A Novel Interoperable Safety System for Improved Coordination and Communication in Cardiac Surgery

Citation:

David Arney, Geoffrey Rance, Srey Rithy, Julian M Goldman, and Marco A Zenati. 2018. “A Novel Interoperable Safety System for Improved Coordination and Communication in Cardiac Surgery.” OR 2.0 Context Aware Oper Theaters Comput Assist Robot Endosc Clin Image Based Proced Skin Image Anal (2018), 11041, Pp. 39-45.

Abstract:

During cardiac surgery there is an unmet need for safe transfer of responsibility for patient oxygenation back and forth from the anesthesia to the perfusion teams. Prior to cardiopulmonary bypass (CPB), lung ventilation is performed by the anesthesia machine ventilator and is the responsibility of the anesthesia team. During CPB, lung ventilation is halted and oxygenation is performed by the CPB oxygenator and perfusion team This recurrent transfer throughout the procedure introduces the rare but serious possibility of a "never event", resulting in the patient's lungs not being ventilated upon stopping the CPB and potentially leading to catastrophic hypoxemia. Monitors and alarms on the anesthesia and bypass machines would not be useful when the other device is operating so they are routinely put into a standby mode until needed. Consequently, in the event that the handoff is missed, there are no alarms to catch the situation. To solve this unmet need, we propose a novel interoperable, context-aware system capable of detecting and acting if this rare situation occurs. Our system is built on the open-source OpenICE framework, allowing it to seamlessly work with a variety of ventilator and bypass machines.
Last updated on 02/17/2022