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Abstract

The Quicksort and Bubble Sort algorithms are commonly implemented procedures in computer science
for sorting a set of numbers from low to high in an e�cient number of processes using only pairwise compar-
isons. Because of such algorithms’ reliance onpairwise comparison, they lend themselves to any implementation
where a simple judgment requires selecting a winner. We show how such algorithms, adapted for stochastic
measurements, are an e�cient way to harness human ”crowdsourced” coders who are willing to make brief
judgments comparing two pieces of qualitative information (here, sentences of text) to uncover the underlying
dimension or structure of the qualitative sources.

As a demonstration of the ability of our approach, we show that correctly structured non-expert judgments
of the level of democratization in countries recovers the same information that alternate expert scales of democ-
ratization –with large cost and time– estimate.

Our key motivating implementation involves a large collection of written policies describing conditions
for eligibility for welfare (TANF) in each state in the US. An open question in the literature on welfare is the
existence of a race-to-the-bottom,which necessitatesmeasuring the generosity of complex sets of eligibility rules
that di�er from state to state and across time.

Existing approaches in the literature have attempted to scale or rank state generosity in welfare policies by
either constructing large coding questionnaires (Fellowes and Rowe, 2004) and summing responses, or by at-
tempting factor analysis of all possible raw data on welfare policy (De Jong et al, 2006). The �rst approach
requires understanding all the dimensions that are relevant before constructing the survey implement. The
second requires converting all policy documents and rules into quantitative measures.

We showhow to obtain a ranking of statewelfare generositywithout doing harm to the qualitative nature of
the sources, and without leveraging expert knowledge to sort the vast collection of textual sources. We present
”crowdsourced” human coders sentences describing one policy measure in each of two states, and ask them
which of the two is the more generous (or more �exible, or more lenient) welfare rule. The optimal set of
pairwise comparisons is continuously chosenby the sorting algorithm. We compare the rankings of state policies
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created using judgments from paid human coders throughMechanical Turk, as well as more resource intensive
rankings we created to replicate the scaled indices and factor scores used in the previous literature for the most
recently available data.

We demonstrate that it is possible to reveal structure, and to organize textual information through ”human
processing” by relying on algorithms common to quantitative methods, but without any actual quanti�cation
of the qualitative textual sources. Moreover this is a highly resource e�cient method to organize large corpora
of written information.

We demonstrate the powerful performance of non-expert human intelligence, when given su�ciently small
structured textual tasks, set out as pairwise comparisons, and show how well understood sorting algorithms
can take these human judgments and uncover the latent quantitative ordering of the qualitative sources. The
results are very cheap, incredibly fast measures that correlate as strongly with gold standard statistical methods
as alternate statistical speci�cations scale with each other.

1 Introduction

Aquantitative research program requires measurement. O�entimes we need tomeasure central, fundamental con-
cepts that are intuitively meaningful, but extremely di�cult to precisely de�ne. The standard approach is to use
expert knowledge to set out all the important features of the concept, then measure those features for each obser-
vation, and then collapse all that coded information down to a reduced, manageable scale. We do not disagree that,
properly implemented, this can be the gold standard target of quantitative measurement. Indeed, by situating this
as the “gold standard” we allude to the fact that this can be a very costly process in terms of project resources, and
researcher time. Rather, in this paper, we examine anothermethod of quanti�cation of vague, but intuitivelymean-
ingful concepts, that relies on simple, cheap (but highly structured) pairwise comparisons by non-experts making
direct judgments of qualitative sources.

As the building block of our method, we present non-experts with qualitative information about two obser-
vations, and simply ask them to tell us which observation has more of some concept we are trying to measure. We
go to lengths to argue that many meaningful social concepts can be e�ectively evaluated or judged in this manner
by non-experts. An individual may not know Dahl’s or Gurr’s de�nitions of democracy, but if I give them de-
scriptions of two countries, they can tell me which country is more democratic. An individual may not understand
all the various intricacies of state policy, understand the evolving history of welfare in this country, or know the
ways the states have divided themselves, but they can evaluate two rules and tell which one seems more generous,
or which one they would rather live under if hypothetically they needed assistance.

Our central argument is that collectively these judgments are meaningful, informative, and well ordered. We
then explore a number of sorting algorithms –algorithms that employed in other domains are quite foundational
and well understood– that can arrange objects in a list using only up-or-down comparisons between pairs of ob-
jects. The trick is to correctly and e�ciently choose the right pairs to judge so as to yield the most information. We
demonstrate that, properly employed, these algorithms, coupled with non-expert judges, have the potential to cre-
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ate measures and scales of di�cult concepts that correlate extremely highly with elaborate coding projects coded by
experts –indeed, as highly as di�erent expert schemes correlate with each other– for a small fraction of the resources
and time.

Conceptually, we also �nd the on-the-ground validity of qualitative, human generated sources, being directly
judged in a qualitative fashion by a social population of individuals who rely on an instinctive understanding of the
concept being measured, very appealing. We do not interpret our questions as opinion polls, as much as very tiny
coding exercises, distributed across a large population, arranged and structured algorithmically to learn the most
about the latent concept being measured. In other words, we are using this population, who has an intuitive, qual-
itative ability to make simple judgments, and then structuring the set of judgments that they see so that collectively
this non-expert population is harnessed to form a scaling of observations in a latent dimension. Through this, we
are accomplishing a scaling task that would normally require an immense amount of expert work, �rst to uncover
the important dimensions, then to code them from the sources, and then reduce and scale from those dimensions
back down to a single measure of the latent concept. In our examples, we compare both this approach, and the well
understood “gold standard.” Succinctly, we see the comparison as being between a costly, extremely accurate and
expert measurement of lots of things orbiting the thing we actually desire to measure, versus an inexpensive, weak
measure of exactly the concept we are interested in; and moreover a weak measure that can be repeated increasing
many times for increasing precision.

2 Approaches to Quanti�cation

We�rst discuss the abstract process behind a quantitative coding design. We discuss in detail what inmost contexts
could be assumed understood, so as to concretely de�ne how our approach and methods di�er. That is, we want
to be able to describe our measurement design in the clearest contrast, and that �rst requires explicitly discussing
the pragmatics of measurement.

Let us assume there is some object in the world that we want to measure: perhaps whether someone has voted,
whether a nation is at war, how democratic a country is. These are commonplace variables in the political literature,
but each are progressively complicated to measure in a quantitative fashion, even in the presence of voluminous
information. Let us consider them in order

In the �rst example, measurement is trivially aligned with the observable object. The act of voting seems rea-
sonably dichotomous, one votes or does not vote. Perhaps we need to decided how to deal with abstention, and
modify our coding to the simpler act of turnout. But the object of interest �ts into a few categories, and those
categories are readily observable, andwe can assign quantitative values as labels to each category we directly witness.

Sometimes measurement becomes di�cult at the boundaries between categories. Even if we think that the
concept of war is clear, and most countries that we witness can either be labelled as obviously not at war or clearly
inmidst of war, there are boundary issues. “War” is a vague predicate. There are countries with low, but not absent
levels of violence, or the violence appears predominantly one sided, or the exact actors might not be states, and
so measurement requires making some decisions about what the de�nition means, how it might be coded. This
requires some e�ort on the part of experts to formulate a set of rules map from any set of observables to a simpler
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scaled variable. One rule might be “a war exists when at least a thousand combat deaths have occurred, with more
than one hundred on each side.”

Sometimes measurement is exceptionally hard because no observations are readily labelled as any particular
value, or the boundaries are perplexingly di�cult. When the information we have available from which to create
ourmeasure is a large collection of qualitative, textual sources, this may require the expert reading through all these
sources, noting all the di�erent dimensions and attributes that can be measured, constructing meaningful scales
on which to measure them, and then going into the raw sources and coding all of these values from all of the raw
materials. Next, it is the step of some algorithm for data reduction to take all these large quantity of numbers and
reduce them in complexity to a small number of dimensions, perhaps a single value, for each object or observation.

Collectively, this requires an enormous amount of expert knowledge and expert e�ort. Firstwe require substan-
tive expert knowledge to realize and describe all the dimensions that need to be measured. Next we need pro�cient
thoroughness to then code these dimensions for every one of the observations. Then it requires quantitative knowl-
edge to employ a scaling technique so as to collapse all these dimensions of coded data down to a measure of the
latent concept. This might be a statistically derived model for data reduction, like principal components or an IRT
model, or it might be a more substantively derived scaling method involving judgments about which variables will
have high weight or low weights in some constructed sum or index.

In our motivating example, we needed a measure of how generous states were in their policies towards wel-
fare recipients. As a research question we were interested in understanding how the underlying level of generosity
in welfare rules in a state changed the way state welfare o�cers (“steet-level bureaucrats”) conformed to the writ-
ten statutes they were supposed to enforce. Each state had a long set of written rules describing conditions and
exceptions and policies under which an individual could qualify to continue to receive welfare payments. Rather
than there being merely thirteen attributes of mercy, a�er months of reading the source documents we identi�ed
218 di�erent variables that were necessary to describe all the features of a state welfare policy’s level of generosity.
These 218 variables coded all the possible ways that one statemightmeasurably di�er from another. Thesemight be
quite precisely de�ned variables with tiny scope, such as “Are mother’s over the age of 21, who are without a high
school diploma and who have children under the age of six eligible to count hours spent in job training toward
required work hours”, or they might be broader variables such as “Can the chronically ill get a waiver from work
requirements.” We then measured these 218 variables for each state from the qualitative text sources, Finally, we
then developed an IRTmodel to estimate the latent level of generosity of each state given all the observed features
of their measured rules. This was the primary research activity of four experts for eight months (Berkman et. al
2013). We are going to compare this to ameasurement exercise using qualitative judgments that took less than three
hours to perform.

Wedonot argue against the gold standardmeasurementmethodwhen available or feasible. Butwedo recognize
that not every project has eight months and a team of experts to construct a measurement of a di�cult concept.
Rather than forego projects entirely, what is presented here maybe a good measurement technique for some tasks
where standard quantitative approaches would be exorbitant or infeasible.
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2.1 Judgment versus Quanti�cation

However, just because the concept becomes more di�cult to codify, or even becomes abstract, does not mean it
becomes less immediately meaningful. Justice Stewart famously wrote in a concurring opinion on an obscenity
ruling “I shall not today attempt further to de�ne the kinds of material I understand to be embraced within that
shorthand description; and perhaps I could never succeed in intelligibly doing so. But I know it when I see it, and
themotionpicture involved in this case is not that.”(Jacobellis v.Ohio, 1964)Colloquially, “But I know itwhen I see
it” has come tomean an ironic subjective �uidity. But Justice Stewartwas an experienced SupremeCourt Judgewho
was struggling to provide a de�nition. And yet he knew he could make a judgment in a speci�c instance without
constructing a set of rules de�ning all possibilities. Inmany respects, our framework is faithful to his exactmeaning.
There aremany di�cult, vague concepts, that are extremely hard to codify in such away as to exhaustively de�ne all
possible situations that might arise, and yet some of these concepts can be immediately judged in individual cases.

Indeed, when we are dealing with socially meaningful terms, if these could not be judged to exist in the real
world independent of a rigourous de�nition, the original conceptwouldhavenomeaning. Ideas such as democracy,
freedom, generosity, are social constructs that are meaningful in ordinary interactions among individuals in the
world, without them precisely de�ning their terms. In these cases, it is precisely because they have ready meaning
in the social world of mass behaviour that we as scholars are interested in studying them. Our ability as academics
to uncover and reveal exactly what these terms mean is valuable work, but these concepts predate our rigorous
de�nitions, and have valid meaning among individuals who use the term, even if those individuals can not define
the terms they use, or ascribe why they make the particular judgments they �rmly believe to be true.

Non-expert participants might not be able to de�ne what makes a state democratic, or what makes a welfare
policy generous or when exactly a state of war exists, but they know it when they see it. In fact, we are going
to require even less of participants than this. We will simply require that given two observations, they can judge
which possesses more of some quality. This requires less than the Justice Stewart approach. Deciding whether an
observation does or does not obtain a particular quality (obscenity, democracy, generosity) requires �rst mentally
depicting some vague boundary and then deciding whether the judged object is has greater or less of the quality
than the depicted boundary. By giving individuals a pair objects, we are lessening the cognitive complexity of the
task. Implicitly, one object immediately forms the boundary and, now as before, the participant judges whether the
next object is above or below that given boundary. Moreover, we avoid issues of anchoring that arise if we worry
that di�erent individuals would construct di�erent vague boundaries.

It should be clear, also, what we are not expecting of participants. We do not expect them to be able to judge
qualities that are academically coined, but have no daily meaning to respondents. The concept of “Anocracy” is a
useful academically constructed concept that usefully organizes and categorizes some groups of countries, but as a
word of technical coinage we would not expect non-experts to make judgments surrounding its use. Moreover, we
would not expect non-experts to be able to rank-order a large set of objects. Perhaps they could feasibly order three
objects highest to lowest, or in some contexts more, but we do not assume that given a large number of qualitative
objects, that di�er in many di�erent dimensions, that non-experts could lay them out in one scale. In our examples
we only ask individuals to compare pairs of observations. It suits our algorithms, and conceptually we like the idea
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of constructing a high-information coding from very many low-informational tasks. But in terms of improved
e�ciency, speed and cost, it might be possible to successfully tax the abilities of participants to higher degree.

3 Sorting Algorithms

In quantitative social science, we learn a large number of statisticalmodels, and also generally learn something about
the algorithms that implement them. Although we learn them hand-in-hand, these are di�erent things. One could
write down a statistical model and prove that a particular estimator has desirable properties under certain given
assumptions, and if there is no algorithm that can compute that estimator, the statistical model is still valid but
not of practical use. In the other direction, we can o�en write down algorithms that seem intuitively appealing in
their design, and which have nice numerical properties in terms of speed and computability, but perhaps have no
statistical model to justify them. In the machine learning literature, such algorithms are increasingly common.

Typically, however, we learn these things hand-in-hand. We learn theGaussMarkov theoremand theproperties
of the linear regression statistical model. And at the same time we also learn the algorithm to obtain regression
coe�cients easily expressed in linear algebra as β̂ = (X′X)−1Y′Y. Perhaps, at an even more foundational level
of understanding, we also learn the relative merits of di�erent algorithms for taking the necessary inverse, such as
Gauss-Jordan elimination, or the use of determinants and cofactors.

By and large, the algorithms we learn in quantitative methods training tend to focus on di�erent approaches
to optimization: analytical optimization justi�ed by calculus (as in the above example), various hill climbing ap-
proaches useful in maximizing likelihood or other objective functions, or even more stochastic approaches in the
MCMC literature. This focus has a good payo�, as understanding something of these algorithms gives some prag-
matic sensibilities as to howestimates obtainedby these algorithms can fail in practice tomatch the statisticalmodels
they are paired to. But the algorithms themselves are distinct from the statistical models.

3.1 Comparison Sort Algorithms

An enormous, and critical body of algorithmic understanding are the numerous algorithms for sorting numbers.
Sorting algorithms are the foundational algorithms of computer science. E�cient methods to sort numbers are
central to merging objects, conforming objects’ type (canonicalization), and memory allocation. The object of
sorting algorithms is to take an arbitrary object and rewrite it so it obeys some objective; for example, taking a
set of numbers and ordering them so each one is greater than the last, or taking a set of words and alphabetizing
them. O�en, the primary goal of a sorting algorithm is to be fast, that is, reach a sorted state in a small number of
computational operations. A secondary goal might be to be algorithmically simple (easy to code) or transparent
(easy to understand). The majority of the sorting literature is concerned with the class of algorithms of comparison
sorts, that is, they iteratively use somebinary function (for example a function that could be interpreted as the logical
> “greater than” sign), rather than anymore involved or high level function (for example, a function that positions
objects onto a number line). Comparison sorts are o�en simple and transparent, butmost importantly they are fast
in terms of total machine operations required of the processor.

6



We are interested in comparison sorting algorithms becausewe believe pairwise comparisons are a function that
non-expert human intelligence is o�en capable of performing, and we want to be able to e�ciently harness all the
pairwise judgments to form an underlying ranking. In what follows, we very brie�y describe the mechanics of two
popular sorting algorithms, and then compare them to a much slower and costly, but more transparent approach.
Thenwewill demonstrate howwe implement themwith human judgment as the locus of the comparison function.

The Quicksort algorithm (Hoare, 1962) is widely used in many real computational applications. An element
is selected at random from the set (perhaps the �rst element in a list). Then all the other elements are compared
to that item. Elements that are less than the referent are moved below that item and items that are greater than
the referent are moved above the item. The referent is now �xed, and the two new groups, below and above the
referent, are now recursively rearranged in the same fashion. An example of this shown in the le� column of table
1. The numbers 1 through 5 are unsorted in the �rst line. The �rst number, 3, is picked as the referent. In the
comparison in the �rst line, 5 is greater than 3, so stays to the le� of 3. In the next line, 1 is less than 3, and so
moves to the le� of 3. Finally when all the numbers have been moved to the le� or right, the 3 is now �xed and
those two smaller groups are now sorted in the same fashion. From this behavior, we see the divide-and-conquer
nature of quicksort, in that the 3 divides the set in two, and relative to the 3, these numbers will always remain on
the same side. If the data is originally random, each iteration of quicksort will occur on a set that is about half as
small as the previous, and so the sets get exponentially small until they are singletons and need no more sorting.
For this reason, quicksort is generally quite fast. In lists of length n that are initially random, the total number
of comparisons required will be some function where nlog(n) is the largest term; We say then that the order of
operation of quicksort is nlog(n) or compactly, O(nlog(n).1 It tends to slow down if the data is already partially
sorted as each division moves fewer observations around. In the worse case, when Quicksort sets about to order a
set that is already sorted, then the algorithm isO(n2), which for large n is manymore operations thanO(nlog(n).
We will also look at a much older divide-and-conquer algorithm,Mergesort, (Goldstine and von Neumann 1948)
which starts o�with pairs of observations and orders them. Pairs of these pairs are thenmerged together, preserving
order, to form larger ordered sets, which are iterativelymergeduntil the entire set ismerged together. While typically
slower than Quicksort, Mergesort distributes the paired comparisons much more evenly across the set of objects
which we thought might be a desirable property for some of the purposes examined.

Bubble Sort is an algorithm that is o�en used as an introductory example to teach the concepts of sorting, (for
a detailed history, see Astrachan, 2003) although it is o�en derided as an algorithm that is always taught and never
used.2 In brief, bubble sort compares the �rst and second elements in an unordered set. If they are in the wrong
order their positions are swapped; if they are in the correct order, their positions are unaltered. Then the second and
third elements are compared, and then the third and fourth until the end of the set is reached. The entire process is
repeated until no itemsmove. Bubble sort is shown operating on the same unordered set in the right of table 1. First
3 and 5 are compared, which are in the right order. Next 5 and 1 are compared, and since 5 > 1 they are swapped in

1For example, if the number of terms required in some particular implementation of quicksort were anlog(n)+ bn = c asn gets large,
the �rst term quickly dominates, and thus we would say the order of operation wasO(nlog(n).

2Knuth famously opined “In short, the bubble sort seems to have nothing to recommend it, except a catchy name and the fact that it
leads to some interesting theoretical problems.” (Knuth, 1998)
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quicksort

(3 < 5) 3
�
5 1 2 4

(3 > 1) 3 5
�
1 2 4

(3 < 2) 1 3 5
�
2 4

(3 < 4) 1 2 3 5
�
4

(1 < 2) 1
�
2 3 4 5

(5 > 4) 1 2 3 5
�
4

1 2 3 4
�
5

bubble sort

335 1 2 4 (3 < 5)

3 5
y
×1 2 4 (5 > 1)

3 1 5
y
×2 4 (5 > 2)

3 1 2 5
y
×4 (5 > 4)

3
y
×1 2 4 5 (3 > 1)

1 3
y
×2 4 5 (3 > 2)

1 2 334 5 (3 < 4)

1 2 3 435 (4 < 5) Repeat evaluation

132 3 4 5 (1 < 2)

1 233 4 5 (2 < 3) Repeat evaluation

1 2 334 5 (3 < 4) Repeat evaluation

1 2 3 435 (4 < 5) Repeat evaluation

Table 1: Examples of the same unordered set being sorted by the Quicksort and Bubble Sort algorithms. Each line
represents a single pairwise comparison.

position. Now 5 is compared to 2, and another swap occurs. The name of the algorithm refers to this phenomenon
that large objects (like the 5) will rise up the list like a bubble in liquid. Bubble Sort is very slow, requiringO(n2)

operations to sort a random set (although one small advantage is that in nearly ordered sets that have only adjacent
pairs reversed, it is quite fast asO(n)).

One �nal but very ine�cient method is the Full Count sort. If there are n objects to sort, a object is selected,
and compared to every other object in the set. The number of times, k, that that object is found to be greater than
another object, across all these comparisons is counted. The object is then placed in new sorted sequence in the kth
position.3 This requires exactly n(n− 1)/2 unique comparisons, so is alsoO(n2).

Generally, sorting algorithms are chosen so as to implement fast in the type of problem that forms the an-
ticipated use case. Speed can be a factor of the number of comparisons, as already discussed, but also many other
algorithmic operations, such as the number of times thememoryneeds to be transfered as items are sorted or copied,
or the ability of subprocesses of the sorting algorithm towork independently, and thus be distributed in parallel. As
we will see, while all these in�uence the typical understanding of the speed of a sorting algorithm, the only criteria
we are interested in minimizing is the number of unique paired comparisons.

3Note, the smallest object will be greater than no other objects, and so have k = 0, the largest object will have k = n− 1. It is common
in many languages for the �rst position in an array to be position zero, even if it is unintuitive from the conventions of set theory. If a
sequence of k from 1 to n is desired, obviously we add one to this count (or curiously de�ne any object as greater than itself and add that to
the count).
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3.2 Qualitative Comparison Sort Implementation

Wewant to lean on the fact thatmany di�cult concepts can bemeaningfully judged by non-experts, as amethod to
cheaply quantify concepts that would otherwise be prohibitively expensive to measure. We are going to use com-
parison sort algorithms, where instead of numbers, the objects to be sorted are short qualitative texts, and instead
of a deterministic simple mathematical function like “greater than”, we are going to use the average judgment of
a set of non-experts. However, the algorithm remains unchanged, even though the objects the algorithm sorts are
unconventional and the functions the algorithm uses are computed within human intelligence.

4 MTurk

To recruit our non-expert participants, and to display the qualitative sources, we used Amazon Mechanical Turk
(herea�er MTurk). This service has a large number of users around the world who are willing, over the internet,
to perform small tasks for small payments. People with tasks, called requesters in MTurk parlance, post these tasks
with short descriptions and a speci�ed payment. Users who are interested, called providers, self select to ful�ll
tasks for which they are interested. Some small degree of control over the pool of quali�ed providers can be set by
requesters, such as the number or fraction of tasks a user has successfully ful�lled, the user’s location (judged by
their IP address). Arbitrary tasks can be programmed by requesters for providers to ful�ll online, but simple tasks
can be set up through theMTurk interface (API) which requires only some knowledge of html. When the task has
been ful�lled it is submitted back to the requester, who can then review tasks and pays for tasks where they approve
the work submitted.4

We payed 2.00 (US) per task. The median time to completion of any of our tasks was under seven minutes,
meaning we were paying our median coders an hourly rate greater than 17 (US) an hour. A task involved two judg-
ments we were interested in, and a third control judgment, which was a very easy judgment we thought everyone
should readily agree on if they were reading the qualitative sources provided. Users of this service o�en fear that
some providers will submit nonsense with the greatest possible speed, or even create automated “bots” that ful�ll
tasks randomly, so as complete tasks fast and harvest payments forminimal e�ort. We used the control task as a way
to measure the degree to which this might be a problem.

4.1 Previous uses of MTurk

By far the most common tasks available on MTurk are simple jobs that can be electronically presented, but not
easily automated, and for which computer algorithms are not currently well suited, but which are relatively easy
for humans to quickly understand. One of the original purposes the architecture was �rst developed by Amazon
was to �nd a way to remove duplicate listings of the same product from the online Amazon catalog; A provider
would be presentedwith the description and images of two products for sale, and the task is simply to decide if they

4A pool of money is submitted to Amazon Web Services, su�cient to cover payment for all tasks requested. When a ful�lled task is
approved, Amazon takes payment from the pool and credits the user. Amazon takes an additional 10 percent fee as payment (20 percent for
providers who have quali�ed as “expert categorizers.”)
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are the same item. Duplicate removal is still a common task in the MTurk listings. Other common tasks are typed
transcription of audio text, color and picture tagging and annotation of text.

The pool of providers has been an increasingly alluring subject pool for social scientists. The category of “re-
search purposes” is a label a requester can use under which to list their task. MTurkers are a responsive, inexpensive
population that provide results with great speed. Across the �elds of social science, experiments have been repli-
cated using MTurk providers as test subjects or survey respondents, and compared to responses using randomly
sampled populations. Within linguistics, the use of MTurk for annotation and judgment of text is described by
Snow, O’Connor, Jurafsky & Ng (2008) and Callison-Burch and Dredze. (2010). Using MTurk tasks to conduct
experimental economics studies are described by Paolacci et al (2010) andHorton et al (2011). Applications in exper-
imental psychology are described byBuhrmester et al (2011) and survey experiments in political science are addressed
by Berinsky, Huber, Lenz (2012). The results are mixed. Within the United States these users are more highly edu-
cated andmuch younger than the general population. Generally the di�erences seen are as would be expected from
a younger, better educated population, but generally not as skewed or exaggerated as samples conducted within
undergraduate student populations, another common, inexpensive and readily available subject pool extensively
utilized in some social sciences.

To reemphasize a point, however, in contrast with these above studies we do not conceptualize our MTurker
providers as subjects in an experiment, or respondents in a survey, but rather as coders or research assistants, per-
forming very small coding tasks for us. Of all of the above, our task is closest to the academic linguists who use
MTurkers to annotate text documents to build corpora. To the extent that these are better educated or younger
than the general population we do not see a cause for concern (except if we push our method to some boundary
where we might try to measure a particular latent concept that is hard for the young, inexperienced or educated
to judge). In this regards we also mirror recent work, discussions and proposals by Benoit, Conway, Laver and
Mikhaylow (2013), and D’Orazio (2013) for crowdsourcing as an avenue for inexpensive coding of large datasets.
However, each of these is a methodology for a conventional coding exercise in an unconventional setting, where
the variables and attributes to be recorded are previously de�ned by the expert setting out the task. To reiterate, our
approach does not aim to place individual observations in a measured, coordinate space, but to harness very simple
pairwise comparisons between objects, aiming to avoid the need to prede�ne the various attributes to measure, to
avoid anchoring these measures across coders, and indeed to avoid a quantitative measurement process entirely in
all the intermediate steps up to creating the measure of the latent structure.
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5 A Statistical Model of Vague Judgements

The sorting algorithm creates an ordering of the objects from pairwise comparisons. This gives us an ordinal rep-
resentation of the position of the objects in the latent space. In some cases, with the same observed information,
we can also statistically estimate a continuous, cardinal representation of the latent space. We can derive the same
equivalent model from several perspectives: as a measurement error model, as a large dimensional IRTmodel, and
as Gaussian channel. Each perspective reduces to the same equivalent model, and while the last of these is explicitly
true to our de�nition of the judgement process, the measurement and IRT derivations are commonly understood
models and provide intuitions for themeaning and behaviour of the estimated parameters, sowe present these also.

Assume that each object i has latent position βi. We could set up the problem of judgement as a measurement
error process with additional censoring. When making a judgement between objects i and j, individual n takes
measurements, x, of the latent positions with Normally distributed unbiased errors:

xin = βi + µin; µin ∼ N (0, σ2i ) (1)

xjn = βj + µjn; µjn ∼ N (0, σ2j ) (2)

And records the di�erence, y∗n = xin − xjn, of which we observe a censored version y = {1, y∗ > 0; 0, y∗ ≤ 0.
Their observed judgement is the n-th comparison in the data between objects in and jn, coded 1 if in is judged
greater and 0 if jn is judged greater. The probability of any observed judgement is then:

Pr(yn = 1|in, jn) = Pr(xin−xjn > 0) =

∫ ∞
0
N (βi(n)−βj(n), σ2i +σ2j ) = Φ

[
βi(n) − βj(n)√

σ2i + σ2j

]
(3)

A function of the true latent positions of the two objects judged, and their associated object speci�c error variances.
The �rst principles in equations 1 and 2 imply that individuals are able to make judgements about an object’s po-
sition in the latent dimension, where as we have premised our study simply on the ability of individuals to make
pairwise judgements of relative order. However, this is simply a familiar way to set out the model. If instead we
assume that individuals are the receivers at the end of a Gaussian channel, which is sending two values, and their
informational goal is to decode which value is greater from the signals that emerge from the channel, then exactly
the same result is derived (for Gaussian channels, see Cover and Thomas, 1991, Chapter 10). Similarly, we could
set up this model as a complicated IRT model where each possible country-pair, leading to potentially n2 items
sharing only n parameters, and obtain the same expression.

(4)

From either approach then, the model becomes a heteroskedastic Probit with object speci�c parameters that
estimate the speci�c positions in the space. For identi�cation, we minimally need to peg some set of values and
we choose two objects in the space and allow a free variance parameter, as this makes visualization and comparison
across bootstrapped samples easiest. As it may be the case that some items perfectly order in small samples, we may
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need to impose additional restrictions of the range of the latent space, which we set aside momentarily.
We might worry that some individuals in the data are simply answering randomly. If π fraction of the popula-

tion is answering randomly (�ipping coins), and the rest are as previously modeled, the likelihood for yn is:

Pr(yn = 1|in, jn, βi(n), βj(n)) =
π

2
+ (1− π) Φ

[
βi(n) − βj(n)√

σ2i + σ2j

]
(5)

We can parameterizeπ on some observed characteristics, zn of the individualmaking comparisonn. If we have each
individualmakingmany comparisons, thesemight be individual speci�c �xed e�ects. In our data, we generally have
many individuals who each make few judgements. However, there are many heuristic rules among users ofMTurk
to detect and then eliminate individuals who are not contributing e�ort. For example, whether they fail simple
control questions, how much time they take to complete the task. We can code these various tests as z and see if
they statistically contribute to π thus telling us whether we have evidence in the data that the rules used are valid or
working. We can also model π as a function of the task payment and attempt to estimate what is an e�cient level
of payment to receive the most information for a �xed budget. In our example, all workers received one common
question that we felt was an easy judgement with a correct answer that any individual worker should. We took
workers from several prede�ned populations, explained in more detail below, which also serve as covariates, and
slightly adjusted the level of payment.

Together, we set this up as a penalized likelihood function, which is equivalent to setting a ridge shrinkage
prior on the β’s. We could have also set a prior on the σ’s but chose to assume a common σ for all objects, leaving
estimation of object speci�c σ’s –perhaps as a function of word length and sentence complexity– as a topic for
further investigation. This simpli�es to:

logL(Y |β, π) =
N∑

n=1

[
yn log

(
π

2
+ (1− π) Φ

[
βi(n) − βj(n)√
σ2i(n) + σ2j(n)

])

+ (1−yn)log

(
π

2
+ (1− π) Φ

[
βj(n) − βi(n)√
σ2i(n) + σ2j(n)

])]
− γ2
K

K∑
k=1

(β̄ − βk)2 (6)
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6 Application: Democracy Scores

To test our method in a well understood setting, we �rst attempted to measure the level of democracy in countries.
Characterizing and scaling the level of democracy in states has been a longstanding enterprise in political science; it
is a verymature literature, alternatemeasures abound, and the speci�c choice ofmeasure can in�uence �ndings (See
Caspar and Tu�s 2003, Pemstein, Meserve and Melton 2011, Honaker and Wright 2013 for discussions of alternate
measures available). The most commonly used measure comes from the longstanding Polity project, which we use
as our point of comparison.

Our implementation was as follows. We chose a random sample of countries, strati�ed so as to sample one
country at random at every two-point increment along the −10 to +10 Polity scale. The eleven countries used
in our pilot, spread across the range of democratization were (in order of increasing democratization): Quatar,
Bahrain, Kazakhstan, Tunisia, Chad, Burkina Faso, Djibouti, Nigeria, Liberia, Indonesia, Hungary. We took three
written paragraphs about these countries from the Country Reports from the annual Freedom in the World publi-
cation of the FreedomHouse project. These country reports are written in reasonably similarly structured fashion
across countries, sowe took the last paragraph of the “Overview,” which tends to describe themost recent elections,
and the �rst two paragraphs of the section which immediately follows titled “Political Rights and Civil Liberties”
which typically focuses on the distribution of power among branches of the government, and the freedom to form
parties.

For each participant, we simply took these paragraphs, placed them side-by-side, and asked the respondents to
read them and tell us which country was more democratic.5 We called the countries “Country A” and “Country B”
and replaced all names of the countries with these labels so as to avoid having the participant draw on prior outside
knowledge about these countries.6 Speci�cally we structured the question as:

Compare the available information and decide which country is more democratic.
Read the information on Country A and Country B.
In your best judgment, decide which of the following best describes a comparison of the countries:
. • Country A is much more democratic than Country B.
. • Country A is slightly more democratic than Country B.
. • Country B is slightly more democratic than Country A.
. • Country B is much more democratic than Country A.

We gave the respondents a choice of four gradations because we thought the availability of more subtle distinc-
tionswould incline the participant to a closer, more careful reading of the text, but for the analysis we simply simply
collapsed this down into the dichotomy of which country was more democratic.

5For recruitment purposes we titled the task: Reading text to compare the level of democracy in pairs of countries, and used the descrip-
tion: Read a series of text extracts about elections and political institutions and categorize which country is more democratic, and for search
purposes, keywords: categorization, political, coding

6The names of party leaders were le� unchanged, but we assume most participants do not gain much information from this, and al-
though it is an online task, we believe participants are unlikely to look them up.
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Figure 1 gives an actual screenshot as the task appears from the interface of an MTurk participant. We posed
two such questions on each assignment, and a third question which was used as a control. The control question
was the same for every single task. It was constructed from two countries not among the set we were actually in-
terested in, but intentionally selected so as to be an easy judgment. Speci�cally we used Chile (a reasonably clear
democracy) and Azerbaijan (a reasonably clear authoritarian state). We expected that individuals who were reading
the prompts carefully would classify Chile as more democratic than Azerbaijan, but were willing to let participants
make any judgment they saw �t. The important use of this question was to attempt to identify individuals who
were answering randomly and answering many tasks to quickly harvest many payments. Individuals reading the
prompt should make consistent answers in each task they attempt when they see the control question. Individuals
clicking randomly would have a cycle of di�erent answers to the same control question across tasks. Figure 2 gives
an screenshot as the control question appears from the interface of anMTurk participant for this comparison.
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Figure 1:An example of a task as it appears on AmazonMechanical Turk comparing the levels of democracy between
two countries based on qualitative paragraphs taken from Freedom House country reports.
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Figure 2: An example of the control question asked as the third judgment in every task, which should be simple to
answer, but more importantly, should be answered the same way if the same individual answers multiple tasks. Note
also the comment box for feedback.
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6.1 Results

To gain a complete understanding of the performance of di�erent sorting approaches, we tasked all possible pairs
of countries nine times each for a total of 495 judgments (9 × 11(10)/2). We posed these tasks in three available
pools which MTurk easily allows restrictions to: Respondents from any location, Respondents from the US, and
Master Categorizers. The �rst two pools are constructed by examining the IP address of the provider. The latter is
a special category of individuals who have successfully completed a large number of “categorization” tasks.7
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Figure 3: Pairwise non-expert judgments, plotted against the di�erence in Polity score, for three populations of po-
tential MTurk providers. Points in blue represent judgments that agree with the ordering Polity would o�er, while
red disagree. The area of each point represents the number of observations as each location and the percentage below
captures the fraction of all individual level judgments that agree with the ranking from Polity scores.

Figure 3 graphs the comparison of judgments across all responses compared to the di�erences of these countries
in their Polity scores, in each of these three respondent pools. For any paired comparison, the x-axis measures the
di�erence in the Polity score between Country A and Country B. The y-axis gives the judgment on the four point
scale of the reader, where a code of 4 is “Country A is much more democratic than Country B” and a code of 1 is
“Country B is much more democratic than Country A”. Any judgment that falls in the �rst or fourth quadrant of
the graph (upper-right or lower-le�) is a judgment where the reader of the qualitative text makes a judgment that
happens to agree with the ordering of the two countries in the Polity index. These are colored blue. Judgments
from the text that run counter to the Polity index are in the second and third quadrants and colored red. Because
of the discrete nature of both dimensions, many points will fall in exactly the same position on the graph, so the
size (area) of each dot represents the number of individuals who made such a judgment. We see in the middle and
right graph, that most of the area is blue, that is, most of the participants are making the same judgment that we

7Access to this pool requires a higher surcharge paid to Amazon of 20 percent of any approved payment. The payments themselves do
not have to higher, but there is a smaller pool of individuals, and the competitive rate tends to be higher. Our rates, �gured as an hourly rate
were still higher than usual in this pool.
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would have gotten if we had instead used the Polity scale. The few red observations are generally close to the vertical
line, which represents a Polity di�erence of zero, so judgments that disagree with the relative ranking in Polity are
generally only occurring for countries that are close in their Polity ranking.8

The actual rate of individual agreement, is not the key factor in determining how the aggregate, or “crowd-
sourced,” judgment will line upwith the expert codings. This number could arise because all individuals agree with
one another (all �ve answers are the same), but individuals see about a third of the cases opposite to how they line
up in Polity. Or, the individuals could have some internal disagreement, but the average answer lines up exactly the
same as the quantitatively derived estimates. In the extreme, it would be possible for the population agreement to
be some tiny ε above 50 percent, and still have the average judgment, given enough individual responses, agree with
the statistical estimates. Or in such an extreme, there could be no agreement at all, and they agree with the same
probability that two random coin �ips are the same. That is, 50.1 percent agreement could represent an exact match
at the country-pair average to Polity, or no agreement whatsoever.

What is key then, is the fraction of all judgements, of some particular country-pair, that agree with the relative
polity scores of those states. This information is presented in �gure 4. The eleven states in our study are arranged
from low Polity (Quatar) to high (Hungary). Each number in the �gure represents the fraction of the estimates
that stated the column country was more democratic than the row country, and thus gave a judgement that corre-
sponded to the ordering the Polity score would give. Only the upper diagonal is presented, as the lower diagonal
would contain no additional information. For ease of interpretation, where the value is greater than 0.5, the cells are
colored in increasing bright green, while the cells where the average judgement does not correspondwith the analyt-
ical Polity score are increasingly red.9 We can see in the top right, where the strongest democracies are compared to
the least democratic states, that the fractions are all consistently very high. In the bottom right, where democracies
are compared against each other, the fractions are generally dropping, and there is some disagreement in the judge-
ments as to which state is more democratic, although with two exceptions the average judgement aligns correctly
with the Polity score. There are more disagreements with the Polity score in the top-le� of the �gure where the
least democratic states are being compared to each other. This might be because relative levels of democratization
are hard to judge in descriptions of less democratic states, or it might be that there is more than one dimension of
authoritarian structure (personalist, single party, military) that make di�erent authoritarian states more di�cult to
compare (Honaker andWright 2013).

From all of these paired judgments, we computed the order of the states using the full count rule, and the
Quicksort and Bubble Sort algorithms discussed in section 3.1, as well as a Mergesort. To reiterate, the eleven states
are the objects for the sorting algorithms to order. Thematrix in �gure 4 served as the comparator, that is, everytime
a pair objects needed a paired comparison to select a winner, the average value of all judgements was used; when
this was greater than 0.5, the column state was determinedmore democratic, andwhen below 0.5, the row state was

8There are many more observations in the center graph. Given that the respondents from “Any Location” had lower agreement levels,
and the “Master Categorizer” agreement had only slight increase but cost more and took substantially longer to collect due to a small pool,
we focused on the ordinary US resident pool in later rounds of judgement collection. Also, we began our collection e�ort in the spring of
2012, but in the beginning of 2013 Amazon signi�cantly restricted the ability of non-US responders to join or contribute to tasks.

9The astute reader will notice there are many cells with value 0.4, and many with value 0.6, and none at 0.5. There are nine judgements,
so 4/9 = .444 is rounded down, and 5/9 = .556 is rounded up, thus 0.5 is not possible from 9 judgements.
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Figure 4: Fraction of all pairwise judgements that agree with the ordering of the states in the Polity score, that is, the
column state is judged more democratic than the row state. Cells in green show the judgements where the majority
of respondents agree with the ordering that would come from the Polity score.
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considered more democratic. The initial order of the states was randomly shu�ed, and then the order sorted by
each algorithm, using only the particular paired comparisons called for by that algorithm. If the comparator was a
strong ordering, then each of these algorithms would always result in the same �nal ordering of states, regardless of
the initial shu�ing of states, or the algorithm used. However, there are intransitivities present in the comparator
we have from the average judgements, possibly due to actual intransitivity in judgement, or also likely due to the
stochastic nature of the small sample sizewehave for eachpoint. Ifwehadhundreds of judgements for each country-
pair, likely some of the cells presently below 0.5 would move above 0.5 (and possibly some of the those presently
above 0.5 might also fall below that mark). With this intransitivity, the �nal ordering of the states will depend
on the algorithm used, and the initial shu�ing of the states. We ran each algorithm 1000 times on random initial
permutations to order, and recorded the order that resulted, as well as the number of country-pair comparisons
that were needed to develop the ordering.

We computed the correlation of each algorithm’s distribution of rankings across these simulations with the
Polity score, and the correlation matrix is shown in �gure 5. The full count rule, which is the most expensive to
compute as it uses all judgments of possible pairs, correlates with the Polity score at 0.85. To judge whether this is
high or low, we compute the correlation of the Polity scale to the Freedom House scale for these same countries,
for the same year; this is also 0.85. That is, our measure of democratization computed entirely with distributed
judgments of non-experts, correlates with the Polity score at about the level as costly expert “gold standard” mea-
sures correlate with each other. We also implemented the more e�cient algorithms described in section 3. The
Bubble Sort, Quicksort andMergesort algorithms, which use fewer of the available judgments, and thus would be
cheaper to compute if we only collected the judgments they individually required, have lower levels of correlation
with Polity, with Quicksort fractionally leading in performance. Bubble Sort, although simple and conceptually
attractive, is generally looked down on in applied situations owing to the larger number of computations (and gen-
erally worse order of operation) in situations where comparisons are perfect. One useful feature in Bubble Sort
for our application is that pairs that are “incorrectly” placed at some round in the sort are not permanently set (as
in divide-and-conquer algorithms), but can be adjusted in future rounds. The fact that some pairs are repeatedly
compared in the algorithm, costs computational time in conventional numeric settings, but in our application, we
do not necessarily need to rerun pairwise comparisons among non-experts which have already been judged, so these
repeated computational operations do not translate into increased costs or rounds of task onMTurk.

We note also, that all our measures correlate with Freedom House at a lower level than with Polity. At �rst
glance, this is intriguing when we recall that we are using qualitative text, pulled from reports written by Freedom
House, to give our participants. However, we pulled those paragraphs that focused on recent elections and parties,
which are focuses of the Polity conception of democracy, whereas the FreedomHouse score has a greater focus on
rights. We feel that the greater correlation of our measure based on the intent and focus of the qualitative sources,
rather than the particular institute that wrote the qualitative sources, is an interesting form of face validity for our
method.

The previous orderings are all algorithmic interpretations of the data. Figure 6 shows the estimated latent
positions of the states in a democracy dimension, using the statistical model described in section 5. They are aligned
along the x-axis in polity score, and the y-axis gives the estimated positions using all of the paired judgements
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Figure 5: Correlations between the Polity score, the alternate Freedom House measure of political freedom, and three
rankings constructed using algorithms to sort using non-expert pairwise judgments.

(as well as 80 percent con�dence intervals). The states at either end are pegged parameters to identify the model,
so have no uncertainty. The states’ estimated positions generally trend upwards. Burkina Faso is most notably
divergent from this pattern, which makes sense from what we saw in �gure 4, as the average judgement placed it
more democratic than all states with a lower polity score, but alsomore democratic thanDjibouti, Nigeria and even
Hungary,whichhavehigherPolity scores than itself. The correlationof the estimatedpositions fromthe judgement
data, to the Polity score, is now 0.91. This slightly outperforms the fullcount sort. While the fullcount sort uses
the judgements on every possible pair of states, it only uses the information as to whether the average judgement
is above or below 0.5. This statistical model uses all of the individual judgements, and leverages the information
of the rate of disagreement; states that are far apart should have low levels of disagreement among judgements,
whereas states that are close together should have high levels of disagreement. This additional information gives
some leverage to the statistical model over the simplistic fullcount rule which we previously saw correlated at ****.
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However, both approaches show the potential for non-expert pairwise judgements to construct an ordering of the
latent space that well measures the underlying concept of democracy from textual sources, with no de�nition and
coding of the quantitatively measurable attributes of democracy.
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Figure 6: Estimated latent democracy using the qualitative pairwise judgements and the Gaussian channel model
of the previous section. The endpoints are pe�ed parameters, while the middle points trend positively in estimated
position as we move across the Polity score of states. (Bootstrapped confidence intervals are shown at 80 percent.)
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7 Application: State Welfare Generosity

Ourmotivating application for this project, was to form ameasure of the relative generosity of state policies towards
welfare (Temporary Assistance to Needy Families, or herea�er, TANF) recipients, since the devolution of policy to
the states under thewelfare reformof theClinton administration. Twomajor studies have attempted tomeasure this
before. Fellows and Rowe (2004) constructed from theory a set of 12 questions that could be coded of each state’s
policy, and then summed these together to form a scale they called flexibility.10 De Jong et al (2006) attempted a
more data-driven, atheoretical approach by conducting a factor analysis of every quantitative variable that had been
collected in a prior dataset distributed by the Urban Institute (Welfare Rules Database, 2011).

Our approach was somewhere between the two. Major criticisms of De Jong’s approach point to the lack of
substantive guidance in the data reduction model (Allard 2006, Soss et al 2006, Cadena et al 2006). We attempted
to construct gold standard data by reading through all the rule descriptions in the sources to see all the features that
neededmeasuring, aswell as heavily leveraging the extensive literature on the history ofwelfare policy to understand
the major groups or dimensions of policy that states de�ne. In addition, we also constructed another dataset set
that was an attempt to replicate Fellows and Rowe’s coding and extend it to later years. These are both described
in more detail below, but a complete description is given in Berkman et al (2013).

7.1 Quantitative Coding of State Policy Data

The Fellows and Rowe-style data were constructed using information from their 2004 article entitled “Politics and
the New American Welfare States.” They identify two primary components of state welfare policy: eligibility and
�exibility. The eligibility index refers to “the rules that govern the initial eligibility of applicants” (pg. 365) and is
comprised of 28 items. Higher scores re�ect stricter eligibility laws. The �exibility index refers to the “�exibility
of new welfare work requirements” (pg. 365) and is comprised of 12 items. Higher scores re�ect greater �exibility
of work requirements. The data for these 40 items come from the Welfare Rules Database (2011, herea�er WRD)
maintained by theUrban Institute. To reconstruct their data, we use information from their 2004 article. Wematch
each item in their indices to rules found in the WRD. We then extract this information fromWRD and code it to
mimic the Fellows and Rowe (F&R) data.11

In addition to the F&R-style data, we built our own separate multi-dimensional dataset of state welfare poli-
cies between the years 1996-2010. In the full dataset we focus on the requirements, exemptions, and sanctions put
forth by a state. Requirements refer to actions a recipient must undertake in order to maintain bene�ts. Exemp-

10The authors also summed together 28 questions they constructed and coded that they saw as a separate dimensionmeasuring eligibility
or how broad was the pool of individuals that could be considered for TANF payments.

11Our reconstructed data still di�er from the F&R data in a number of ways, which means we do not have a direct replication of their
indices. We codepolicies from2000-2009,while F&Rexamine policies from 1997-2000. Additionally, F&Rnever explicitly statewhich rules
fromWRDare used, whichmeans there is some guesswork inmatching items from the article to rules fromWRD. In themost extreme case,
we do not have any information for eligibility item #28 because F&Ruse ambiguous language to describe it, therebymaking it impossible for
us tomatch the item to aWRD rule.3 Finally, F&R do not explain how they handlemissing data in their indices, despite its presence. In our
experience,WRDdoes not have full information about states welfare policies. While themissingness is small, F&R report analyses as if they
had full information, implicitly suggesting they imputed information, but without saying how. However, we consider our reconstruction
a replication in spirit of their approach and their key indicators in the present time period.
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tions refer to rules that allow groups of individuals to receive assistance without meeting speci�c requirements.
Sanctions refer to the consequences, �nancial or otherwise, imposed by a state when a recipient fails to ful�ll a
requirement. Requirements, and the corresponding exemptions and sanctions, span several domains, including
work requirements, child care requirements, school policies for dependent children, requirements for minor par-
ents, immunization requirements, and requirements about contracts. In general, we code policies to re�ect the
demands of the requirement contained therein. Policies that require recipients to engage in numerous activities are
more demanding than policies that require less recipient action. Policies that provide fewer work options are more
demanding than policies that allow recipients to select frommany work options.

Within each domain of a state policy, we also make distinctions between how the policy di�ers across types of
recipients. For example, the work requirements within a single statemay di�er depending on the age and education
of the recipient as well as the age of the recipient’s child. Recipients with a high school degree may have fewer work
options to select from than do recipients without a high school degree, for example. Put simply, di�erent require-
ments may be di�erent for di�erent types of recipients and we capture this variation in our policy dimensions.

To then collapse all of this large number of coded variables into a scale, we applied an IRT model to the raw
data. As the variables were grouped by substantive domains that we could identify from theory, and further broken
up by classes of individuals that we witnessed being treated di�erently in the sources, we believe this data reduction
technique is amenable to the core criticisms leveled at De Jong, even though in the abstract an IRTmodel is reason-
ably similar to a factor analysis model. What is key is that our variables are grouped in dimensions described in the
literature on welfare policy, and constructed and structured to measure the facets of policy we observed in the text
sources, rather than simply a dataset that absorbs or accumulates any available precoded quantitative variables.

7.2 Statistical Estimation of the Latent State Generosity

A brief graphical summary and visualization of our IRT model is presented in �gure 7, which we explain shortly.
This particular model is an IRT for all the work requirements set out by states for individuals who have a high
school diploma or GED. We used the state policies in 2008 for the analysis that follows, simply because it was
central in the time period we most interested in for the larger project. Owing to its theoretical roots, the common
analogy, orworking context for IRTmodels are datasets of educational testing, wherewe are attempting tomeasure
the latent ability of test takers from their answers to a set of test questions. For any given question, high ability
test takers should be more likely to correctly answer the question; some easy questions may be correctly answered
by nearly everyone, some hard questions may have only be correctly answered by the very best. The IRT model
simultaneously attempts to estimate the latent ability of every test taker, as well as the probability distribution that
any question will be correctly answered by any individual of given ability. In our implementation of this model,
“test questions” are observed policy attributes, and “latent ability” is the underlying level of generosity in welfare
policy. The S-shaped curves at the bottom half of �gure 7 each correspond to one measurable facet or variable or a
particular policy, such as “Are English as a SecondLanguage classes allowable activities to ful�ll work requirements”
or “Is providing child care for others an allowable activity.” The horizontal x-axis represents the underlying latent
dimension of generosity or leniency, and the height of any S-shaped curve gives the probability that any state will
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Figure 7:Arepresentation of the estimated latent dimension of state policy generosity or leniency in work requirements
for individuals with high school diploma or GED. The x-axis is the latent dimension. The S-shaped curves give the
probability that any quantitatively coded policy will be adopted in some state at some level of generosity, and the
vertical lines represent the estimated generosity of each state. Lines are label with state abbreviations above, in
descending order. A more detailed graph of the S-shaped curves is also found in appendix B.

have that particular policy in their rules at any given level of generosity. With three exceptions, all of these S-shaped
curves scale in the same direction, that is as states become more generous they are more likely to adopt each rule.
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That they overwhelmingly scale in the same direction adds some face validity to the coding process (a more detailed
�gurewhich labels the exceptions canbe found in appendixB). AnS-shaped curve that looks like a step-function is a
rule that has high discrimination in determining the position of state: states to the right of the jumpwill always have
that rule, and states below that point will never have that rule. S-shaped curves are rules that have very little ability
to determine or distinguish the level of state generosity: across all levels of generosity the probability of adopting
that rule is similar or �at. While two of our rules resemble step functions, most of our rules smoothly transition.
States at the high level of latent generosity have a very high probability of having almost all permissive policies; states
at the low end of the latent dimension have a low probability of having each policy. The three rules that seem to
move in the wrong direction are rather �at thus not too troubling.

The vertical gray lines represent the estimate of each state’s latent level of generosity, given their rules and the
estimated curves for each rule. States to the le� have very few allowable ways to meet the requirements for TANF
payments. In these states one simply has to work. States to the right have a large number of allowable activities that
can count towards the required hours, and thus seem more lenient, or generous. Each vertical line is labeled with
the state name, and as the state labels move from the bottom to the top, the latent level is increasing, thus reading
through the state labels gives their relative ranks for their policies in 2008.

In conclusion, the estimated latent position of each state, noted by its vertical gray bar in the horizontal x-axis
is scaled measure of generosity, speci�cally with respect to work requirements for individuals with some form of
diploma for secondary education. This is the scaling of the states that we needed for our larger project.12 Reading
through the sources, identifying from the literature and the sources all of the measurable attributes in which states
could di�er, and then hand coding each state, was the primary research focus of four experts for eight months.

7.3 Scaling by Qualitative Judgments

In comparison to this exhaustive quantitative exercise, we describe our attempt to recover this coding using only
pairwise judgments by non-experts. We sampled a subset of states, so that again we could compute all paired com-
parisons and evaluate howdi�erent sorting algorithms (whichmight require di�erent sets of comparisons) perform.
We sampled the following states, ordered from low to high latent leniency: Arizona, Florida, South Dakota, Vir-
ginia, Colorado, Minnesota, Delaware, Vermont, New Jersey. These were strati�ed to be roughly equally spaced
along the latent dimension estimated in the previous section (here, 0.5 units in this arbitrary scaling). Participants
were asked their judgement with the following prompt:13

Public Policy Judgments

For each of three cases below, compare the available information and decidewhich state policy ismore
generous or lenient.

12Speci�cally, we were interested in a number of questions, such as whether generosity could be predicted by various state-level demo-
graphics, and whether welfare o�cers, the “street level bureaucrats” that have to enforce these rules, behaved di�erently in states that were
more or less generous.

13For recruitment, the title of the task was given as “Reading text to compare the level of generosity in pairs of state public policies” with
an attached description of “Read a series of text extracts about public policy rules and categorize which state is more generous or lenient.”
and keywords for searching of “categorization, political, coding”.
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Under the current Temporary Assistance to Needy Families (TANF) rules, o�en known as ‘welfare’,
each State is allowed to set its own requirements about what activities an individual must accomplish
in order to receive assistance payments. The following paragraphs describe what requirements di�er-
ent States have in their rules. For example these activities might be that the individual has to work a
certain number of hours a week, or engage in job training or other activities in order to continue to be
eligible for assistance payments. States can have very di�erent requirements for assistance.

Read the information describing two states, labeled State A and State B. These describe who each rule
applies to, howmany hours the rule requires, and what activities satisfy those hours.

In your best judgment, decide which of the following best describes a comparison of the two states:
. • State A is much more generous or lenient than State B
. • State A is slightly more generous or lenient than State B
. • State B is slightly more generous or lenient than State A
. • State B is much more generous or lenient than State A

Average time per assignment was 7 minutes which at the same payment of 2 (US) per assignment is equivalent
to an hourly wage just above 17 (US). A subset of participants were paid 1 (US) so as to allow an examination of
responsequality to rate of payment. Aswith thedemocracy example, each assignment consistedof two comparisons
from the sampled states, and a control comparison selected to be straightforward and simple. This was constructed
using slightly simpli�ed text from the Urban Institute descriptions. Again, the key purpose of the control was
not to evaluate ability, but to look for participants who were answering multiple assignments randomly to harvest
payments, and thus answering the same, simple, repeated question in an inconsistent fashion. These individuals,
of whom there were two, were eliminated from the data and their tasks resubmitted for evaluation.14 As this had
proved successful in the democracy example, we limited participants to those with US IP addresses and moderate
experience (greater than 50 previously successful tasks, and greater than a 95 percent acceptance rate of submitted
tasks).

14Notably, these individuals also spent far less time on each assignment than others in the survey.
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Figure 8: An example of the first paired comparison asked of participants. A short prompt is included in this first
question, and omitted herea�er. As with the democracy example participants are given a four point scale which is
collapsed into a dichotomy for analysis.
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Figure 9: An example of one of the second paired comparisons, which now has a shorter prompt.
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Figure 10: The third question asked is simply a control, which has no value to the algorithm, but all respondents
should agree on (and respondents answering multiple questions should give the same answer to), and is useful for
identifying potential respondents clicking random answers to quickly accumulate payments. Note also the comment
box for feedback.
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7.4 Results

Every pair of states therefore, has a judgment on this four point scale from non-experts directly addressing the
qualitative data, and also has a di�erence in our latent space estimated using IRT on very many variables developed
a�er reading all the sources and coded by experts. We repeated each comparison among the 9 states, 5 times for
a total of 180 judgments.15 A comparison is presented in �gure 11. As before, any individual judgment of a pair
of states that agrees with the IRT model, that is, sees the state with the higher latent dimension as having greater
generosity, would be a point in the �rst or fourth quadrants, and shaded blue. Because of the discrete nature of
the data, multiple observations would be plotted in the same location, so the size of each plot point corresponds
to the number of observations at that location. An average of 63.3 percent of individual responses were in the
same direction as the latent evaluations. This is a lower fraction than in the democracy example, which seems to
acknowledge this is a more di�cult, and less clearly de�ned task.
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Figure 11: Pairwise nonexpert judgments, plotted against the di�erence in IRT model estimates. Points in blue
(63.3percent) represent judgments that agree with the ordering IRT would o�er, while red (36.7 percent) disagree.
The area of each point represents the number of observations as each location.

The actual rate of individual agreement, is not the key factor in determining how the aggregate, or “crowd-
15(5× 9× 8/2) One notable point is that not only did these 180 judgments cost simply 180 (US), but they were completed in under two

hours.
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sourced,” judgment will line up with the statistical estimates. This number could arise because all individuals agree
with one another (all �ve answers are the same), but individuals see about a third of the cases opposite to how they
line up in the latent space. Or, the individuals could have some internal disagreement, but the average answer lines
up exactly the same as the statistically derived estimates.
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Figure 12:A visual summary of all of the average judgments between all pairs of states. States are aligned in order of
latent generosity as measured by the IRT model. Each number represents the fraction (of five) judgments that agree
with the IRT ranking, that that column state is more generous than the row state. When the average judgment agrees
(disagrees) with the IRT model, that point in the matrix is colored green (red).

What is key then, is to measure how the average judgment lines up with the relative positions in the IRT esti-
mated latent space. Figure 12 provides exactly this information represented in a matrix visualization. The states are
ordered low to high, AZ to NJ respectively, along each axis. Each point describes the fraction of participants that
judge the column state more generous than the row state. When this value is above 0.5, the majority of participants
give judgments in the same direction as the IRT statistical model run on the quantitatively coded dataset. These
are coded also colored in green. Red points are those for which the fraction of judgments for that pair that line up
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with the statistical model is below 0.5, thus the majority disagree with the latent ordering. For parsimony, only the
upper diagonal is shown, as all possible information is contained here. If the average non-expert judgment always
agreed with statistical model, every point should be colored green.

We can see a number of state speci�c results from this graph. In the uppermost rows, every point is green,
therefore the average pairwise comparisons between either Arizona or Florida, and all other states agree with the
orderings from the IRT estimates, and always places these as less generous. Reading down the rightmost column,
we see thatNew Jersey is rankedby our judgments asmore generous thanAZ, FL, SD,VAandCO, but less generous
than Minnesota, Delaware and Vermont disagreeing in those three states with the ordering from the IRT model.
Other than NJ, most of the other disagreements between the aggregation of our judgments, and the IRT model
are along the diagonal, so some states that have small di�erences in the IRT model are ranked in a manner that
disagree with the IRT model. If we assume the IRT model is the true gold standard data, then this might mean
that our coders have di�culty with states that are close. Remember, states here were strati�ed to be equally spaced,
so responders are having troublewithpairwise comparisonswhere the di�erence in the latent space is 1/8th the range
of the measure (or in this example, approximately 1/3rd of a standard deviation apart). Notice also, that most of
the averages along the diagonal are between 0.3 to 0.7 as a fraction of the judgments agreeing with the IRTmodel’s
direction, or speci�cally, between 3 to 6 individuals out of 9. Thus some of these errorswe see on the diagonalmight
simply be the stochastic product of small samples. This suggests observations that appear to be ranked close to each
other should have a greater number of participant judges than states which are easily seen to be greatly separated. If
we had 10 or 20 judgments here, we might see a small fraction greater than 0.5 judging in the same direction as the
IRTmodel.

Finally, �gure 13 shows the correlation of the �nal rankings that are generated by each of our sorting algorithms.
The IRT gold standard data is in the �rst row or column. We constructed an alternate statistical measure by taking
all of the variables that went into the IRT model and extracting the �rst principal component. This is another
reasonable data reduction technique, and mirrors in spirit the factor analysis model estimated by De Jong et al
(2006). We also included our replication of the Fellows and Rowe coding. The Full Count Sort is in the fourth row
or column.16 Again, as in the democracy example, the correlationwith the gold standard data from our aggregation
of non-expert pairwise judgments is very high (0.88). This is much higher than the scale developed by Fellows and
Rowe, for example, which is a very simple 13 point scale that experts devised as a proxy simple measure, has a much
lower correlation to the gold standard than our non-experts achieve. However it is also quite close to the di�erence
in correlation that results some simple changes in model speci�cation, as the principal component analysis on the
exact same variables can be seen to be correlated at 0.91. Again, the Bubble Sort and Quicksort algorithms, which
don’t use all of the judgments shown in �gure 12 and thus require less comparisons, also have high correlations with
the IRT latent estimates, but again, not as good performance as the more costly Full Count Sort.

16With the visualization presented in �gure 12 we can now think of the Full Count as the count along any column (or row) of the number
of red points below (above) the diagonal, and the number of green points above (below) the diagonal.
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Figure 13: Correlations of the gold standard IRT estimates, with a conventional and simple expert proxy (F&R) and
our three sorting algorithms using non-expert pairwise judgments.

7.5 Algorithmic Performance

There are several pointers we can learn from the behaviour and performance of the sorting algorithms in these
applications. First, and most importantly, pairwise comparisons generated from non-experts have the potential
to reveal the latent structure of qualitative data sources. We spent many months of many experts time generating
gold standardmeasurements following the best practices of quantitativemethods pooling substantive and statistical
experts. We were able to create a reasonable proxy for this with no experts, no statistical models, and a tiny budget
in under two hours. Human intelligence has a capacity for judging qualitative sources that is not well harnessed and
underutilized, and a pro�cient way to organize or scale qualitative sources. The best results were obtained with the
Full Count sort that requires all n(n− 1)/2 unique pairwise comparisons, or with a statistical model utilizing this
same observed information. Asn grows thismay be infeasible. The three sorting algorithms examined utilize only a
subset of all comparisons. Below are presented the total number of unique comparisons required in each simulation
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in each of our applications. The histograms for the three algorithms are presented interwoven with each other for
ease of comparison, with each algorithmadi�erent color. Quicksort required the fewest number of comparisons on
average, althoughMergesort was quite similar in its demands; Mergesort had very small performance advantages in
the observed correlationswith the gold standard data. Bubble sort has amuch highermean number of comparisons
required, and much higher variance, as well as worse performance in correlation to the sorted orderings to the gold
standard data in the applications.
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Figure 14:Number of pairwise comparisons, and their distance in the gold standard data, for the ordering of latent
democracy.
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Figure 15:Number of pairwise comparisons, and their distance in the gold standard data, for the ordering of TANF
generosity.

To the right of each �gure are histograms showing the distance, as measured by the gold standard data, be-
tween each pair of objects that underwent comparison in all the runs of all the shu�ings of the data. It is likely that
comparisons between objects that are distant in the latent space (Quatar and Hungary for example) are less infor-
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mationally useful that between countries that are close, especially if the orderings from the sorting algorithm are
to be re�ned in a second stage by a statistical model on all observed comparisons. All three algorithms have similar
distributions across the distances between compared pairs, with the majority of comparisons taking place between
close observations (which would also be true of completely random pairings–there are only a limited number of
observations that are able to be far apart from each other).

8 Conclusion

In quantitative research projects, we o�en face the need to measure large, complex, vague but important concepts
from qualitative sources. The steps necessary to create such a measure through traditional measurement methods
can be extremely demanding of resources and expert knowledge. We demonstrate the surprisingly powerful perfor-
mance of non-expert human intelligence, when given su�ciently small structured tasks, set out as pairwise compar-
isons, and show how well-understood sorting algorithms can take these human judgments, select the comparisons
to make, and uncover the latent ordering of the qualitative sources without any identi�cation or quanti�cation of
the attributes of the objects. The results are very cheap, incredibly fast measures that correlate with gold standard
statistical methods as well as alternate statistical models scale with each other.
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A Detail on sorting algorithms with provided comparator matrix

# Do bubblesort by while loop

bubblesort<-function(m){

k<-nrow(m)

order<-1:k

flag<-FALSE

count<-0

while(!flag){

count<-count1+
cat(count,"")

tempflag<-TRUE

for(i in 1:(k-1)){

if (m[ order[i] , order[i1]] ¿ 0.5)+
hold<-order[i]

order[i]<-order[i1]+
order[i1]¡-hold+
tempflag<-FALSE

}

}

flag<-tempflag

}

cat("\n")

return(order)

}

# Do quicksort entirely by recursion

quicksort<-function(names,m,p2s=FALSE){

k<-nrow(m)

if(p2s) cat("k",k,"\n")

order<-1:k

if(k>1){

flag<-rep(FALSE,k)

a<-sample(order,1)

for(i in 1:k){

if(i != a){ # Don’t compare to self

flag[i]<-(m[ order[i] , order[a]] > 0.5)

}

}

if(p2s) print(flag)

if(p2s) cat("a",a,"\n")

lowerorder<-order[-a][!flag[-a]]

upperorder<-order[flag]

if(length(lowerorder)>1) {

lower<-quicksort(names=names[lowerorder],m=m[lowerorder,lowerorder])

}else{

lower<-names[lowerorder]

}

if(length(upperorder)>1) {

upper<-quicksort(names=names[upperorder],m=m[upperorder,upperorder])

}else{

upper<-names[upperorder]

}

order<-c(lower,names[a],upper)

}

if(p2s) cat("order","l",lower,"a",names[a],"upper",upper,"\n")

return(order)

}
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B Detail on IRTmodel curves

Figure 16 provides a detailed view of all the response curves for all items in the IRT model presented in �gure 7.
color coded in the center plot, where letters correspond to an abbreviated codebook name and numbers further
distinguish whether that rule applies to one of 8 possible classes individuals (subdividing education, age of children
and whether the individual is a minor). Items that scale in the same direction are on the le�, and the items on the
right are the few (relatively �at) curves that scale in the incorrect direction. These areHSL:“High school attendance
and or work towards a GED are allowable activities,” JRP:“Job readiness activities are allowable activities,” and
JDP:“Job development and job placement are allowable activities.”
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Figure 16: Detailed view of all response curves for all items in the IRT model presented in figure 7, separated by
direction.
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