Heart rate variability rebound following exposure to persistent and repetitive sleep restriction


Yang H, Haack M, Dang R, Gautam S, Simpson NS, Mullington JM. Heart rate variability rebound following exposure to persistent and repetitive sleep restriction. Sleep. 2019;42 (2).

Date Published:

2019 02 01


While it is well established that slow-wave sleep electroencephalography (EEG) rebounds following sleep deprivation, very little research has investigated autonomic nervous system recovery. We examined heart rate variability (HRV) and cardiovagal baroreflex sensitivity (BRS) during four blocks of repetitive sleep restriction and sequential nights of recovery sleep. Twenty-one healthy participants completed the 22-day in-hospital protocol. Following three nights of 8-hr sleep, they were assigned to a repetitive sleep restriction condition. Participants had two additional 8-hr recovery sleep periods at the end of the protocol. Sleep EEG, HRV, and BRS were compared for the baseline, the four blocks of sleep restriction, and the second (R2) and third (R3) nocturnal recovery sleep periods following the last sleep restriction block. Within the first hour of each sleep period, vagal activation, as indexed by increase in high frequency (HF; HRV spectrum analysis), showed a rapid increase, reaching its 24-hr peak. HF was more pronounced (rebound) in R2 than during baseline (p < 0.001). The BRS increased within the first hour of sleep and was higher across all sleep restriction blocks and recovery nights (p = 0.039). Rebound rapid eye movement sleep was observed during both R2 and R3 (p = 0.004), whereas slow-wave sleep did not differ between baseline and recovery nights (p > 0.05). Our results indicate that the restoration of autonomic homeostasis requires a time course that includes at least three nights, following an exposure to multiple nights of sleep curtailed to about half the normal nightly amount.