The N400 in silico: A Review of Computational Models


Nour Eddine, S., Brothers, T., & Kuperberg, G. R. (In Press). The N400 in silico: A Review of Computational Models. In K. D. Federmeier (Ed.), Psychology of Learning and Motivation (Vol. 76) . Academic Press.
Full Text927 KB


The N400 event-related brain potential is elicited by each word in a sentence and offers an important window into the mechanisms of real-time language comprehension. Since the 1980s, studies investigating the N400 have expanded our understanding of how bottom-up linguistic inputs interact with top-down contextual constraints. More recently, a growing body of computational modeling research has aimed to formalize theoretical accounts of the N400 to better understand the neural and functional basis of this component. Here, we provide a comprehensive review of this literature. We discuss “word-level” models that focus on the N400’s sensitivity to lexical factors and simple priming manipulations, as well as more recent sentence-level models that explain its sensitivity to broader context. We discuss each model’s insights and limitations in relation to a set of cognitive and biological constraints that have informed our understanding of language comprehension and the N400 over the past few decades. We then review a novel computational model of the N400 that is based on the principles of predictive coding, which can accurately simulate both word-level and sentence-level phenomena. In this predictive coding account, the N400 is conceptualized as the magnitude of lexico-semantic prediction error produced by incoming words during the process of inferring their meaning. Finally, we highlight important directions for future research, including a discussion of how these computational models can be expanded to explain language-related ERP effects outside the N400 time window, and variation in N400 modulation across different populations.

Last updated on 04/13/2022