AE Lyall, O Pasternak, DG Robinson, D Newell, JW Trampush, JA Gallego, M Fava, AK Malhotra, KH Karlsgodt, M Kubicki, and PR Szeszko. 3/28/2017. “Greater Extracellular Free-Water in First-Episode Psychosis Predicts Better Neurocognitive Functioning.” Mol Psychiatry. Abstract

Free Water Imaging is a novel diffusion magnetic resonance (MR) imaging method that is able to separate changes affecting the extracellular space from those that reflect changes in neuronal cells and processes. A previous Free Water Imaging study in schizophrenia identified significantly greater extracellular water volume in the early stages of the disorder; however, its clinical and functional sequelae have not yet been investigated. Here, we applied Free Water Imaging to a larger cohort of 63 first-episode patients with psychosis and 70 healthy matched controls to better understand the functional significance of greater extracellular water. We used diffusion MR imaging data and the Tract-Based Spatial Statistics analytic pipeline to first analyze fractional anisotropy (FA), the most commonly employed metric for assessing white matter. This comparison was then followed by Free Water Imaging analysis, where two parameters, the fractional volume of extracellular free-water (FW) and cellular tissue FA (FA-t), were estimated and compared across the entire white matter skeleton between groups, and correlated with cognitive measures at baseline and following 12 weeks of antipsychotic treatment. Our results indicated lower FA across the whole brain in patients compared with healthy controls that overlap with significant increases in FW, with only limited decreases in FA-t. In addition, higher FW correlated with better neurocognitive functioning following 12 weeks of antipsychotic treatment. We believe this is the first study to suggest that an extracellular water increase during the first-episode of psychosis, which may be indicative of an acute neuroinflammatory process, and/or cerebral edema may predict better functional outcome.

Xiaojun Chen, Lu Xu, Huixiang Wang, Fang Wang, Qiugen Wang, and Ron Kikinis. 3/2017. “Development of a Surgical Navigation System Based on 3D Slicer for Intraoperative Implant Placement Surgery.” Med Eng Phys, 41: 81-89. Abstract

Implant placement has been widely used in various kinds of surgery. However, accurate intraoperative drilling performance is essential to avoid injury to adjacent structures. Although some commercially-available surgical navigation systems have been approved for clinical applications, these systems are expensive and the source code is not available to researchers. 3D Slicer is a free, open source software platform for the research community of computer-aided surgery. In this study, a loadable module based on Slicer has been developed and validated to support surgical navigation. This research module allows reliable calibration of the surgical drill, point-based registration and surface matching registration, so that the position and orientation of the surgical drill can be tracked and displayed on the computer screen in real time, aiming at reducing risks. In accuracy verification experiments, the mean target registration error (TRE) for point-based and surface-based registration were 0.31±0.06mm and 1.01±0.06mm respectively, which should meet clinical requirements. Both phantom and cadaver experiments demonstrated the feasibility of our surgical navigation software module.

Magnus Herberthson, Evren Özarslan, Hans Knutsson, and Carl-Fredrik Westin. 3/2017. “Dynamics of Local Magnetization in the Eigenbasis of the Bloch-Torrey Operator.” J Chem Phys, 12, 146: 124201. Abstract

We consider diffusion within pores with general shapes in the presence of spatially linear magnetic field profiles. The evolution of local magnetization of the spin bearing particles can be described by the Bloch-Torrey equation. We study the diffusive process in the eigenbasis of the non-Hermitian Bloch-Torrey operator. It is possible to find expressions for some special temporal gradient waveforms employed to sensitize the nuclear magnetic resonance (NMR) signal to diffusion. For more general gradient waveforms, we derive an efficient numerical solution by introducing a novel matrix formalism. Compared to previous methods, this new approach requires a fewer number of eigenfunctions to achieve the same accuracy. This shows that these basis functions are better suited to the problem studied. The new framework could provide new important insights into the fundamentals of diffusion sensitization, which could further the development of the field of NMR.

Sonia Pujol, Ryan Cabeen, Sophie B Sébille, Jérôme Yelnik, Chantal François, Sara Fernandez Vidal, Carine Karachi, Yulong Zhao, Rees G Cosgrove, Pierre Jannin, Ron Kikinis, and Eric Bardinet. 3/2017. “In vivo Exploration of the Connectivity between the Subthalamic Nucleus and the Globus Pallidus in the Human Brain using Multi-Fiber Tractography.” Front Neuroanat, 10: 119. Abstract

The basal ganglia is part of a complex system of neuronal circuits that play a key role in the integration and execution of motor, cognitive and emotional function in the human brain. Parkinson's disease is a progressive neurological disorder of the motor circuit characterized by tremor, rigidity, and slowness of movement. Deep brain stimulation (DBS) of the subthalamic nucleus and the globus pallidus pars interna provides an efficient treatment to reduce symptoms and levodopa-induced side effects in Parkinson's disease patients. While the underlying mechanism of action of DBS is still unknown, the potential modulation of white matter tracts connecting the surgical targets has become an active area of research. With the introduction of advanced diffusion MRI acquisition sequences and sophisticated post-processing techniques, the architecture of the human brain white matter can be explored in vivo. The goal of this study is to investigate the white matter connectivity between the subthalamic nucleus and the globus pallidus. Two multi-fiber tractography methods were used to reconstruct pallido-subthalamic, subthalamo-pallidal and pyramidal fibers in five healthy subjects datasets of the Human Connectome Project. The anatomical accuracy of the tracts was assessed by four judges with expertise in neuroanatomy, functional neurosurgery, and diffusion MRI. The variability among subjects was evaluated based on the fractional anisotropy and mean diffusivity of the tracts. Both multi-fiber approaches enabled the detection of complex fiber architecture in the basal ganglia. The qualitative evaluation by experts showed that the identified tracts were in agreement with the expected anatomy. Tract-derived measurements demonstrated relatively low variability among subjects. False-negative tracts demonstrated the current limitations of both methods for clinical decision-making. Multi-fiber tractography methods combined with state-of-the-art diffusion MRI data have the potential to help identify white matter tracts connecting DBS targets in functional neurosurgery intervention.

Joseph J Shaffer, Ali Ghayoor, Jeffrey D Long, Regina Eun-Young Kim, Spencer Lourens, Lauren J O'Donnell, Carl-Fredrik Westin, Yogesh Rathi, Vincent Magnotta, Jane S Paulsen, and Hans J Johnson. 3/2017. “Longitudinal Diffusion Changes in Prodromal and Early HD: Evidence of White-matter Tract Deterioration.” Hum Brain Mapp, 3, 38: 1460-77. Abstract

INTRODUCTION: Huntington's disease (HD) is a genetic neurodegenerative disorder that primarily affects striatal neurons. Striatal volume loss is present years before clinical diagnosis; however, white matter degradation may also occur prior to diagnosis. Diffusion-weighted imaging (DWI) can measure microstructural changes associated with degeneration that precede macrostructural changes. DWI derived measures enhance understanding of degeneration in prodromal HD (pre-HD). METHODS: As part of the PREDICT-HD study, N = 191 pre-HD individuals and 70 healthy controls underwent two or more (baseline and 1-5 year follow-up) DWI, with n = 649 total sessions. Images were processed using cutting-edge DWI analysis methods for large multicenter studies. Diffusion tensor imaging (DTI) metrics were computed in selected tracts connecting the primary motor, primary somato-sensory, and premotor areas of the cortex with the subcortical caudate and putamen. Pre-HD participants were divided into three CAG-Age Product (CAP) score groups reflecting clinical diagnosis probability (low, medium, or high probabilities). Baseline and longitudinal group differences were examined using linear mixed models. RESULTS: Cross-sectional and longitudinal differences in DTI measures were present in all three CAP groups compared with controls. The high CAP group was most affected. CONCLUSIONS: This is the largest longitudinal DWI study of pre-HD to date. Findings showed DTI differences, consistent with white matter degeneration, were present up to a decade before predicted HD diagnosis. Our findings indicate a unique role for disrupted connectivity between the premotor area and the putamen, which may be closely tied to the onset of motor symptoms in HD. 

Michael Halle, Valentin Demeusy, and Ron Kikinis. 3/2017. “The Open Anatomy Browser: A Collaborative Web-Based Viewer for Interoperable Anatomy Atlases.” Front Neuroinform, 11: 22. Abstract

The Open Anatomy Browser (OABrowser) is an open source, web-based, zero-installation anatomy atlas viewer based on current web browser technologies and evolving anatomy atlas interoperability standards. OABrowser displays three-dimensional anatomical models, image cross-sections of labeled structures and source radiological imaging, and a text-based hierarchy of structures. The viewer includes novel collaborative tools: users can save bookmarks of atlas views for later access and exchange those bookmarks with other users, and dynamic shared views allow groups of users can participate in a collaborative interactive atlas viewing session. We have published several anatomy atlases (an MRI-derived brain atlas and atlases of other parts of the anatomy) to demonstrate OABrowser's functionality. The atlas source data, processing tools, and the source for OABrowser are freely available through GitHub and are distributed under a liberal open source license.

David Black, Julian Hettig, Maria Luz, Christian Hansen, Ron Kikinis, and Horst Hahn. 2/17/2017. “Auditory Feedback to Support Image-Guided Medical Needle Placement.” Int J Comput Assist Radiol Surg. Abstract

PURPOSE: During medical needle placement using image-guided navigation systems, the clinician must concentrate on a screen. To reduce the clinician's visual reliance on the screen, this work proposes an auditory feedback method as a stand-alone method or to support visual feedback for placing the navigated medical instrument, in this case a needle. METHODS: An auditory synthesis model using pitch comparison and stereo panning parameter mapping was developed to augment or replace visual feedback for navigated needle placement. In contrast to existing approaches which augment but still require a visual display, this method allows view-free needle placement. An evaluation with 12 novice participants compared both auditory and combined audiovisual feedback against existing visual methods. RESULTS: Using combined audiovisual display, participants show similar task completion times and report similar subjective workload and accuracy while viewing the screen less compared to using the conventional visual method. The auditory feedback leads to higher task completion times and subjective workload compared to both combined and visual feedback. CONCLUSION: Audiovisual feedback shows promising results and establishes a basis for applying auditory feedback as a supplement to visual information to other navigated interventions, especially those for which viewing a patient is beneficial or necessary.

Lipeng Ning, Evren Özarslan, Carl-Fredrik Westin, and Yogesh Rathi. 2/1/2017. “Precise Inference and Characterization of Structural Organization (PICASO) of Tissue from Molecular Diffusion.” Neuroimage, 146: 452-73. Abstract

Inferring the microstructure of complex media from the diffusive motion of molecules is a challenging problem in diffusion physics. In this paper, we introduce a novel representation of diffusion MRI (dMRI) signal from tissue with spatially-varying diffusivity using a diffusion disturbance function. This disturbance function contains information about the (intra-voxel) spatial fluctuations in diffusivity due to restrictions, hindrances and tissue heterogeneity of the underlying tissue substrate. We derive the short- and long-range disturbance coefficients from this disturbance function to characterize the tissue structure and organization. Moreover, we provide an exact relation between the disturbance coefficients and the time-varying moments of the diffusion propagator, as well as their relation to specific tissue microstructural information such as the intra-axonal volume fraction and the apparent axon radius. The proposed approach is quite general and can model dMRI signal for any type of gradient sequence (rectangular, oscillating, etc.) without using the Gaussian phase approximation. The relevance of the proposed PICASO model is explored using Monte-Carlo simulations and in-vivo dMRI data. The results show that the estimated disturbance coefficients can distinguish different types of microstructural organization of axons.

Guillermo Gallardo, William M Wells III, Rachid Deriche, and Demian Wassermann. 2/2017. “Groupwise Structural Parcellation of the Whole Cortex: A Logistic Random Effects Model Based Approach.” Neuroimage. Abstract

Current theories hold that brain function is highly related to long-range physical connections through axonal bundles, namely extrinsic connectivity. However, obtaining a groupwise cortical parcellation based on extrinsic connectivity remains challenging. Current parcellation methods are computationally expensive; need tuning of several parameters or rely on ad-hoc constraints. Furthermore, none of these methods present a model for the cortical extrinsic connectivity of the cortex. To tackle these problems, we propose a parsimonious model for the extrinsic connectivity and an efficient parceling technique based on clustering of tractograms. Our technique allows the creation of single subject and groupwise parcellations of the whole cortex. The parcellations obtained with our technique are in agreement with structural and functional parcellations in the literature. In particular, the motor and sensory cortex are subdivided in agreement with the human homunculus of Penfield. We illustrate this by comparing our resulting parcels with the motor strip mapping included in the Human Connectome Project data.

Rahul Sastry, Wenya Linda Bi, Steve Pieper, Sarah Frisken, Tina Kapur, William M Wells III, and Alexandra J Golby. 1/2017. “Applications of Ultrasound in the Resection of Brain Tumors.” J Neuroimaging, 1, 27: 5-15. Abstract

Neurosurgery makes use of preoperative imaging to visualize pathology, inform surgical planning, and evaluate the safety of selected approaches. The utility of preoperative imaging for neuronavigation, however, is diminished by the well-characterized phenomenon of brain shift, in which the brain deforms intraoperatively as a result of craniotomy, swelling, gravity, tumor resection, cerebrospinal fluid (CSF) drainage, and many other factors. As such, there is a need for updated intraoperative information that accurately reflects intraoperative conditions. Since 1982, intraoperative ultrasound has allowed neurosurgeons to craft and update operative plans without ionizing radiation exposure or major workflow interruption. Continued evolution of ultrasound technology since its introduction has resulted in superior imaging quality, smaller probes, and more seamless integration with neuronavigation systems. Furthermore, the introduction of related imaging modalities, such as 3-dimensional ultrasound, contrast-enhanced ultrasound, high-frequency ultrasound, and ultrasound elastography, has dramatically expanded the options available to the neurosurgeon intraoperatively. In the context of these advances, we review the current state, potential, and challenges of intraoperative ultrasound for brain tumor resection. We begin by evaluating these ultrasound technologies and their relative advantages and disadvantages. We then review three specific applications of these ultrasound technologies to brain tumor resection: (1) intraoperative navigation, (2) assessment of extent of resection, and (3) brain shift monitoring and compensation. We conclude by identifying opportunities for future directions in the development of ultrasound technologies.

Angela Albi, Ofer Pasternak, Ludovico Minati, Moira Marizzoni, David Bartrés-Faz, Núria Bargalló, Beatriz Bosch, Paolo Maria Rossini, Camillo Marra, Bernhard Müller, Ute Fiedler, Jens Wiltfang, Luca Roccatagliata, Agnese Picco, Flavio Mariano Nobili, Oliver Blin, Julien Sein, Jean-Philippe Ranjeva, Mira Didic, Stephanie Bombois, Renaud Lopes, Régis Bordet, Hélène Gros-Dagnac, Pierre Payoux, Giada Zoccatelli, Franco Alessandrini, Alberto Beltramello, Antonio Ferretti, Massimo Caulo, Marco Aiello, Carlo Cavaliere, Andrea Soricelli, Lucilla Parnetti, Roberto Tarducci, Piero Floridi, Magda Tsolaki, Manos Constantinidis, Antonios Drevelegas, Giovanni Frisoni, Jorge Jovicich, and Jorge Jovicich. 1/2017. “Free Water Elimination Improves Test-Retest Reproducibility of Diffusion Tensor Imaging Indices in the Brain: A Longitudinal Multisite Study of Healthy Elderly Subjects.” Hum Brain Mapp, 1, 38: 12-26. Abstract

Free water elimination (FWE) in brain diffusion MRI has been shown to improve tissue specificity in human white matter characterization both in health and in disease. Relative to the classical diffusion tensor imaging (DTI) model, FWE is also expected to increase sensitivity to microstructural changes in longitudinal studies. However, it is not clear if these two models differ in their test-retest reproducibility. This study compares a bi-tensor model for FWE with DTI by extending a previous longitudinal-reproducibility 3T multisite study (10 sites, 7 different scanner models) of 50 healthy elderly participants (55-80 years old) scanned in two sessions at least 1 week apart. We computed the reproducibility of commonly used DTI metrics (FA: fractional anisotropy, MD: mean diffusivity, RD: radial diffusivity, and AXD: axial diffusivity), derived either using a DTI model or a FWE model. The DTI metrics were evaluated over 48 white-matter regions of the JHU-ICBM-DTI-81 white-matter labels atlas, and reproducibility errors were assessed. We found that relative to the DTI model, FWE significantly reduced reproducibility errors in most areas tested. In particular, for the FA and MD metrics, there was an average reduction of approximately 1% in the reproducibility error. The reproducibility scores did not significantly differ across sites. This study shows that FWE improves sensitivity and is thus promising for clinical applications, with the potential to identify more subtle changes. The increased reproducibility allows for smaller sample size or shorter trials in studies evaluating biomarkers of disease progression or treatment effects. Hum Brain Mapp 38:12-26, 2017. © 2016 Wiley Periodicals, Inc.

Yongxin Chen, Jung Hun Oh, Romeil Sandhu, Sangkyu Lee, Joseph O Deasy, and Allen Tannenbaum. 12/2016. “Transcriptional Responses to Ultraviolet and Ionizing Radiation: An Approach Based on Graph Curvature.” Proceedings (IEEE Int Conf Bioinformatics Biomed), 2016: 1302-6. Abstract

More than half of all cancer patients receive radiotherapy in their treatment process. However, our understanding of abnormal transcriptional responses to radiation remains poor. In this study, we employ an extended definition of Ollivier-Ricci curvature based on LI-Wasserstein distance to investigate genes and biological processes associated with ionizing radiation (IR) and ultraviolet radiation (UV) exposure using a microarray dataset. Gene expression levels were modeled on a gene interaction topology downloaded from the Human Protein Reference Database (HPRD). This was performed for IR, UV, and mock datasets, separately. The difference curvature value between IR and mock graphs (also between UV and mock) for each gene was used as a metric to estimate the extent to which the gene responds to radiation. We found that in comparison of the top 200 genes identified from IR and UV graphs, about 20~30% genes were overlapping. Through gene ontology enrichment analysis, we found that the metabolic-related biological process was highly associated with both IR and UV radiation exposure.

Demian Wassermann, Nikos Makris, Yogesh Rathi, Martha Shenton, Ron Kikinis, Marek Kubicki, and Carl-Fredrik Westin. 12/2016. “The White Matter Query Language: A Novel Approach for Describing Human White Matter Anatomy.” Brain Struct Funct, 9, 221: 4705-4721. Abstract

We have developed a novel method to describe human white matter anatomy using an approach that is both intuitive and simple to use, and which automatically extracts white matter tracts from diffusion MRI volumes. Further, our method simplifies the quantification and statistical analysis of white matter tracts on large diffusion MRI databases. This work reflects the careful syntactical definition of major white matter fiber tracts in the human brain based on a neuroanatomist's expert knowledge. The framework is based on a novel query language with a near-to-English textual syntax. This query language makes it possible to construct a dictionary of anatomical definitions that describe white matter tracts. The definitions include adjacent gray and white matter regions, and rules for spatial relations. This novel method makes it possible to automatically label white matter anatomy across subjects. After describing this method, we provide an example of its implementation where we encode anatomical knowledge in human white matter for ten association and 15 projection tracts per hemisphere, along with seven commissural tracts. Importantly, this novel method is comparable in accuracy to manual labeling. Finally, we present results applying this method to create a white matter atlas from 77 healthy subjects, and we use this atlas in a small proof-of-concept study to detect changes in association tracts that characterize schizophrenia.

Lauren J O'Donnell, Yannick Suter, Laura Rigolo, Pegah Kahali, Fan Zhang, Isaiah Norton, Angela Albi, Olutayo Olubiyi, Antonio Meola, Walid I Essayed, Prashin Unadkat, Pelin Aksit Ciris, William M Wells III, Yogesh Rathi, Carl-Fredrik Westin, and Alexandra J Golby. 11/2016. “Automated White Matter Fiber Tract Identification in Patients with Brain Tumors.” Neuroimage Clin, 13: 138-53. Abstract

We propose a method for the automated identification of key white matter fiber tracts for neurosurgical planning, and we apply the method in a retrospective study of 18 consecutive neurosurgical patients with brain tumors. Our method is designed to be relatively robust to challenges in neurosurgical tractography, which include peritumoral edema, displacement, and mass effect caused by mass lesions. The proposed method has two parts. First, we learn a data-driven white matter parcellation or fiber cluster atlas using groupwise registration and spectral clustering of multi-fiber tractography from healthy controls. Key fiber tract clusters are identified in the atlas. Next, patient-specific fiber tracts are automatically identified using tractography-based registration to the atlas and spectral embedding of patient tractography. Results indicate good generalization of the data-driven atlas to patients: 80% of the 800 fiber clusters were identified in all 18 patients, and 94% of the 800 fiber clusters were found in 16 or more of the 18 patients. Automated subject-specific tract identification was evaluated by quantitative comparison to subject-specific motor and language functional MRI, focusing on the arcuate fasciculus (language) and corticospinal tracts (motor), which were identified in all patients. Results indicate good colocalization: 89 of 95, or 94%, of patient-specific language and motor activations were intersected by the corresponding identified tract. All patient-specific activations were within 3mm of the corresponding language or motor tract. Overall, our results indicate the potential of an automated method for identifying fiber tracts of interest for neurosurgical planning, even in patients with mass lesions.

Ruizhi liao, Esra A. Turk, Miaomiao Zhang, Jie Luo, P. Ellen Grant, Elfar Adalsteinsson, and Polina Golland. 10/2016. “Temporal Registration in In-Utero Volumetric MRI Time Series.” In Int Conf Med Image Comput Comput Assist Interv, 19: 54-62. Abstract

We present a robust method to correct for motion and deformations in in-utero volumetric MRI time series. Spatio-temporal analysis of dynamic MRI requires robust alignment across time in the presence of substantial and unpredictable motion. We make a Markov assumption on the nature of deformations to take advantage of the temporal structure in the image data. Forward message passing in the corresponding hidden Markov model (HMM) yields an estimation algorithm that only has to account for relatively small motion between consecutive frames. We demonstrate the utility of the temporal model by showing that its use improves the accuracy of the segmentation propagation through temporal registration. Our results suggest that the proposed model captures accurately the temporal dynamics of deformations in in-utero MRI time series.

Polina Binder, Nematollah K Batmanghelich, Raul San Jose Estepar, and Polina Golland. 10/2016. “Unsupervised Discovery of Emphysema Subtypes in a Large Clinical Cohort.” Mach Learn Med Imaging, 10019: 180-7. Abstract

Emphysema is one of the hallmarks of Chronic Obstructive Pulmonary Disorder (COPD), a devastating lung disease often caused by smoking. Emphysema appears on Computed Tomography (CT) scans as a variety of textures that correlate with disease subtypes. It has been shown that the disease subtypes and textures are linked to physiological indicators and prognosis, although neither is well characterized clinically. Most previous computational approaches to modeling emphysema imaging data have focused on supervised classification of lung textures in patches of CT scans. In this work, we describe a generative model that jointly captures heterogeneity of disease subtypes and of the patient population. We also describe a corresponding inference algorithm that simultaneously discovers disease subtypes and population structure in an unsupervised manner. This approach enables us to create image-based descriptors of emphysema beyond those that can be identified through manual labeling of currently defined phenotypes. By applying the resulting algorithm to a large data set, we identify groups of patients and disease subtypes that correlate with distinct physiological indicators.

Zhenrui Chen, Yanmei Tie, Olutayo Olubiyi, and Lauren O'Donnell. 8/2016. “Corticospinal Tract Modeling for Neurosurgical Planning by Tracking through Regions of Peritumoral Edema and Crossing Fibers using Two-Tensor Unscented Kalman Filter Tractography.” Int J Comput Assist Radiol Surg, 8, 11: 1475-86. PubMed Abstract

PURPOSE: The aim of this study was to present a tractography algorithm using a two-tensor unscented Kalman filter (UKF) to improve the modeling of the corticospinal tract (CST) by tracking through regions of peritumoral edema and crossing fibers.
METHODS: Ten patients with brain tumors in the vicinity of motor cortex and evidence of significant peritumoral edema were retrospectively selected for the study. All patients underwent 3-T magnetic resonance imaging (MRI) including functional MRI (fMRI) and a diffusion-weighted data set with 31 directions. Fiber tracking was performed using both single-tensor streamline and two-tensor UKF tractography methods. A two-region-of-interest approach was used to delineate the CST. Results from the two tractography methods were compared visually and quantitatively. fMRI was applied to identify the functional fiber tracts.
RESULTS: Single-tensor streamline tractography underestimated the extent of tracts running through the edematous areas and could only track the medial projections of the CST. In contrast, two-tensor UKF tractography tracked fanning projections of the CST despite peritumoral edema and crossing fibers. Based on visual inspection, the two-tensor UKF tractography delineated tracts that were closer to motor fMRI activations, and it was apparently more sensitive than single-tensor streamline tractography to define the tracts directed to the motor sites. The volume of the CST was significantly larger on two-tensor UKF than on single-tensor streamline tractography ([Formula: see text]).
CONCLUSION: Two-tensor UKF tractography tracks a larger volume CST than single-tensor streamline tractography in the setting of peritumoral edema and crossing fibers in brain tumor patients.

Hengameh Mirzaalian, Lipeng Ning, Peter Savadjiev, Ofer Pasternak, Sylvain Bouix, Oleg Michailovich, G Grant, CE Marx, RA Morey, LA Flashman, MS George, TW McAllister, N Andaluz, L Shutter, R Coimbra, RD Zafonte, MJ Coleman, Marek Kubicki, Carl-Fredrik Westin, M.B. Stein, Martha E Shenton, and Yogesh Rathi. 7/2016. “Inter-site and Inter-scanner Diffusion MRI Data Harmonization.” Neuroimage, 135: 311-23. Abstract

We propose a novel method to harmonize diffusion MRI data acquired from multiple sites and scanners, which is imperative for joint analysis of the data to significantly increase sample size and statistical power of neuroimaging studies. Our method incorporates the following main novelties: i) we take into account the scanner-dependent spatial variability of the diffusion signal in different parts of the brain; ii) our method is independent of compartmental modeling of diffusion (e.g., tensor, and intra/extra cellular compartments) and the acquired signal itself is corrected for scanner related differences; and iii) inter-subject variability as measured by the coefficient of variation is maintained at each site. We represent the signal in a basis of spherical harmonics and compute several rotation invariant spherical harmonic features to estimate a region and tissue specific linear mapping between the signal from different sites (and scanners). We validate our method on diffusion data acquired from seven different sites (including two GE, three Philips, and two Siemens scanners) on a group of age-matched healthy subjects. Since the extracted rotation invariant spherical harmonic features depend on the accuracy of the brain parcellation provided by Freesurfer, we propose a feature based refinement of the original parcellation such that it better characterizes the anatomy and provides robust linear mappings to harmonize the dMRI data. We demonstrate the efficacy of our method by statistically comparing diffusion measures such as fractional anisotropy, mean diffusivity and generalized fractional anisotropy across multiple sites before and after data harmonization. We also show results using tract-based spatial statistics before and after harmonization for independent validation of the proposed methodology. Our experimental results demonstrate that, for nearly identical acquisition protocol across sites, scanner-specific differences can be accurately removed using the proposed method.

Fan Zhang, Yang Song, Weidong Cai, Sidong Liu, Siqi Liu, Sonia Pujol, Ron Kikinis, Yong Xia, Michael Fulham, and David Feng. 5/2016. “Pairwise Latent Semantic Association for Similarity Computation in Medical Imaging.” IEEE Trans Biomed Eng, 5, 63: 1058-69. Abstract

Retrieving medical images that present similar diseases is an active research area for diagnostics and therapy. However, it can be problematic given the visual variations between anatomical structures. In this paper, we propose a new feature extraction method for similarity computation in medical imaging. Instead of the low-level visual appearance, we design a CCA-PairLDA feature representation method to capture the similarity between images with high-level semantics. First, we extract the PairLDA topics to represent an image as a mixture of latent semantic topics in an image pair context. Second, we generate a CCA-correlation model to represent the semantic association between an image pair for similarity computation. While PairLDA adjusts the latent topics for all image pairs, CCA-correlation helps to associate an individual image pair. In this way, the semantic descriptions of an image pair are closely correlated, and naturally correspond to similarity computation between images. We evaluated our method on two public medical imaging datasets for image retrieval and showed improved performance.

Romeil S Sandhu, Tryphon T Georgiou, and Allen R Tannenbaum. 5/2016. “Ricci Curvature: An Economic Indicator for Market Fragility and Systemic Risk.” Sci Adv, 5, 2: e1501495. Abstract

Quantifying the systemic risk and fragility of financial systems is of vital importance in analyzing market efficiency, deciding on portfolio allocation, and containing financial contagions. At a high level, financial systems may be represented as weighted graphs that characterize the complex web of interacting agents and information flow (for example, debt, stock returns, and shareholder ownership). Such a representation often turns out to provide keen insights. We show that fragility is a system-level characteristic of "business-as-usual" market behavior and that financial crashes are invariably preceded by system-level changes in robustness. This was done by leveraging previous work, which suggests that Ricci curvature, a key geometric feature of a given network, is negatively correlated to increases in network fragility. To illustrate this insight, we examine daily returns from a set of stocks comprising the Standard and Poor's 500 (S&P 500) over a 15-year span to highlight the fact that corresponding changes in Ricci curvature constitute a financial "crash hallmark." This work lays the foundation of understanding how to design (banking) systems and policy regulations in a manner that can combat financial instabilities exposed during the 2007-2008 crisis.