Publications by Year: 2020

2020
Sharpe, V., Weber, K., & Kuperberg, G. R. (2020). Impairments in probabilistic prediction and Bayesian learning can explain reduced neural semantic priming in schizophrenia. Schizophrenia Bulletin , 46 (6), 1558-1566.Abstract

It has been proposed that abnormalities in probabilistic prediction and dynamic belief updating explain multiple features of schizophrenia. Here, we used EEG to ask whether these abnormalities can account for the well-established reduction in semantic priming observed in schizophrenia under non-automatic conditions. We isolated predictive contributions to the neural semantic priming effect by manipulating the prime’s predictive validity and minimizing retroactive semantic matching mechanisms. We additionally examined the link between prediction and learning using a Bayesian model that probed dynamic belief updating as participants adapted to the increase in predictive validity. We found that patients were less likely than healthy controls to use the prime to predictively facilitate semantic processing on the target, resulting in a reduced N400 effect. Moreover, the trial-by-trial output of our Bayesian computational model explained between-group differences in trial-by-trial N400 amplitudes as participants transitioned from conditions of lower to higher predictive validity. These findings suggest that, compared to healthy controls, people with schizophrenia are less able to mobilize predictive mechanisms to facilitate processing at the earliest stages of accessing the meanings of incoming words. This deficit may be linked to a failure to adapt to changes in the broader environment. This reciprocal relationship between impairments in probabilistic prediction and Bayesian learning/adaptation may drive a vicious cycle that maintains cognitive disturbances in schizophrenia.

Full Text Supplementary Materials
Wang, L., Wlotko, E., Alexander, E., Schoot, L., Kim, M., Warnke, L., & Kuperberg, G. (2020). Neural evidence for the prediction of animacy features during language comprehension: Evidence from MEG and EEG Representational Similarity Analysis. Journal of Neuroscience , 40 (16), 3278-3291.Abstract

It has been proposed that people can generate probabilistic predictions at multiple levels of representation during language comprehension. We used magnetoencephalography (MEG) and electroencephalography (EEG), in combination with representational similarity analysis, to seek neural evidence for the prediction of animacy features. In two studies, MEG and EEG activity was measured as human participants (both sexes) read three-sentence scenarios. Verbs in the final sentences constrained for either animate or inanimate semantic features of upcoming nouns, and the broader discourse context constrained for either a specific noun or for multiple nouns belonging to the same animacy category. We quantified the similarity between spatial patterns of brain activity following the verbs until just before the presentation of the nouns. The MEG and EEG datasets revealed converging evidence that the similarity between spatial patterns of neural activity following animate-constraining verbs was greater than following inanimate-constraining verbs. This effect could not be explained by lexical-semantic processing of the verbs themselves. We therefore suggest that it reflected the inherent difference in the semantic similarity structure of the predicted animate and inanimate nouns. Moreover, the effect was present regardless of whether a specific word could be predicted, providing strong evidence for the prediction of coarse-grained semantic features that goes beyond the prediction of individual words.

Full Text
Brothers, T., Wlotko, E. W., Warnke, L., & Kuperberg, G. R. (2020). Going the extra mile: Effects of discourse context on two late positivities during language comprehension. Neurobiology of Language , 1 (1), 135-160.Abstract
During language comprehension, online neural processing is strongly influenced by the constraints of the prior context. While the N400 ERP response (300-500ms) is known to be sensitive to a word’s semantic predictability, less is known about a set of late positive-going ERP responses (600-1000ms) that can be elicited when an incoming word violates strong predictions about upcoming content (late frontal positivity) or about what is possible given the prior context (late posterior positivity/P600). Across three experiments, we systematically manipulated the length of the prior context and the source of lexical constraint to determine their influence on comprehenders’ online neural responses to these two types of prediction violations. In Experiment 1, within minimal contexts, both lexical prediction violations and semantically anomalous words produced a larger N400 than expected continuations (James unlocked the door/laptop/gardener), but no late positive effects were observed. Critically, the late posterior positivity/P600 to semantic anomalies appeared when these same sentences were embedded within longer discourse contexts (Experiment 2a), and the late frontal positivity appeared to lexical prediction violations when the preceding context was rich and globally constraining (Experiment 2b). We interpret these findings within a hierarchical generative framework of language comprehension. This framework highlights the role of comprehension goals and broader linguistic context, and how these factors influence both top-down prediction and the decision to update or reanalyze the prior context when these predictions are violated.
Full Text Supplementary Figures
Kuperberg, G. R., Brothers, T., & Wlotko, E. (2020). A Tale of Two Positivities and the N400: Distinct neural signatures are evoked by confirmed and violated predictions at different levels of representation. Journal of Cognitive Neuroscience , 32 (1), 12-35.Abstract
It has been proposed that hierarchical prediction is a fundamental computational principle underlying neurocognitive processing. Here we ask whether the brain engages distinct neurocognitive mechanisms in response to inputs that fulfill versus violate strong predictions at different levels of representation during language comprehension. Participants read three-sentence scenarios in which the third sentence constrained for a broad event structure, e.g. {Agent caution animate-Patient}. High constraint contexts additionally constrained for a specific event/lexical item, e.g. a two-sentence context about a beach, lifeguards and sharks constrained for the event, {Lifeguards cautioned Swimmers} and the specific lexical item, “swimmers”. Low constraint contexts did not constrain for any specific event/lexical item. We measured ERPs on critical nouns that fulfilled and/or violated each of these constraints. We found clear, dissociable effects to fulfilled semantic predictions (a reduced N400), to event/lexical prediction violations (an increased late frontal positivity), and to event structure/animacy prediction violations (an increased late posterior positivity/P600). We argue that the late frontal positivity reflects a large change in activity associated with successfully updating the comprehender’s current situation model with new unpredicted information. We suggest that the late posterior positivity/P600 is triggered when the comprehender detects a conflict between the input and her model of the communicator and communicative environment. This leads to an initial failure to incorporate the unpredicted input into the situation model, which may be followed by second-pass attempts to make sense of the discourse through reanalysis, repair, or reinterpretation. Together, these findings provide strong evidence that confirmed and violated predictions at different levels of representation manifest as distinct spatiotemporal neural signatures.
Full Text Supplementary Materials
Fields, E. C., & Kuperberg, G. R. (2020). Having your cake and eating it too: Flexibility and power with mass univariate statistics for ERP data. Psychophysiology , 57 (2), e13468.Abstract
Event-related potential (ERP) studies produce large spatiotemporal datasets. These rich datasets are key to the ability of ERP to help us understand cognition and neural processes. However, they can also present a massive multiple comparisons problem, leading to a high Type I error rate. Standard approaches to statistical analysis, which average over time windows and regions of interest, do not always control for Type I error, and their inflexibility can lead to low power to detect true effects. Mass univariate approaches offer an alternative, but have thus far been seen as appropriate only for exploratory analysis and only applicable to simple designs. Here we present new simulation studies showing that permutation-based mass univariate tests can be employed with complex factorial designs. Most importantly, we show that mass univariate approaches provide slightly greater power than traditional spatiotemporal averaging approaches when strong a priori time windows and spatial regions are used, and that power decreases only modestly when more exploratory spatiotemporal parameters are used. We argue that mass univariate approaches are preferable to traditional analysis approaches for most ERP studies.
Full Text Supplementary Materials