1. Simulations indicate that the true
complexity is only O(n log n) comparisons. The bound we provide is loose because each
time the participant ids are halved, we are allowing for the case when remaining balls
are still uniformly distributed among the remaining participants. Again, these results
can be trivially extended to the general case of k balls per participant by using nk
instead of n in the expression for E[T ]. We also note that even though the average
number of votes per participant is O(log n), participants that ‘survive’ longer may cast
significantly more votes.

In Appendix A.1, we will show some simulations for two-dimensional spaces indicat-
ing that Triadic Consensus still achieves tight approximations with O(n log n) commu-
nication complexity when participants are located in a plane.

3.3. Quasi-truthful Nash Equilibrium
The intuitions for finding a quasi-truthful Nash can be understood by generalizing
Example 2.2. Suppose that three participants x < y < z are drawn for a TriadicVote
and x votes for y, z votes for y, and y votes for x. In this case, y wins and participants
x and z are the only participants who can change the result by a strategic vote.

— If x votes strategically for z, then there will be a three-way tie instead of a win for y.
— If z votes strategically for x, then x will win instead of y.

It seems intuitively bad for z if x wins over y since x is strictly farther away. If this is
true, then the only participant who has any hope to manipulate the election is x, the
person that y voted for. From this intuition, we get the strategy expressed in Algorithm
5.

First, we note that Algorithm 5 relies on the existence of a participant y or z who
would prefer a win for x rather than a three-way tie (when x should win in truthful
voting). This is where the requirement of concave utilities comes in. It turns out that
when all players have a utility function that is concave in the distance of a proposal to
his position, then at least one of the two losing players x and z prefers a win for y over
a three-way tie. Then, we are able to prove that Algorithm 5 is a Nash equilibrium
with the following proof by induction.

Base Case: Algorithm 5 is a Nash equilibrium for n = 1, 2 balls. This is trivial since
no strategic moves can be played when there is only one or two balls.
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ALGORITHM 5: Quasi-truthful Nash for concave utilities
Input: Voter x, candidates y, z
Output: One of {y, z}
if d(y, z) ≥ d(y, x) and d(y, z) ≥ d(z, x) then

if y would prefer a win for x rather than a three-way tie in a truthful world then
return y;

else if z would prefer a win for x rather than a three-way tie in a truthful world then
return z;

else
return a truthful comparison between y and z;

Inductive Step: Assume that Algorithm 5 is a Nash equilibrium for n− 3 balls. Then
it is also a Nash equilibrium for n balls. We will prove this statement in two smaller
steps:

(1) Assume Algorithm 5 is a Nash equilibrium for n−3 balls. Then for any TriadicVote
with participants x < y < z in an urn with n balls, if y votes for x in the the Nash
equilibrium (Algorithm 5), then x maximizes his expected utility by voting for y
rather than z, i.e. x prefers a win for y rather than a three-way tie.

(2) Assume Algorithm 5 is a Nash equilibrium for n − 3 participants and that the
above statement is true. Then we show that Algorithm 5 is a Nash equilibrium for
n participants. This is done by defining a comparison relation between urns that
formalizes the intuition we had that x prefers a win for y over a win for z. With this
definition, we can define a coupling of two urns: one in which x plays the optimal
strategy, and one in which x plays according to Algorithm 5. We show that for every
coupled history, the urn from Algorithm 5 does at least as well as the optimal urn
in expected utility. This means that Algorithm 5 is also an optimal strategy for x,
which proves that it is a Nash equilibrium for urns with n balls.

Then by carrying out the Inductive Hypothesis from 1, 2 to 4, 5 to 7, 8, etc. . . , we get the
result for all n 6≡ 0 mod 3. For n ≡ 0 mod 3, we note that a random ball is duplicated at
the beginning, which puts it into the case of n ≡ 1 mod 3.

ALGORITHM 6: Simple Quasi-truthful Nash with modified Triadic Consensus
Input: Voter x, candidates y, z
Output: One of {y, z}
if d(y, z) ≥ d(y, x) and d(y, z) ≥ d(z, x) then

if It is the first TriadicVote then
return His preferred candidate;

else
return His less preferred candidate;

else
return a truthful comparison between y and z;

At first glance, the Quasi-truthful Nash in Algorithm 5 seems impractical since a
voter must know the utilities of all other participants. There is a simple fix to Triadic
Consensus that solves this problem. When there is a three way tie, instead of throwing
away all three balls, Triadic Consensus will ask for another vote. If there is another
three way tie, then we will throw the three balls out; otherwise, we will replace the
balls with the winner. Now there is a simple Quasi-truthful Nash: the candidate that
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should win will simply vote truthfully during the first TriadicVote. If there is a cycle
and another TriadicVote is taken, he should then switch his vote.

The proofs for this mechanism follow directly from the proofs for the original mecha-
nism, so we will primarily refer to the original in the following proof sections. The main
bridge between the two proofs is to note that if there is at least one voter who prefers
the truthful winner over a three-way tie, then when he is voted for, he will ensure that
there is not a three-way tie by voting truthfully. The other voter cannot create a cycle,
so he should also vote truthfully.

4. TRIADIC CONSENSUS APPROXIMATES THE CONDORCET WINNER WITH LOW
COMMUNICATION COMPLEXITY IN 1D

In this section, we will detail the proof sketches from Section 3.

4.1. Background: Switching probability and convergence time of fixed size urns
We first briefly describe results on fixed size urns that we will need. A fixed size urn
contains some number of balls, which are each colored either red or blue. Let Rt and
Bt be the number of red and blue balls respectively at time t, where Rt +Bt = n. Also,
let pt = Rt

n denote the fraction of red balls. At every discrete time t, either a red ball
is sampled with probability f(pt), a blue ball is sampled with probability f(1 − pt), or
nothing happens with the remaining probability. The function f : [0, 1]→ [0, 1] is called
an urn function and satisfies 0 ≤ f(x) + f(1 − x) ≤ 1 for 0 ≤ x ≤ 1. If a ball was
sampled, it is then recolored to the opposite color and placed back into the urn. This
process repeats until some time T when all the balls are the same color, i.e. RT = n or
RT = 0.

We will later show that Triadic Consensus is closely related to fixed size urns with
urn function f(p) = 3p(1 − p)2. For now, we simply state the following theorems that
come from general ones stated in Lee and Bruck [2012]10.

THEOREM 4.1. Let a fixed size urn start with R0 red balls out of n total balls and
have an urn function f(p) = 3p(1 − p)2. Let T denote the first time when either RT = n
or RT = 0. Then,

Pr[RT = n] =

(
1

2

)n−1 R0∑
j=1

(
n− 1

j − 1

)
THEOREM 4.2. Let a fixed size urn start with R0 red balls out of n total balls and

have an urn function f(p) = 3p(1 − p)2. Let T denote the first time when either RT = n
or RT = 0. Then,

E[T ] ≤ n lnn+O(n)

4.2. Approximation of the Condorcet Winner
When the space of candidates X is the reals R, we show that any quasi-truthful strat-
egy will result in a close approximation of the Condorcet winner, which is the median
candidate.

LEMMA 4.3. Let x, y, and z be three unique participants which lie on a line. Then
the winner of TriadicVote(x, y, z) will be the median participant.

PROOF. WLOG, suppose x < y < z. Then x and z vote for y who is the median
participant. Since y gets two votes, she wins.

10Theorem 4.2 requires some algebra that may not be immediately clear from the general theorem. For the
convenience of the reader, we include these calculations in Appendix C.
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THEOREM 4.4. Let there be n participants in R. Label them as participants 1, 2, . . . n
from −∞ to ∞ (leftmost position to rightmost position) and let w denote the winning
id after running Triadic Consensus with k = 1. Then assuming that participants vote
quasi-truthfully11,

Pr[w = i] =

(
1

2

)n−1(
n− 1

i− 1

)
PROOF.

Case 1: n 6≡ 0 mod 3. Since n is not a multiple of three, Triadic Consensus will start
with exactly one ball per participant. Also, since all participants are voting quasi-
truthfully, the TriadicVote will never return a tie. Our proof will be by a reduction to
the fixed size urn described in Theorem 4.1.

Color balls with ids 1, 2, . . . , i red and balls with ids i + 1, i + 2, . . . n blue. Each time
three balls are sampled, we can have the following four color combinations: Three red;
two red and one blue; one red and two blue; and three blue. When all are the same
color, then the relabeling scheme will not change the colors of the balls. When two are
red and one blue, we can apply Lemma 4.3 to claim that the winner must be one of the
red balls. Likewise, when one is red and two are blue, the winner must be one of the
blue balls. Letting pr and pb denote the fraction of red and blue balls respectively, we
note the following four possible results:

Three red With probability p3r, there is no change in colors.
Two red, one blue With probability 3p2rpb, one blue ball is replaced by a red ball.
One red, two blue With probability 3prp

2
b , one red ball is replaced by a blue ball.

Three blue With probability p3b , there is no change in colors.

This is exactly the dynamics described by a constant population urn with i red balls,
n− i blue balls, and urn function f(p) = 3p(1−p)2. Now, note that w ≤ i iff the winning
ball is red. Then by applying Theorem 4.1, we have

Pr[w ≤ i] =

(
1

2

)n−1 i∑
j=1

(
n− 1

j − 1

)

To finish the proof, we note the the probability that the winner is participant i is simply
the probability that the winner is one of 1, 2, . . . , i and not one of 1, 2, . . . , i− 1:

Pr[w = i] = Pr[w ≤ i]−Pr[w ≤ i− 1] =

(
1

2

)n−1(
n− 1

i− 1

)
Case 2: n ≡ 0 mod 3. In this case, we will uniformly select one participant d to du-

plicate. To calculate the new value of Pr[w = i] for a given i, we notice that d can fall
into one of three cases: d < i, d = i, d > i. In each of these cases, we get an instance of
the problem with n + 1 candidates. If d < i, then participant i wins if the i + 1-th ball
wins. If d = i, then participant i wins if either the i-th or i + 1-th ball wins. Finally, if
d > i, then participant i wins if the i-th ball wins. Then letting wn denote the winner

11This theorem can also be applied to the general case of n balls. Defining the probability that the i-th ball
wins with the given probability will give the correct expression for the winning probability of participants.
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of Triadic Consensus with n participants, we have that for n ≡ 0 mod 3,

Pr[wn = i] =
i− 1

n
Pr[wn+1 = i+ 1] +

1

n
Pr[wn+1 = i or i+ 1] +

n− i
n

Pr[wn+1 = i]

=
i

n
Pr[wn+1 = i+ 1] +

n− i+ 1

n
Pr[wn+1 = i] =

(
1

2

)n−1(
n− 1

i− 1

)
which finishes the proof.

Using standard probabilistic arguments[Motwani and Raghavan 1995], we get the
following corollary.

COROLLARY 4.5. Let there be n participants in R and let w denote the winning id
after running Triadic Consensus with k = O( 1

ε2 log 1
δ ). Then assuming that participants

vote quasi-truthfully, w will be a (1−ε/
√
n) approximation of the Condorcet winner with

probability at least 1− δ.

4.2.1. How bad is O(
√
n) error?. We would like to point out that for crowdsourcing ap-

plications, participants can be viewed as noisy samples from some underlying distri-
bution. Then, even using a single ball per candidate (k = 1) may not be that bad. The
noise in the participant sampling process may already result in similar errors.

For example, suppose that the participants are drawn independently and uniformly
from [0, 1] so that the true Condorcet candidate would be one with position 1

2 . Suppose
1
2 lies between the k-th and k+ 1-th participant and that we had an oracle that told us
this index k. Then k is clearly binomially distributed, which is the same distribution
as the case of Triadic Consensus with k = 1. In other words, the true Condorcet winner
has a standard deviation of 1

2

√
n participants between him and the sampled Condorcet

winner.

4.2.2. Triadic Consensus eliminates outliers quickly. Triadic Consensus has the intuition of
quickly eliminating outliers since each participant needs to convince two other par-
ticipants to vote for him in order to win. We will give a brief comparison to a more
standard form of random comparisons. Consider Hot-or-Not Consensus, in which two
balls are randomly chosen as candidates and one single ball is randomly chosen as the
voter. The voter then votes between the two chosen balls and the two candidate balls
are replaced with the winning candidate. For a continuous distribution of participants,
we have the following one-step analysis.

THEOREM 4.6. Let a continuous distribution of voters be uniformly distributed be-
tween zero and one. Let gHot-or-Not(x) and gTriadic(x) be the probability density of x being
the next winning candidate in Hot-or-Not and Triadic Consensus respectively. Then,
gTriadic = 6x(1− x) and gHot-or-Not = 3x(1− x) + 1

2 . In particular,

gHot-or-Not =
1

2
gTriadic +

1

2
gUnif

where gUnif is the uniform distribution over the interval [0, 1].

PROOF. The proof for this can be found in Appendix A.2.

In other words, a more naive algorithm (Hot-or-Not Consensus) can be thought of as
a mix between Triadic Consensus and the (really bad) method of randomly picking a
candidate12.

12This is only an intuition based on a one-step comparison and should not be interpreted as a comparison of
their final approximation values.

ACM Journal Name, Vol. X, No. X, Article X, Publication date: February 2012.



Triadic Consensus X:13

4.3. Communication Complexity
When the space of candidates X is the reals R, we show that any quasi-truthful re-
sponse to Triadic Consensus will have, on average, a sublinear communication com-
plexity.

THEOREM 4.7. Assuming quasi-truthful voting, Triadic Consensus has a total com-
munication complexity of O(kn log2(kn)).

PROOF. Equation 4.2 is an upper bound on the time it takes to halve the number
of remaining participants. Initially, we color all balls with participant ids 1, 2, . . . , n2
red and all balls with participant ids n

2 + 1, n2 + 2, . . . , n blue. Then it takes an expected
time of n lnn+O(n) for all balls to be either red or blue. At this point, all the remaining
balls must have participant ids that are either between 1 and n

2 or n
2 +1 and n. Suppose

WLOG, that the remaining participant ids lie between 1 and n
2 . Then we can recolor

the balls for participants 1 to n
4 red and the balls for participants n

4 +1 to n
2 blue. Again,

it takes another n lnn+O(n) expected time for all the balls to converge to one of these
groups. After log n of these iterations, there can be at most one remaining participant,
so we are done. Therefore, the total number of TriadicVotes is bounded by

(log n)E[T ] ≈ log n(kn log kn)

We get our final result by noting that there can be at most three comparisons per
TriadicVote to get our final result.

As previously mentioned, the above theorem is a very coarse analysis of the com-
munication complexity. In reality, at the first time when all balls are either in

[
1, n2

]
or
[
n
2 + 1, n

]
, the balls are not uniformly distributed across the interval of n

2 partici-
pants. Rather, the balls are very tightly packed around the center, giving the following
conjecture:

CONJECTURE 4.8. Assuming quasi-truthful voting, Triadic Consensus has a total
communication complexity of O(kn log kn).

We are also hopeful that Triadic Consensus has a low communication complexity for
high dimensional spaces. In Appendex A.1, we show some simulations in 2D that also
demonstrate low communication complexity.

5. TRIADIC CONSENSUS HAS A QUASI-TRUTHFUL NASH EQUILIBRIUM IN 1D
When the space of candidates X is the reals and participants have a concave utility
function, we demonstrate that Algorithm 5 is a quasi-truthful Nash equilibrium. The
skeleton of the proof is described in Section 3. Here, we flesh out the details for prov-
ing the two parts in the described Inductive Step. Because of space constraints, we
will simply give proof sketches for the more algebraic proofs, leaving the details to
Appendix B.

5.1. Assume that Algorithm 5 is a Nash equilibrium for n− 3 balls and x < y < z WLOG. Then
for x as the only deviator from Algorithm 5, if y votes for x, then x does not increase his
expected utility by voting for z instead of y

Note that a vote from x for z would result in a three-way tie, whereas a vote from x for
y would result in a win for y. Since Algorithm 5 states that y votes for the player who
prefers a win for y over a three way tie, this statement is already satisfied assuming
such a player always exists for y to vote for. Then we just need to show that for an urn
with n balls, at least one of x and z will have a higher utility in the case of a win for y
as compared to the case of a three-way tie. The proof can be described in two parts:
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(1) Part One: We show that we only need to consider urns where all the balls lie in
the interval [x, z], i.e. a proof for this specific situation would extend to all urn
configurations.

(2) Part Two: We show that if x and z have concave utility functions in the distance of
a proposal, then in urns where all balls lie in the interval [x, z], at least one of x
and z prefers a win for y over a three-way tie.

5.1.1. Preliminaries. Let R denote the urn resulting from a three-way tie. Then urn
R must have n − 3 balls since we removed one ball from each of x, y, and z. By our
assumption, this means that Algorithm 5 is optimal for the remaining decisions in R.

Let S denote the urn resulting from a win for y. To get urn S from R, we just need to
add three balls to participant y. Our approach will be to show that the quasi-truthful
strategy in urn S will give a higher expected utility for at least one of x and z. If this
is true, then we are done since it is clear that this participant would want y to win.

We index the balls in urn S as b1, b2, . . . , bn from the leftmost participant position to
the rightmost and let bl, bl+1, bl+2 denote the three balls on participant y that do not
exist in urn R. For each ball bi and quasi-truthful voting, there is some probability that
the ball wins in urn R (if balls bl, bl+1, bl+2 had not been added) and some probability
that the ball wins in urn S (after balls bl, bl+1, bl+2 have been added)13. We would like
to see how this probability changes. Denote this difference in the winning probability
of bi as ∆p(bi) = Pr[bi wins in urn S]−Pr[bi wins in urn R].

We use Ux(bi) and Uz(bi) to denote the utilities of x and z respectively gained from
a win for ball bi. Define Ux(bi) to be a concave utility function if Ux(bi) = fx(d(bi, x))
where fx is a concave function and d(bi, x) is the distance between bi and x. Note that fx
must necessarily be monotonically decreasing since candidates prefer proposals that
are closer to them. We will use USx and USz to denote the expected utility for x and z
respectively from quasi-truthful voting in an urn S. Finally, we use ∆Ux = USx − URx
and ∆Uz = USz −URz to denote the difference in expected utility in quasi-truthful voting
for urn S as compared to urn R.

Then our goal is now reduced to showing that one of ∆Ux ≥ 0 and ∆Uz ≥ 0 is true.

5.1.2. Part One: We only need to consider urns where all balls lie in the interval [x, z]. We first
show that the difference in winning probability ∆p(bi) is positive in an interval around
the added balls bl, bl+1, bl+2 and negative everywhere else14. Specifically,

LEMMA 5.1. Suppose Triadic Consensus is run on urns R and S as defined in Sec-
tion 5.1.1. Then for quasi-truthful voting,

∆p(bi) > 0 if min(l, n/2) ≤ i ≤ max(l + 2, n/2)

∆p(bi) < 0 otherwise
PROOF. The proof consists primarily of algebraic manipulations of Theorem 4.4. For

the sake of space constraints, the proof is included in Appendix B.

With this, we can now prove the main lemma for Part One.

LEMMA 5.2. Let R and S be urns as defined in Section 5.1.1. From R, create a new
urn R′ by moving all balls left of x to x and all balls right of z to z. Similarly, from S,
create a new urn S′ by moving all balls left of x to x and all balls right of z to z. Let
∆U ′x = US

′

x − UR
′

x and ∆U ′z = US
′

z − UR
′

z . Then,
∆Ux ≥ ∆U ′x and ∆Uz ≥ ∆U ′z

13Recall that we can use Theorem 4.4 to describe the probability that a ball wins without changing the
winning probabilities of participants.
14Since balls bl, bl+1, bl+2 do not exist in urn R, we just use probability 0 for Pr[bi wins in urn R].
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PROOF. For the sake of space constraints, we will only sketch the proof. A full de-
tailed version can be found in Appendix B. The basic idea is that we will break this
proof into three cases.

Case 1: bn/2 ∈ [x, z] for urn S. When the median ball is located in [x, z], we know from
Lemma 5.1 that ∆p(bi) < 0 for all balls that are not in the interval [x, z]. For any balls
with ∆p(bi) < 0, ∆Ux and ∆Uz are decreased when the balls are moved closer to x and
z respectively so long as the ball index is unchanged. But since moving the balls left of
x to x brings the balls closer to both x and z, we must have decreased both ∆Ux and
∆Uz. The same argument holds for moving balls right of z to z.

Case 2: bn/2 < x for urn S. When the median ball is located left of x, we know from
Lemma 5.1 that ∆p(bi) < 0 for all balls right of z and left of bn/2. For the same reason
as in Case 1, when we move these balls closer to x and z, we can only decrease ∆Ux
and ∆Uz. This allows us to move all balls right of z to z and all balls left of bn/2 to bn/2.
Now, for the balls right of bn/2 and left of x, we have that ∆p(bi) > 0. For such balls,
we decrease ∆Ux and ∆Uz by moving them farther away from x and z. Putting these
together, we are now able to move all balls left of x to bn/2.

Now the second trick is to note that all balls left of x are now at the same position
(that of bn/2). This allows us to treat them as a single ball b∗ with ∆p(b∗) =

∑k−1
i=1 ∆p(bi),

where k is the index of the first ball right of x. We then show that ∆p(b∗) < 0, which
allows us to apply the same arguments as above to move all these balls to position x
and decrease ∆Ux and ∆Uz.

Case 3: bn/2 > z for urn S. The proof is symmetric to that of Case 2.

At this point, we have shown that ∆Ux ≥ ∆U ′x and ∆Uz ≥ ∆U ′z. Then if we are able
to claim that one of ∆U ′x and ∆U ′z is greater than zero, it is obviously true that one of
∆Ux and ∆Uz is greater than zero. This finishes Part One since we have shown that
we only need to prove our statement for urns where all balls lie in [x, z].

5.1.3. Part Two: Suppose x and z have concave utility functions. Then for urns R and S with all
balls in [x, z], one of Ux ≥ 0 and Uz ≥ 0 holds

THEOREM 5.3. Let R and S be urns as defined in Section 5.1.1 and let all their balls
lie within the interval [x, z]. Then if participants x and z have concave utility functions,
at least one of ∆Ux ≥ 0 and ∆Uz ≥ 0 is true.

PROOF. The detailed version of this proof can be found in Appendix B. Since it is
primarily algebraic and also notation-heavy, we will only demonstrate it here with an
example.

Let S be an urn with five balls: b1 is located at position x; b2, b3, and b4 are located
at position y; and b5 is located at position z. Then urn R is an urn with the two balls
b1 and b5. Let participants x and z have utility functions Ux(bi) = fx(d(bi, x)) and
Uz(bi) = fz(d(bi, z)) respectively, where fx and fz are monotonically decreasing and
concave functions.

We know (see Theorem 4.4) that for balls b1, b2, b3, b4, and b5, Pr[bi wins in urn S] is
1
16 ,

4
16 ,

6
16 ,

4
16 , and 1

16 respectively; Pr[bi wins in urn R] is 1
2 , 0, 0, 0, and 1

2 , respectively;
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which means that ∆p(bi) is − 7
16 ,

4
16 ,

6
16 ,

4
16 , and − 7

16 , respectively. Then,

∆Ux = ∆p(b1)Ux(b1) +

[
4∑
i=2

∆p(bi)Ux(bi)

]
+ ∆p(b5)Ux(b5)

= − 7

16
fx(d(x, x)) +

14

16
fx(d(x, y))− 7

16
fx(d(x, z))

= − 7

16
[fx(d(x, x))− fx(d(x, y))]− 7

16
[fx(d(x, z))− fx(d(x, y))]

Since 7
16 [fx(d(x, x))− fx(d(x, y))] ≥ 0, we have that

∆Ux ≥ 0 ⇐⇒
− 7

16 [fx(d(x, z))− fx(d(x, y))]

− 7
16 [fx(d(x, x))− fx(d(x, y))]

≥ 1

Using similar arguments and the fact that 7
16 [fz(d(z, x))−fz(d(z, y))] ≤ 0, we have that

∆Uz ≥ 0 ⇐⇒
− 7

16 [fz(d(z, z))− fz(d(z, y))]

− 7
16 [fz(d(z, x))− fz(d(z, y))]

≤ 1

By using concavity and Lemma C.3 in Appendix C,
fx(d(x, z))− fx(d(x, y))

fx(d(x, x))− fx(d(x, y))
≥ (z − x)− (y − x)

(x− x)− (y − x)
=
z − y
x− y

=
(z − z)− (z − y)

(z − x)− (z − y)
≥ fz(d(z, z))− fz(d(z, y))

fz(d(z, x))− fz(d(z, y))

This means that if z−y
x−y ≥ 1, then ∆Ux ≥ 0. Otherwise, if z−y

x−y ≤ 1, then ∆Uz ≥ 0.
Obviously, one of these must be true, so we are done.

5.2. Assuming that Algorithm 5 is a Nash equilibrium for n− 3 balls and given the result of
Section 5.1, then Algorithm 5 must be a Nash equilibrium for n balls

Suppose that x is the only possible deviator from Algorithm 5. We want to show that
with the inductive hypothesis given for n − 3 and the results of Section 5.1, then x
cannot increase his expected utility by deviating from Algorithm 5.

Our proof strategy will be to use a coupling argument. Let OPT denote the optimal
strategy for x. We consider two urns R and S. In urn R, x plays according to Algorithm
5.1. In urn S, x plays according to OPT. Now, we will couple the TriadicVote’s of these
urns in the following way:

(1) Let r1, r2, . . . , rn denote the balls in urn R as indexed from leftmost position to
rightmost position. Let s1, s2, . . . , sn denote the balls in urn S as indexed from left-
most position to rightmost position.

(2) Then for every TriadicVote, when balls ri, rj , rk are randomly drawn from urn R,
balls si, sj , sk will be drawn from urn S.

To compare the evolution of these two urns, we define the following notion.

Definition 5.4. Given two urns R and S, each with n balls, number the balls in
R from left to right as r1, r2, . . . , rn and number the balls in S from left to right as
l1, l2, . . . , ln. Then R x-dominates S if

si ≤ ri for i : ri < x

si = ri for i : ri = x

si ≥ ri for i : ri > x
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In words, if R x-dominates S, this means that for any ball left of x in R, the corre-
sponding ball in S must be farther left of x. Likewise, for any ball right of x in R, the
corresponding ball in S must be farther right of x. Finally, for all balls that are exactly
at x in R, the corresponding ball in S must also be exactly at x.

We note that initially, urns R and S are identical, which also satisfies the definition
of R x-dominates S. Then we show that after a single TriadicVote, the resulting urns
R′ and S′ will still satisfy the property of R′ x-dominates S′.

THEOREM 5.5. Let urns R and S be coupled together as defined above. Then letting
R′ and S′ be the resulting urns after the TriadicVote in R and S respectively, we must
have R′ x-dominates S′.

PROOF. We note that since R x-dominates S, whenever x participates in a Tri-
adicVote in R, it is also participating in a TriadicVote in S. Moreover, if x is the left,
middle, or right participant in the TriadicVote of urn R, then it is also the left, mid-
dle, or right participant respectively in the TriadicVote of urn S. Then we have four
possible cases:

Case 1: x is not one of ri, rj , rk. Since we have assumed that all other participants
are voting according to Algorithm 5, rj wins in urn R and sj wins in urn S. Note that
all other balls have not moved and we also have d(x, rj) ≤ d(x, sj) and rj , sj > x. Then
R′ x-dominates S′.

Case 2: x is two or more of ri, rj , rk. Then x wins in both urns R and S and all the
selected balls ri, rj , rk and si, sj , sk are moved to x. Since all other balls have not moved,
R′ x-dominates S′.

Case 3: x is the middle participant rj . Since we have assumed that all other partic-
ipants are voting according to Algorithm 5, ri and rk vote for x in urn R and si and
sk vote for x in urn S. Therefore, x wins in both coupled runs and it is clear that R′
x-dominates S′ since all other balls have not moved.

Case 4: x is one of the side participants (ri WLOG). Since we have assumed that all
other participants are voting according to Algorithm 5, rk votes for rj in urn R and sk
votes for sj in urn S. Also, since x is following Algorithm 5 in R, then ri votes for rj ,
which means that rj wins in urn R. In urn S, there could be two different outcomes
depending on how sj votes.

(1) Suppose sj votes for sk. Then one of sj , sk will win in urn S depending on who si
votes for. But both of these are farther from x than rj and on the same side of x,
i.e. d(x, rj) ≤ min(d(x, sj), d(x, sk)) and rj , sj , sk > x. Therefore, R′ x-dominates S′.

(2) Suppose sj votes for si. Then since x is playing the optimal strategy in urn S, si
must vote for sj (by Section 5.1 and the inductive hypothesis for n − 3). But this
means that sj wins in urn S. Once again, sj is farther from x than rj and on the
same side of x, i.e. d(x, rj) ≤ d(x, sj) and rj , sj > x. Therefore, R′ x-dominates S′.

We have shown that after one coupled TriadicVote, R′ x-dominates S′. However, for
Theorem 5.5, we only used the fact that R x-dominates S. Therefore, we can apply the
theorem to state that R(t) x-dominates S(t) =⇒ R(t+1) x-dominates S(t+1), where R(t)

and S(t) are the resulting urns from R and S respectively after t TriadicVote’s. Then
this must be true even after the urns have converged to a winner and we have that the
winner of R x-dominates the winner of S. This is equivalent to saying that the winner
of R is at least as close to x as the winner of S.
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Then, this means that x gains at most the same utility from OPT as compared to the
utility gained from Algorithm 5 and we are done.

6. FUTURE DIRECTIONS
There are many future directions and open problems that this work presents:

Triadic Consensus. For the algorithm itself, the primary problem that begs to be
worked on is an analysis for higher dimensional or even non-Euclidean spaces. It is
an open question whether Triadic Consensus achieves low communication complexity
for general preference profiles. The authors believe this is the case; however, even if
this is true, it would need to be accompanied with some way to evaluate the winner
produced. For example, does it approximate the Condorcet winner whenever it exists?
Does Triadic Consensus find central nodes in graphs? Does it approximate the notion
of a generalized median in Rd?

Similarly, it would also be exciting to extend the work on quasi-truthfulness to
higher dimensional spaces. The authors do not believe that a naive extension will suf-
fice; however, it seems possible that probabilistic strategies coupled with other punish-
ments for manipulation will be able to achieve this goal.

Truthful voting rules. When participants are voters and candidates, we have indi-
cated that manipulation can often be detected. It would be interesting to use this idea,
possibly along with the theme of triads, quasi-truthfulness, and cyclic preferences, to
design truthful voting rules. For example, one could imagine the following variant of
the Borda count: for each of the

(
n
3

)
triads, add one point to the score of the winner15.

Communication complexity. Another exciting problem is to make new approximate
and randomized voting rules that have low communication complexity. In particular,
it would be useful to have a voting rule where the maximum number of comparisons
per voter is small (say, O(log n)). In Triadic Consensus, only the average number of
comparisons is small, which may still prevent it from being widely applicable to large
internet crowdsourcing applications. Indeed, if such a voting rule could be designed, it
may be another approach to tackle strategic voting in the sense that participants are
only comparing a vanishingly small number of participants; this may prevent them
from being able to determine how to manipulate.

Consensus mechanisms. On the direction of group consensus mechanisms, one pos-
sible extension of this work is to bring it outside of voting. Namely, rather than having
the randomly selected triads vote, it would be interesting to analyze other sorts of
dynamics that are more collaborative or game-theoretic.

Urn voting rules. It would be also interesting to study generalized urn voting rules.
This could include different ball replacement schemes or even more elaborate general-
izations. For example, balls could be labeled with participant and proposal ids so that
only proposal ids are changed after a TriadicVote. Such urn voting rules are interest-
ing because they can be interpreted as local decisions made by small groups of people
and also provide a natural framework for studying (non-trivial) probabilistic voting
rules.

15The Borda count is equivalent to giving the winner two points, the next highest scoring participant one
point, and the loser zero points.
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Online Appendix to:
Triadic Consensus: A Randomized Algorithm for Voting in a Crowd

ASHISH GOEL and DAVID LEE, Stanford University

A. APPROXIMATION OF THE CONDORCET WINNER AND COMMUNICATION COMPLEXITY
A.1. Simulations in 2D
We show two examples of Triadic Consensus in 2D. In the first case (a grid), we see
similar tightness and communication complexity to our results from 1D. In the second
case, we try to design a difficult scenario by densely populating the perimeter of a circle
and adding a single point at its center. Surprisingly, Triadic Consensus is still able to
select this center point with non-trivial probability.

Example A.1. n = m2 voters are placed on the points (0, 0), (0, 1), . . . , (m− 1,m− 1)
to form a m × m grid. The Condorcet winner in this scenario is at the median point
(m2 ,

m
2 ). From the simulation results below, we can see that Triadic Consensus picks

winners that are closely distributed around the winner. The average number of votes
each voter casts is ∼ O(log n).

The data in the table below represent 100 iterations of Triadic Consensus. Column 1
is the dimensions of the grid, column 2 is the average winner, column 3 is the standard
deviation of the winner (square root of the mean squared distance from the average
winner), column 4 is the average number of votes per participant, and column 5 is the
standard deviation of the average number of votes per voter (over the 100 iterations).

mean winner σ of winner mean votes/voter σ of votes/voter
5x5 (1.96, 1.97) .953 1.966 0.425
10x10 (4.45, 4.5) 1.157 3.405 0.517
20x20 (9.61, 9.47) 1.236 4.618 0.417
40x40 (19.64, 19.53) 1.594 6.056 0.368
80x80 (39.57, 39.69) 1.555 7.293 0.324

Example A.2. n voters are placed uniformly around a circle (in the plane) with ra-
dius 1 and centered at (0, 0). A single voter is placed at the point (0, 0). The Condorcet
winner in this scenario is the point (0, 0). Surprisingly, we find that even as the num-
ber of points increases on the perimeter, the probability of the randomized algorithm
selecting the single Condorcet winner still remains non-trivial. The average number of
votes each voter casts is ∼ O(log n).

The data in the table below represent 1000 iterations of Triadic Consensus. Column
1 is the number of participants in the circle, column 2 is the fraction of times that (0, 0)
is selected as the winner, column 3 is the average number of votes per participant, and
column 4 is the standard deviation of the average number of votes per voter (over the
1000 iterations).

% times (0,0) wins mean votes/voter σ of votes/voter
25 0.368 2.225 0.513
100 0.338 4.189 0.775
400 0.305 6.628 1.185
1600 0.295 9.224 1.696
6400 0.302 11.764 2.321

c© 2012 ACM 0000-0000/2012/02-ARTX $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000
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A.2. Triadic Consensus eliminates outliers quickly
THEOREM A.3. Let a continuous distribution of voters be uniformly distributed be-

tween zero and one. Let gHot-or-Not(x) and gTriadic(x) be the probability density of x being
the next winning candidate in Hot-or-Not and Triadic Consensus respectively. Then,
gTriadic = 6x(1− x) and gHot-or-Not = 3x(1− x) + 1

2 . In particular,

gHot-or-Not =
1

2
gTriadic +

1

2
gUnif

where gUnif is the uniform distribution over the interval [0, 1].

PROOF. For uniformly distributed participants, we have the density function f(x) =
1 and cumulative density function F (x) = x. In Triadic Consensus, x wins if he is
selected along with a candidate to the left and right of him. Then, we have

gTriadic(x) = 3!f(x)F (x)(1− F (x)) = 6x(1− x)

In Hot-or-Not Consensus, xwins against y only if the voter z is closer to x than y. Then,

gHot-or-Not(x) = 2f(x)

∫ x

0

f(y)

(
1− F

(
x+ y

2

))
dy + 2f(x)

∫ 1

x

f(y)F

(
x+ y

2

)
dy

= 2

[∫ x

0

(
1− x+ y

2

)
dx+

∫ 1

x

(
x+ y

2

)
dx

]
= 3x(1− x) +

1

2

B. QUASI-TRUTHFUL NASH EQUILIBRIUM
LEMMA B.1. Suppose Triadic Consensus is run on urns R and S as defined in Sec-

tion 5.1.1. Then for quasi-truthful voting,
∆p(bi) > 0 if min(l, n/2) ≤ i ≤ max(l + 2, n/2)

∆p(bi) < 0 otherwise
PROOF. Recall that ∆p(bi) = Pr[bi wins in urn S]−Pr[bi wins in urn R]. From The-

orem 4.4, we have that a quasi-truthful strategy in urns R and S give,

Pr[bi wins in urn S] =

(
1

2

)n−1(
n− 1

i− 1

)

Pr[bi wins in urn R] =


(
1
2

)n−4 (n−4
i−1
)

if i ≤ l − 1(
1
2

)n−4 (n−4
i−4
)

if i ≥ l + 3

0 if i = l, l + 1, l + 2

Note that for i < l,

∆p(bi) =

(
1

2

)n−1 [
(n− 1)!

(i− 1)!(n− i)!
− 8

(n− 4)!

(i− 1)!(n− i− 3)!

]
=

(
1

2

)n−1
(n− 4)!

(i− 1)!(n− i)!
[(n− 1)(n− 2)(n− 3)− 8(n− i)(n− i− 1)(n− i− 2)]︸ ︷︷ ︸

f(i)

Since f(i) is monotonically increasing in i, then by observing that f
(
n
2 − 1

)
< 0 and

f
(
n
2

)
> 0, we have

∆p(bi) is
{
< 0 if i < min(l, n/2)

> 0 if n/2 ≤ i < l
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Similarly, for i > l+2, we can use an analogous argument (or apply symmetry) to claim
that,

∆p(bi) is
{
< 0 if i > max(l + 2, n/2)

> 0 if l + 2 < i ≤ n/2

Finally, it is clear that ∆p(bi) > 0 for i = l, l + 1, l + 2, so we are done.

LEMMA B.2. Let R and S be urns as defined in Section 5.1.1. From R, create a new
urn R′ by moving all balls left of x to x and all balls right of z to z. Similarly, from S,
create a new urn S′ by moving all balls left of x to x and all balls right of z to z. Let
∆U ′x = US

′

x − UR
′

x and ∆U ′z = US
′

z − UR
′

z . Then,

∆Ux ≥ ∆U ′x and ∆Uz ≥ ∆U ′z

PROOF. Since the relative positions of the balls have not changed in R′ and S′, the
change in winning probabilities from R′ to S′ are the same, i.e. ∆p(bi) = ∆p′(bi). Then
for ∆p(bi) < 0,

∆p(bi)Ux(z)(bi) ≥ ∆p′(bi)U
′
x(z)(bi) ⇐⇒ Ux(z)(bi) ≤ U ′x(z)(bi)

⇐⇒ bi is closer to x(z)

and for ∆p(bi) > 0,

∆p(bi)Ux(z)(bi) ≥ ∆p′(bi)U
′
x(z)(bi) ⇐⇒ Ux(z)(bi) ≥ U ′x(z)(bi)

⇐⇒ bi is farther from x(z)

Then we can use this to prove our Lemma for each of three cases:

Case 1: bn/2 ∈ [x, z] for urn S. When the median ball is located in [x, z], all the balls
left of x and right of z satisfy ∆p(bi) < 0. Then moving the balls left of x to x brings
them closer to both x and z. Similarly, moving the balls right of z to z brings them
closer to both x and z. Therefore, we must have

∆Ux(z) =

n∑
i=1

∆p(bi)Ux(z)(bi) ≥
n∑
i=1

∆p′(bi)U
′
x(z) = ∆U ′x(z)

Case 2: bn/2 < x for urn S. When the median ball is located to the left of x, we
will need to first make an intermediate pair of urns. Note that the balls left of bn/2
have ∆p(bi) < 0 so we can move them rightwards to bring them closer to both x and
z. However, since the balls between bn/2 and x have ∆p(bi) > 0, we need to move
them leftwards to bring them farther away from both x and z. For the balls right of z,
∆p(bi) < 0, so we can again move them to z which brings them closer to x and z. Then
let urns R′′, S′′ be another pair of urns where balls left of x are moved to the position
of ball bn/2 and balls right of z are moved to z. By an argument similar to that of Case
1, ∆Ux(z) ≥ ∆U ′′x(z). Now, note that

∆U ′′x(z) =

[
k−1∑
i=1

∆p′′(bi)

]
U ′′x(z)(bn/2) +

n∑
i=k

∆p′′(bi)U
′′
x(z)(bi)

where k is the index of the leftmost ball that is right of x and U ′′, p′′ are the analogous
expressions for utility and winning probability in urns R′′, S′′. But we also know that
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for k < l,
k−1∑
i=1

∆p′′(bi) =

k−1∑
i=1

[(
1

2

)n−1(
n− 1

i− 1

)
−
(

1

2

)n−4(
n− 4

i− 1

)]
= Pr[≤ k − 2 heads in n− 1 coin flips]−Pr[≤ k − 2 heads in n− 4 coin flips] ≤ 0

Then this means that[
k−1∑
i=1

∆p′′(bi)

]
U ′′x(z)(bn/2) ≥

[
k−1∑
i=1

∆p′(bi)

]
U ′x(z)(bn/2) ⇐⇒ U ′′x(z)(bn/2 ≤ U

′
x(z)(bn/2)

⇐⇒ bn/2 is closer to x(z)

We know that by moving the balls at the position of ball bn/2 rightwards to x, we are
bringing it closer to both x and z to get R′, S′. But we just showed that this decreases
∆U ′′x(z), so ∆U ′′x(z) ≥ U

′
x(z). This finishes the proof for this case.

Case 3: bn/2 > z for urn S. The proof is symmetric to that of Case 2.

THEOREM B.3. Let R and S be urns as defined in Section 5.1.1 and let all their balls
lie within the interval [x, z]. Then if participants x and z have concave utility functions,
at least one of ∆Ux ≥ 0 and ∆Uz ≥ 0 is true.

PROOF. Let A = min(l, n/2) and Z = max(l + 2, n/2) be the leftmost and rightmost
balls for which ∆p(bi) > 0. Recall that by Lemma 5.1, all balls left of A and right
of Z must have ∆p(bi) < 0. Then we can separate the expression for ∆Ux into three
summations,

∆Ux =

A−1∑
i=1

∆p(bi)Ux(bi) +

Z∑
i=A

∆p(bi)Ux(bi) +

n∑
i=Z+1

∆p(bi)Ux(bi)

Note that
∑A−1
i=1 ∆p(bi) +

∑n
i=Z+1 ∆p(bi) = −

∑Z
i=A ∆p(bi). Then we can partition up

the ∆p(bj) mass for j ∈ [A,Z] among the balls bi, i 6∈ [A,Z] such that the mass assigned
to a given ball exactly matches the magnitude of ∆p(bi). Since the ∆p(bj) values for
j ∈ [A,Z] may not exactly match the values for the balls i 6∈ [A,Z], we may need to
use several of the ∆p(bj) terms from j ∈ [A,Z] for any given index. Represent such a
mapping with U∗x(i). Then we can factor this to get

∆Ux =

A−1∑
i=1

∆p(bi)[Ux(bi)− U∗x(i)] +

n∑
i=Z+1

∆p(bi)[Ux(bi)− U∗x(i)]

where U∗x(i) is some convex combination of utilities Ux(bj), j ∈ [A,Z]. Note that since
balls are indexed left to right and all lie within [x, z], then balls indexed i ∈ [1, A) are
closer to x than those indexed i ∈ [A,Z], which are closer than those indexed i ∈ (R,n].
Therefore, we have

Ux(bi)− U∗x(i) is
{
≥ 0 if i = 1, 2, . . . A− 1

≤ 0 if i = Z + 1, Z + 2, . . . , n

Combining these, we get that

Ux ≥ 0 ⇐⇒
∑n
i=Z+1 ∆p(bi)[Ux(bi)− U∗x(i)]∑A−1
i=1 ∆p(bi)[U∗x(i)− Ux(bi)]

≥ 1 (1)
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since ∆p(bi)[U
∗
x(i)− Ux(bi)] ≥ 0 for i = 1, 2, . . . A− 1. Similarly, we have

∆Uz =

A−1∑
i=1

∆p(bi)[Uz(bi)− U∗z (i)] +

n∑
i=Z+1

∆p(bi)[Uz(bi)− U∗z (i)]

where U∗z (i) is the convex combination of utilities Uz(bj), j ∈ [A,Z] that uses the same
indices j as those used in U∗x(i). Now, for z, balls indexed i ∈ [1, A) are farther from z
than those indexed i ∈ [A,Z], which are farther from those indexed i ∈ (Z, n]. Therefore

Uz(bi)− U∗z (i) is
{
≤ 0 if i = 1, 2, . . . A− 1

≥ 0 if i = Z + 1, Z + 2, . . . , n

Combining these, we get that

Uz ≥ 0 ⇐⇒
∑n
i=Z+1 ∆p(bi)[Uz(bi)− U∗z (i)]∑A−1
i=1 ∆p(bi)[U∗z (i)− Uz(bi)]

≤ 1 (2)

since ∆p(bi)[U
∗
z (i)−Uz(bi)] ≤ 0 for i = 1, 2, . . . A−1. We now have one last step. For any

f(x) which is concave and monotonically decreasing, we have that
m∑
i=1

ci[f(t2i )− f(t1i )]

n∑
j=1

dj [f(s2j )− f(s1j )]
≥

m∑
i=1

ci[t
2
i − t1i ]

n∑
j=1

dj [s2j − s1j ]
and

m∑
i=1

ci[f(s1i )− f(s2i )]

n∑
j=1

dj [f(t1j )− f(t2j )]
≤

m∑
i=1

ci[s
1
i − s2i ]

n∑
j=1

dj [t1j − t2j ]

for s1j ≤ t1i , s2j ≤ t2i , s1i ≤ s2j , t1i ≤ t2i , and sign(ci) = sign(dj) (as detailed in Appendix C).
Applying this to (1) and (2), we get∑n

i=Z+1 ∆p(bi)[Ux(bi)− U∗x(i)]∑A−1
i=1 ∆p(bi)[U∗x(i)− Ux(bi)]

≥
∑n
i=Z+1 ∆p(bi)[d(bi, b

∗(i))]∑L−1
i=1 ∆p(bi)[d(b∗(i), bi)]

and ∑n
i=Z+1 ∆p(bi)[Uz(bi)− U∗z (i)]∑A−1
i=1 ∆p(bi)[U∗z (i)− Uz(bi)]

≤
∑n
i=Z+1 ∆p(bi)[d(bi, b

∗(i)]∑A−1
i=1 ∆p(bi)[d(b∗(i), bi)]

where d(bi, b
∗(i)) is a convex combination of d(bi, bj) for j ∈ [A,Z], where the weights

are the same as those of U∗x(z). Then either∑n
i=Z+1 ∆p(bi)[d(bi, b

∗(i)]∑A−1
i=1 ∆p(bi)[d(b∗(i), bi)]

≥ 1 or
∑n
i=Z+1 ∆p(bi)[d(bi, b

∗(i)]∑A−1
i=1 ∆p(bi)[d(b∗(i), bi)]

≤ 1

If the first is true, we can apply (1) to claim that Ux ≥ 0. If the second is true, we can
apply (2) to claim that Uz ≥ 0. Since one of these must be true, we are done.

C. SUPPORTING PROOFS
THEOREM C.1. [Lee and Bruck 2012] Let a fixed size urn with R0 red balls out of n

total balls have an urn function f(p) for which f(p)
f(1−p) is monotonically decreasing and

let T denote the first time when either RT = n or RT = 0. Then,

E[T ] ≤ 1

q1
+

bn2 c−1∑
k=1

qk
qk+1(qk − pk)

where pk = f
(
n−k
n

)
and qk = f

(
k
n

)
.
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COROLLARY C.2. Let a fixed size urn with R0 red balls out of n total balls have an
urn function f(p) = 3p(1 − p)2 and let T denote the first time when either RT = n or
RT = 0. Then,

E[τ ] ≤ n lnn+O(n)

PROOF. From Theorem C.1, we know that

E[T ] ≤ 1

q1
+

bn2 c−1∑
k=1

qk
qk+1(qk − pk)

=
n3

3(n− 1)2
+
n3

3

bn2 c−1∑
k=1

n− k
(k + 1)(n− k − 1)2(n− 2k)︸ ︷︷ ︸

(∗)

where

(∗) = − 1

n(n− 2)(n− k − 1)2
+

4n

(n+ 2)(n− 2)2(n− 2k)

+
n+ 1

n2(n+ 2)(k + 1)
− n2 + n− 2

n2(n− 2)2(n− k − 1)

≤ 4n

(n+ 2)(n− 2)2(n− 2k)
+

n+ 1

n2(n+ 2)(k + 1)

=

(
4

n2(n− 2k)
+

1

n2(k + 1)

)(
1 +O

(
1

n

))
Putting it together, we have

E[T ] ≤ n

3
+ o(1) +

n

3

(
1 +O

(
1

n

)) bn2 c−1∑
k=1

[
4

n− 2k
+

1

k + 1

]

Noting that
∑k
i=1

1
k = Hk = lnn + O(1), where Hk is the k-th Harmonic number, we

have

E[T ] ≤ O(n) +
n

3

(
2 ln

n

2
+ ln

n

2

)
= n lnn+O(n)

LEMMA C.3. Let f(x) be a concave monotonically decreasing function. Then for
s1j , s

2
j , t

1
i , t

2
i ∈ R satisfying s1j ≤ t1i , s2j ≤ t2i , s1i ≤ s2j , and t1i ≤ t2i and sign(ci) = sign(dj),

we have
m∑
i=1

ci[f(t2i )− f(t1i )]

n∑
j=1

dj [f(s2j )− f(s1j )]
≥

m∑
i=1

ci[t
2
i − t1i ]

n∑
j=1

dj [s2j − s1j ]
and

m∑
i=1

ci[f(s1i )− f(s2i )]

n∑
j=1

dj [f(t1j )− f(t2j )]
≤

m∑
i=1

ci[s
1
i − s2i ]

n∑
j=1

dj [t1j − t2j ]

PROOF. Since f is concave, s1j ≤ t1i , and s2j ≤ t2i ,

f(t2i )− f(t1i )

t2i − t1i
≤
f(t2i )− f(s1j )

t2i − s1j
≤
f(s2j )− f(s1j )

s2j − s1j
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Then by noting that f is monotonically decreasing, s1j ≤ s2j , t1i ≤ t2i , and sign(ci) =
sign(dj), we achieve the statement for a single term on the top and bottom

ci[f(t2i )− f(t1i )]

dj [f(s2j )− f(s1j )]
≥ ci[t

2
i − t1i ]

dj [s2j − s1j ]

If we flip this inequality, we get

dj [f(s2j )− f(s1j )]

ci[f(t2i )− f(t1i )]
≤
dj [s

2
j − s1j ]

ci[t2i − t1i ]
Using this, we can derive,

n∑
j=1

dj [f(s2j )− f(s1j )]

ci[f(t2i )− f(t1i )]
=

n∑
j=1

dj [f(s2j )− f(s1j )]

ci[f(t2i )− f(t1i )]
≤

n∑
j=1

dj [s
2
j − s1j ]

ci[t2i − t1i ]
=

n∑
j=1

dj [s
2
j − s1j ]

ci[t2i − t1i ]

Then by flipping this inequality, we get

ci[f(t2i )− f(t1i )]
n∑
j=1

dj [f(s2j )− f(s1j )]
≥ ci[t

2
i − t1i ]

n∑
j=1

dj [s2j − s1j ]

Finally, we can use this to derive the first part of our final result
m∑
i=1

ci[f(t2i )− f(t1i )]

n∑
j=1

dj [f(s2j )− f(s1j )]
=

m∑
i=1

ci[f(t2i )− f(t1i )]
n∑
j=1

dj [f(s2j )− f(s1j )]
≥

m∑
i=1

ci[t
2
i − t1i ]

n∑
j=1

dj [s2j − s1j ]
=

m∑
i=1

ci[t
2
i − t1i ]

n∑
j=1

dj [s2j − s1j ]

We can get the second part by simply inverting and multiplying the top and bottom of
both sides by −1

n∑
j=1

dj [f(s2j )− f(s1j )]

m∑
i=1

ci[f(t2i )− f(t1i )]
≤

n∑
j=1

dj [s
2
j − s1j ]

m∑
i=1

ci[t2i − t1i ]
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