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Saarela et al. are concerned with integrating propensity scores into a Bayesian framework.

Some of us have previously written (Robins and Ritov, 1997; Robins and Wasserman, 2000;

http://normaldeviate.wordpress.com/2012/08/28/robins-and-wasserman-respond-to-a-nobel-

prize-winner/; posted 28 Aug 2012, accessed 1 Oct 2014) about this topic, every time making

much the same argument. Here we present a simplified version that captures the main points.

A simple setting

Though our argument applies to the complex observational data considered by Saarela et

al, it is easier to understand it in the simpler setting of a double-blind, placebo-controlled

randomized clinical trial of a non-time-varying treatment and under complete compliance.

In the spirit of the authors, we assume the trial subjects are representative of a much larger

population and the trial results will guide treatment decisions in the population.

Let V = { ;;  = 1  } denote the data on the  trial subjects, where  is

the binary treatment arm indicator, is the binary outcome, and  is a high-dimensional

vector of baseline covariates. The randomization probabilities  [ = 1|] are chosen by a

randomizer. By de Finetti’s theorem (e.g., Bernardo and Smith, 1994), a Bayesian can write

the marginal density  (V) of 
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where 1 () =  ( |;1)  (;2)and 2 () =  (| ). We have already integrated

out the authors’ unmeasured frailty  .

The propensity score  (; †) =  [ = 1|; † ] is known to the randomizer by design,

but let us provisionally assume that our Bayesian does not know it so he treats  as random.

[We assume there exist true values
¡
† †

¢
of ( ) but, even if not, our argument, slightly

modified, is still valid.]

Like the authors, we take our goal to be the estimation of the counterfactual probabilities
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, where † =  ( = 1), and  is a subject’s counterfactual response under

treatment level . Randomization implies that † is identified and equals
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Why Bayesian inference must ignore the propensity score

Bayesian logic is rigidly defined: given a likelihood and a prior, one turns the Bayesian

crank to obtain a posterior. There is no wiggle room. A fact concisely summarized in the

slogan "There is no Bayes but Bayes." Because the parameter  of interest is a functional

of the parameters , the posterior for  is completely determined by the posterior of . If 

and  are a priori independent, the posterior of  is obtained from the L1 () factor of the

observed likelihood and the prior  () for .

Therefore, Bayesian inference concerning  cannot be a function of the propensity score

 (; †) because the Bayesian’s posterior for –and thus for –does not depend on .

Saarela et al. assume  and  are a priori independent and yet argue that inverse prob-

ability weighting by a function of the propensity score  (; †) can be given a Bayesian

interpretation. In light of the above, their arguments cannot be valid.

Why propensity scores should not be ignored

Why do the authors, as Bayesians, work so hard to include propensity scores in their

inference when, according to Bayes, they are irrelevant? Our guess is that the authors



On Bayesian estimation of marginal structural models 3

recognize that an analysis–Bayesian or otherwise–that ignores a known propensity score

can go seriously wrong because one’s prior knowledge of  [ = 1| = ] is meager when

 is high-dimensional.

Specifically, consider any estimator b of † that does not depend on the known propensity
score. Robins and Ritov (1997) prove that b cannot be uniformly consistent for † over the
large infinite dimensional modelM that includes any laws  () =  [ = 1| = ], any

density  () for , and any propensity function  () =  [ = 1|] bounded away from

0 and 1. The practical implication of this theorem is that, whenever  (; †) is a complex

function of our high dimensional  and the (infinite-dimensional) parameters  and  are

a priori independent, the posterior for  will fail to concentrate around the true value of

† as  goes to infinity because any model we specify for  ( |;1) is almost certainly

incorrect (imposing smoothness will not really help). This practical implication is obvious;

the Robins and Ritov theorem serves as a mathematical formalization.

In contrast, estimators that use the known randomization probabilities, like the Horvitz-

Thompson (1952) estimator of †, can be uniformly 
12-consistent overM. The deficiencies

of the Horvitz-Thompson estimator–it may exceed 1, it ignores data on  except for the

one-dimensional summary  (; †), and it can be very inefficient–can be remedied by

using an improved version: the so-called locally semiparametric efficient regression estimator

(Scharfstein et al., 1999). In observational studies, this estimator is doubly robust when the

unknown  (; †) is replaced by an estimate. More efficient doubly robust estimators are

reviewed by Rotnitzky et al (2012).

When the priors are dependent

Our argument relies on the authors’ assumption that  and  are a priori independent.

This assumption is often reasonable, as shown in the Appendix. However, when  and  are
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a priori dependent–which implies that the posterior for  will depend on the propensity

score  (; )–two new issues arise.

First, in observational studies with † unknown, the posterior for  will depend on the data

through the  part of the likelihood. The authors find this troubling since this procedure

fails to "retain the balancing property of propensity scores." But again true Bayesians cannot

have it both ways. The parameters  and  are either a priori independent or they are not.

If one wants to use dependent priors to make the posterior for  to depend on the propensity

score, then one must accept that the posterior for the propensity score will depend on the 

part of the likelihood.

The above is not only a philosophical issue concerning schools of inference. It implies that

true Bayesian inference based on finite-dimensional working models will generally fail to be

doubly robust since misspecification of either the outcome or propensity model will bleed

into the estimation of the parameters of the other correct model. As the authors discuss in

their supplemental material, this lack of double robustness confronted both McCandless et

al (2010) and Zigler et al (2013) who proposed approaches to prevent the bleeding. But, as

useful as the approaches may be, they cannot be truly Bayesian.

Second, even in a randomized trial with known propensity score, simply making  and

 dependent a priori does not imply that the posterior for  will concentrate around the

truth. The dependent prior still has to be carefully engineered for that to happen. As

an example we can construct a locally semiparametric efficient Bayes estimator b as
follows. We assume that, conditional on the known † and  given functions (),

 ( = 1| =  = ;1) is a finite-dimensional parametric function expit
nP

=1 ()
o

with () = 1 ( = | = ; †). Then , if we put smooth or non-informative priors

over the parameters 1 = (1  ), the Bayes estimator b will be asymptotically
equivalent to the frequentist locally semiparametric efficient estimator cited earlier and thus
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be 12-consistent. Thus, by using carefully tuned dependent priors, we have obtained a

Bayes estimator that has good frequentist behavior by mimicking a locally semiparametric

efficient frequentist estimator.

But this is a Pyrrhic victory. If we need to engineer the dependent prior just to mimic

a frequentist answer, is it really Bayesian inference? We call Bayesian inference which is

carefully manipulated to force an answer with good frequentist behavior, frequentist pursuit.

There is nothing wrong with it. But if you want to be Bayesian, then accept that, in this

example, your posterior will fail to concentrate around the true value.

Conclusion

Our arguments above may have left readers thinking "why bother? If you want good

frequentist properties, just use a frequentist estimator rather than embarking on a frequen-

tist pursuit." Indeed, it might appear that we are arguing that the Bayesian machinery

should be reserved for implementing subjective Bayes inference that maps prior beliefs to

posterior beliefs via the likelihood function, without regard for the frequentist properties of

the resulting estimators. While we do believe that investigation of this mapping through

Bayesian sensitivity analysis and/or robust Bayes is important and extremely useful, we

also believe that the Bayesian approach can play other important roles, even when one is

interested in good frequentist properties. We consider three cases.

First, Bayesian logic and machinery may sometimes lead to procedures with provably better

frequentist operating characteristics than their current competitors, even asymptotically. An

example is the conditional predictive and partial posterior predictive p-values of Bayarri and

Berger (2000).

Second, when modelling complex phenomena (particularly in small and moderate samples),

there may be Bayesian approaches that are rather straightforward to motivate and implement
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even when there is no good frequentist alternative, so the Bayes estimator is the best, or

perhaps the only, frequentist game in town.

Third, to improve decision making under uncertainty, one can adopt a Bayes-frequentist

compromise (Robins 2004, Sec 5.2) that combines honest subjective Bayesian inference with

good frequentist behavior even when, as above, the model is so large and the likelihood

function so complex that standard (uncompromised) Bayes procedures have poor frequentist

performance. It follows immediately from our earlier arguments that such a compromise

requires that our subjective Bayesian decision maker is only allowed to observe a specified

vector function of (depending on  (; †)) but not itself. In this way one can circumvent

the problem referred to by Robert (http://xianblog.wordpress.com/2013/01/17/robbins-and-

wasserman; posted 17 Jan 2013, accessed 01 Oct 2014) as the curse of marginalization: "the

classical Bayesian approach is an holistic system that cannot remove information to process

a subset of the original problem."

Appendix: Example of a priori independence of the propensity score.

Suppose a health insurance company needs to estimate the fraction  of its patient popula-

tion that will have a myocardial infarction (MI,  = 1) in the next year, so as to determine

the need for cardiac unit beds. They have 300 potential risk factors  = ( 1 300)

measured on each member. A general epidemiologist had earlier studied risk factors for MI

by following 5000 patients for a year. Because MI was a rare event, he oversampled subjects

whose , in his opinion, indicated a higher conditional probability  () = E [ | = ] of

 = 1. Hence, with  the inclusion indicator, the sampling fraction  () =  ( = 1| = )

was a known but complex function.

The world’s leading heart expert, our Bayesian, was hired to estimate  =
R
 ()  () ,

where  () is the marginal density of , based on the study data (XZZY). As world’s

expert, his beliefs about the risk function  (·) would not change upon learning the propensity
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score function  (·), as  (·) only reflected a nonexpert’s beliefs. Hence the functions  (·) and

 (·) are a priori independent. [Nonetheless, he would believe with high probability that the

random variables  () and  () were positively correlated, knowing that the epidemiologist

had read the expert literature on risk factors for MI.]

Robins and Ritov (1997) showed that once any Bayesian, cardiac expert or not, thoroughly

queries the epidemiologist who selected  (·) about his reasoned opinions concerning (·) (but

not about (·)), the Bayesian will then have independent priors. The idea is that once you

are satisfied that you have learned from the epidemiologist all he knows about (·) that you

did not, you will have an updated prior for  (·). Your updated prior for  (·) cannot then

change if you subsequently are told  (·). Hence, we could take as many Bayesians as you

please and arrange it so all had  (·) and  (·) a priori independent. This last argument is

quite general and applies to many settings.
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