Publications

2017
Brian P Weiser, James T Stivers, and Philip A Cole. 2017. “Investigation of N-Terminal Phospho-Regulation of Uracil DNA Glycosylase Using Protein Semisynthesis.” Biophys J, 113, 2, Pp. 393-401.Abstract
Uracil DNA Glycosylase (UNG2) is the primary enzyme in humans that prevents the stable incorporation of deoxyuridine monophosphate into DNA in the form of U/A basepairs. During S-phase, UNG2 remains associated with the replication fork through its interactions with two proteins, Proliferating Cell Nuclear Antigen (PCNA) and Replication Protein A (RPA), which are critical for DNA replication and repair. In this work, we used protein semisynthesis and fluorescence anisotropy assays to explore the interactions of UNG2 with PCNA and RPA and to determine the effects of two UNG2 phosphorylation sites (Thr6 and Tyr8) located within its PCNA-interacting motif (PIP-box). In binding assays, we found that phosphorylation of Thr6 or Tyr8 on UNG2 can impede PCNA binding without affecting UNG2 catalytic activity or its RPA interaction. Our data also suggests that unmodified UNG2, PCNA, and RPA can form a ternary protein complex. We propose that the UNG2 N-terminus may serve as a flexible scaffold to tether PCNA and RPA at the replication fork, and that post-translational modifications on the UNG2 N-terminus disrupt formation of the PCNA-UNG2-RPA protein complex.
Alexandre Esadze, Gaddiel Rodriguez, Brian P Weiser, Philip A Cole, and James T Stivers. 2017. “Measurement of nanoscale DNA translocation by uracil DNA glycosylase in human cells.” Nucleic Acids Res, 45, 21, Pp. 12413-12424.Abstract
DNA 'sliding' by human repair enzymes is considered to be important for DNA damage detection. Here, we transfected uracil-containing DNA duplexes into human cells and measured the probability that nuclear human uracil DNA glycosylase (hUNG2) excised two uracil lesions spaced 10-80 bp apart in a single encounter without escaping the micro-volume containing the target sites. The two-site transfer probabilities were 100% and 54% at a 10 and 40 bp spacing, but dropped to only 10% at 80 bp. Enzyme trapping experiments suggested that site transfers over 40 bp followed a DNA 'hopping' pathway in human cells, indicating that authentic sliding does not occur even over this short distance. The transfer probabilities were much greater than observed in aqueous buffers, but similar to in vitro measurements in the presence of polymer crowding agents. The findings reveal a new role for the crowded nuclear environment in facilitating DNA damage detection.
Zan Chen, Hanjie Jiang, Wei Xu, Xiaoguang Li, Daniel R Dempsey, Xiangbin Zhang, Peter Devreotes, Cynthia Wolberger, Mario L Amzel, Sandra B Gabelli, and Philip A Cole. 2017. “A Tunable Brake for HECT Ubiquitin Ligases.” Mol Cell, 66, 3, Pp. 345-357.e6.Abstract
The HECT E3 ligases ubiquitinate numerous transcription factors and signaling molecules, and their activity must be tightly controlled to prevent cancer, immune disorders, and other diseases. In this study, we have found unexpectedly that peptide linkers tethering WW domains in several HECT family members are key regulatory elements of their catalytic activities. Biochemical, structural, and cellular analyses have revealed that the linkers can lock the HECT domain in an inactive conformation and block the proposed allosteric ubiquitin binding site. Such linker-mediated autoinhibition of the HECT domain can be relieved by linker post-translational modifications, but complete removal of the brake can induce hyperactive autoubiquitination and E3 self destruction. These results clarify the mechanisms of several HECT protein cancer associated mutations and provide a new framework for understanding how HECT ubiquitin ligases must be finely tuned to ensure normal cellular behavior.
2016
Beverley M Dancy and Philip A Cole. 2016. “Correction to Protein Lysine Acetylation by p300/CBP.” Chem Rev, 116, 14, Pp. 8314.
Zan Chen, Stefani N Thomas, David M Bolduc, Xuejun Jiang, Xiangbin Zhang, Cynthia Wolberger, and Philip A Cole. 2016. “Enzymatic Analysis of PTEN Ubiquitylation by WWP2 and NEDD4-1 E3 Ligases.” Biochemistry, 55, 26, Pp. 3658-66.Abstract
PTEN is a lipid phosphatase that converts phosphatidylinositol 3,4,5-phosphate (PIP3) to phosphatidylinositol 4,5-phosphate (PIP2) and plays a critical role in the regulation of tumor growth. PTEN is subject to regulation by a variety of post-translational modifications, including phosphorylation on a C-terminal cluster of four Ser/Thr residues (380, 382, 383, and 385) and ubiquitylation by various E3 ligases, including NEDD4-1 and WWP2. It has previously been shown that C-terminal phosphorylation of PTEN can increase its cellular half-life. Using in vitro ubiquitin transfer assays, we show that WWP2 is more active than NEDD4-1 in ubiquitylating unphosphorylated PTEN. The mapping of ubiquitylation sites in PTEN by mass spectrometry showed that both NEDD4-1 and WWP2 can target a broad range of Lys residues in PTEN, although NEDD4-1 versus WWP2 showed a stronger preference for ubiquitylating PTEN's C2 domain. Whereas tetraphosphorylation of PTEN did not significantly affect its ubiquitylation by NEDD4-1, it inhibited PTEN ubiquitylation by WWP2. Single-turnover and pull-down experiments suggested that tetraphosphorylation of PTEN appears to weaken its interaction with WWP2. These studies reveal how the PTEN E3 ligases WWP2 and NEDD4-1 exhibit distinctive properties in Lys selectivity and sensitivity to PTEN phosphorylation. Our findings also provide a molecular mechanism for the connection between PTEN Ser/Thr phosphorylation and PTEN's cellular stability.
Samuel H Henager, Nam Chu, Zan Chen, David Bolduc, Daniel R Dempsey, Yousang Hwang, James Wells, and Philip A Cole. 2016. “Enzyme-catalyzed expressed protein ligation.” Nat Methods, 13, 11, Pp. 925-927.Abstract
Expressed protein ligation is a valuable method for protein semisynthesis that involves the reaction of recombinant protein C-terminal thioesters with N-terminal cysteine (N-Cys)-containing peptides, but the requirement of a Cys residue at the ligation junction can limit the utility of this method. Here we employ subtiligase variants to efficiently ligate Cys-free peptides to protein thioesters. Using this method, we have more accurately determined the effect of C-terminal phosphorylation on the tumor suppressor protein PTEN.
Philge Philip, Ann Boija, Roshan Vaid, Allison M Churcher, David J Meyers, Philip A Cole, Mattias Mannervik, and Per Stenberg. 2016. “Erratum to: CBP binding outside of promoters and enhancers in Drosophila melanogaster.” Epigenetics Chromatin, 9, 1, Pp. 38.Abstract
[This corrects the article DOI: 10.1186/s13072-015-0042-4.].
Po-Yuan Hsiao, Jay H Kalin, Im-Hong Sun, Mohammed N Amin, Ying-Chun Lo, Meng-Jung Chiang, John Giddens, Polina Sysa-Shah, Kathleen Gabrielson, Lai-Xi Wang, Jonathan D Powell, and Philip A Cole. 2016. “An Fc-Small Molecule Conjugate for Targeted Inhibition of the Adenosine 2A Receptor.” Chembiochem, 17, 20, Pp. 1951-1960.Abstract
The adenosine A2A receptor (A2A R) is expressed in immune cells, as well as brain and heart tissue, and has been intensively studied as a therapeutic target for multiple disease indications. Inhibitors of the A2A R have the potential for stimulating immune response, which could be valuable for cancer immune surveillance and mounting a response against pathogens. One well-established potent and selective small molecule A2A R antagonist, ZM-241385 (ZM), has a short pharmacokinetic half-life and the potential for systemic toxicity due to A2A R effects in the brain and the heart. In this study, we designed an analogue of ZM and tethered it to the Fc domain of the immunoglobulin IgG3 by using expressed protein ligation. The resulting protein-small molecule conjugate, Fc-ZM, retained high affinity for two Fc receptors: FcγRI and the neonatal Fc receptor, FcRn. In addition, Fc-ZM was a potent A2A R antagonist, as measured by a cell-based cAMP assay. Cell-based assays also revealed that Fc-ZM could stimulate interferon γ production in splenocytes in a fashion that was dependent on the presence of A2A R. We found that Fc-ZM, compared with the small molecule ZM, was a superior A2A R antagonist in mice, consistent with the possibility that Fc attachment can improve pharmacokinetic and/or pharmacodynamic properties of the small molecule.
Carine Robert, Pratik K Nagaria, Nisha Pawar, Adeoluwa Adewuyi, Ivana Gojo, David J Meyers, Philip A Cole, and Feyruz V Rassool. 2016. “Histone deacetylase inhibitors decrease NHEJ both by acetylation of repair factors and trapping of PARP1 at DNA double-strand breaks in chromatin.” Leuk Res, 45, Pp. 14-23.Abstract
Histone deacetylase inhibitors (HDACi) induce acetylation of histone and non-histone proteins, and modulate the acetylation of proteins involved in DNA double-strand break (DSB) repair. Non-homologous end-joining (NHEJ) is one of the main pathways for repairing DSBs. Decreased NHEJ activity has been reported with HDACi treatment. However, mechanisms through which these effects are regulated in the context of chromatin are unclear. We show that pan-HDACi, trichostatin A (TSA), causes differential acetylation of DNA repair factors Ku70/Ku80 and poly ADP-ribose polymerase-1 (PARP1), and impairs NHEJ. Repair effects are reversed by treatments with p300/CBP inhibitor C646, with significantly decreased acetylation of PARP1. In keeping with these findings, TSA treatment significantly increases PARP1 binding to DSBs in chromatin. Notably, AML patients treated with HDACi entinostat (MS275) in vivo also show increased formation of poly ADP-ribose (PAR) that co-localizes with DSBs. Further, we demonstrate that PARP1 bound to chromatin increases with duration of TSA exposure, resembling PARP "trapping". Knockdown of PARP1 inhibits trapping and mitigates HDACi effects on NHEJ. Finally, combination of HDACi with potent PARP inhibitor talazoparib (BMN673) shows a dose-dependent increase in PARP "trapping", which correlates with increased apoptosis. These results provide a mechanism through which HDACi inhibits deacetylation and increases binding of PARP1 to DSBs, leading to decreased NHEJ and cytotoxicity of leukemia cells.
Ryan A Henry, Pietro Mancuso, Yin-Ming Kuo, Rossella Tricarico, Marc Tini, Philip A Cole, Alfonso Bellacosa, and Andrew J Andrews. 2016. “Interaction with the DNA Repair Protein Thymine DNA Glycosylase Regulates Histone Acetylation by p300.” Biochemistry, 55, 49, Pp. 6766-6775.Abstract
How protein-protein interactions regulate and alter histone modifications is a major unanswered question in epigenetics. The histone acetyltransferase p300 binds thymine DNA glycosylase (TDG); utilizing mass spectrometry to measure site-specific changes in histone acetylation, we found that the absence of TDG in mouse embryonic fibroblasts leads to a reduction in the rate of histone acetylation. We demonstrate that TDG interacts with the CH3 domain of p300 to allosterically promote p300 activity to specific lysines on histone H3 (K18 and K23). However, when TDG concentrations approach those of histones, TDG acts as a competitive inhibitor of p300 histone acetylation. These results suggest a mechanism for how histone acetylation is fine-tuned via interaction with other proteins, while also highlighting a connection between regulators of two important biological processes: histone acetylation and DNA repair/demethylation.
Beth E Zucconi, Birgit Luef, Wei Xu, Ryan A Henry, Ilana M Nodelman, Gregory D Bowman, Andrew J Andrews, and Philip A Cole. 2016. “Modulation of p300/CBP Acetylation of Nucleosomes by Bromodomain Ligand I-CBP112.” Biochemistry, 55, 27, Pp. 3727-34.Abstract
The histone acetyltransferase (HAT) enzymes p300 and CBP are closely related paralogs that serve as transcriptional coactivators and have been found to be dysregulated in cancer and other diseases. p300/CBP is a multidomain protein and possesses a highly conserved bromodomain that has been shown to bind acetylated Lys residues in both proteins and various small molecules, including I-CBP112 and CBP30. Here we show that the ligand I-CBP112 can stimulate nucleosome acetylation up to 3-fold while CBP30 does not. Activation of p300/CBP by I-CBP112 is not observed with the isolated histone H3 substrate but requires a nucleosome substrate. I-CBP112 does not impact nucleosome acetylation by the isolated p300 HAT domain, and the effects of I-CBP112 on p300/CBP can be neutralized by CBP30, suggesting that I-CBP112 likely allosterically activates p300/CBP through bromodomain interactions. Using mass spectrometry and Western blots, we have found that I-CBP112 particularly stimulates acetylation of Lys18 of histone H3 (H3K18) in nucleosomes, an established in vivo site of p300/CBP. In addition, we show that I-CBP112 enhances H3K18 acetylation in acute leukemia and prostate cancer cells in a concentration range commensurate with its antiproliferative effects. Our findings extend the known pharmacology of bromodomain ligands in the regulation of p300/CBP and suggest a novel approach to modulating histone acetylation in cancer.
Zan Chen, Daniel R Dempsey, Stefani N Thomas, Dawn Hayward, David M Bolduc, and Philip A Cole. 2016. “Molecular Features of Phosphatase and Tensin Homolog (PTEN) Regulation by C-terminal Phosphorylation.” J Biol Chem, 291, 27, Pp. 14160-9.Abstract
PTEN is a tumor suppressor that functions to negatively regulate the PI3K/AKT pathway as the lipid phosphatase for phosphatidylinositol 3,4,5-triphosphate. Phosphorylation of a cluster of Ser/Thr residues (amino acids 380-385) on the C-terminal tail serves to alter the conformational state of PTEN from an open active state to a closed inhibited state, resulting in a reduction of plasma membrane localization and inhibition of enzyme activity. The relative contribution of each phosphorylation site to PTEN autoinhibition and the structural basis for the conformational closure is still unclear. To further the structural understanding of PTEN regulation by C-terminal tail phosphorylation, we used protein semisynthesis to insert stoichiometric and site-specific phospho-Ser/Thr(s) in the C-terminal tail of PTEN. Additionally, we employed photo-cross-linking to map the intramolecular PTEN interactions of the phospho-tail. Systematic evaluation of the PTEN C-tail phospho-cluster showed autoinhibition, and conformational closure was influenced by the aggregate effect of multiple phospho-sites rather than dominated by a single phosphorylation site. Moreover, photo-cross-linking suggested a direct interaction between the PTEN C-tail and a segment in the N-terminal region of the catalytic domain. Mutagenesis experiments provided additional insights into how the PTEN phospho-tail interacts with both the C2 and catalytic domains.
2015
Philge Philip, Ann Boija, Roshan Vaid, Allison M Churcher, David J Meyers, Philip A Cole, Mattias Mannervik, and Per Stenberg. 2015. “CBP binding outside of promoters and enhancers in Drosophila melanogaster.” Epigenetics Chromatin, 8, Pp. 48.Abstract
BACKGROUND: CREB-binding protein (CBP, also known as nejire) is a transcriptional co-activator that is conserved in metazoans. CBP plays an important role in embryonic development and cell differentiation and mutations in CBP can lead to various diseases in humans. In addition, CBP and the related p300 protein have successfully been used to predict enhancers in both humans and flies when they occur with monomethylation of histone H3 on lysine 4 (H3K4me1). RESULTS: Here, we compare CBP chromatin immunoprecipitation sequencing data from Drosophila S2 cells with modENCODE data and show that CBP is bound at genomic sites with a wide range of functions. As expected, we find that CBP is bound at active promoters and enhancers. In addition, we find that the strongest CBP sites in the genome are found at Polycomb response elements embedded in histone H3 lysine 27 trimethylated (H3K27me3) chromatin, where they correlate with binding of the Pho repressive complex. Interestingly, we find that CBP also binds to most insulators in the genome. At a subset of these, CBP may regulate insulating activity, measured as the ability to prevent repressive H3K27 methylation from spreading into adjacent chromatin. CONCLUSIONS: We conclude that CBP could be involved in a much wider range of functions than has previously been appreciated, including Polycomb repression and insulator activity. In addition, we discuss the possibility that a common role for CBP at all functional elements may be to regulate interactions between distant chromosomal regions and speculate that CBP is controlling higher order chromatin organization.
Martin S Taylor, Daniel R Dempsey, Yousang Hwang, Zan Chen, Nam Chu, Jef D Boeke, and Philip A Cole. 2015. “Mechanistic analysis of ghrelin-O-acyltransferase using substrate analogs.” Bioorg Chem, 62, Pp. 64-73.Abstract
Ghrelin-O-Acyltransferase (GOAT) is an 11-transmembrane integral membrane protein that octanoylates the metabolism-regulating peptide hormone ghrelin at Ser3 and may represent an attractive target for the treatment of type II diabetes and the metabolic syndrome. Protein octanoylation is unique to ghrelin in humans, and little is known about the mechanism of GOAT or of related protein-O-acyltransferases HHAT or PORC. In this study, we explored an in vitro microsomal ghrelin octanoylation assay to analyze its enzymologic features. Measurement of Km for 10-mer, 27-mer, and synthetic Tat-peptide-containing ghrelin substrates provided evidence for a role of charge interactions in substrate binding. Ghrelin substrates with amino-alanine in place of Ser3 demonstrated that GOAT can catalyze the formation of an octanoyl-amide bond at a similar rate compared with the natural reaction. A pH-rate comparison of these substrates revealed minimal differences in acyltransferase activity across pH 6.0-9.0, providing evidence that these reactions may be relatively insensitive to the basicity of the substrate nucleophile. The conserved His338 residue was required both for Ser3 and amino-Ala3 ghrelin substrates, suggesting that His338 may have a key catalytic role beyond that of a general base.
Beverley M Dancy and Philip A Cole. 2015. “Protein lysine acetylation by p300/CBP.” Chem Rev, 115, 6, Pp. 2419-52.
Nam Chu and Philip A Cole. 2015. “Switching immune signals on and off.” Elife, 4.
Zan Chen and Philip A Cole. 2015. “Synthetic approaches to protein phosphorylation.” Curr Opin Chem Biol, 28, Pp. 115-22.Abstract
Reversible protein phosphorylation is critically important in biology and medicine. Hundreds of thousands of sites of protein phosphorylation have been discovered but our understanding of the functions of the vast majority of these post-translational modifications is lacking. This review describes several chemical and biochemical methods that are under development and in current use to install phospho-amino acids and their mimics site-specifically into proteins. The relative merits of total chemical synthesis, semisynthesis, and nonsense suppression strategies for studying protein phosphorylation are discussed in terms of technical simplicity, scope, and versatility.
Shun Tu, Shu-Juan Guo, Chien-Sheng Chen, Cheng-Xi Liu, He-Wei Jiang, Feng Ge, Jiao-Yu Deng, Yi-Ming Zhou, Daniel M Czajkowsky, Yang Li, Bang-Ruo Qi, Young-Hoon Ahn, Philip A Cole, Heng Zhu, and Sheng-Ce Tao. 2015. “YcgC represents a new protein deacetylase family in prokaryotes.” Elife, 4.Abstract
Reversible lysine acetylation is one of the most important protein posttranslational modifications that plays essential roles in both prokaryotes and eukaryotes. However, only a few lysine deacetylases (KDACs) have been identified in prokaryotes, perhaps in part due to their limited sequence homology. Herein, we developed a 'clip-chip' strategy to enable unbiased, activity-based discovery of novel KDACs in the Escherichia coli proteome. In-depth biochemical characterization confirmed that YcgC is a serine hydrolase involving Ser200 as the catalytic nucleophile for lysine deacetylation and does not use NAD(+) or Zn(2+) like other established KDACs. Further, in vivo characterization demonstrated that YcgC regulates transcription by catalyzing deacetylation of Lys52 and Lys62 of a transcriptional repressor RutR. Importantly, YcgC targets a distinct set of substrates from the only known E. coli KDAC CobB. Analysis of YcgC's bacterial homologs confirmed that they also exhibit KDAC activity. YcgC thus represents a novel family of prokaryotic KDACs.
2014
Zhihong Wang and Philip A Cole. 2014. “Catalytic mechanisms and regulation of protein kinases.” Methods Enzymol, 548, Pp. 1-21.Abstract
Protein kinases transfer a phosphoryl group from ATP onto target proteins and play a critical role in signal transduction and other cellular processes. Here, we review the kinase kinetic and chemical mechanisms and their application in understanding kinase structure and function. Aberrant kinase activity has been implicated in many human diseases, in particular cancer. We highlight applications of technologies and concepts derived from kinase mechanistic studies that have helped illuminate how kinases are regulated and contribute to pathophysiology.
Ulrike Leurs, Brian Lohse, Shonoi Ming, Philip A Cole, Rasmus P Clausen, Jesper L Kristensen, and Kasper D Rand. 2014. “Dissecting the binding mode of low affinity phage display peptide ligands to protein targets by hydrogen/deuterium exchange coupled to mass spectrometry.” Anal Chem, 86, 23, Pp. 11734-41.Abstract
Phage display (PD) is frequently used to discover peptides capable of binding to biological protein targets. The structural characterization of peptide-protein complexes is often challenging due to their low binding affinities and high structural flexibility. Here, we investigate the use of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to characterize interactions of low affinity peptides with their cognate protein targets. The HDX-MS workflow was optimized to accurately detect low-affinity peptide-protein interactions by use of ion mobility, electron transfer dissociation, nonbinding control peptides, and statistical analysis of replicate data. We show that HDX-MS can identify regions in the two epigenetic regulator proteins KDM4C and KDM1A that are perturbed through weak interactions with PD-identified peptides. Two peptides cause reduced HDX on opposite sides of the active site of KDM4C, indicating distinct binding modes. In contrast, the perturbation site of another PD-selected peptide inhibiting the function of KDM1A maps to a GST-tag. Our results demonstrate that HDX-MS can validate and map weak peptide-protein interactions and pave the way for understanding and optimizing the binding of peptide scaffolds identified through PD and similar ligand discovery approaches.

Pages