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Abstract

Recent technologic advancements have enabled the creation of portable, low-cost, and unobtrusive sensors with tremendous
potential to alter the clinical practice of rehabilitation. The application of wearable sensors to track movement has emerged as a
promising paradigm to enhance the care provided to patients with neurologic or musculoskeletal conditions. These sensors enable
quantification of motor behavior across disparate patient populations and emerging research shows their potential for identifying
motor biomarkers, differentiating between restitution and compensation motor recovery mechanisms, remote monitoring, tel-
erehabilitation, and robotics. Moreover, the big data recorded across these applications serve as a pathway to personalized and
precision medicine. This article presents state-of-the-art and next-generation wearable movement sensors, ranging from inertial
measurement units to soft sensors. An overview of clinical applications is presented across a wide spectrum of conditions that
have potential to benefit from wearable sensors, including stroke, movement disorders, knee osteoarthritis, and running injuries.
Complementary applications enabled by next-generation sensors that will enable point-of-care monitoring of neural activity and

muscle dynamics during movement also are discussed.

Introduction

Rapid advancements in electronics and computing
have created an opportunity and responsibility [1] to
translate these technologic advances to rehabilitation.
In particular, wearable sensors have emerged as a
promising technology with substantial potential to
benefit a wide range of individuals, from patients living
with mobility deficits to high-performance athletes
recovering from an injury. Wearable sensors provide
precise quantitative measurements of human move-
ment, enabling tracking of the effects of disease or
injury through their influence on the movement system.
Importantly, the portability of wearable sensors allows
their use in free-living environments, thus providing
more ecologic and rich data related to health and
disability. Wearable sensors provide an opportunity for
the collection of big data across clinical and real-world
settings, enabling the growth of personalized and pre-
cision medicine [2].

The field of wearable sensors has seen exponential
growth during the past decade; however, widespread

clinical use of this promising technology has yet to be
realized. Clinical applications of wearable sensors
include remote monitoring [3], mobile health [3,4], and
expansion of health metrics beyond traditional clinical
settings [5]. This focused review begins with a summary
of the state of the art in wearable movement sensors
and their current applications to neurologic and ortho-
pedic rehabilitation, followed by emerging clinical ap-
plications. The review concludes with an overview of
next-generation sensor technologies that expand mo-
tion sensing through hybrid sensors, neural interfaces,
and soft sensors.

Literature Selection

To characterize (i) state-of-the-art, (ii) emerging,
and (iii) next-generation wearable sensor technologies
used in neurologic and orthopedic rehabilitation, a
literature search was performed using the Medline,
PubMed, and CINAHL databases. Studies published from
2013 through 2018 were the focus of this search. Search
delimiters included studies published in English and
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studies with adult human participants. Discussion was
steered toward stroke and movement disorders to
exemplify applications in neurologic rehabilitation and
toward knee osteoarthritis (OA) and running to exem-
plify applications in orthopedic rehabilitation. Sample
keywords and their combinations included sensors,
rehabilitation, stroke, Parkinson’s disease (PD), Hun-
tington’s disease (HD), osteoarthritis, and running.

Review of Evidence

Recovery of motor function is a major goal of
neurologic and orthopedic rehabilitation. Rehabilitation
interventions facilitate motor learning by leveraging
repetitive, progressive, and task-specific motor practice
provided in sensory-enriched environments [6]—treat-
ment parameters that enhance activity-dependent
plasticity in the central nervous system [7]. Precise
measurements of motor behavior over different time-
scales might assist in exploring and optimizing motor
learning. Wearable motion sensors enable the objective
measurement of body orientation, motion, direction,
and physiologic state during movement in ecologic set-
tings [8], thus providing clinicians with data that can be
used to guide and enhance rehabilitation activities.

State-of-the-Art Technology

Force-based sensors are commonly integrated with
footwear to measure the interaction of the body with the
ground during walking [9]. These sensors include load-
sensitive switches or force-sensitive resistors that char-
acterize gait based on the configuration of the sensors. A
single sensor attached to the heel allows detection of
heel-strike and heel-off phases of gait, whereas multiple
sensors within an insole enable examination of walking
strategies [10], center of pressure translations [11], and
the estimation of vertical ground reaction forces
throughout the gait cycle [12]. Force-based sensors also
are used to drive auditory [13,14] and visual [12]
biofeedback during gait training [13,14]. Limitations of
force-based sensors include their susceptibility to me-
chanical wear over time, limited direct measurements to
events during the stance phase [9], and potential drift
secondary to humidity and temperature inside the shoe
[15] that can influence data quality.

Gyroscopes measure the rate of change of angular
motion by detecting the Coriolis forces that act on a
moving mass in a rotating reference frame. These forces
are proportional to the rate of angular rotation of the
limb. Gyroscopes are secured to body segments in line
with the plane of movement that is being measured
[16], and tri-axial gyroscopes allow 3-dimensional
measurements. Particular strengths of gyroscope sen-
sors are that their measurements are not influenced by
gravitational forces [17] and vibrations during heel
strike do not distort the signal [18].

Accelerometers measure body movements based on
the rate of change of speed. The measurement principle
underlying accelerometry is commonly explained by a
mass-spring system [19]. Based on displacement of the
mass element, the resultant acceleration is derived
[19]. Although there are several classes of accelerom-
eters, the most commonly used in rehabilitation
research are strain gauge, capacitive, piezo-resistive,
and piezoelectric [19]. Accelerometers used in rehabil-
itation commonly have 1 to 3 sensing axes, which allow
motion detection in 1- to 3-dimensional space. Accel-
erometers are commonly used for continuous moni-
toring of gait, mobility, and activities of daily living.
Accelerometer signals can be used to compute position
or velocity; however, drift from integration decreases
data quality [18]. Additional limitations associated with
the use of accelerometers include poor reliability when
measuring non-dynamic events [20] and the influence of
gravity on the acceleration signal [9]. Various signal
processing strategies are being developed to improve
data quality [9].

Magnetometers are devices that detect the Earth’s
gravitation vector. Their measurements provide com-
pass heading information and a reference measure for
body orientation relative to gravity [9]. Because mag-
netometers are insensitive to acceleration during dy-
namic movements, their use alongside accelerometers
allows separation of gravitational components from ki-
nematic acceleration data. Moreover, given the quali-
ties and limitations of gyroscopes, accelerometers, and
magnetometers, these sensor types are often combined
in self-contained devices called inertial measurement
units (IMUs) to optimize measurement capabilities.
Force-based sensors offer additional insight into a
wearer’s interaction with the environment and also
have been used alongside IMUs. By and large, limitations
in the quality of individual sensor signals can be
addressed with advanced processing and intelligent al-
gorithms [21]. The following section provides an over-
view of applications of these sensors across neurologic
and orthopedic domains.

State-of-the-Art Clinical Applications

Wearable sensors are portable, low-cost, and un-
obtrusive tools that provide objective, quantitative,
and continuous information about motor behavior in
a range of environments. Clinically, wearable sensors
have been used for assessment, including the
instrumentation of common mobility tests [22],
identification of pathologic movement [23,24], char-
acterization of disease stage [25], falls management
[26,27], and activity recognition (AR). They also have
been used to augment treatments, such as enabling
biofeedback-based gait training [12,28,29]. This
section cites specific examples of these clinical
applications (Table 1).
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Table 1

Wearable Sensors in Rehabilitation

Clinical applications of state-of-the-art technology in select neurologic and orthopedic populations

Clinical application

Sensor (model),
associated technology

Findings

Assessment Clinical instrumentation

Falls management

Identification of pathologic
motor features

Activity recognition

Characterization of
disease stage

Treatment Biofeedback

IMU (Physilog, GaitUp,
Lausanne, Switzerland)

Phone-based IMU (Xperia Ray
S0-03C, Sony Mobile
Communications, Inc,
Tokyo, Japan)

IMU (Opal, APDM Inc,
Portland, OR)

IMU (Kinesia ONE, Great Lakes
NeuroTechnologies Inc,
Cleveland, OH)

iPod-based IMU (iPod, Apple,
Cupertino, CA)

IMU (Physilog, GaitUp,
Lausanne, Switzerland)

StepWatch Activity Monitor
(Orthocare Innovations,
Seattle, WA)

Phone-based IMU (Blackberry
210, Waterloo, ON, Canada)

IMU (Opal inertial sensors,
APDM, Inc, Portland, OR)

Force sensor; Smart Shoes,
custom made; IMUs; Smart
Pants, custom made

IMU (TecnoBody srl, Dlamine
BG, Italy)

Force sensor (not specified),
pager motor (not specified)

High reliability and low measurement error for most
measures taken when used for instrumented TUG in
individuals after stroke [22]

Can identify differences in kinematic gait variables in those
after stroke with and without a history of falls [26]

Can identify differences in dynamic gait stability between
stroke and control cohorts and variables that could play an
important role in increased fall risk [27]

High test-retest reliability and sensitivity in measuring
bradykinesia, hypokinesia, and dysrhythmia in those with
PD [23]

Can detect significant differences in trunk control during
static activities in people with HD compared with controls;
found amplitude of thoracic and pelvic trunk movements
was significantly greater in participants with HD [24]

Excellent ability to classify (90.4%) basic activities common
to daily life in individuals after stroke (eg, lying, sitting,
standing, walking, walking on stairs, and taking an
elevator) [30]

Can characterize activity levels without relying on self-
report data or clinician opinion [31], assess real-world
performance [32], and guide community-based
treatments using goal setting [33] for individuals after
stoke

Good sensitivity and specificity in detecting immobile
(standing, sitting, lying) vs mobile (walking) states, but
poor ability to classify more complicated movements
(walking up stairs and other small movements) [3] in
people with stroke

High correlation between disease severity and turning
velocity, duration, and step number in those with PD
tracked over 7 days [25]

Significant improvements in balance, mobility, strength, and
range of motion comparable to improvements seen with
therapist cueing only; suggesting potential use in at-home
training for those with PD and after stroke [12]

Improved BBS score and decreased mediolateral sway during
standing in participants with PD who received biofeedback
with Gamepad during training [28]

Decreased KAM by 14.2% in people with OA [29]

IMU = inertial measurement unit; TUG = Timed Up and Go Test; PD = Parkinson disease; HD = Huntington disease; BBS = Berg Balance Scale;
KAM = knee adduction moment; OA = osteoarthritis.

Stroke

Advanced signal processing approaches have enabled
IMU instrumentation of popular clinical tests such as the
10-meter walk test [27] and the Timed Up-and-Go Test
[22], providing clinically relevant data on movement
quality in addition to the traditional outcome of “time
to complete.” Moreover, advanced AR algorithms have
enabled IMU data to be used to identify and quantify
gross movements with high sensitivity and specificity
[30]. For example, data extracted from IMUs located in
mobile phones have differentiated stroke survivors who
are fallers from those who are not based on an estimate
of inter-stride variability [26]. However, these analyses
have been limited when used to quantify more complex

movements [4], motivating further work in this area.
Accelerometer-based step activity monitors also have
been used to monitor physical activity in the home and
the community, providing ecologically valid mobility
data for the development of treatment-based classifi-
cations [31], the assessment of real-world performance
[32], and to guide community-based treatment pro-
grams [33].

Wearable sensors also have enabled novel gait-
training approaches, such as biofeedback-based in-
terventions. For example, a custom body-worn sensor
system composed of force sensors and IMUs was used to
provide kinematic biofeedback during gait training,
leading to improvements in balance, mobility, strength,
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and range of motion that were comparable to the
treatment benefits obtained through therapist-directed
gait training [12]. These results demonstrate the po-
tential for wearable sensors to provide effective gait
intervention without direct oversight by a clinician (eg,
in real-world settings).

Parkinson Disease

As in stroke, AR algorithms have enabled IMU data to
be used to identify pathologic motor features charac-
teristic of PD. For example, periods of motor fluctua-
tions between mobile and immobile states (ie, on-off
periods) in levodopa-treated individuals were detected
using IMU data analyzed with an advanced AR algorithm
[34]. Other studies have demonstrated how IMUs can be
useful in tracking primary physical symptoms of PD, such
as tremor [35], dyskinesias, and bradykinesia [23] and in
tracking disease progression [25]. For example, IMUs
have been used to differentiate between tremor-
dominant and non—tremor-dominant patients with PD
[35]. Mancini et al [25] tracked features of turning
performance (eg, velocity, duration, and step number)
for 7 days and found a high correlation between disease
severity and turning mobility. Additional studies have
shown that IMU-enabled continuous monitoring of
baseline gait metrics can predict disease progression
and gait decline 1 and 2 years later [36]. Moreover, a
recent large study of 190 patients with PD and 101 age-
matched controls showed the feasibility for large-scale
clinical trials to use IMUs to robustly track spatiotem-
poral parameters of gait [37].

As in stroke, sensor-enabled biofeedback in-
terventions have gained popularity as noninvasive
training tools in PD rehabilitation. For example, wear-
able sensors have been used to facilitate the delivery of
rhythmic auditory or haptic cues during gait training, an
approach shown to enhance motor learning in persons
with PD [38]. Similarly, IMUs have been used effectively
to provide haptic and visual biofeedback related to ki-
nematic data during balance and gait training in persons
with PD [28].

Knee Osteoarthritis

Wearable sensors have been used to understand
population-level behavior in individuals with OA. Based
on the Osteoarthritis Initiative, a large epidemiologic
study on knee OA that used wearable sensors to track
physical activity in 1,111 adults, only 12.9% of men and
7.7% of women with knee OA met aerobic physical ac-
tivity guidelines [39]. The study showed that in people
with knee OA, more sedentary behavior was associated
with worse physical function [40] and greater risk of
future functional decline [41]. The Multicenter Osteo-
arthritis Study, another large epidemiologic study
enabled by wearable activity trackers, showed that
disease severity and knee pain were not predictive of
physical activity levels [42] and that older adults with

high risk of knee OA did not meet physical activity
guidelines despite walking at least 10,000 steps per day
[43]. These wearable sensor-enabled studies have yiel-
ded critical insights into the factors related to
decreased physical activity in persons with knee OA and
the effects of decreased physical activity on health.
For individuals with knee OA, the most common ther-
apeutic application of wearable sensors is directed to-
ward altering kinematics to decrease knee joint loading
during walking. People with medial tibiofemoral OA walk
with greater medial compartment loading compared with
individuals with knee OA [44]. Greater medial compart-
ment loading is implicated in more rapid disease pro-
gression [45]. Thus, there is significant interest in
interventions that can decrease medial compartment
loading. The knee adduction moment (KAM) during
walking, measured using 3-dimensional motion capture,
is commonly used as a surrogate for medial compartment
loading [44]. There are several examples in the literature
of wearable sensors being used to decrease KAM. Dowling
et al [29], for example, developed an active feedback
system fitted inside a shoe. The system delivered haptic
feedback if the pressure on the lateral aspect of the shoe
exceeded a specific threshold, with the goal of producing
a subtle medial shift in weight bearing to decrease KAM.
Use of this innovative biofeedback system led to a mean
decrease of 14.2% in KAM. Although encouraging, this
study was performed in healthy individuals, in a
controlled laboratory environment, using expensive mo-
tion analysis instruments, and with a prototype version of
the device. Significant work is needed to translate these
systems to free-living conditions for people with knee OA.

Running

Up to 79% of runners are injured in a given year [46].
There is emerging interest in the role that impact me-
chanics can play in running injuries. Accumulating evi-
dence shows associations between impact loading, as
measured with a force plate, and injuries in runners.
Indeed, vertical load rates during the impact phase of
running are associated with tibial stress fractures [47].
Runners with diagnosed injuries also have higher verti-
cal load rates compared with those who have never
been injured [48]. Similarly, vertical load rates are
related to other common running injuries such as
patellofemoral pain and plantar fasciitis [48]. Although
vertical load rates are related to running injuries, peak
tibial acceleration during landing has been shown to be
related to these load rates [49]. Therefore, peak tibial
acceleration, which can be measured with an acceler-
ometer, has become a surrogate measure for vertical
load rates (Figure 1A).

Wearable sensors also can assist in examining other
gait characteristics that might contribute to running
injuries, such as cadence and strike pattern. Among
elite runners, achieving cadences near 180 steps per
minute is believed to optimize performance [50].
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Figure 1. (A) Vertical GRF (dark line) with the tibial acceleration (light line) overlaid to demonstrate the similarity in timing of its peak with the
vertical impact peak. (B) Vertical GRF curves of RFS pattern and FFS pattern. Note the distinct impact peak of the RFS pattern. (C) Representative
trace of tibial acceleration pattern for an RFS runner and an FFS runner. Pattern recognition can be used to distinguish foot-strike patterns from
these traces. Authors’ original work. FFS = forefoot strike; GRF = ground reaction force; RFS = rearfoot strike.

Increased cadence has other benefits such as decreases
in hip and knee energy absorption, patellofemoral
stress, and hip adduction [51,52]. Further, increasing
habitual cadences have demonstrated small decreases
in vertical load rates [53]. In contrast, strike pattern
influences ground reaction forces applied to the body.
Rearfoot strike results in a very distinct impact peak in
the vertical ground reaction force that is absent during
forefoot strike [54] (Figure 1B). Transitioning to a fore-
foot strike pattern has been shown to resolve chronic
patellofemoral pain [55] and chronic anterior compart-
ment syndrome [56]. These distinct impact features can
be seen in accelerometer data and can be used to
differentiate a rearfoot strike from a forefoot strike
pattern (Figure 1C).

Wearable sensors present an exciting opportunity in
the prevention and treatment of running-related in-
juries by affording the ability to provide real-time
feedback to the runner. Many commercial IMUs pro-
vide information on cumulative loads, which can be
extremely helpful in preventing overload injuries in
runners. Given the range of gait characteristics that
can be measured (eg, strike pattern, lower extremity

angles, tibial shock, etc), a wide variety of gait de-
viations can be addressed. Once the faulty aspect of
gait is identified by the physical therapist, the runner
can be instructed in how to alter the gait pattern.
Then the therapist can set audible signals to remind
the patient to attend to the gait when it begins to
degrade beyond a certain threshold. Then feedback
can be gradually removed with time. Runners can first
practice these gait changes in the clinic; however,
wearable sensors allow runners to translate the gait
changes from the clinic into their natural running
environment. This provides greater ecologic validity
to the treatment and can decrease the number of
clinical visits needed, thereby lowering overall health
care costs.

IMUs have important limitations to note when
assessing running. Impact magnitudes during running
can often exceed 16g, which is the limit of some com-
mercial devices. Similarly, accelerations during running
include high-frequency components that require
adequate sampling frequencies (500-1,000 Hz). These
factors need to be considered when choosing IMU-based
devices for running studies.
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Clinimetric Properties of Sensors

The use of wearable sensors to inform neurologic and
orthopedic rehabilitation practice warrants careful
consideration of their clinimetric properties, which vary
among devices [57], conditions, measures, and envi-
ronments [58]. Information on reliability, validity, and
sensitivity is available for some devices, but not all. For
example, wearable sensors used for running have been
shown to provide acceptable, valid, and reliable values
for some measures [59]; however, IMU-derived measures
of tibial acceleration magnitudes and determinations of
strike patterns require validation. For PD, a recent re-
view of sensor characteristics concluded that only 9 of
the 73 devices considered could be recommended based
on the availability and acceptability of their clinimetric
properties [57]. Continued examination of the clini-
metric properties of wearable sensor measurements
could improve the standardization of data processing,
definition of variables, and development of population-
specific algorithms [57,58].

Emerging Clinical Applications of Commercially
Available Technology

Emerging clinical applications using existing sensor
technologies include their use (i) to identify biomarkers
of disease onset and progression, (ii) to differentiate
between restitution and compensatory mechanisms of
motor recovery, (iii) to provide opportunities for tele-
rehabilitation and big data collection, and (iv) in next-
generation robotics.

Biomarkers

Tracking disease onset and progression is particularly
valuable for those with chronic diseases. As such, there
is increasing research effort directed toward identifi-
cation of biomarkers. A biomarker is a measurable
characteristic that represents a normal biologic process,
a pathologic process, or a response to an intervention
[60]. For example, there is emerging research on iden-
tifying motor biomarkers in genetic neurodegenerative
diseases. The unobtrusive nature of wearable sensors
coupled with their ability to measure subtle changes in
mobility in ecologic settings makes them a highly
promising tool for detecting subclinical motor changes
that can signal disease onset and progression. Evidence
for this emerging application follows.

PD is characterized by dopamine depletion in the
basal ganglia, which results in motor disturbances such
as tremor, postural instability, bradykinesia, and gait
impairment. Although most cases of PD are idiopathic, a
subset can be explained by genetic factors, of which the
most common mutation is leucine-rich repeat kinase 2
(LRRK2) plus G2019S [61]. Accelerometers fixed on the
low back have been used to identify increased stride
time variability [62], arm swing asymmetry, and trunk
axial jerk in asymptomatic carriers of the LRRK2-G2019S

mutation (ie, at risk for PD) during dual-task walking
compared with healthy controls [63].

The identification of motor biomarkers in HD also is
an emerging area in which wearable sensors have strong
potential. HD is an autosomal-dominant neurodegener-
ative disease that is characterized by a combination of
hyperkinetic and hypokinetic motor features [64].
Pharmaceutical and rehabilitative interventions are
being developed to delay the clinical onset or slow down
progression of HD [65]. However, these efforts are
attenuated owing to limited knowledge of optimal
clinical endpoints that are needed for clinical trials.
There is emerging evidence for the use of wearable
sensors to identify alterations in motor control, which
could serve as a worthwhile endpoint. As in PD, an IMU
fixed on the low back of individuals with pre-manifest
HD and healthy controls was effective in detecting
subclinical decrements in the sensory modulation of
postural control [67] and variability in trunk movement
during walking [67]. Similarly, wearable iPOD sensors
(IMU-based) fixed on the trunk and low back detected
abnormal trunk movements in persons with manifest HD
compared with controls [24]. Despite these exciting
preliminary findings that support the use of wearable
sensors to identify and monitor biomarkers of disease
onset and progression in movement disorders, larger,
multisite, and longitudinal studies are needed to cata-
lyze this application.

Motor Restitution vs Compensation

An emerging clinical application of wearable sensor
technologies is in differentiating restitution from
compensation when assessing the nature of motor re-
covery [68]. Restitution refers to the reappearance of
movement patterns that were present before the
injury, whereas compensation refers to the emergence
of a new set of movement patterns after injury
resulting from substitution or adaptive mechanisms
[68]. Elucidation of the mechanisms by which recovery
occurs during rehabilitation allows for the develop-
ment of computational models that can organize bio-
logical and behavioral data to inform clinical decision
making [68].

Researchers also have begun to use wearable sensor
technologies and analytical techniques to look beyond
gross functional and biomechanical recordings, with a
focus on the neural control of movement. An example
is the use of surface electromyography (SEMG) in the
examination of motor modules during functional ac-
tivities [69] to identify neuromechanical differences
between healthy and pathologic movement [70], eval-
uate the effects of neurorehabilitation intervention
[71], and assess changes in neuromotor control result-
ing from robotic intervention [72]. Although more
research is needed, this is a promising application of
commercially available sensor technology. By differ-
entiating between restitution and compensation
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mechanisms of recovery after neuromotor injury or
dysfunction, sEMG analyses have potential to influence
the prescription and evaluation of rehabilitative
treatments.

Telerehabilitation

As the population ages and chronic disease rates and
health care costs continue to rise, there is demand for
increased access to health care services and decreased
costs. Telerehabilitation is a relatively new branch of
telemedicine that prioritizes developing and optimizing
telecommunication technologies for rehabilitation ser-
vices (eg, evaluation, monitoring, and treatment) [73].
The emerging use of wearable movement sensors to
enable telerehabilitation services is exciting and timely.

It is not the goal of telerehabilitation to replace
health professionals; rather, it is to elevate the level of
care [74]. The remote monitoring afforded by wearable
sensors allows for real-time movement tracking in real-
world settings. This enables the continuous sampling of
activity, rather than a finite series of collections taken
during periodic clinic visits. Continuous remote moni-
toring of movement data could be used by clinicians to
map progress and develop personalized interventions.
The transmission of these data to clinicians through
wireless communication systems could increase patient
access to clinicians by bypassing the need to physically
travel to a clinic. Similarly, for those with progressive
neurologic conditions, personalized biofeedback or
teletherapy can be administered in the comfort of
home or community settings. These data coupled with
supported human-computer interactions also could
enable an assessment of quality of task practice and
patient engagement and compliance with home-based
interventions (eg, exercise programs). There is
limited moderate evidence showing that tele-
rehabilitation results in comparable improvements
with that of conventional therapy. Additional research
is needed to extend the evidence base [75]. Research
also is needed to determine the reliability and validity
of the wearable sensor data that might be used through
telerehabilitation approaches [73]. Furthermore,
challenges in privacy and security of information exist,
warranting consideration of enhanced security pro-
tections based on policy, regulatory protocols [76], and
security protocols [77].

Robotics

Wearable sensors have played an important role in
enabling the development of next-generation assistive
and rehabilitation robots. For example, during the past
decade, portable rigid exoskeletons have emerged as an
exciting tool to enable individuals who cannot walk to
walk again [78]. These powerful systems use sensors
such as encoders or potentiometers to measure their
movement and provide an estimate of limb move-
ment—information that is used to modulate the forces

delivered to the wearer. However, such sensors are not
compatible with a new class of wearable robots that are
made from soft and compliant materials [79]. IMUs and
force sensors have been shown to be more easily inte-
grated into these soft robotic exo-suits, enabling their
emergence for different biomedical applications,
including decreasing the energy used during healthy
walking [80] and running [81] and restoring more normal
walking after a stroke [82,83].

Next-Generation Wearable Sensors

Noninvasive Monitoring of Neural Activity

Extending the discussion of SEMG-enabled assessment
of motor module analyses, complementary sensor mo-
dalities are emerging that enhance movement mea-
surement by monitoring underlying neural control
mechanisms. Indeed, motor impairments arise from
changes in neural control and degradation of the me-
chanical properties of muscles, and the relative
contribution of each could be unique for each individ-
ual. Inherent to the control of movement are the firings
of individual motoneurons that propagate toward the
neuromuscular junction, where their activation and rate
coding regulate muscle contraction force and quality of
movement. Deficits in motoneuron control are known to
underlie neurologic [84,85] and musculoskeletal [86]
conditions, but have been difficult to discern using
traditional techniques based on needle EMG recordings
[871, which are invasive, yield the firings of relatively
few motoneurons, and are not practical beyond moni-
toring highly constrained activities that result from
isometric muscle contractions. With the advance of
neural sensors and their underlying artificial intelligence
concepts, methods for extracting motoneuron firing
behavior from noninvasive sEMG during isometric con-
tractions [88] and more recently during functional ac-
tivities of everyday life [89] have been made possible
(Figure 2A).

Recent work in this area has shown that groups of
motoneurons are regulated differently when multiple
muscles function in synergy to perform a functional task
[90] and that abnormal motoneuron firing behavior un-
derlies motor impairments after stroke [84,85]. Assess-
ing motoneuron recruitment patterns across neurologic
and orthopedic populations could provide valuable
insight in determining whether rehabilitation efforts
that target abnormalities in movement also have a
measurable effect on reversing underlying deficits in
motoneuron firing behavior.

Another emerging application of this technology in-
cludes assessing activation patterns of motoneurons
specific to different training interventions. For
example, a recent study showed that subjects could
selectively activate different populations of motoneu-
rons and thereby exercise components of the muscle
with greater fatigue-resistance capabilities [91].
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Figure 2. (A) Schematic of advanced surface EMG sensor technology that can extract the firings of individual MU activity during functional tasks,
which can be used to study the underlying mechanisms of human movement in health and disease and provide a noninvasive neural interface as a
real-time controller of a prosthetic or similar robotic device. (B) A schematic illustrating the use of hybrid sensor technology to autonomously
monitor changes in the presence and severity of body bradykinesia in response to dopamine replacement medication in a person with PD. Authors’
original work. dEMG = electromyography decomposition; EDS = extensor digitorum superficialis; EMG = electromyography; MU = motor unit; MUAP
= motor unit action potential; PD = Parkinson disease; TA = tibialis anterior.

Subjects could increase the activation of relatively
larger motoneurons that control higher forces with
respect to relatively smaller motoneurons that control
lower forces, in some cases by as much as 40%. Research
is continuing to expand on these exciting preliminary
findings to provide a basis for new strength-training
protocols to mitigate muscle weakness in patient pop-
ulations with muscle atrophy from normal aging,
musculoskeletal injury, or long-term bedrest [92].

Hybrid Sensors for Monitoring Muscle Activity and
Movement

Recent technologic advancements have enabled the
integration of miniaturized sensor components into on-
chip electronic systems with ultralow power consump-
tion. This has fostered the development of “hybrid”
wearable sensors that combine in a single encapsulation

(i) motion sensing and (ii) EMG sensing of muscle activ-
ity. Hybrid sensors can be particularly advantageous for
monitoring quality of movement when assessing and
treating motor impairments. Indeed, the ability to
measure characteristics of the wearer’s movement and
the underlying muscle activity responsible for regulating
the movement provides a more holistic assessment of
movement dysfunction. Hybrid sensors currently in use
for movement monitoring include an EMG recording
component and a motion component, such as an
accelerometer or IMU [93,94].

The feasibility of this technology was initially evalu-
ated for automated detection of functional activities of
daily living in individuals with stroke [95]. Using a min-
imal subset of 4 hybrid sensors (combined sEMG and
accelerometer sensors located on the 2 upper arms, 1
forearm, and 1 thigh), activities related to feeding,
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Figure 3. Preliminary work toward textile-based sensors. (Top) Capacitive fabric-based stretch soft sensor for measuring joint kinematics. (Bottom
left) Demonstration of sensors in soft robotic glove for measuring finger movement. (Bottom right) Ongoing work to develop pressure-sensing insole
using conductive textile traces and electrodes combined with a printed piezo-resistive film. Authors’ original work.

grooming, dressing, transferring, locomotion, and toi-
leting were detected with a mean sensitivity of
95.0% and a mean specificity of 99.7%. Significant im-
provements in sensitivity and specificity resulted when
sEMG and accelerometer data were included, high-
lighting the value of a hybrid sensor approach for this
application. Preliminary work in stroke demonstrated
that a hybrid sEMG and accelerometer sensor could
differentiate voluntary from spastic contractions [96].
Hybrid sensing also has been shown to be effective for
the automated detection of involuntary movements
associated with PD during unscripted activities of daily
living [93,94]. Indeed, the use of 1 hybrid sensor (SEMG
and accelerometer) per symptomatic limb was sufficient
in achieving 94.9% sensitivity and 97.1% specificity for
autonomous tracking of tremor and dyskinesia in that
limb in response to levodopa treatment.

Hybrid sensors that combine sEMG and IMU sensing
hold even greater opportunities for wearable activity
monitoring of movement disorders. The availability of
angular velocity measurement in such a hybrid sensor
proved highly effective in providing the first whole-
body bradykinesia detector for PD (with an average

accuracy of 95.0% for combined walking and non-
walking activities) during unconstrained activities of
daily living before and after levodopa therapy [94]
(Figure 2B). Similar technology has been shown to be
effective when assessing the quality of movement in
stroke [97] and to monitor athletic performance for
prevention of injury [98].

Soft Sensors

Advances in materials science have enabled explo-
rations into the development of soft sensors and their
applications to rehabilitation. Soft sensors can be
placed in locations not possible with current movement-
monitoring devices. For example, stretchy sensors can
be placed on the arch of runners with plantar fasciitis.
Because runners with plantar fasciitis often have weak
intrinsic foot muscles [99], there is resultant flattening
of the arch and increased strain on the plantar fascia.
Stretchy sensors can provide feedback to runners when
their arch is lowering too much, reminding them to
engage those muscles.

Because placement of sensors could be a source of
imprecision in measurement [100], the prospect of
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soft textile-based sensors that could be worn like
clothing is very attractive. For example, ultrathin,
ultralight, and stretchable sEMG sensors that
resemble a temporary tattoo and are mechanically
unnoticeable to the user are being tested for use in
evaluating exercise performance during rehabilitation
[101]. In addition, elastomeric soft sensors have been
integrated into a wearable sensing suit to measure
hip, knee, and ankle kinematics [102]. Such sensing
garments could be used for continuous kinematic
monitoring in the community. More recently, an
alternative stretchable capacitive sensor has been
developed with conductive knit fabrics as the elec-
trode layer and a dielectric layer made from a silicone
elastomer [103] (Figure 3, top). These sensors can be
rapidly customized through a layered manufacturing
process using a film applicator and laser cutting has
demonstrated scalable, fast, low-cost production and
arbitrary shaping of strain [103] and pressure [104]
sensors. The textile-based nature of these sensors
makes them much more suitable for integration into
apparel than existing sensor technologies. It has been
demonstrated that these sensors can be integrated
into a glove for measuring finger movements [103]
(Figure 3, bottom left) and grip force [104]. Addi-
tional promising initial results with other textile-
compatible sensors have demonstrated the ability to
measure tension [105] and applied pressure [106] in
wearable devices. Apart from making the transduction
mechanism compatible with apparel, developments
have focused on creating conductive traces within
textile materials to eliminate wiring and enable sys-
tems to be washable. Figure 3 (bottom right) high-
lights adaptations of this early work to develop an
insole for measuring contact pressure.

Limitations

First, this review does not provide a comprehensive
systematic review of the literature, but rather a focused
discussion of the current and emerging sensor technol-
ogies and their clinical applications. Therefore, studies
presenting similar technologies and clinical applications
might not have been included. Second, the clinical ap-
plications discussed are limited to stroke, PD, HD, OA,
and running populations. Although these are only a few
of the conditions that use and can benefit from wear-
able movement sensors, the conditions chosen illustrate
the large spectrum of individuals with varying degrees
of capabilities who could benefit from existing and
emerging sensor technologies.

Conclusions
The central goal of physical rehabilitation is to

facilitate the reacquisition of movement abilities after
injury or onset of disease. Motor behavior is viewed as

an output of the movement system based on its
encompassing interaction with cardiovascular, pulmo-
nary, endocrine, integumentary, nervous, and muscu-
loskeletal systems [107]; thus, movement data have
high potential in examining health and disease across
systems. Wearable sensors are a promising rehabilita-
tion technology because of their precision, non-
invasiveness, and easy deployment compared with other
methods. Their complementary measurement of kine-
matic motion, neural activity, and muscle dynamics
offers a targeted approach for assessing and treating
different neurologic and orthopedic conditions. In
addition, more widespread monitoring of movement in
clinical and ecologic settings and across different
rehabilitation timescales could serve as a pathway to
the development of computational models of recovery
and precision medicine. Moreover, advancements in
materials science are allowing for the development of
next-generation sensors that can record biologic move-
ments from device interfaces that are more fully
transparent to the wearer.
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