BayesMendel v2.1-8: An R package for cancer risk prediction

Amanda Blackford, Danielle Braun, Theodore Huang

August 11, 2021

1 Introduction

The BayesMendel working group is dedicated to the development of methodologies, models, and open source software for predicting who may carry a cancer susceptibility gene. We use statistical ideas that go back to Bayes and genetic models that go back to Mendel.

This vignette will show the user how to use BRCAPRO, MMRpro, PancPRO, MelaPRO and BRCAPANCpro to:

- Calculate probabilities of being a germline mutation carrier.
- Calculate future risk of cancer.
- Incorporate supplementary information (marker testing results, germline testing results, tumor information) into the models.

2 Using the models

2.1 BRCAPRO

2.1.1 Family History

Before running your pedigree through brcapro, be sure it is structured as a numeric data frame with history of breast and ovarian cancers: n rows (where n is the number of family members, including the counselee) and 13 columns with column names:

Column Name	Content
ID	Member identifier
Gender	Gender (0=female, $1=$ male $)$
FatherID	Father's identifier number
MotherID	Mother's identifier number
AffectedBreast	Breast cancer status $(0=$ no cancer, $1=$ breast cancer,one breast involved; $2=$ bilateral breast cancer, NA= unknown status) AffectedOvary AgeBreast
	Ovarian cancer status (0=no cancer, $1=$ ovarian cancer, NA= unknown status)
	Age of onset of breast cancer if a breast cancer case.
Current age or age of death if not a breast cancer case.	

If at least one family member is "AJ" the default is to use the prevalence associated with the "AJ" for family members with unknown ethnicity. Otherwise, the prevelance associated with "nonAJ" is used for family members with unknown ethnicity.

To begin using any BayesMendel models, load the package library:

```
> library(BayesMendel)
```

The parameters used by the model, including penetrance, allele frequency, and sensitivity/specificity of testing, are set using the function brcaparams. Any changes to the parameters can be made by calling this function.

```
> # Change future risk to be calculated in intervals of 2 y instead of the default of 5 y.
> # Leave all other parameters as set.
> myparams <- brcaparams(age.by=2)
> # Run BRCAPRO with family history information for example family
> out = brcapro(family=brca.fam)
[1] " Warning: age(s) older than age.max has been converted to age.max!"
[1] "Warning: Unknown ages of some unaffected and affected family members have been imputed.
The probability of being a carrier is 0.2869353
    an BRCA1 carrier 0.133169
    an BRCA2 carrier 0.153731
The risks of developing cancers are
```

	By age	Breast Ca Risk	Ovarian Ca Risk
1	62	0.04633821	0.02369181
2	67	0.09087847	0.04762882
3	72	0.13116310	0.06961019
4	77	0.16541471	0.08831649
5	82	0.19325081	0.10299490
> slotNames (out)			

[1] "family"	"posterior"	"probs"
[5] "counselee.id" "loglik"	"future.risk"	

> out@probs

$\operatorname{Pr}($ Being a carrier) $\operatorname{Pr}(\mathrm{BRCA1}$ mutation) $\operatorname{Pr}(\mathrm{BRCA} 2$ mutation)			
1	0.2869353	0.133169	0.153731
Pr(Both genes mutated)			
1	$3.530892 \mathrm{e}-05$		

	ID	Gender	FatherID MotherID AffectedBreast	AffectedOvary		
1	1	0	3	2	0	0
2	2	0	9	8	0	1
3	3	1	11	10	0	0
4	4	0	0	1	0	0
5	5	1	3	2	0	0
6	6	0	0	0	0	0
7	7	0	3	2	0	0
8	8	0	0	0	0	0
9	9	1	0	0	0	0
10	10	0	0	0	0	0
11	11	1	0	0	0	0
12	12	0	9	8	0	0
13	13	0	9	8	0	0
14	14	0	11	10	0	0
15	15	1	5	6	0	0
16	16	1	0	7	0	0
17	17	0	0	7	0	0
18	18	0	0	7	0	0
19	19	0	0	7	0	0
20	20	0	21	12	0	0

21	21	1	0	0	0			0
22	22	0	9	8	2			0
23	23	0	0	22	0			0
24	24	1	5	6	0			0
25	25	1	5	6	0			0
AgeBreast AgeOvary AgeBreastContralateral Twins ethnic Death								
1		57	57		0	0	nonAJ	0
2		70	69		0	1	nonAJ	0
3		87	87		0	0	nonAJ	0
4		32	32		0	0	nonAJ	0
5		50	50		0	0	nonAJ	0
6		57	57		0	0	nonAJ	0
7		45	47		0	0	nonAJ	0
8		65	65		0	0	nonAJ	0
9		94	94		0	0	nonAJ	0
10		75	75		0	0	nonAJ	0
11		94	94		0	0	nonAJ	0
12		85	85		0	0	nonAJ	0
13		79	79		0	0	nonAJ	0
14		1	70		0	0	nonAJ	0
15		23	23		0	0	nonAJ	0
16		12	12		0	0	nonAJ	0
17		22	22		0	0	nonAJ	0
18		19	19		0	0	nonAJ	0
19		16	16		0	0	nonAJ	0
20		54	54		0	0	nonAJ	0
21		77	77		0	0	nonAJ	0
22		40	70		45	1	nonAJ	0
23		40	40		0	0	nonAJ	0
24		17	17		0	2	nonAJ	0
25		17	17		0	2	nonAJ	0
AgeDeath Relation Mastectomy AgeMastectomy Oophorectomy								
1		57	1	0	1		0	0
2		70	4	0	1		0	0
3		87	4	0	1		0	0
4		32	3	0	1		0	0
5		50	2	0	1		0	0
6		NA	15	0	1		0	0
7		47	2	0	1		0	0
8		65	7	0	1		0	0
9		96	7	0	1		0	0
10		75	5	0	1		0	0
11		94	5	0	1		0	0
12		85	8	0	1		0	0
13		79	8	0	1		0	0

2.2 Age Imputation

By default, brcapro imputes the ages of family members with unknown current or affected ages, denoted either by the user with NA (new as of v2.1) or value 1 (used in previous versions). Family members who are unaffected at an unknown age have their ages imputed using the approach taken in Lyte+ (see Biswas, S. Atienza, P., Chipman, J., Hughes, K., Gutierrez Barrera, A.M., Amos, C.I., Arun, B., Parmigiani, G. (2013) "Simplifying Clinical Use of the Genetic Risk Prediction Model BRCAPRO", Breast Cancer Research and Treatment, 139: 571-579.). Family members who are affected at an unknown age have their ages imputed using a multiple imputation approach that uses SEER incidence rates of breast and ovarian cancer to sample affection ages (bounded above by the individual's current age, if known). The imputation can be turned off by using the option imputeAges $=$ FALSE in the brcapro function. Note that the imputation of relatives must also be turned off by using option imputeRelatives $=$ FALSE in brcapro, because by default ages are imputed for relatives who are imputed. These options apply to models MMRpro, pancpro, and melapro. As of v2.1-7, users can now provide provide intervals for the imputation of affection ages by providing additional columns to the pedigree data frame. For brcapro, users can provide columns "AgeBreastLower", "AgeBreastUpper", "AgeOvaryLower", "AgeOvaryUpper", "AgeBreastContralateralLower", and "AgeBreastContralateralUpper". Then the user can use the option bounds = TRUE (by default it is FALSE).

```
> # Turn off age imputation
> out <- brcapro(family=brca.fam, imputeAges=FALSE, imputeRelatives=FALSE)
> # Calculate risks with imputed ages
> out = brcapro(family=brca.fam, imputeAges=TRUE, imputeRelatives=TRUE)
```

```
[1] " Warning: age(s) older than age.max has been converted to age.max!"
[1] "Warning: Unknown ages of some unaffected and affected family members have been imputed.
The probability of being a carrier is 0.2869312
    an BRCA1 carrier 0.1331671
    an BRCA2 carrier 0.1537299
The risks of developing cancers are
    By age Breast Ca Risk Ovarian Ca Risk
1 62 0.04633764 0.02369136
2 67 0.09087743 0.04762793
3 llll
4 77 0.16541306 0.08831492
5 82 0.19324896 0.10299309
```

> \# When age imputation is done, the original
> \#family (with NA inputs re-coded to

```
> #unaffected, age = 1) is returned by brcapro
> out@family
```

ID	Gender	FatherID	MotherID	AffectedBreast	AffectedOvary
11	0	3	2	0	0
22	0	9	8	0	1
33	1	11	10	0	0
44	0	0	1	0	0
55	1	3	2	0	0
66	0	0	0	0	0
77	0	3	2	1	0
88	0	0	0	0	1
99	1	0	0	0	0
1010	0	0	0	0	0
1111	1	0	0	0	0
1212	0	9	8	0	0
1313	0	9	8	0	0
1414	0	11	10	1	0
1515	1	5	6	0	0
1616	1	0	7	0	0
1717	0	0	7	0	0
1818	0	0	7	0	0
1919	0	0	7	0	0
2020	0	21	12	0	0
2121	1	0	0	0	0
2222	0	9	8	2	0
2323	0	0	22	0	0
2424	1	5	6	0	0
2525	1	5	6	0	0

AgeBreast AgeOvary AgeBreastContralateral Twins ethnic Death

1	57	57	0	0	nonAJ	0
2	70	69	0	1	nonAJ	0
3	87	87	0	0	nonAJ	0
4	32	32	0	0	nonAJ	0
5	50	50	0	0	nonAJ	0
6	57	57	0	0	nonAJ	0
7	45	47	0	0	nonAJ	0
8	65	65	0	0	nonAJ	0
9	94	94	0	0	nonAJ	0
10	75	75	0	0	nonAJ	0
11	94	94	0	0	nonAJ	0
12	85	85	0	0	nonAJ	0
13	79	79	0	0	nonAJ	0
14	1	70	0	0	nonAJ	0
15	23	23	0	0	nonAJ	0

9	1	0	0	0	0	0	0	0	94
10	1	0	0	0	0	0	0	0	75
11	1	0	0	0	0	0	0	0	94
12	1	0	0	0	0	0	0	0	85
13	1	0	0	0	0	0	0	0	79
14	1	0	0	0	0	0	0	0	NA
15	1	0	0	0	0	0	0	0	23
16	1	0	0	0	0	0	0	0	12
17	1	0	0	0	0	0	0	0	22
18	1	0	0	0	0	0	0	0	19
19	1	0	0	0	0	0	0	0	16
20	1	0	0	0	0	0	0	0	54
21	1	0	0	0	0	0	0	0	77
22	1	0	0	0	0	0	0	0	70
23	1	0	0	0	0	0	0	0	40
24	1	0	0	0	0	0	0	0	17
25	1	0	0	0	0	0	0	0	17
AgeBreastLower AgeBreastUpper AgeOvaryLower AgeOvaryUpper									
1	1						1		57
2	1						1		70
3	1						1		87
4	1						1		32
5	1						1		50
6	1						1		94
7	1						1		47
8	1						1		65
9	1						1		94
10	1						1		75
11	1						1		94
12	1						1		85
13	1						1		79
14	1						1		94
15	1						1		23
16	1						1		12
17	1						1		22
18	1						1		19
19	1						1		16
20	1						1		54
21	1						1		77
22	1						1		70
23	1						1		40
24	1						1		17
25	1						1		17
AgeBreastContralateralLower AgeBreastContralateralUpper uua2									
1			1						57 F

2	1	70	FALSE
3	1	87	FALSE
4	1	32	FALSE
5	1	50	FALSE
6	1	94	TRUE
7	1	47	FALSE
8	1	65	FALSE
9	1	94	FALSE
10	1	75	FALSE
11	1	94	FALSE
12	1	85	FALSE
13	1	79	FALSE
14	1	94	TRUE
15	1	23	FALSE
16	1	12	FALSE
17	1	22	FALSE
18	1	19	FALSE
19	1	16	FALSE
20	1	54	FALSE
21	1	77	FALSE
22	1	70	FALSE
23	1	40	FALSE
24	1	17	FALSE
25	1	17	FALSE

```
> # Can also impute ages, but not relatives.
> out = brcapro(family=brca.fam, imputeAges=TRUE, imputeRelatives=FALSE)
```

[1] " Warning: age(s) older than age.max has been converted to age.max!"
[1] "Warning: Unknown ages of some unaffected and affected family members have been imputed. The probability of being a carrier is 0.2869422
an BRCA1 carrier 0.1331724
an BRCA2 carrier 0.1537325
The risks of developing cancers are
By age Breast Ca Risk Ovarian Ca Risk

1	62	0.04633919	0.02369261
2	67	0.09088024	0.04763038
3	72	0.13116546	0.06961240
4	77	0.16541752	0.08831923
5	82	0.19325394	0.10299803

```
> # Use lower and upper bounds for imputing affection ages
> fam <- brca.fam
> fam$AgeBreastLower <- fam$AgeBreast
```

```
> fam$AgeBreastUpper <- fam$AgeBreast
> fam$AgeOvaryLower <- fam$AgeOvary
> fam$AgeOvaryUpper <- fam$AgeOvary
> fam$AgeBreastContralateralLower <- fam$AgeBreastContralateral
> fam$AgeBreastContralateralUpper <- fam$AgeBreastContralateral
> fam$AgeBreastLower[14] <- 40
> fam$AgeBreastUpper[14] <- 50
> fam$AgeOvary[2] <- NA
> fam$AgeOvaryLower[2] <- 50
> fam$AgeOvaryUpper[2] <- 60
> out = brcapro(family=fam, bounds=TRUE)
```

[1] " Warning: age(s) older than age.max has been converted to age.max!"
[1] "Warning: Unknown ages of some unaffected and affected family members have been imputed.
The probability of being a carrier is 0.2805121
an BRCA1 carrier 0.1675303
an BRCA2 carrier 0.1129256
The risks of developing cancers are
By age Breast Ca Risk Ovarian Ca Risk
$1 \quad 62 \quad 0.04524058 \quad 0.02607270$
$\begin{array}{llll}2 & 67 & 0.08904205 & 0.05188428\end{array}$
$\begin{array}{llll}3 & 72 & 0.12875208 & 0.07513883\end{array}$
$\begin{array}{llll}4 & 77 & 0.16250876 & 0.09466697\end{array}$
$\begin{array}{llll}5 & 82 & 0.18993962 & 0.10997848\end{array}$

2.2.1 Changing the penetrance or prevalence

Generally, the user can specify the prevalence of BRCA1 and BRCA2 directly in the pedigree through the "ethnic" column.

The user can input their own values for prevalence by specifying ethnic = "Other" and inputting the values using the brcaparams function.

The user can also specify the net and crude penetrance estimates to be used by brcapro. The default net penetrance is the penet.brca.net object, and the default crude pentrance is penet.brca.crude. To use the penetrance estimates for the Italian population as the net penetrance, we can use brcaparams:

```
> myparams <- brcaparams(penetrance.net = BRCApenet.Italian.2008)
> out <- brcapro(family=brca.fam, params=myparams)
```

[1] " Warning: age(s) older than age.max has been converted to age.max!"
[1] "Warning: Unknown ages of some unaffected and affected family members have been imputed. The probability of being a carrier is 0.3202517

an BRCA1 carrier 0.1785152			
an BRCA2 carrier 0.1416712			
The risks of developing cancers are			
By age Breast Ca Risk Ovarian Ca Risk			
1			

2.2.2 Specifying race/ethnicity of the family

A set of race/ethnicity-specific baseline (non-carrier) penetrance values were recently added to brcapro. The current default assumes that the race/ethnicity of the input family is unknown, but the user can specify one of five different inputs: Asian, Black, Hispanic, NativeAmerican and White. Race/ethnicity categories and estimates were derived using the DevCan (http://srab.cancer.gov/devcan/) software provided by the National Cancer Institute (NCI). To specify a particular race, use the "race" input option in brcapro.

```
> out <- brcapro(family=brca.fam, race="Hispanic")
```


2.2.3 Germline Testing Results

If the results for BRCA1 and BRCA2 germline testings are available, the user can input the results in data frame germline.testing ($0=$ no test, $1=$ positive test, $2=$ negative test) with column names "BRCA1" and "BRCA2".

```
> # Add the testing results for BRCA1 and BRCA2
> BRCA1 <- BRCA2 <- rep(O,nrow(brca.fam))
```

```
> germline.testing <- data.frame(BRCA1,BRCA2)
> germline.testing[2,] <- c(2,0)
> out <- brcapro(family=brca.fam, germline.testing=germline.testing)
```

```
[1] " Warning: age(s) older than age.max has been converted to age.max!"
[1] "Warning: Unknown ages of some unaffected and affected family members have been imputed.
The probability of being a carrier is 0.307824
    an BRCA1 carrier 0.000142593
    an BRCA2 carrier 0.3076402
The risks of developing cancers are
    By age Breast Ca Risk Ovarian Ca Risk
1 62 0.05013483 0.01431292
2 67 0.09715897 0.03080316
3 72 0.13936864 0.04765945
4 77 0.17529789 0.06300435
5 82 0.20450742 0.07508979
```


2.2.4 Marker Testing Results

If the results for BRCA1 prognostic markers are available, the user can input the results in data frame marker.testing with column names shown below. Note that even if not all the biomarker results listed below are available, all 4 columns must contain non-missing values, which should be set to zero for biomarkers that were not tested.
$\left.\begin{array}{ll}\text { Column Name } & \begin{array}{l}\text { Content } \\ \text { ER }\end{array} \\ \text { ER testing result. (0=no test, } 1=\text { positive test, } 2=\text { negative test) }\end{array}\right)$

When the testing result for ER is negative, and the results for CK14 and CK5/6 are both also available, these 3 markers are treated as a group, and the calculations of carrier probabilities will incorporate the joint conditional probabilities of them given genetic status. If the result for either CK14 or CK5/6 is not available, the calculations of carrier probabilities will involve either the marginal conditional probability of ER given genetic status, or if HER2 testing is available, the joint conditional probability of ER and HER2 given genetic status. Note that when ER is positive, the testing results for CK14 or CK5/6 are not considered. For any family member, if the testing result for ER is available, the testing result for PR will be ignored even if it is also available. That is, PR will not be included in carrier prediction when ER is available. PR will only be used when either PR only or PR and HER2 testing are available.

```
> # Add the testing results for breast cancer markers
> marker.testing <- data.frame(matrix(rep(0,nrow(brca.fam)*5),ncol=5))
```

```
> colnames(marker.testing) <- c("ER","CK14","CK5.6","PR","HER2")
> brca.fam[1,"AffectedBreast"] <- 1
> marker.testing[1,"ER"] <- 2
> out <- brcapro(family=brca.fam, germline.testing=germline.testing, marker.testing=marker.te
```

```
[1] " Warning: age(s) older than age.max has been converted to age.max!"
[1] "Warning: Unknown ages of some unaffected and affected family members have been imputed.
The probability of being a carrier is 0.8129797
an BRCA1 carrier 0.0009915951
an BRCA2 carrier 0.8113751
The risks of developing cancers are
    By age Contralateral Breast Ca Risk Ovarian Ca Risk
1 62 0.04514924 0.03623374
2 67 0.10869654 0.07797797
3 72 0.18523087 0.12058843
47 0.25944721 0.15932034
5 82 0.32018518 0.18979158
```


2.2.5 Oophorectomy

If women in the pedigree have had an oophorectomy, this information can be included in the calculation by creating a data frame oophorectomy. Set up a data frame with two columns, one indicating if oophorectomy was done and the other with the age at oophorectomy. If no oophorectomy was done, an individual's current age should be used.

```
Column Name Content
Oophorectomy Oophorectomy yes/no. ( \(0=\) no oophorectomy, \(1=\) oophorectomy \()\)
AgeOophorectomy Age at Oophorectomy.
```

```
> # Add the information for oophorectomy
> Oophorectomy <- c(1,rep(0,(nrow(brca.fam)-1)))
> AgeOophorectomy <- c(30,rep(1,(nrow(brca.fam)-1)))
> oophorectomy <- data.frame(Oophorectomy,AgeOophorectomy)
> out <- brcapro(family=brca.fam, germline.testing=germline.testing, marker.testing=marker.te
```

```
[1] " Warning: age(s) older than age.max has been converted to age.max!"
[1] "Warning: Unknown ages of some unaffected and affected family members have been imputed.
The probability of being a carrier is 0.8328211
    an BRCA1 carrier 0.001533733
    an BRCA2 carrier 0.8305426
The risks of developing cancers are
    By age Contralateral Breast Ca Risk Ovarian Ca Risk
\(162 \quad 0.045617520 .009709741\)
\begin{tabular}{llll}
2 & 67 & 0.11018288 & 0.020898338
\end{tabular}
```

3	72	0.18811268	0.032319371
4	77	0.26373655	0.042700655
5	82	0.32563699	0.050867857

2.2.6 Mastectomy

If an individual in the pedigree has had a bilateral mastectomy, this information can be included in the calculation by creating a data frame mastectomy. Set up a data frame with two columns, one indicating if mastectomy was done and the other with the age at mastectomy. If no mastectomy was done, an individual's current age should be used. Only bilateral mastectomy should be included, and not mastectomy performed on only one breast.

Column Name Content
 Mastectomy Mastectomy yes/no. ($0=$ no mastectomy, $1=$ mastectomy)
 AgeMastectomy Age at Mastectomy.

```
> # Add the information for mastectomy
> Mastectomy <- c(1,rep(0, (nrow(brca.fam)-1)))
> AgeMastectomy <- c(57,rep(1,(nrow(brca.fam)-1)))
> mastectomy <- data.frame(Mastectomy,AgeMastectomy)
> out <- brcapro(family=brca.fam, mastectomy=mastectomy)
```

[1] " Warning: age(s) older than age.max has been converted to age.max!"
[1] "Warning: Unknown ages of some unaffected and affected family members have been imputed.
The probability of being a carrier is 0.8101098
an BRCA1 carrier 0.3548522
an BRCA2 carrier 0.4550434
The risks of developing cancers are
By age Contralateral Breast Ca Risk
1 Orarian Ca Risk
2

2.3 MMRpro

2.3.1 Family History

Before running your pedigree through MMRpro, be sure it is structured as a numeric data frame with history of colon and endometrial cancers: n rows (where n is the number of family members, including the counselee) and 8 columns with required column names described below.

The family history includes the information on the counselee and his/her relatives. For each member, we need information on whether he or she has been diagnosed with colorectal cancer and either the age at diagnosis or, if cancer free, the current age or the age at death. We do the same for endometrial cancer, if the member is female.

The family cancer history must be entered in data frame form, with one row for each family member and columns containing the following information:

Column	Content ID
Member identifier	
Gender	Gender (0=female, $1=$ male $)$
FatherID	Father's identifier number
MotherID	Mother's identifier number
AffectedColon	Colorectal cancer status $(0=$ no cancer, $1=$ colon/rectum cancer,NA $=$ no information $)$
AffectedEndometrium	Endometrial cancer status $(0=$ no cancer, $1=$ ovarian cancer, NA=no information $)$
AgeColon	Age of onset of colorectal cancer if a colorectal cancer case. Current age or age of death if not a colorectal cancer case.
AgeEndometrium	NA if there is no age information. Age of onset of endometrial cancer if an endometrial cancer case. Current age or age of death if not an endometrial cancer case.
	NA if there is no age information.
	Identifies siblings who are identical twins. Twins
	Each twin pair is identified by a unique number. For the rest enter a 0.

If it is known that a family member is affected, but age of diagnosis is unknown, either enter an estimate or evaluate the program at different plausible ages.

The parameters used by the model, including penetrance, allele frequency, and sensitivity/specificity of testing, are set using the function MMRparams. Any changes to the parameters can be made by calling this function.

```
> # Change future risk to be calculated up to age 95 instead of the default 85.
> # Leave all other parameters as set.
> myparams <- MMRparams(age.to=95)
> # Run MMRpro with family history information for example family
> out = MMRpro(family=MMR.fam, params=myparams)
[1] "Warning: individuals have an unknown age of diagnosis. The calculation would be improve
The probability of being a carrier is 0.01904266
    an MLH1 carrier 0.008184038
    an MSH2 carrier 0.009534781
    an MSH6 carrier 0.001330323
The risks of developing cancers are
    By age Colorectal Ca Risk Endometrial Ca Risk
1 60 0.004016592 0.005523277
```

2	65	0.008640795	0.010706530
3	70	0.014118479	0.014671650
4	75	0.020210281	0.017895306
5	80	0.026910326	0.020414861
6	85	0.033441145	0.022071694
7	90	0.038568851	0.022886836
8	95	NA	NA

>

2.3.2 Germline Testing

Information about germline testing results is included in the germline.testing object. If the results of germline testing are available, the user can input them into a data frame with n rows and 4 columns with column names "MLH1", "MSH2", and "MSH6" which stores the mutation testing results for MLH1, MSH2, and MSH6 ($0=$ no test, $1=$ positive test, $2=$ negative test).

```
> ## The counselee's father tested negative for MLH1 and MSH2.
> ## No testing for MSH6 was done.
> MLH1 <- MSH2 <- MSH6 <- rep(0, nrow(MMR.fam))
> germline.testing = data.frame(MLH1, MSH2, MSH6)
> germline.testing[3,] <- c(2,2,0)
> out <- MMRpro(family=MMR.fam, germline.testing = germline.testing)
```

```
The probability of being a carrier is 0.001556468
    an MLH1 carrier 2.154079e-05
    an MSH2 carrier 2.014245e-05
    an MSH6 carrier 0.001514848
The risks of developing cancers are
    By age Colorectal Ca Risk Endometrial Ca Risk
1 60 0.002893740 0.002650113
2 65 0.006417918 0.006084631
3 70 0.010870094 0.009673106
4 75 0.016050585 0.012896007
5 80 0.022011470 0.015437592
6 85 0.028025535 0.017108443
```

>

2.3.3 Marker Testing

Information about the colorectal tumor is included in the marker.testing object. This object is a data frame with n rows and 2 columns with information about MSI testing and location of the colorectal tumor. For more information on determining MSI, please refer to Boland (1998). If immunohistochemistry (IHC) was performed, enter 1 if any protein expression was shown to be abnormal or 2 if all were normal.

Column Name	Content
MSI	Microsatellite instability result
	enter 1 if high instability is present
	2 if low instability or stability is present, or
location	0 if no MSI test has been performed.
	Location of the colorectal tumor: enter 1 if found in the proximal colon 2 2if found in the distal colon, or 0
	0 if the location of the tumor is unknown.

```
## Now let's say the counselee's sister has a colorectal tumor
>
MMR.fam[7, "AffectedColon"] <- 1
## The counselee's sister's tumor was found to be MSI high.
## Add in this MSI result.
MSI <- location <- rep(0, nrow(MMR.fam))
marker.testing <- data.frame(MSI, location)
marker.testing[7, "MSI"] <- 1
> out <- MMRpro(family = MMR.fam, marker.testing = marker.testing)
```

```
[1] "Warning: individuals have an unknown age of diagnosis. The calculation would be improve
The probability of being a carrier is 0.3370197
    an MLH1 carrier 0.1482241
    an MSH2 carrier 0.1821491
    an MSH6 carrier 0.00683245
The risks of developing cancers are
    By age Colorectal Ca Risk Endometrial Ca Risk
1 60 0.02402179 0.05691384
2 65 0.04826763 0.09380106
3 70 0.07206843 0.10527552
4 75 0.09447800 0.10916059
5 80 0.11443344 0.11171766
6 85 0.13023883 0.11338429
```


2.4 PancPRO

2.4.1 Family History

Before running your pedigree through pancpro, be sure it is structured as a numeric data frame with history of pancreas cancer: n rows (where n is the number of family members, including the counselee) and 6 columns with required column names described below.

The family history includes the information on the counselee and his/her relatives. For each member, we need information on whether he or she has been diagnosed with pancreatic cancer and either the age at diagnosis or, if cancer free, the current age or the age at death.

The family cancer history must be entered in data frame form, with one row for each family member and columns containing the following information:

Column	Content
ID	Member identifier
Gender	Gender (0=female, $1=$ male)
FatherID	Father's identifier number
MotherID	Mother's identifier number
AffectedPancreas	Pancreatic cancer status $(0=$ no cancer, $1=$ pancreatic cancer, NA=no information)
AgePancreas	Age of onset of pancreatic cancer if a pancreas cancer case. Current age or age of death if not a pancreas cancer case.
	NA if there is no age information. Twins
	Identifies siblings who are identical twins. Each twin pair is identified by a unique number. For the rest enter a 0.

If it is known that a family member is affected, but age of diagnosis is unknown, either enter an estimate or evaluate the program at different plausible ages.

The parameters used by the model, including penetrance, allele frequency, and sensitivity/specificity of testing, are set using the function pancparams. Any changes to the parameters can be made by calling this function.

```
> # Change the output for future risk to be calculated
> # in age intervals of 1 year up to
> # age 65 instead of the default 5 years.
> # Leave all other parameters as set.
> myparams <- pancparams(age.by=1, age.to=65)
> # Run PancPRO with family history information for example family
> pancpro(family=panc.fam, params=myparams)
[1] "Warning: individuals have an unknown age of diagnosis. The calculation would be improve
The probability of being a carrier is 0.4168366
The risks of developing cancers are
```

By age Pancreatic Ca Risk										
1		58		0.0030	001832					
2		59		0.0062	246162					
3		60		0.0097	73378					
4		61		0.0134	461607					
5		62		0.0174	422679					
6		63		0.0216	607807					
7		64		0.0259	998944					
8		65		0.0305	572112					
An object of class "BayesMendel"										
Slot "family":										
ID Relation Gender FatherID MotherID AffectedPancreas										
1	1		1	0		3		2		0
2	2		4	0		9		8		0
3	3		4	1		11		10		0
4	4		3	0		0		1		0
5	5		2	1		3		2		0
6	6		15	0		0		0		0
7	7		2	0		3		2		1
8	8		7	0		0		0		0
9	9		7	1		0		0		0
10	10		5	0		0		0		0
11	11		5	1		0		0		0
12	12		8	0		9		8		0
13	13		8	0		9		8		0
14	14		6	0		11		10		1
15	15		13	1		5		6		0
16	16		13	1		0		7		0
17	17		13	0		0		7		0
18	18		13	0		0		7		0
19			13	0		0		7		0
AgePancreas Twins Death AgeDeath ethnic AgeCur										
1			57	1	0		57	Panc	57	7
2			70	0	0		70	Panc	70	0
3			87	0	0		87	Panc	87	7
4			32	0	0		32	Panc	32	2
5			50	0	0		50	Panc	50	0
6			57	0	0		NA	Panc	NA	A
7			45	1	0		45	Panc	NA	A
8			65	0	0		65	Panc	65	5
9			94	0	0		96	Panc	94	4
10			75	0	0		75	Panc	75	5
11			94	0	0		94	Panc	94	4
12			85	0	0		85	Panc	85	5
13			79	0	0		79	Panc	79	9


```
Slot "counselee.id":
[1] 1
Slot "loglik":
NULL
Slot "future.risk":
    hFX0 hFX1
1 0.0000000000 0.000000000
2 0.0000000000 0.000000000
3 0.0000000000 0.000000000
4 0.0000000000 0.000000000
5 0.0000000000 0.000000000
6 0.0000000000 0.000000000
7 0.0000000000 0.000000000
8 0.0000000000 0.000000000
9 0.0000000000 0.000000000
10 0.0000000000 0.000000000
110.0000000000 0.000000000
120.0000000000 0.000000000
13 0.0000000000 0.000000000
14 0.0000000000 0.000000000
15 0.0000000000 0.000000000
16 0.0000000000 0.000000000
17 0.0000000000 0.000000000
18 0.0000000000 0.000000000
19 0.0000000000 0.000000000
20 0.0000000000 0.000000000
210.0000000000 0.000000000
22 0.0000000000 0.000000000
230.0000000000 0.000000000
24 0.0000000000 0.000000000
25 0.0000000000 0.000000000
26 0.0000000000 0.000000000
27 0.0000000000 0.000000000
28 0.0000000000 0.000000000
29 0.0000000000 0.000000000
30 0.0000000000 0.000000000
310.0000000000 0.000000000
320.0000000000 0.000000000
330.0000000000 0.000000000
34 0.0000000000 0.000000000
350.0000000000 0.000000000
36 0.0000000000 0.000000000
```

```
3 7 0 . 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0
38 0.0000000000 0.000000000
39 0.0000000000 0.000000000
40 0.0000000000 0.000000000
41 0.0000000000 0.000000000
420.0000000000 0.000000000
4 3 0 . 0 0 0 0 0 0 0 0 0 0 ~ 0 . 0 0 0 0 0 0 0 0 0
44 0.0000000000 0.000000000
45 0.0000000000 0.000000000
46 0.0000000000 0.000000000
47 0.0000000000 0.000000000
48 0.0000000000 0.000000000
49 0.0000000000 0.000000000
50 0.0000000000 0.000000000
51 0.0000000000 0.000000000
52 0.0000000000 0.000000000
5 3 0 . 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0
54 0.0000000000 0.000000000
5 5 0 . 0 0 0 0 0 0 0 0 0 0 ~ 0 . 0 0 0 0 0 0 0 0 0
56 0.0000000000 0.000000000
5 7 0 . 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0
58 0.0001467817 0.006996109
59 0.0003072760 0.014554791
60 0.0004811673 0.022678395
6 1 0 . 0 0 0 6 6 8 1 9 2 3 0 . 0 3 1 3 5 9 8 7 2
62 0.0008692960 0.040581221
63 0.0010912961 0.050310849
64 0.0013350476 0.060504270
65 0.0016002603 0.071104360
>
```


2.4.2 Germline and Marker Testing

Because the PANC gene is a hypothetical gene, there are no germline or marker testing results to add to the calculation.

2.5 MelaPRO

2.5.1 Family History

Before running your pedigree through melapro, be sure it is structured as a numeric data frame with history of melanomas: n rows (where n is the number of family members, including
the counselee) and 6 columns with required column names described below.
The family history includes the information on the counselee and his/her relatives. For each member, we need information on whether he or she has been diagnosed with melanoma and either the age at diagnosis or, if cancer free, the current age or the age at death.

The family cancer history must be entered in data frame form, with one row for each family member and columns containing the following information:

Column	Content ID
Member identifier	
Gender	Gender (0=female, $1=$ male $)$
FatherID	Father's identifier number
MotherID	Mother's identifier number
AffectedSkin	Number of diagnosed melanomas $0=$ no cancer, $1=$ single melanoma, $2=$ multiple melanomas, NA= no information
AgeSkin	Age of onset of melanomas if a cancer case. Current age or age of death if not a cancer case.
	NA if there is no age information.

The parameters used by the model, including penetrance, allele frequency, and sensitivity/specificity of testing, are set using the function melaparams. Any changes to the parameters can be made by calling this function.

```
> # Change likelihood ratio for single melanomas
> # among noncarriers from default 0.702 to 0.80
> myparams <- melaparams(spm.lr.noncarrier=0.80)
> # Run PancPRO with family history information for example family
> melapro(family=mela.fam, params=myparams)
```

```
[1] "Warning: individuals have an unknown age of diagnosis. The calculation would be improve
The probability of being a carrier is 0.1204639
The risk of developing cancer is
    By age Melanoma Risk
0 0.01116896
2 40 0.02295988
3 45 0.03501317
4 50 0.04710430
5 55 0.05901270
6 60 0.07047355
7 65 0.08147133
8 70 0.09176121
```

9	75	0.10088929
10	80	0.10850911
11	85	0.11429754

An object of class "BayesMendel"
Slot "family":
ID Gender FatherID MotherID AffectedSkin AgeSkin Twins Death

1	1	0	2	3	0	30.0	0	0
2	2	1	20	21	1	40.0	0	0
3	3	0	11	12	0	36.0	0	0
4	4	0	2	3	1	29.0	0	0
5	5	0	2	3	0	50.0	0	0
6	6	1	0	1	0	24.0	0	0
7	7	0	0	1	0	23.0	0	0
8	8	1	0	1	0	20.0	0	0
9	9	0	0	5	0	26.0	0	0
10	10	0	0	5	0	22.0	0	0
11	11	1	0	0	0	63.0	0	0
12	12	0	0	0	0	92.0	0	0
13	13	1	11	12	0	74.0	0	0
14	14	1	11	12	1	1.0	0	0
15	15	0	14	0	0	30.0	0	0
16	16	0	14	0	0	30.0	1	0
17	17	1	14	0	0	30.0	1	0
18	18	1	14	0	0	30.0	0	0
19	19	1	14	0	0	94.0	0	0
20	20	1	0	0	0	94.0	0	0
21	21	0	0	0	0	68.5	0	0
22	22	0	20	21	1	1.0	0	0
23	23	0	20	21	1	1.0	0	0
24	24	0	20	21	0	16.0	0	0
25	25	1	20	21	0	30.0	0	0
26	26	0	0	24	0	30.0	0	0
27	27	1	0	24	0	0	0	0
28	28	1	0	23	0	0	0	0

AgeDeath ethnic Relation P16 AgeCur AgeSkinLower AgeSkinUpper

1	30	HBI	1	0	30	1	30
2	40	HBI	4	0	NA	1	94
3	36	HBI	4	0	36	1	36
4	29	HBI	2	0	NA	1	94
5	50	HBI	2	0	50	1	50
6	24	HBI	3	0	24	1	24
7	23	HBI	3	0	23	1	23
8	20	HBI	3	0	20	1	20
9	26	HBI	13	0	26	1	26
10	22	HBI	13	0	22	1	22

11	63	HBI	7	0	63	1	63
12	92	HBI	7	0	92	1	92
13	64	HBI	8	0	64	1	64
14	74	HBI	8	0	74	1	74
15	NA	HBI	0	0	NA	1	94
16	NA	HBI	0	0	NA	1	94
17	NA	HBI	0	0	NA	1	94
18	NA	HBI	0	0	NA	1	94
19	NA	HBI	0	0	NA	1	94
20	99	HBI	5	0	94	1	94
21	100	HBI	5	0	94	1	94
22	NA	HBI	6	0	NA	1	94
23	NA	HBI	6	0	NA	1	94
24	NA	HBI	6	0	NA	1	94
25	16	HBI	6	0	16	1	16
26	NA	HBI	0	0	NA	1	94
27	NA	HBI	0	0	NA	1	94
28	NA	HBI	0	0	NA	1	94

Slot "posterior":
P160 P161 P162
[1,] $0.87953610 .12046162 .293133 \mathrm{e}-06$

Slot "probs":
Pr(Being a carrier)

$$
0.1204639
$$

Slot By		
"predictions":		
1	35	0.01116896
2	40	0.02295988
3	45	0.03501317
4	50	0.04710430
5	55	0.05901270
6	60	0.07047355
7	65	0.08147133
8	70	0.09176121
9	75	0.10088929
10	80	0.10850911
11	85	0.11429754

Slot "counselee.id":
[1] 1

Slot "loglik":

NULL

```
Slot "future.risk":
    hFX0 hFX1
1 0.0000000000 0.00000000
2 0.0000000000 0.00000000
3 0.0000000000 0.00000000
4 0.0000000000 0.00000000
5 0.0000000000 0.00000000
6 0.0000000000 0.00000000
7 0.0000000000 0.00000000
8 0.0000000000 0.00000000
9 0.0000000000 0.00000000
10 0.0000000000 0.00000000
11 0.0000000000 0.00000000
12 0.0000000000 0.00000000
13 0.0000000000 0.00000000
14 0.0000000000 0.00000000
15 0.0000000000 0.00000000
16 0.0000000000 0.00000000
17 0.0000000000 0.00000000
18 0.0000000000 0.00000000
19 0.0000000000 0.00000000
20 0.0000000000 0.00000000
21 0.0000000000 0.00000000
22 0.0000000000 0.00000000
23 0.0000000000 0.00000000
24 0.0000000000 0.00000000
25 0.0000000000 0.00000000
26 0.0000000000 0.00000000
27 0.0000000000 0.00000000
28 0.0000000000 0.00000000
29 0.0000000000 0.00000000
300.0000000000 0.00000000
31 0.0001666687 0.01668756
32 0.0003465995 0.03365895
33 0.0005348096 0.05087558
34 0.0007304603 0.06830090
35 0.0009335321 0.08590033
36 0.0011440044 0.10364104
37 0.0013622627 0.12149190
38 0.0015907353 0.13942299
39 0.0018297821 0.15740585
40 0.0020793720 0.17541350
41 0.0023394615 0.19342038
```

$420.0026107151 \quad 0.21140212$
430.00289736550 .22933472
440.00320004380 .24719531
$45 \quad 0.00351865130 .26496227$
$46 \quad 0.00385307250 .28261523$
$47 \quad 0.00420400530 .30013479$
480.00457611290 .31750149
490.00497000170 .33469687
500.00538545840 .35170363
510.00582225470 .36850563
$520.0062793688 \quad 0.38508771$
530.00675186080 .40143493
540.00723869310 .41753332
550.00773958990 .43337006
560.00825425350 .44893343
570.00878386500 .46421261
580.00933688990 .47919677
590.00991429440 .49387600
$60 \quad 0.01051553060 .50824151$
610.01114004380 .52228559
620.01178735260 .53600111
630.01245750000 .54937938
640.01314978050 .56241250
650.01386330450 .57509382
660.01459715640 .58741788
670.01534863000 .59937953
680.01610631390 .61096990
690.01686736290 .62218096
$70 \quad 0.01763064080 .63300638$
710.01839501160 .64344154
720.01915881880 .65348229
730.01991784280 .66311993
740.02067002020 .67234715
750.02141378400 .68115915
760.02214763070 .68955356
770.02286930990 .69752853
$78 \quad 0.02357263520 .70507457$
790.02425486770 .71218469
$80 \quad 0.02491414550 .71885613$
810.02554886660 .72509006
820.02615807320 .73088893
830.02674259680 .73624571
840.02730010650 .74115824
850.02782818050 .74563124

2.5.2 Germline and Marker Testing

Information about germline testing results is included in the germline.testing object. If the results of germline testing are available, the user can input them into a data frame with n rows and 2 columns with column name "P16" which stores the mutation testing results for P16 ($0=$ no test, $1=$ positive test, $2=$ negative test).

```
> # The counselee's sister was tested for
> # germline mutations in P16, and one was found.
> # Proband was also tested, but no mutation was found.
> P16 <- rep(0, nrow(mela.fam))
> germline.testing = data.frame(P16)
> germline.testing[4,] <- 1
> germline.testing[1,] <- 2
> out <- melapro(family=mela.fam, germline.testing = germline.testing)
```

[1] "Warning: individuals have an unknown age of diagnosis. The calculation would be improve The probability of being a carrier is 0
The risk of developing cancer is
By age Melanoma Risk
1350.0009335321
$2 \quad 40 \quad 0.0020793720$
$3 \quad 45 \quad 0.0035186513$
$4 \quad 50 \quad 0.0053854584$
$5 \quad 55 \quad 0.0077395899$
$6 \quad 60 \quad 0.0105155306$
$7 \quad 65 \quad 0.0138633045$
$8 \quad 70 \quad 0.0176306408$
$9 \quad 75 \quad 0.0214137840$
$10 \quad 80 \quad 0.0249141455$
11850.0278281805
>

2.6 BRCAPANCpro

2.6.1 Family History

Before running your pedigree through brcapancpro, be sure it is structured as a numeric data frame with history of breast, ovarian, and pancreatic cancers: n rows (where n is the number
of family members, including the counselee) and 13 columns with column names:

Column Name	Content
ID	Member identifier
Gender	Gender ($0=$ female, $1=$ male)
FatherID	Father's identifier number
MotherID	Mother's identifier number
AffectedBreast	Breast cancer status ($0=$ no cancer, $1=$ breast cancer,one breast involved; $2=$ bilateral breast cancer, $\mathrm{NA}=$ unknown status)
AffectedOvary	Ovarian cancer status ($0=$ no cancer, $1=$ ovarian cancer, $\mathrm{NA}=$ unknown status)
AffectedPancreas	Pancreatic cancer status ($0=$ no cancer, $1=$ pancreatic cancer, $\mathrm{NA}=$ unknown status)
AgeBreast	Age of onset of breast cancer if a breast cancer case. Current age or age of death if not a breast cancer case. NA if there is no age information.
AgeOvary	Age of onset of ovarian cancer if an ovarian cancer case. Current age or age of death if not an ovarian cancer case. NA if there is no age information.
AgePancreas	Age of onset of pancreatic cancer if a pancreatic cancer case. Current age or age of death if not a pancreatic cancer case. NA if there is no age information.
AgeBreastContralateral	Age at onset of breast cancer, second breast. Only for members with breast cancer status $=2$. For the rest enter a 0 .
Twins	Identifies siblings who are identical twins. Each twin pair is identified by a unique number. For the rest enter a 0.
ethnic	Identifies the ethnicity of each family member. Enter "nonAJ", "AJ", "Italian", "Other" or NA (as recognized by is.na() function).
Death	Vital Status ($0=$ Alive, $1=$ Dead)
AgeDeath	Family member's age at death or current age if alive.

The parameters used by the model, including penetrance, allele frequency, and sensitivity/specificity of testing, are set using the function brcapancparams. Any changes to the parameters can be made by calling this function.

```
> # Change future risk to be calculated in intervals of 2 y instead of the default of 5 y.
> # Leave all other parameters as set.
> myparams <- brcapancparams(age.by=2)
> # Run BRCAPRO with family history information for example family
> data(brcapanc.fam)
> out = brcapancpro(family=brcapanc.fam)
[1] " Warning: age(s) older than age.max has been converted to age.max! Warning: age(s) older
The probability of being a carrier is 0.5172612
    BRCA1 carrier is 0.1827323
    BRCA2 carrier is 0.214929
    PANC carrier 0.03227949
The risks of developing cancers are
    By age Breast Ca Risk Ovarian Ca Risk Pancreas Ca Risk
1 62 0.06907509 0.04100611 0.006524576
```

2	67	0.12817206	0.08770403	0.015927756
3	72	0.17788158	0.13683371	0.028097043
4	77	0.22573537	0.18555318	0.042415932
5	82	0.27130488	0.23122898	0.058200550

```
> slotNames(out)
```

[1] "family"	"posterior"	"probs"
[5] "counselee.id" "loglik" "predictions"		

> out@probs

	Pr (Being a carrier) $\operatorname{Pr}($ BRCA1 mutation) $\operatorname{Pr}($ BRCA2 mutation)
1	0.51726120 .1827323 0.214929
$\operatorname{Pr}($ PANC mutation) $\operatorname{Pr}(\mathrm{BRCA1}$ and PANC mutation)	
1	0.032279490 .01189045
	$\operatorname{Pr}(\mathrm{BRCA} 1$ and BRCA2 mutation) $\operatorname{Pr}(\mathrm{BRCA} 2$ and PANC mutation)
1	0.057397310 .01415459
	$\operatorname{Pr}($ All three genes mutated)
	0.003878078

> out@family

	ID	Gender	FatherID	MotherID	AffectedBreast AffectedOvary	
1	1	0	3	2	0	0
2	2	0	9	8	0	1
3	3	1	11	10	0	0
4	4	0	0	1	0	0
5	5	1	3	2	0	0
6	6	0	0	0	0	0
7	7	0	3	2	0	0
8	8	0	0	0	0	1
9	9	1	0	0	0	0
10	10	0	0	0	0	0
11	11	1	0	0	0	0
12	12	0	9	8	0	0
13	13	0	9	8	0	0
14	14	0	11	10	0	0
15	15	1	5	6	0	0
16	16	1	0	7	0	0
17	17	0	0	7	0	0
18	18	0	0	7	0	0

19	19	0	0	7	0	0
20	20	0	21	12	0	0
21	21	1	0	0	0	0
22	22	0	9	8	2	0
23	23	0	0	22	0	0
24	24	1	5	6	0	0
25	25	1	5	6	0	0

AgeBreast AgeOvary AgeBreastContralateral Twins ethnic Death

1	57	57	0	0	nonAJ	0
2	70	69	0	1	nonAJ	0
3	87	87	0	0	nonAJ	0
4	32	32	0	0	nonAJ	0
5	50	50	0	0	nonAJ	0
6	57	57	0	0	nonAJ	0
7	45	47	0	0	nonAJ	0
8	65	65	0	0	nonAJ	0
9	94	94	0	0	nonAJ	0
10	75	75	0	0	nonAJ	0
11	94	94	0	0	nonAJ	0
12	85	85	0	0	nonAJ	0
13	79	79	0	0	nonAJ	0
14	1	70	0	0	nonAJ	0
15	23	23	0	0	nonAJ	0
16	12	12	0	0	nonAJ	0
17	22	22	0	0	nonAJ	0
18	19	19	0	0	nonAJ	0
19	16	16	0	0	nonAJ	0
20	54	54	0	0	nonAJ	0
21	77	77	0	0	nonAJ	0
22	40	70	45	1	nonAJ	0
23	40	40	0	0	nonAJ	0
24	17	17	0	2	nonAJ	0
25	17	17	0	2	nonAJ	0

AgeDeath AffectedPancreas AgePancreas Relation Mastectomy

57	0	57	1	0
70	0	70	4	0
87	1	60	4	0
32	0	32	3	0
50	0	50	2	0
NA	0	57	15	0
47	0	47	2	0
65	0	65	7	0
96	0	94	7	0
75	0	75	5	0
94	0	94	5	0

5	0	0	0	50	1	50
6	0	0	0	NA	1	94
7	0	0	0	47	1	47
8	0	0	0	65	1	65
9	0	0	0	94	1	94
10	0	0	0	75	1	75
11	0	0	0	94	1	94
12	0	0	0	85	1	85
13	0	0	0	79	1	79
14	0	0	0	NA	1	94
15	0	0	0	23	1	23
16	0	0	0	12	1	12
17	0	0	0	22	1	22
18	0	0	0	19	1	19
19	0	0	0	16	1	16
20	0	0	0	54	1	54
21	0	0	0	77	1	77
22	0	0	0	70	1	70
23	0	0	0	40	1	40
24	0	0	0	17	1	17
25	0	0	0	17	1	17
AgeOvaryLower AgeOvaryUpper AgeBreastContralateralLower						
1					57	
2					70	
3					87	
4					32	
5					50	
6					94	
7					47	
8					65	
9					94	
10					75	
11					94	
12					85	
13					79	
14					94	
15					23	
16					12	
17					22	
18					19	
19					16	
20					54	
21					77	
22					70	
23					40	

24	1	17		1
25	1	17		1
AgeBreastContralateralUpper AgePancreasLower				AgePancreasUpper
1		57	1	57
2		70	1	70
3		87	1	87
4		32	1	32
5		50	1	50
6		94	1	94
7		47	1	47
8		65	1	65
9		94	1	94
10		75	1	75
11		94	1	94
12		85	1	85
13		79	1	79
14		94	1	94
15		23	1	23
16		12	1	12
17		22	1	22
18		19	1	19
19		16	1	16
20		54	1	54
21		77	1	77
22		70	1	70
23		40	1	40
24		17	1	17
25		17	1	17
uua2 uua3				
1 FALSE FALSE				
2 FALSE FALSE				
3 FALSE FALSE				
4 FALSE FALSE				
5 FALSE FALSE				
6 TRUE TRUE				
7 FALSE FALSE				
8 FALSE FALSE				
9 FALSE FALSE				
10 FALSE FALSE				
11 FALSE FALSE				
12 FALSE FALSE				
13 FALSE FALSE				
14 TRUE TRUE				
15 FALSE FALSE				
	FALSE FALSE			

```
17 FALSE FALSE
1 8 ~ F A L S E ~ F A L S E ~
1 9 ~ F A L S E ~ F A L S E ~
20 FALSE FALSE
21 FALSE FALSE
22 FALSE FALSE
23 FALSE FALSE
24 FALSE FALSE
25 FALSE FALSE
```

>

Note that brcapancpro does not include the option for net/crude future risk. All the optional inputs for brcapro and pancpro such as germline testing results, marker testing results, race, ethnicity, mastectomies, and oophorectomies can be used for brcapancpro.

2.7 brcaproPlusBCRAT

brcaproPlusBCRAT is a model that combines brcapro and BCRAT (Gail, Mitchell H., et al. "Projecting individualized probabilities of developing breast cancer for white females who are being examined annually." JNCI: Journal of the National Cancer Institute 81.24 (1989): 18791886.). BCRAT is available through the BCRA R package on CRAN. bcraproPlusBCRAT uses BCRAT relative risks to modify the brcapro penetrances. Users can also run brcaproPlusBCRAT using brcapro, with the option plusBCRAT = TRUE.

Users can directly provide the relative risks through the option rr.bcrat, which is a vector of length 2 denoting the proband's BCRAT relative risk before 50 and the proband's BCRAT relative risk after 50. Alternatively, the user can provide input data for the BCRAT model using the option bcrat.vars, which can then be used as an input for the relative.risk function in the BCRA package.

2.8 LFSpro

LFSpro is a Mendelian model that estimates the probability of carrying a TP53 mutation, which is the main cause of Li-Fraumeni Syndrome (Peng, Gang, et al. "Estimating TP53 mutation carrier probability in families with Li-Fraumeni syndrome using LFSPRO." Cancer Epidemiology and Prevention Biomarkers 26.6 (2017): 837-844.). For more details about running the package, see https://bioinformatics.mdanderson.org/public-software/Ifspro/.

3 Other Features

3.1 Plotting a pedigree

The family history data frame can be displayed graphically in a traditional pedigree plot. There are two options for plotting your pedigree. If you want to plot your pedigree without running it through any of the models, the family history data frame family must be set to be part of the BayesMendel class and then plotted by simply using the generic function plot. If the vital status of family members is known, it can included by adding a column labeled "status" can be added to the family data frame. Enter 0 if the individual is alive, or 1 if not alive.

```
> pdf("brcafamplot.pdf")
> brca.fam$Death <- rbinom(nrow(brca.fam), 1, 0.2)
> myfamily <- new("BayesMendel", family=brca.fam, counselee.id=1)
> plot.BayesMendel(myfamily, cex=0.2)
> dev.off()
null device
    1
```


The pedigree can also be run through any of the models and plotted with the carrier probabilities displayed on the graph.

```
> pdf("mmrfamplot.pdf")
> MMR.fam$Death <- rbinom(nrow(MMR.fam), 1, 0.2)
> mmrpro.out <- MMRpro(family=MMR.fam, counselee.id=1)
```

[1] "Warning: individuals have an unknown age of diagnosis. The calculation would be improve The probability of being a carrier is 0.1751956
an MLH1 carrier 0.07663265
an MSH2 carrier 0.09514061

```
    an MSH6 carrier 0.003518854
The risks of developing cancers are
    By age Colorectal Ca Risk Endometrial Ca Risk
    1 60 0.01386688 0.03081084
    2 65 0.02814948 0.05156948
    3 70 0.04264259 0.05918417
    4 75 0.05675906 0.06269512
    5 80 0.06997522 0.06520771
    6 85 0.08106401 0.06685401
> plot(mmrpro.out, cex=0.2)
> dev.off()
null device
    1
```


4 Interpreting the Risk Predictions

The BayesMendel models can predict both net and crude future risk. Let T_{C} be the theoretical (discrete, in years) age of the specific cancer of interest of the proband. Thus, in the hypothetical scenario where the proband does not die before this age, the proband would develop the cancer of interest at this age. It is important to note that the proband may or may not actually observe this outcome. Now let T_{D} be the age of death from causes other than the cancer for the proband, and let $T=\min \left(T_{C}, T_{D}\right)$ be the age of the first outcome, either the cancer of interest or death from other causes. Let $J=C$ if $T=T_{C}$; i.e., if the proband actually
develops the cancer of interest, and let $J=D$ if $T=T_{D}$.
Net t-year risk predictions in these models can be interepreted as the probability of developing the disease within t years, conditional on being disease-free at the current age, assuming no death from other causes. Thus the t-year net risk, given that the proband is currently age t_{0}, is

$$
P\left(T_{C} \leq t_{0}+t \mid T_{C}>t_{0}\right) .
$$

Crude t-year risk is the probability of developing the disease within t years (without death from other causes), conditional on being disease-free and alive at the current age. Thus the t-year crude risk is

$$
P\left(T \leq t_{0}+t, J=C \mid T>t_{0}\right) .
$$

Here we ignore the dependency on the gender and genotype in the penetrance functions.

5 Further Information

More information about our methods and software can be found at our website
https://projects.iq.harvard.edu/bayesmendel. We can also be reached by email at BayesMendel@jimmy.harvard.edu.

