In Press
Hong S, Joo JH YKKKPHN. Recruitment of Rec8, Pds5 and Rad61/Wapl to meiotic homolog pairing, recombination, axis formation and S-phase. Nucleic Acids Research. In Press;2019 :doi: 10.1093/nar/gkz903. Hong et al. 2019
Dubois E, De Muyt A, Soyer JL, Budin K, Legras M, Piolot T, Debuchy R, Kleckner N, Zickler D, Espagne E. Building bridges to move recombination complexes. Proc Natl Acad Sci U S A. 2019;116 (25) :12400-12409.Abstract
A central feature of meiosis is pairing of homologous chromosomes, which occurs in two stages: coalignment of axes followed by installation of the synaptonemal complex (SC). Concomitantly, recombination complexes reposition from on-axis association to the SC central region. We show here that, in the fungus , this critical transition is mediated by robust interaxis bridges that contain an axis component (Spo76/Pds5), DNA, plus colocalizing Mer3/Msh4 recombination proteins and the Zip2-Zip4 mediator complex. Mer3-Msh4-Zip2-Zip4 colocalizing foci are first released from their tight axis association, dependent on the SC transverse-filament protein Sme4/Zip1, before moving to bridges and thus to a between-axis position. Ensuing shortening of bridges and accompanying juxtaposition of axes to 100 nm enables installation of SC central elements at sites of between-axis Mer3-Msh4-Zip2-Zip4 complexes. We show also that the Zip2-Zip4 complex has an intrinsic affinity for chromosome axes at early leptotene, where it localizes independently of recombination, but is dependent on Mer3. Then, later, Zip2-Zip4 has an intrinsic affinity for the SC central element, where it ultimately localizes to sites of crossover complexes at the end of pachytene. These and other findings suggest that the fundamental role of Zip2-Zip4 is to mediate the recombination/structure interface at all post-double-strand break stages. We propose that Zip2-Zip4 directly mediates a molecular handoff of Mer3-Msh4 complexes, from association with axis components to association with SC central components, at the bridge stage, and then directly mediates central region installation during SC nucleation.
Wang S, Liu Y, Shang Y, Zhai B, Yang X, Kleckner N, Zhang L. Crossover Interference, Crossover Maturation, and Human Aneuploidy. Bioessays. 2019;41 (10) :e1800221.Abstract
A striking feature of human female sexual reproduction is the high level of gametes that exhibit an aberrant number of chromosomes (aneuploidy). A high baseline observed in women of prime reproductive age is followed by a dramatic increase in older women. Proper chromosome segregation requires one or more DNA crossovers (COs) between homologous maternal and paternal chromosomes, in combination with cohesion between sister chromatid arms. In human females, CO designations occur normally, according to the dictates of CO interference, giving early CO-fated intermediates. However, ≈25% of these intermediates fail to mature to final CO products. This effect explains the high baseline of aneuploidy and is predicted to synergize with age-dependent cohesion loss to explain the maternal age effect. Here, modern advances in the understanding of crossing over and CO interference are reviewed, the implications of human female CO maturation inefficiency are further discussed, and areas of interest for future studies are suggested.
Wang S, Veller C, Sun F, Ruiz-Herrera A, Shang Y, Liu H, Zickler D, Chen Z, Kleckner N, Zhang L. Per-Nucleus Crossover Covariation and Implications for Evolution. Cell. 2019;177 (2) :326-338.e16.Abstract
Crossing over is a nearly universal feature of sexual reproduction. Here, analysis of crossover numbers on a per-chromosome and per-nucleus basis reveals a fundamental, evolutionarily conserved feature of meiosis: within individual nuclei, crossover frequencies covary across different chromosomes. This effect results from per-nucleus covariation of chromosome axis lengths. Crossovers can promote evolutionary adaptation. However, the benefit of creating favorable new allelic combinations must outweigh the cost of disrupting existing favorable combinations. Covariation concomitantly increases the frequencies of gametes with especially high, or especially low, numbers of crossovers, and thus might concomitantly enhance the benefits of crossing over while reducing its costs. A four-locus population genetic model suggests that such an effect can pertain in situations where the environment fluctuates: hyper-crossover gametes are advantageous when the environment changes while hypo-crossover gametes are advantageous in periods of environmental stasis. These findings reveal a new feature of the basic meiotic program and suggest a possible adaptive advantage.
Veller C, Kleckner N, Nowak MA. A rigorous measure of genome-wide genetic shuffling that takes into account crossover positions and Mendel's second law. Proc Natl Acad Sci U S A. 2019;116 (5) :1659-1668.Abstract
Comparative studies in evolutionary genetics rely critically on evaluation of the total amount of genetic shuffling that occurs during gamete production. Such studies have been hampered by the absence of a direct measure of this quantity. Existing measures consider crossing-over by simply counting the average number of crossovers per meiosis. This is qualitatively inadequate, because the positions of crossovers along a chromosome are also critical: a crossover toward the middle of a chromosome causes more shuffling than a crossover toward the tip. Moreover, traditional measures fail to consider shuffling from independent assortment of homologous chromosomes (Mendel's second law). Here, we present a rigorous measure of genome-wide shuffling that does not suffer from these limitations. We define the parameter [Formula: see text] as the probability that the alleles at two randomly chosen loci are shuffled during gamete production. This measure can be decomposed into separate contributions from crossover number and position and from independent assortment. Intrinsic implications of this metric include the fact that [Formula: see text] is larger when crossovers are more evenly spaced, which suggests a selective advantage of crossover interference. Utilization of [Formula: see text] is enabled by powerful emergent methods for determining crossover positions either cytologically or by DNA sequencing. Application of our analysis to such data from human male and female reveals that () [Formula: see text] in humans is close to its maximum possible value of 1/2 and that () this high level of shuffling is due almost entirely to independent assortment, the contribution of which is ∼30 times greater than that of crossovers.
Kleckner NE, Chatzi K, White MA, Fisher JK, Stouf M. Coordination of Growth, Chromosome Replication/Segregation, and Cell Division in . Front Microbiol. 2018;9 :1469.Abstract
Bacterial cells growing in steady state maintain a 1:1:1 relationship between an appropriate mass increase, a round of DNA replication plus sister chromosome segregation, and cell division. This is accomplished without the cell cycle engine found in eukaryotic cells. We propose here a formal logic, and an accompanying mechanism, for how such coordination could be provided in . Completion of chromosomal and divisome-related events would lead, interactively, to a "progression control complex" (PCC) which provides integrated physical coupling between sister terminus regions and the nascent septum. When a cell has both (i) achieved a sufficient mass increase, and (ii) the PCC has developed, a conformational change in the PCC occurs. This change results in "progression permission," which triggers both onset of cell division and release of terminus regions. Release of the terminus region, in turn, directly enables a next round of replication initiation via physical changes transmitted through the nucleoid. Division and initiation are then implemented, each at its own rate and timing, according to conditions present. Importantly: (i) the limiting step for progression permission may be either completion of the growth requirement or the chromosome/divisome processes required for assembly of the PCC; and, (ii) the outcome of the proposed process is granting of permission to progress, not determination of the absolute or relative timings of downstream events. This basic logic, and the accompanying mechanism, can explain coordination of events in both slow and fast growth conditions; can accommodate diverse variations and perturbations of cellular events; and is compatible with existing mathematical descriptions of the cell cycle. Also, while our proposition is specifically designed to provide 1:1:1 coordination among basic events on a "per-cell cycle" basis, it is a small step to further envision permission progression is also the target of basic growth rate control. In such a case, the rate of mass accumulation (or its equivalent) would determine the length of the interval between successive permission events and, thus, successive cell divisions and successive replication initiations.
Tessé S, Bourbon H-M, Debuchy R, Budin K, Dubois E, Liangran Z, Antoine R, Piolot T, Kleckner N, Zickler D, et al. Asy2/Mer2: an evolutionarily conserved mediator of meiotic recombination, pairing, and global chromosome compaction. Genes Dev. 2017;31 (18) :1880-1893.Abstract
Meiosis is the cellular program by which a diploid cell gives rise to haploid gametes for sexual reproduction. Meiotic progression depends on tight physical and functional coupling of recombination steps at the DNA level with specific organizational features of meiotic-prophase chromosomes. The present study reveals that every step of this coupling is mediated by a single molecule: Asy2/Mer2. We show that Mer2, identified so far only in budding and fission yeasts, is in fact evolutionarily conserved from fungi (Mer2/Rec15/Asy2/Bad42) to plants (PRD3/PAIR1) and mammals (IHO1). In yeasts, Mer2 mediates assembly of recombination-initiation complexes and double-strand breaks (DSBs). This role is conserved in the fungus However, functional analysis of 13 mutants and successive localization of Mer2 to axis, synaptonemal complex (SC), and chromatin revealed, in addition, three further important functions. First, after DSB formation, Mer2 is required for pairing by mediating homolog spatial juxtaposition, with implications for crossover (CO) patterning/interference. Second, Mer2 participates in the transfer/maintenance and release of recombination complexes to/from the SC central region. Third, after completion of recombination, potentially dependent on SUMOylation, Mer2 mediates global chromosome compaction and post-recombination chiasma development. Thus, beyond its role as a recombinosome-axis/SC linker molecule, Mer2 has important functions in relation to basic chromosome structure.
Wang S, Kleckner N, Zhang L. Crossover maturation inefficiency and aneuploidy in human female meiosis. Cell Cycle. 2017;16 (11) :1017-1019.
Gladyshev E, Kleckner N. DNA sequence homology induces cytosine-to-thymine mutation by a heterochromatin-related pathway in Neurospora. Nat Genet. 2017;49 (6) :887-894.Abstract
Most eukaryotic genomes contain substantial amounts of repetitive DNA organized in the form of constitutive heterochromatin and associated with repressive epigenetic modifications, such as H3K9me3 and C5 cytosine methylation (5mC). In the fungus Neurospora crassa, H3K9me3 and 5mC are catalyzed, respectively, by a conserved SUV39 histone methyltransferase, DIM-5, and a DNMT1-like cytosine methyltransferase, DIM-2. Here we show that DIM-2 can also mediate repeat-induced point mutation (RIP) of repetitive DNA in N. crassa. We further show that DIM-2-dependent RIP requires DIM-5, HP1, and other known heterochromatin factors, implying a role for a repeat-induced heterochromatin-related process. Our previous findings suggest that the mechanism of repeat recognition for RIP involves direct interactions between homologous double-stranded DNA (dsDNA) segments. We thus now propose that, in somatic cells, homologous dsDNA-dsDNA interactions between a small number of repeat copies can nucleate a transient heterochromatic state, which, on longer repeat arrays, may lead to the formation of constitutive heterochromatin.
Wang S, Hassold T, Hunt P, White MA, Zickler D, Kleckner N, Zhang L. Inefficient Crossover Maturation Underlies Elevated Aneuploidy in Human Female Meiosis. Cell. 2017;168 (6) :977-989.e17.Abstract
Meiosis is the cellular program that underlies gamete formation. For this program, crossovers between homologous chromosomes play an essential mechanical role to ensure regular segregation. We present a detailed study of crossover formation in human male and female meiosis, enabled by modeling analysis. Results suggest that recombination in the two sexes proceeds analogously and efficiently through most stages. However, specifically in female (but not male), ∼25% of the intermediates that should mature into crossover products actually fail to do so. Further, this "female-specific crossover maturation inefficiency" is inferred to make major contributions to the high level of chromosome mis-segregation and resultant aneuploidy that uniquely afflicts human female oocytes (e.g., giving Down syndrome). Additionally, crossover levels on different chromosomes in the same nucleus tend to co-vary, an effect attributable to global per-nucleus modulation of chromatin loop size. Maturation inefficiency could potentially reflect an evolutionary advantage of increased aneuploidy for human females.
White MA, Wang S, Zhang L, Kleckner N. Quantitative Modeling and Automated Analysis of Meiotic Recombination. Methods Mol Biol. 2017;1471 :305-323.Abstract
Many morphological features, in both physical and biological systems, exhibit spatial patterns that are specifically characterized by a tendency to occur with even spacing (in one, two, or three dimensions). The positions of crossover (CO) recombination events along meiotic chromosomes provide an interesting biological example of such an effect. In general, mechanisms that explain such patterns may (a) be mechanically based, (b) occur by a reaction-diffusion mechanism in which macroscopic mechanical effects are irrelevant, or (c) involve a combination of both types of effects. We have proposed that meiotic CO patterns arise by a mechanical mechanism, have developed mathematical expressions for such a process based on a particular physical system with analogous properties (the so-called beam-film model), and have shown that the beam-film model can very accurately explain experimental CO patterns as a function of the values of specific defined parameters. Importantly, the mathematical expressions of the beam-film model can apply quite generally to any mechanism, whether it involves mechanical components or not, as long as its logic and component features correspond to those of the beam-film system. Furthermore, via its various parameters, the beam-film model discretizes the patterning process into specific components. Thus, the model can be used to explore the theoretically predicted effects of various types of changes in the patterning process. Such predictions can expand detailed understanding of the bases for various biological effects. We present here a new MATLAB program that implements the mathematical expressions of the beam-film model with increased robustness and accessibility as compared to programs presented previously. As in previous versions, the presented program permits both (1) simulation of predicted CO positions along chromosomes of a test population and (2) easy analysis of CO positions, both for experimental data sets and for data sets resulting from simulations. The goal of the current presentation is to make these approaches more readily accessible to a wider audience of researchers. Also, the program is easily modified, and we encourage interested users to make changes to suit their specific needs. A link to the program is available on the Kleckner laboratory website: .
Gladyshev E, Kleckner N. Recombination-independent recognition of DNA homology for repeat-induced point mutation. Curr Genet. 2017;63 (3) :389-400.Abstract
Numerous cytogenetic observations have shown that homologous chromosomes (or individual chromosomal loci) can engage in specific pairing interactions in the apparent absence of DNA breakage and recombination, suggesting that canonical recombination-mediated mechanisms may not be the only option for sensing DNA/DNA homology. One proposed mechanism for such recombination-independent homology recognition involves direct contacts between intact double-stranded DNA molecules. The strongest in vivo evidence for the existence of such a mechanism is provided by the phenomena of homology-directed DNA modifications in fungi, known as repeat-induced point mutation (RIP, discovered in Neurospora crassa) and methylation-induced premeiotically (MIP, discovered in Ascobolus immersus). In principle, Neurospora RIP can detect the presence of gene-sized DNA duplications irrespectively of their origin, underlying nucleotide sequence, coding capacity or relative, as well as absolute positions in the genome. Once detected, both sequence copies are altered by numerous cytosine-to-thymine (C-to-T) mutations that extend specifically over the duplicated region. We have recently shown that Neurospora RIP does not require MEI-3, the only RecA/Rad51 protein in this organism, consistent with a recombination-independent mechanism. Using an ultra-sensitive assay for RIP mutation, we have defined additional features of this process. We have shown that RIP can detect short islands of homology of only three base-pairs as long as many such islands are arrayed with a periodicity of 11 or 12 base-pairs along a pair of DNA molecules. While the presence of perfect homology is advantageous, it is not required: chromosomal segments with overall sequence identity of only 35-36 % can still be recognized by RIP. Importantly, in order for this process to work efficiently, participating DNA molecules must be able to co-align along their lengths. Based on these findings, we have proposed a model, in which sequence homology is detected by direct interactions between slightly-extended double-stranded DNAs. As a next step, it will be important to determine if the uncovered principles also apply to other processes that involve recombination-independent interactions between homologous chromosomal loci in vivo as well as to protein-free DNA/DNA interactions that were recently observed under biologically relevant conditions in vitro.
Liu C, Danilowicz C, Kleckner N, Prentiss M. Single molecule identification of homology-dependent interactions between long ssRNA and dsDNA. Nucleic Acids Res. 2017;45 (2) :894-901.Abstract
Long non-coding RNAs (lncRNAs) are prominently associated with chromosomes in an ever-increasing diversity of roles. To provide further insight into the potential nature of these associations, we have explored, for the first time, the interaction of long single-stranded (ss) RNAs with cognate homologous double-stranded (ds) DNA in vitro Using magnetic tweezers, we measured the effects of ssRNA on force extension curves for dsDNA. We observe that the presence of ssRNA impedes the extension of dsDNA, specifically at low forces, dependent on homology between the RNA and DNA species, and dependent on ssRNA lengths (≥1 kb). The observed effect also depends on the concentration of ssRNA and is abolished by overstretching of the dsDNA. These findings show that significant homologous contacts can occur between long ssRNA and dsDNA in the absence of protein and that these contacts alter the mechanical properties of the dsDNA. We propose that long ssRNA interacts paranemically with long dsDNA via periodic short homologous interactions, e.g. mediated by RNA/DNA triplex-formation, and that dsDNA extension is impeded by formation of RNA secondary structure in the intervening unbound regions. Analogous interactions in vivo would permit lncRNAs to mediate the juxtaposition of two or more DNA regions on the same or different chromosomes.
Zheng H, Ho P-Y, Jiang M, Tang B, Liu W, Li D, Yu X, Kleckner NE, Amir A, Liu C. Interrogating the Escherichia coli cell cycle by cell dimension perturbations. Proc Natl Acad Sci U S A. 2016;113 (52) :15000-15005.Abstract
Bacteria tightly regulate and coordinate the various events in their cell cycles to duplicate themselves accurately and to control their cell sizes. Growth of Escherichia coli, in particular, follows a relation known as Schaechter's growth law. This law says that the average cell volume scales exponentially with growth rate, with a scaling exponent equal to the time from initiation of a round of DNA replication to the cell division at which the corresponding sister chromosomes segregate. Here, we sought to test the robustness of the growth law to systematic perturbations in cell dimensions achieved by varying the expression levels of mreB and ftsZ We found that decreasing the mreB level resulted in increased cell width, with little change in cell length, whereas decreasing the ftsZ level resulted in increased cell length. Furthermore, the time from replication termination to cell division increased with the perturbed dimension in both cases. Moreover, the growth law remained valid over a range of growth conditions and dimension perturbations. The growth law can be quantitatively interpreted as a consequence of a tight coupling of cell division to replication initiation. Thus, its robustness to perturbations in cell dimensions strongly supports models in which the timing of replication initiation governs that of cell division, and cell volume is the key phenomenological variable governing the timing of replication initiation. These conclusions are discussed in the context of our recently proposed "adder-per-origin" model, in which cells add a constant volume per origin between initiations and divide a constant time after initiation.
Kleckner N. Questions and Assays. Genetics. 2016;204 (4) :1343-1349.Abstract
The Thomas Hunt Morgan Medal is awarded to an individual Genetics Society of America member for lifetime achievement in the field of genetics. It recognizes the full body of work of an exceptional geneticist. The 2016 recipient is Nancy Kleckner, who has made many significant contributions to our understanding of chromosomes and the mechanisms of inheritance. Kleckner has made seminal achievements in several different research areas, including bacterial transposition, chromosome organization, and meiosis. She has repeatedly combined traditional genetic approaches with molecular biology, microscopy, physics, and modeling-unprecedented applications of these methods at the time, but which have now become commonplace. Indeed, she is widely recognized as one of the leaders in bringing meiosis research into the modern era. Notably, her laboratory played a key role in elucidating the mechanism that initiates meiotic recombination, has helped to decipher the "strand gymnastics" of recombination, and is beginning to provide insight into the enigmatic phenomenon of crossover interference.
Bomblies K, Jones G, Franklin C, Zickler D, Kleckner N. The challenge of evolving stable polyploidy: could an increase in "crossover interference distance" play a central role?. Chromosoma. 2016;125 (2) :287-300.Abstract
Whole genome duplication is a prominent feature of many highly evolved organisms, especially plants. When duplications occur within species, they yield genomes comprising multiple identical or very similar copies of each chromosome ("autopolyploids"). Such genomes face special challenges during meiosis, the specialized cellular program that underlies gamete formation for sexual reproduction. Comparisons between newly formed (neo)-autotetraploids and fully evolved autotetraploids suggest that these challenges are solved by specific restrictions on the positions of crossover recombination events and, thus, the positions of chiasmata, which govern the segregation of homologs at the first meiotic division. We propose that a critical feature in the evolution of these more effective chiasma patterns is an increase in the effective distance of meiotic crossover interference, which plays a central role in crossover positioning. We discuss the findings in several organisms, including the recent identification of relevant genes in Arabidopsis arenosa, that support this hypothesis.
Zickler D, Kleckner N. A few of our favorite things: Pairing, the bouquet, crossover interference and evolution of meiosis. Semin Cell Dev Biol. 2016;54 :135-48.Abstract
Meiosis presents many important mysteries that await elucidation. Here we discuss two such aspects. First, we consider how the current meiotic program might have evolved. We emphasize the central feature of this program: how homologous chromosomes find one another ("pair") so as to create the connections required for their regular segregation at Meiosis I. Points of emphasis include the facts that: (i) the classical "bouquet stage" is not required for initial homolog contacts in the current evolved meiotic program; and (ii) diverse observations point to commonality between molecules that mediate meiotic inter-homolog interactions and molecules that are integral to centromeres and/or to microtubule organizing centers (a.k.a. spindle pole bodies or centrosomes). Second, we provide an overview of the classical phenomenon of crossover (CO) interference in an effort to bridge the gap between description on the one hand versus logic and mechanism on the other.
Yoon S-W, Lee M-S, Xaver M, Zhang L, Hong S-G, Kong Y-J, Cho H-R, Kleckner N, Kim KP. Meiotic prophase roles of Rec8 in crossover recombination and chromosome structure. Nucleic Acids Res. 2016;44 (19) :9296-9314.Abstract
Rec8 is a prominent component of the meiotic prophase chromosome axis that mediates sister chromatid cohesion, homologous recombination and chromosome synapsis. Here, we explore the prophase roles of Rec8. (i) During the meiotic divisions, Rec8 phosphorylation mediates its separase-mediated cleavage. We show here that such cleavage plays no detectable role for chromosomal events of prophase. (ii) We have analyzed in detail three rec8 phospho-mutants, with 6, 24 or 29 alanine substitutions. A distinct 'separation of function' phenotype is revealed. In the mutants, axis formation and recombination initiation are normal, as is non-crossover recombination; in contrast, crossover (CO)-related events are defective. Moreover, the severities of these defects increase coordinately with the number of substitution mutations, consistent with the possibility that global phosphorylation of Rec8 is important for these effects. (iii) We have analyzed the roles of three kinases that phosphorylate Rec8 during prophase. Timed inhibition of Dbf4-dependent Cdc7 kinase confers defects concordant with rec8 phospho-mutant phenotypes. Inhibition of Hrr25 or Cdc5/polo-like kinase does not. Our results suggest that Rec8's prophase function, independently of cohesin cleavage, contributes to CO-specific events in conjunction with the maintenance of homolog bias at the leptotene/zygotene transition of meiotic prophase.
Gladyshev E, Kleckner N. Recombination-Independent Recognition of DNA Homology for Repeat-Induced Point Mutation (RIP) Is Modulated by the Underlying Nucleotide Sequence. PLoS Genet. 2016;12 (5) :e1006015.Abstract
Haploid germline nuclei of many filamentous fungi have the capacity to detect homologous nucleotide sequences present on the same or different chromosomes. Once recognized, such sequences can undergo cytosine methylation or cytosine-to-thymine mutation specifically over the extent of shared homology. In Neurospora crassa this process is known as Repeat-Induced Point mutation (RIP). Previously, we showed that RIP did not require MEI-3, the only RecA homolog in Neurospora, and that it could detect homologous trinucleotides interspersed with a matching periodicity of 11 or 12 base-pairs along participating chromosomal segments. This pattern was consistent with a mechanism of homology recognition that involved direct interactions between co-aligned double-stranded (ds) DNA molecules, where sequence-specific dsDNA/dsDNA contacts could be established using no more than one triplet per turn. In the present study we have further explored the DNA sequence requirements for RIP. In our previous work, interspersed homologies were always examined in the context of a relatively long adjoining region of perfect homology. Using a new repeat system lacking this strong interaction, we now show that interspersed homologies with overall sequence identity of only 36% can be efficiently detected by RIP in the absence of any perfect homology. Furthermore, in this new system, where the total amount of homology is near the critical threshold required for RIP, the nucleotide composition of participating DNA molecules is identified as an important factor. Our results specifically pinpoint the triplet 5'-GAC-3' as a particularly efficient unit of homology recognition. Finally, we present experimental evidence that the process of homology sensing can be uncoupled from the downstream mutation. Taken together, our results advance the notion that sequence information can be compared directly between double-stranded DNA molecules during RIP and, potentially, in other processes where homologous pairing of intact DNA molecules is observed.
Liang Z, Zickler D, Prentiss M, Chang FS, Witz G, Maeshima K, Kleckner N. Chromosomes Progress to Metaphase in Multiple Discrete Steps via Global Compaction/Expansion Cycles. Cell. 2015;161 (5) :1124-37.Abstract
Mammalian mitotic chromosome morphogenesis was analyzed by 4D live-cell and snapshot deconvolution fluorescence imaging. Prophase chromosomes, whose organization was previously unknown, are revealed to comprise co-oriented sister linear loop arrays displayed along a single, peripheral, regularly kinked topoisomerase II/cohesin/condensin II axis. Thereafter, rather than smooth, progressive compaction as generally envisioned, progression to metaphase is a discontinuous process involving chromosome expansion as well as compaction. At late prophase, dependent on topoisomerase II and with concomitant cohesin release, chromosomes expand, axes split and straighten, and chromatin loops transit to a radial disposition around now-central axes. Finally, chromosomes globally compact, giving the metaphase state. These patterns are consistent with the hypothesis that the molecular events of chromosome morphogenesis are governed by accumulation and release of chromosome stress, created by chromatin compaction and expansion. Chromosome state could evolve analogously throughout the cell cycle.