Blast mild traumatic brain injury is associated with increased myopia and chronic convergence insufficiency

Citation:

Francesca C. Fortenbaugh, Jennifer A. Gustafson, Jennifer R. Fonda, Catherine B. Fortier, William P. Milberg, and Regina E. McGlinchey. 5/2021. “Blast mild traumatic brain injury is associated with increased myopia and chronic convergence insufficiency.” Vision Research, 186, Pp. 1-12. Publisher's Version

Abstract:

While chronic visual symptom complaints are common among Veterans with a history of mild traumatic brain injury (mTBI), research is still ongoing to characterize the pattern of visual deficits that is most strongly associated with mTBI and specifically, the impact of blast-related mTBI on visual functioning. One area that has not been well explored is the potential impact of blast mTBI on refractive error. While myopic shifts have been documented following head injuries in civilian populations, posttraumatic myopic shifts have not been explored in participants with military mTBI. This study investigated the impact of blast mTBIs on a range of visual function measures including distance acuity and refractive error, in a well-characterized cohort of thirty-one Post-9/11 veterans for whom detailed clinical interviews regarding military and TBI history were available. Seventeen participants had a history of blast-related mTBI (blast mTBI + group) while 14 did not (blast mTBI- group). Results show an increased frequency of convergence insufficiency and myopia in the blast mTBI + group relative to the blast mTBI- group. Linear regression analyses further show that deficits in distance acuity and refractive error are associated with the number of blast mTBIs during military service but not the number of non-blast mTBIs or the number of lifetime non-blast TBIs and cannot be accounted for by PTSD. These results are consistent with long-lasting damage following blast mTBI to subcortical visual structures that support both vergence movements and the accommodative functions needed to see clearly objects at varying distances.