SCoPEx

Stratospheric Controlled Perturbation Experiment (SCoPEx)

SCoPEx is a scientific experiment to advance understanding of stratospheric aerosols that could be relevant to solar geoengineering. It aims to reduce the uncertainty around specific science questions by making quantitative measurements of some of the aerosol microphysics and atmospheric chemistry required for estimating the risks and benefits of solar geoengineering in large atmospheric models. SCoPEx will address questions about how particles interact with one another, with the background stratospheric air, and with solar and infrared radiation. Improved understanding of these processes will help answer applied questions such as, is it possible to find aerosols that can reduce or eliminate ozone loss, without increasing other physical risks? 

At the heart of SCoPEx is a propelled scientific balloon that can travel a few meters per second (walking speed) relative to the surrounding air. The propellers serve two functions. First, the propellor wake forms a well mixed volume (roughly 1 km long and 100 meters in diameter) that serves as an experimental ‘beaker’ in which we can add gasses or particles. Second, the propellers allow us to fly the gondola back and forth through the volume to measure the properties of the perturbed air.

The advantage of the SCoPEx propelled balloon is that it allows us to create a small controlled volume of stratospheric air and observe its evolution for (we hope) over 24 hours. Hence the acronym, Stratospheric Controlled Perturbation Experiment. If we used an aircraft instead of a balloon, we would not be able to use such a small perturbed volume nor would we be able to observe it for such long durations. 

SCoPEx builds on four decades of research on the environmental chemistry of the ozone layer in the Anderson/Keith/Keutsch groups. SCoPEx will use or adapt many of the high-performance sensors and flight-system engineering experience developed for this ozone research. Analyzing these experiments will improve our knowledge beyond what is currently available within computer models or is measurable with confidence under laboratory conditions.


Illustration

FAQ

This FAQ aims to answer some basic questions about the SCoPEx experiment. We will update this FAQ periodically. For a more in-depth overview, see our 2014 publication.

What is the experiment? 
We plan to use a high-altitude balloon to lift an instrument package approximately 20 km into the atmosphere. Once it is in place, a very small amount of material (100 g to 1 kg) will be released to create a perturbed air mass roughly one kilometer long and one hundred meters in diameter. We will then use the same balloon to measure resulting changes in the perturbed air mass including changes in aerosol density, atmospheric chemistry, and light scattering.

What material will be released?
Initially, we plan to release ice (frozen water) to make sure the instrumentation works properly. Later, we plan to release calcium carbonate, a common mineral dust. We may also release other materials such as sulfates in response to evolving scientific interests.

Do other environmental science experiments release materials outdoors?
Yes. A number of environmental science experiments release or have released materials outdoors to create controlled perturbation for the same essential reason as we plan to do in SCoPEx—to directly control an experimental variable, which is crucial to scientific understanding. Examples of experiments include Free-Air Carbon Dioxide Enrichment (FACE) experiments, which release ozone and carbon dioxide (CO2) in the air for long durations to understand the impacts of climate and air pollution on crops and natural ecosystems; or Dispersion of Air Pollution and its Penetration into the Local Environment (DAPPLE) experiments, which have released sulfur hexafluoride (SF6) and perfluoromethylcyclohexane into urban air to study the transport of air pollutants. These experiments differ in various ways; they are listed here to merely show that there are environmental science experiments that release materials outdoors.

Is this material dangerous?
The test will pose no significant hazard to people or the environment. Calcium carbonate is a nontoxic chemical commonly found in nature, for example as limestone, and sub-micron precipitated calcium carbonate particles like the ones we will uses are a common additive to consumer products such as paper and toothpaste. In general, the amount of materials to be released (less than 1 kilogram for calcium carbonate) will be very small compared to other routine releases of material into the stratosphere by aircraft, rockets, or routine balloon flights. For example, the release of experimental materials will be small compared to the release of the iron filling ballast that are commonly released to control the altitude of stratospheric balloons. Additionally, if we test sulfate in this experiment, the amount we would use would be less than the amount released during a one minute of flight of a typical commercial aircraft. Aircraft release sulfates due to residual sulfur content of aviation fuel. 

Are there other risks?
As with any aircraft flight, when flying a balloon there is a possibility of malfunction and risk of falling debris.

Where will the experiment take place?
Flight operations will be managed by World View, a high-altitude flight services company based in Tucson, Arizona, and launches will likely take place from its facility near Tucson.

Why conduct the experiment?
This experiment will help us learn more about the efficacy and risks of solar geoengineering. Computer modeling and laboratory work tell us some very useful things about solar geoengineering, but as with all other aspects of environmental science, computer models ultimately rest on observations of the real environment. Measuring the ways that aerosols alter stratospheric chemistry can, for example, improve the ability of global models to predict how large-scale geoengineering could possibly disrupt stratospheric ozone. 

Who is providing the funding?
Experimental hardware and operations will be funded from internal Harvard research funds provided to Professors David Keith and Frank Keutsch. Additional research funding will likely be provided by Harvard’s Solar Geoengineering Research Program.

How will the experiment be governed? 
Initial oversight of environmental, health, and safety issues will be managed by responsible entities from Harvard University and World View. Scientific peer review and broader research governance matters will be overseen by an independent advisory panel.

Key Personnel

Developing the balloon system, instrumenting it with sensors engineered to work in the stratosphere, and making and analyzing the observations requires collaboration of aerospace engineers, instrumentation specialists, and atmospheric chemists and modelers. There will, thus, be a growing group of researchers working on the project. Current key personnel include:

Frank Keutsch
Frank Keutsch
Stonington Professor of Engineering and Atmospheric Science
Professor of Chemistry and Chemical Biology
Harvard University
Co-Principal Investigator of SCoPEx

David Keith
David Keith
Gordon McKay Professor of Applied Physics, Harvard John A. Paulson School of Engineering and Applied Sciences 
Professor of Public Policy, Harvard Kennedy School
Co-Principal Investigator of SCoPEx

John Dykema
John Dykema
Project Scientist, Harvard John A. Paulson School of Engineering and Applied Sciences
Program Manager for SCoPEx

Lizzie Burns
Lizzie Burns
Fellow, Harvard John A. Paulson School of Engineering and Applied Sciences

Learn More

If you are interested in receiving more information on SCoPEx, please fill out this form.