Separate streams or probabilistic inference? What the N400 can tell us about the comprehension of events

Date Published:

2016

Abstract:

Since the early 2000s, several ERP studies have challenged the assumption that we always use syntactic contextual information to influence semantic processing of incoming words, as reflected by the N400 component. One approach for explaining these findings is to posit distinct semantic and syntactic processing mechanisms, each with distinct time courses. While this approach can explain specific datasets, it cannot account for the wider body of findings. I propose an alternative explanation: a dynamic generative framework in which our goal is to infer the underlying event that best explains the set of inputs encountered at any given time. Within this framework, combinations of semantic and syntactic cues with varying reliabilities are used as evidence to weight probabilistic hypotheses about this event. I further argue that the computational principles of this framework can be extended to understand how we infer situation models during discourse comprehension, and intended messages during spoken communication.

Full text

Last updated on 08/15/2017