Publications

2006
Chu T, Chiu M, Zhang E, Kunes S. A C-terminal motif targets Hedgehog to axons, coordinating assembly of the Drosophila eye and brain. Developmental cell. 2006;10 (5) :635-46.Abstract

The developmental signal Hedgehog is distributed to two receptive fields by the photoreceptor neurons of the developing Drosophila retina. Delivery to the retina propagates ommatidial development across a precursor field. Transport along photoreceptor axons induces the development of postsynaptic neurons in the brain. Hedgehog is composed of N-terminal and C-terminal domains that dissociate in an autoproteolytic reaction that attaches cholesterol to the N-terminal cleavage product. Here, we show that the N-terminal domain is targeted to the retina when synthesized in the absence of the C-terminal domain. In contrast to studies that have focused on cholesterol as a determinant of subcellular localization, we find that the C-terminal domain harbors a conserved motif that overrides retinal localization, sending most of the autocleavage products into vesicles bound for growth cones or synapses. Competition between targeting signals at the opposite ends of Hedgehog apparently controls the match between eye and brain development.

Ashraf SI, Kunes S. A trace of silence: memory and microRNA at the synapse. Current opinion in neurobiology. 2006;16 (5) :535-9.Abstract

Identifying the neural circuits that mediate particular behaviors and uncovering their plasticity is an endeavor at the heart of neuroscience. This effort is allied with the elucidation of plasticity mechanisms, because the molecular determinants of plasticity can be markers for the neurons and synapses that are modified by experience. Of particular interest is protein synthesis localized to the synapse, which might establish and maintain the stable modification of neuronal properties, including the pattern and strength of synaptic connections. Recent studies reveal that microRNAs and the RISC pathway regulate synaptic protein synthesis. Is synaptic activity of the RISC pathway a molecular signature of memory?

Kunes S, Chu T, Chiu M, Zhang E. A C-terminal motif targets hedgehog to axons, coordinating assembly of the Drosophila eye and brain. Developmental Cell. 2006;10 (5) :635-46. WebsiteAbstract

The developmental signal Hedgehog is distributed to two receptive fields by the photoreceptor neurons of the developing Drosophila retina. Delivery to the retina propagates ommatidial development across a precursor field. Transport along photoreceptor axons induces the development of postsynaptic neurons in the brain. Hedgehog is composed of N-terminal and C-terminal domains that dissociate in an autoproteolytic reaction that attaches cholesterol to the N-terminal cleavage product. Here, we show that the N-terminal domain is targeted to the retina when synthesized in the absence of the C-terminal domain. In contrast to studies that have focused on cholesterol as a determinant of subcellular localization, we find that the C-terminal domain harbors a conserved motif that overrides retinal localization, sending most of the autocleavage products into vesicles bound for growth cones or synapses. Competition between targeting signals at the opposite ends of Hedgehog apparently controls the match between eye and brain development.

2004
Dearborn R, Kunes S. An axon scaffold induced by retinal axons directs glia to destinations in the Drosophila optic lobe. Development. 2004;131 (10) :2291-303.Abstract
In the developing Drosophila visual system, glia migrate into stereotyped positions within the photoreceptor axon target fields and provide positional information for photoreceptor axon guidance. Glial migration conversely depends on photoreceptor axons, as glia precursors stall in their progenitor zones when retinal innervation is eliminated. Our results support the view that this requirement for retinal innervation reflects a role of photoreceptor axons in the establishment of an axonal scaffold that guides glial cell migration. Optic lobe cortical axons extend from dorsal and ventral positions towards incoming photoreceptor axons and establish at least four separate pathways that direct glia to proper destinations in the optic lobe neuropiles. Photoreceptor axons induce the outgrowth of these scaffold axons. Most glia do not migrate when the scaffold axons are missing. Moreover, glia follow the aberrant pathways of scaffold axons that project aberrantly, as occurs in the mutant dachsous. The local absence of glia is accompanied by extensive apoptosis of optic lobe cortical neurons. These observations reveal a mechanism for coordinating photoreceptor axon arrival in the brain with the distribution of glia to multiple target destinations, where they are required for axon guidance and neuronal survival.
Yang H, Kunes S. Nonvesicular release of acetylcholine is required for axon targeting in the Drosophila visual system. Proc Natl Acad Sci U S A. 2004;101 (42) :15213-8.Abstract
We report evidence for a developmental role of acetylcholine in axon pathfinding in the Drosophila visual system. Acetylcholine was detected on photoreceptor axons during their navigation to target sites in the brain, a time well before the formation of functional synapses. The pattern of photoreceptor axon projections was severely disrupted when acetylcholine synthesis or metabolism was altered or eliminated, or when transgenic alpha-bungarotoxin, a nicotinic acetylcholine receptor antagonist, was expressed in the developing eye or brain. The requirement for acetylcholine signaling exists before photoreceptor neurons form synaptic connections and does not require the function of vesicular acetylcholine transporter protein. That this early effect of acetylcholine is mediated through nonvesicular release is further supported by the observation that transgenic expression of tetanus toxin, a blocker of neurotransmitter release via synaptic vesicles, did not cause similar photoreceptor axon projection defects. These observations support the notion that a form of acetylcholine secretion mediates the behavior of growth cones during axon pathfinding.
Dearborn R, Kunes S. An axon scaffold induced by retinal axons directs glia to destinations in the Drosophila optic lobe. Development (Cambridge, England). 2004;131 (10) :2291-303.Abstract

In the developing Drosophila visual system, glia migrate into stereotyped positions within the photoreceptor axon target fields and provide positional information for photoreceptor axon guidance. Glial migration conversely depends on photoreceptor axons, as glia precursors stall in their progenitor zones when retinal innervation is eliminated. Our results support the view that this requirement for retinal innervation reflects a role of photoreceptor axons in the establishment of an axonal scaffold that guides glial cell migration. Optic lobe cortical axons extend from dorsal and ventral positions towards incoming photoreceptor axons and establish at least four separate pathways that direct glia to proper destinations in the optic lobe neuropiles. Photoreceptor axons induce the outgrowth of these scaffold axons. Most glia do not migrate when the scaffold axons are missing. Moreover, glia follow the aberrant pathways of scaffold axons that project aberrantly, as occurs in the mutant dachsous. The local absence of glia is accompanied by extensive apoptosis of optic lobe cortical neurons. These observations reveal a mechanism for coordinating photoreceptor axon arrival in the brain with the distribution of glia to multiple target destinations, where they are required for axon guidance and neuronal survival.

Yang H, Kunes S. Nonvesicular release of acetylcholine is required for axon targeting in the Drosophila visual system. Proceedings of the National Academy of Sciences of the United States of America. 2004;101 (42) :15213-8.Abstract

We report evidence for a developmental role of acetylcholine in axon pathfinding in the Drosophila visual system. Acetylcholine was detected on photoreceptor axons during their navigation to target sites in the brain, a time well before the formation of functional synapses. The pattern of photoreceptor axon projections was severely disrupted when acetylcholine synthesis or metabolism was altered or eliminated, or when transgenic alpha-bungarotoxin, a nicotinic acetylcholine receptor antagonist, was expressed in the developing eye or brain. The requirement for acetylcholine signaling exists before photoreceptor neurons form synaptic connections and does not require the function of vesicular acetylcholine transporter protein. That this early effect of acetylcholine is mediated through nonvesicular release is further supported by the observation that transgenic expression of tetanus toxin, a blocker of neurotransmitter release via synaptic vesicles, did not cause similar photoreceptor axon projection defects. These observations support the notion that a form of acetylcholine secretion mediates the behavior of growth cones during axon pathfinding.

2002
Dearborn R, He Q, Kunes S, Dai Y. Eph receptor tyrosine kinase-mediated formation of a topographic map in the Drosophila visual system. J Neurosci. 2002;22 (4) :1338-49.Abstract
Roles for Eph receptor tyrosine kinase signaling in the formation of topographic patterns of axonal connectivity have been well established in vertebrate visual systems. Here we describe a role for a Drosophila Eph receptor tyrosine kinase (EPH) in the control of photoreceptor axon and cortical axon topography in the developing visual system. Although uniform across the developing eye, EPH is expressed in a concentration gradient appropriate for conveying positional information during cortical axon guidance in the second-order optic ganglion, the medulla. Disruption of this graded pattern of EPH activity by double-stranded RNA interference or by ectopic expression of wild-type or dominant-negative transgenes perturbed the establishment of medulla cortical axon topography. In addition, abnormal midline fasciculation of photoreceptor axons resulted from the eye-specific expression of the dominant-negative EPH transgene. These observations reveal a conserved role for Eph kinases as determinants of topographic map formation in vertebrates and invertebrates.
Dearborn R, He Q, Kunes S, Dai Y. Eph receptor tyrosine kinase-mediated formation of a topographic map in the Drosophila visual system. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2002;22 (4) :1338-49.Abstract

Roles for Eph receptor tyrosine kinase signaling in the formation of topographic patterns of axonal connectivity have been well established in vertebrate visual systems. Here we describe a role for a Drosophila Eph receptor tyrosine kinase (EPH) in the control of photoreceptor axon and cortical axon topography in the developing visual system. Although uniform across the developing eye, EPH is expressed in a concentration gradient appropriate for conveying positional information during cortical axon guidance in the second-order optic ganglion, the medulla. Disruption of this graded pattern of EPH activity by double-stranded RNA interference or by ectopic expression of wild-type or dominant-negative transgenes perturbed the establishment of medulla cortical axon topography. In addition, abnormal midline fasciculation of photoreceptor axons resulted from the eye-specific expression of the dominant-negative EPH transgene. These observations reveal a conserved role for Eph kinases as determinants of topographic map formation in vertebrates and invertebrates.

2000
Kunes S. Axonal signals in the assembly of neural circuitry. Current opinion in neurobiology. 2000;10 (1) :58-62.Abstract

Recent work in Drosophila and rodents has revealed that proteins transported along axons and delivered to pathway and target cell populations play important roles in the construction of neural circuitry. Interestingly, the parallels between these systems may extend to the identities of some of the molecules involved.

Song Y, Chung S, Kunes S. Combgap relays wingless signal reception to the determination of cortical cell fate in the Drosophila visual system. Molecular cell. 2000;6 (5) :1143-54.Abstract

The dorsoventral axis of the Drosophila visual cortex is patterned by nonautonomous signals expressed at its dorsal and ventral margins. wingless (wg) expression at the margins induces decapentaplegic (dpp), optomotor blind (omb), and aristaless in adjacent domains. We show that Combgap, a zinc finger protein, represses Wg target gene expression in the visual cortex. Wg signal reception downregulates combgap expression and derepresses target gene transcription. Combgap participates in a Hedgehog-controlled circuit in the developing wing and leg by regulating the expression of Cubitus interruptus. Combgap is thus a tissue-specific relay between Wingless and its target genes for the determination of cell fate in the visual cortex.

1999
Kunes S. Stop or go in the target zone. Neuron. 1999;22 (4) :639-40.Abstract
n/a
1998
Huang Z, Shilo BZ, Kunes S. A retinal axon fascicle uses spitz, an EGF receptor ligand, to construct a synaptic cartridge in the brain of Drosophila. Cell. 1998;95 (5) :693-703.Abstract

Photoreceptor axons arriving in the Drosophila brain organize their postsynaptic target field into a precise array of five neuron "cartridge" ensembles. Here we show that Hedgehog, an initial inductive signal transported along retinal axons from the developing eye, induces postsynaptic precursor cells to express the Drosophila homolog of the epidermal growth factor receptor (EGFR). The EGFR ligand Spitz, a signal for ommatidial assembly in the compound eye, is transported to retinal axon termini in the brain where it acts as a local cue for the recruitment of five cells into a cartridge ensemble. Hedgehog and Spitz thus bring about the concerted assembly of ommatidial and synaptic cartridge units, imposing the "neurocrystalline" order of the compound eye on the postsynaptic target field.

Huang Z, Kunes S. Signals transmitted along retinal axons in Drosophila: Hedgehog signal reception and the cell circuitry of lamina cartridge assembly. Development (Cambridge, England). 1998;125 (19) :3753-64.Abstract

The arrival of retinal axons in the brain of Drosophila triggers the assembly of glial and neuronal precursors into a 'neurocrystalline' array of lamina synaptic 'cartridges'. Hedgehog, a secreted protein, is an inductive signal delivered by retinal axons for the initial steps of lamina differentiation. In the development of many tissues, Hedgehog acts in a signal relay cascade via the induction of secondary secreted factors. Here we show that lamina neuronal precursors respond directly to Hedgehog signal reception by entering S-phase, a step that is controlled by the Hedgehog-dependent transcriptional regulator Cubitus interruptus. The terminal differentiation of neuronal precursors and the migration and differentiation of glia appear to be controlled by other retinal axon-mediated signals. Thus retinal axons impose a program of developmental events on their postsynaptic field utilizing distinct signals for different precursor populations.

1996
Huang Z, Kunes S. Hedgehog, transmitted along retinal axons, triggers neurogenesis in the developing visual centers of the Drosophila brain. Cell. 1996;86 (3) :411-22.Abstract

The development of the visual centers of the Drosophila brain is tightly regulated by the ingrowth of retinal axons from the developing eye. In the first optic ganglion, the lamina, arriving retinal axons trigger the precursors of their synaptic partners to complete a final cell division and commence neural differentiation. The secreted product of the hedgehog gene regulates the temporal assembly of photoreceptor precursor cells into ommatidial clusters in the compound eye. Here, we show that Hedgehog is transmitted along the retinal axons to serve as the inductive signal in the brain. Hedgehog acts in the first of two retinal axon-mediated steps in the assembly of lamina synaptic cartridges. These observations provide a novel insight into the molecular interactions that orchestrate the assembly of neural precursor cells into precise synaptic circuits.

1994
Kaphingst K, Kunes S. Pattern formation in the visual centers of the Drosophila brain: wingless acts via decapentaplegic to specify the dorsoventral axis. Cell. 1994;78 (3) :437-48.Abstract

A stepwise morphogenetic program of cell division and cell fate determination generates the precise neuronal architecture of the visual centers of the Drosophila brain. Here, we show that the assembly of the target structure for ingrowing retinal axons involves cell-cell interactions mediated by the secreted product of the wingless (wg) gene. wg, expressed in two symmetrical domains of the developing brain, is required to induce and maintain the expression of the secreted decapentaplegic (dpp) gene product in adjacent domains. wg and dpp function are required for target field neurons to adopt their proper fates and to send axons into the developing target structure. These observations implicate a cascade of diffusible signaling molecules in patterning the visual centers of the Drosophila brain.

1993
Kunes S, Steller H. Topography in the Drosophila visual system. Current opinion in neurobiology. 1993;3 (1) :53-9.Abstract

The Drosophila visual system offers an excellent opportunity for studying the development of proper retinotopic connections at the level of individual identifiable cell types. Recent work suggests that, despite obvious anatomical and developmental differences, at least some of the general developmental strategies operating in the Drosophila visual system parallel observations made previously for vertebrates. The extensive repertoire of powerful genetic and molecular techniques available in Drosophila can now be directed towards determining whether these parallels also reflect similarities in the underlying molecular mechanisms.

Kunes S, Wilson C, Steller H. Independent guidance of retinal axons in the developing visual system of Drosophila. The Journal of neuroscience : the official journal of the Society for Neuroscience. 1993;13 (2) :752-67.Abstract

The development of the adult visual system of Drosophila requires the establishment of precise retinotopic connections between retinal photoreceptor cell axons and their synaptic partners in the optic lobe of the brain. To assess the role of axon-axon interactions in retinal axon guidance, we used genetic methods to disrupt the normal spatiotemporal order of retinal axon ingrowth. We examined retinal axon projections to the developing first optic ganglion, the lamina, in two mutants in which reduced numbers of ommatidia develop in the eye imaginal disk. We find that in the developing lamina of these mutants, sine oculis and Ellipse, retinal axons project to proper dorsoventral positions despite the absence of the usual array of neighboring retinal axons. In a second approach, we examined animals that were somatic mosaics for the mutation, glass. In glass- animals, retinal axons project aberrantly and the larval optic nerve is absent. We find that in the developing lamina of glass mosaic animals, wild-type retinal axons project to proper dorsoventral positions despite the misrouted projections of neighboring glass- retinal axons. In addition, wild-type retinal axons project normally in the absence of the larval optic nerve, indicating that the latter is not an essential pioneer for retinal axon navigation. Our observations support the proposal that axon fascicles can make at least some pathfinding decisions independently of other retinal axon fascicles. We suggest that positional guidance cues that might label axon pathways and target destinations contribute to retinotopic pattern formation in the Drosophila visual system.

1991
Kunes S, Steller H. Ablation of Drosophila photoreceptor cells by conditional expression of a toxin gene. Genes & development. 1991;5 (6) :970-83.Abstract

We have used toxin-mediated ablation to study some aspects of visual system development in Drosophila melanogaster. To devise a method that permits the conditional expression of a cellular toxin, we introduced an amber mutation into the diphtheria toxin-A-chain gene. In transgenic animals, this toxin gene can be activated by providing the gene for an amber suppressor tRNA. By coupling this toxin gene to the photoreceptor cell-specific promoter of the chaoptic gene, photoreceptor cells could be specifically ablated during development. Photoreceptor cell-specific markers normally activated during pupal development failed to appear after midpupation. Photoreceptor cells were absent from the retinas of adult flies at eclosion. We have assessed the consequences of photoreceptor cell ablation for eye and optic lobe development. We suggest that the larval photoreceptor nerve is not essential, in the late larval stages, for retinula photoreceptor cell axons to achieve their proper projection pattern in the brain. Moreover, while retinula photoreceptor innervation is initially required for the development of normal optic ganglia, the ablation of these cells in midpupation has no discernible effect. This approach to cell-specific ablation should be generally applicable to the study of cellular functions in development and behavior.

1990
Kunes S, Botstein D, Fox MS. Synapsis-mediated fusion of free DNA ends forms inverted dimer plasmids in yeast. Genetics. 1990;124 (1) :67-80.Abstract

When yeast (Saccharomyces cerevisiae) is transformed with linearized plasmid DNA and the ends of the plasmid do not share homology with the yeast genome, circular inverted (head-to-head) dimer plasmids are the principal product of repair. By measurements of the DNA concentration dependence of transformation with a linearized plasmid, and by transformation with mixtures of genetically marked plasmids, we show that two plasmid molecules are required to form an inverted dimer plasmid. Several observations suggest that homologous pairing accounts for the head-to-head joining of the two plasmid molecules. First, an enhanced frequency of homologous recombination is detected when genetically marked plasmids undergo end-to-end fusion. Second, when a plasmid is linearized within an inverted repeat, such that its ends could undergo head-to-tail homologous pairing, it is repaired by intramolecular head-to-tail joining. Last, in the joining of homologous linearized plasmids of different length, a shorter molecule can acquire a longer plasmid end by homologous recombination. The formation of inverted dimer plasmids may be related to some forms of chromosomal rearrangement. These might include the fusion of broken sister chromatids in the bridge-breakage-fusion cycle and the head-to-head duplication of genomic DNA at the sites of gene amplifications.

Pages