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This work presents Neural Equivariant Interatomic Potentials (NequIP), a SE(3)-equivariant
neural network approach for learning interatomic potentials from ab-initio calculations for molecular
dynamics simulations. While most contemporary symmetry-aware models use invariant convolutions
and only act on scalars, NequIP employs SE(3)-equivariant convolutions for interactions of geometric
tensors, resulting in a more information-rich and faithful representation of atomic environments. The
method achieves state-of-the-art accuracy on a challenging set of diverse molecules and materials
while exhibiting remarkable data efficiency. NequIP outperforms existing models with up to three
orders of magnitude fewer training data, challenging the widely held belief that deep neural networks
require massive training sets. The high data efficiency of the method allows for the construction
of accurate potentials using high-order quantum chemical level of theory as reference and enables
high-fidelity molecular dynamics simulations over long time scales.

INTRODUCTION

Molecular dynamics (MD) simulations are an
indispensable tool for computational discovery in fields
as diverse as energy storage, catalysis, and biological
processes [1–3]. While the atomic forces required to
integrate Newton’s equations of motion can in principle
be obtained with high fidelity from quantum-mechanical
calculations such as density functional theory (DFT),
in practice the unfavorable computational scaling of
first-principles methods limits simulations to short time
scales and small numbers of atoms. This prohibits
the study of many interesting physical phenomena
beyond the time and length scales that are currently
accessible, even on the largest supercomputers. Owing
to their simple functional form, classical models for
the atomic potential energy can typically be evaluated
orders of magnitude faster than using first-principles
methods, thereby enabling the study of large numbers
of atoms over long time scales. However, due to
their limited mathematical form, classical interatomic
potentials, or force fields, are inherently limited in
their predictive accuracy which has historically led
to a fundamental trade-off between obtaining high
computational efficiency while also predicting faithful
dynamics of the system under study. The construction
of flexible models of the interatomic potential energy
based on Machine Learning (ML-IP), and in particular
Neural Networks (NN-IP), has shown great promise in
providing a way to move past this dilemma, promising
to learn high-fidelity potentials from ab-initio reference
calculations while retaining favorable computational
efficiency [4–13]. One of the limiting factors of NN-IPs
is that they typically require collection of large training
sets of ab-initio calculations, often including thousands
or even millions of reference structures [4, 9, 10, 14–16].

This computationally expensive process of training data
collection has severely limited the adoption of NN-IPs
as it quickly becomes a bottleneck in the development of
force-fields for new systems. Kernel-based approaches,
such as e.g. Gaussian Processes (GP) [5, 8] or Kernel
Ridge Regression (KRR) [17], are a way to remedy this
problem as they often generalize better from limited
sample sizes. However, such methods generally tend
to exhibit poor computational scaling with the number
of reference configurations, in both training (cubic in
training set size) and prediction (linear in training set
size). This limits both the amount of training data
they can be trained on as well as the length and size of
simulations that can be simulated with them.

In this work, we present the Neural Equivariant
Interatomic Potential (NequIP), a highly data-efficient
deep learning approach for learning interatomic
potentials from reference first-principles calculations.
We show that the proposed method obtains high
accuracy compared to existing ML-IP methods across
a wide variety of systems, including small molecules,
water in different phases, an amorphous solid, a reaction
at a solid/gas interface, and a Lithium superionic
conductor. Furthermore, we find that NequIP exhibits
exceptional data efficiency, enabling the construction of
accurate interatomic potentials from limited data sets
of fewer than 1,000 or even as little as 100 reference
ab-initio calculations, where other methods require
orders of magnitude more. It is worth noting that on
small molecular data sets, NequIP outperforms not only
other neural networks, but is also competitive with
kernel-based approaches, which typically obtain better
predictive accuracy than NN-IPs on small data sets
(although at significant additional cost scaling in training
and prediction). We further demonstrate high data
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efficiency and accuracy with state-of-the-art results on a
training set of molecular data obtained at the quantum
chemical coupled-cluster level of theory. Finally, we
validate the method through a series of simulations
and demonstrate that we can reproduce with high
fidelity structural and kinetic properties computed from
NequIP simulations in comparison to ab-initio molecular
dynamics simulations (AIMD). We directly verify that
the performance gains are connected with the unique
SE(3)-equivariant convolution architecture of the new
NequIP model.

Related Work

First applications of machine learning for the
development of interatomic potentials were built on
descriptor-based approaches combined with shallow
neural networks or Gaussian Processes [4, 5], designed
to exhibit invariance with respect to translation,
permutation of atoms of the same chemical species,
and rotation. Recently, rotationally invariant graph
neural networks (GNN-IPs) have emerged as a powerful
architecture for deep learning of interatomic potentials
that eliminates the need for hand-crafted descriptors
and allows to instead learn representations on graphs
of atoms from invariant features of geometric data (e.g.
radial distances or angles) [9–11, 13]. In GNN-IPs,
atomic structures are represented by collections of
nodes and edges, where nodes in the graph correspond
to individual atoms and edges are typically defined
by simply connecting every atom to all other atoms
that are closer than some cutoff distance rc. Every
node/atom i is associated with a feature hi ∈ Rh,
consisting of scalar values, which is iteratively refined
via a series of convolutions over neighboring atoms j
based on both the distance to neighboring atoms rij
and their features hj . This iterative process allows
information to be propagated along the atomic graph
through a series of convolutional layers and can be
viewed as a message-passing scheme [18]. Operating
only on interatomic distances allows GNN-IPs to be
rotation- and translation-invariant, making both the
output as well as features internal to the network
invariant to rotations. In contrast, the method outlined
in this work uses relative position vectors rather than
simply distances (scalars), which makes internal features
instead equivariant to rotation and allows for angular
information to be used by rotationally equivariant filters.
Similar to other methods, we can restrict convolutions
to only a local subset of all other atoms that lie closer
to the central atom than a chosen cutoff distance rc, see
Figure 1, left.

A series of related methods have recently been

proposed: DimeNet [11] expands on using pairwise
interactions in a single convolution to include angular,
three-body terms, but individual features are still
comprised of scalars (distances and three-body angles
are invariant to rotation), as opposed to vectors used
in this work. Another central difference to NequIP
is that DimeNet explicitly enumerates angles between
pairs of atoms and operates on a basis embedding
of distances and angles, whereas NequIP operates on
relative position vectors and a basis embedding of
distances, and thus never explicitly computes three-body
angles. Cormorant [19] uses an equivariant neural
network for property prediction on small molecules.
This method is demonstrated on potential energies of
small molecules but not on atomic forces or systems with
periodic boundary conditions. Townshend et al. [20] use
the framework of Tensor-Field Networks [21] to directly
predict atomic force vectors. The predicted forces are
not guaranteed by construction to conserve energy since
they are not obtained as gradients of the total potential
energy. This may lead to problems in simulations of
molecular dynamics over long times. None of these three
works [11, 19, 20] demonstrates capability to perform
molecular dynamics simulations.

In this work we present a deep learning energy-
conserving interatomic potential for both molecules
and materials built on SE(3)-equivariant convolutions
over geometric tensors that yields state-of-the-art
accuracy, outstanding data-efficiency, and can with high
fidelity reproduce structural and kinetic properties from
molecular dynamics simulations.

RESULTS

Equivariance

The concept of equivariance arises naturally in
machine learning of atomistic systems (see e.g. [22]):
physical properties have well-defined transformation
properties under translation and rotation of a set of
atoms. As a simple example, if a molecule is rotated
in space, the vectors of its atomic dipoles or forces
also rotate accordingly, via equivariant transformation.
Equivariant neural networks are able to more generally
represent tensor properties and tensor operations of
physical systems (e.g. vector addition, dot products,
and cross products). Equivariant neural networks
are guaranteed to preserve the known transformation
properties of physical systems under a change of
coordinates because they are explicitly constructed from
equivariant operations. Formally, a function f : X → Y
is equivariant with respect to a group G that acts on X
and Y if:
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FIG. 1: Left: a set of atoms is interpreted as an atomic graph with local neighborhoods. Middle: every atom carries
a set of scalar and vector features with it. Right: atoms exchange information via filters, that are again scalars and

vectors. The interactions of features and filters define five interactions.

DY [g]f(x) = f(DX [g]x) ∀g ∈ G,∀x ∈ X (1)

where DX [g] and DY [g] are the representations of
the group element g in the vector spaces X and Y ,
respectively. In this work, we focus on equivariance
with respect to SE(3), i.e. the group of rotations and
translations in 3D space.

Neural Equivariant Interatomic Potentials

Given a set of atoms (a molecule or a material), we aim
to find a mapping from atomic positions ~ri and chemical
species (identified by atomic numbers Zi) to the total
potential energy and the forces acting on the atoms:

f : {~ri, Zi} → Epot (2)

Forces are obtained as gradients of the predicted
potential energy with respect to the atomic positions,
which guarantees energy conservation:

~Fi = −∇iEpot (3)

Gradients can be obtained with relatively low
computational overhead in modern auto-differentiation
frameworks such as TensorFlow or PyTorch [23, 24].
Following previous work [4], we further define the total
potential energy of the system as a sum of atomic
potential energies:

Epot =
∑

i∈Natoms

Ei,atomic (4)

These atomic local energies Ei,atomic are the scalar node
attributes predicted by the graph neural network. Even
though the output of NequIP is the predicted potential
energy Epot, which is invariant under translations
and rotations, the network contains internal features

that are tensors which are equivariant to rotation.
This constitutes the core difference between NequIP
and existing scalar-valued invariant GNN-IPs. The
remainder of this section will discuss the design of the
network in further detail.

A series of methods has been introduced to realize
rotationally equivariant neural networks [13, 21, 25, 26].
Here, we build on the layers introduced in Tensor-Field
Networks (TFN) [21], which enable the construction of
neural networks that exhibit equivariance to translation,
permutation, and rotation. Every atom in NequIP
is associated with a feature comprised of tensors of
different order: scalars, vectors, and higher-order
tensors. Formally, these features are geometric objects
that comprise a direct sum of irreducible representations
of the SO(3) symmetry group. Second, the convolutions
that operate on these geometric objects are equivariant
functions instead of invariant ones, i.e. if a feature at
layer k is rotated, then the output of the convolution
from layer k → k + 1 rotates accordingly. In practice,

the features are implemented as a dictionary V
(l)
acm with

keys l, where l = 0, 1, 2, ... is a non-negative integer and
is called the “rotation order”, labeling the irreducible
representations. The indices a, c, m, correspond to the
atoms, the channels (elements of the feature), and the
representation index which takes values m ∈ [−l, l],
respectively.

Convolution operations are naturally translation
invariant, since their filters act on relative interatomic
distance vectors. Moreover, they are permutation
invariant since all convolution contributions are summed.
Note that while atomic features are equivariant to
permutation of atom indices, globally, the total potential
energy of the system is invariant to permutation. To
achieve rotation equivariance, the convolution filters are
constrained to be products of learnable radial functions
and spherical harmonics, which are equivariant under
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SO(3) [21]:

F (~rij) = R(rij)Y
(l)
m (r̂ij) (5)

where if ~rij denotes the relative position from central
atom i to neighboring atom j, r̂ij and rij are
the associated unit vector and interatomic distance,
respectively. It should be noted that all learnable weights
in the filter lie in the rotationally invariant radial function
R(rij). This radial function is implemented as a small
neural network with one hidden layer and a shifted
softplus activation function [9], operating on interatomic
distances expressed in a basis of choice, R(rij) : RNb →
Rh, where Nb is the number of basis functions and h is
the feature dimension:

R(rij) = W2 ln(0.5 exp(W1B(rij)) + 0.5) (6)

where W1 ∈ RNhidden×Nb and W2 ∈ Rh×Nhidden are
weight matrices, h is the dimension of the feature and
Nhidden is the dimension of the hidden layer in the
feed-forward neural network (in our experiments, we use
Nhidden = Nb, resulting in comparatively small neural
networks for the radial function). Radial Bessel functions
and a polynomial envelope function fenv discussed in
recent work [11] are used to expand the interatomic
distances:

B(rij) =

√
2

rc

sin(nπrc rij)

rij
fenv(rij , rc) (7)

where rc is a local cutoff radius, restricting interactions
to atoms closer than some cutoff distance and fenv is
the polynomial defined in [11] with p = 6 operating
on the interatomic distances normalized by the cutoff
radius

rij
rc

. The use of cutoffs/local atomic environments
allows the computational cost of evaluation to scale
linearly with the number of atoms. Similar to [11], we
initialize the Bessel functions with n = [1, 2, ..., Nb] and
subsequently optimize nπ via backpropagation rather

than keeping it constant. For systems with periodic
boundary conditions, we use the neighbor list

functionality as implemented in the ASE code [27] to
identify appropriate atomic neighbors and then convolve
over them.

Finally, in the convolution, the input feature tensor
and the filter have to again be combined in an
equivariant manner, which is achieved via a geometric
tensor product, yielding an output feature that again
is rotationally equivariant. A tensor product of two
geometric tensors is computed via Clebsch-Gordan
coefficients, as outlined in [21]. Since NequIP deals
with force vectors, the network design is simplified by
only using scalar (l=0) and vector (l=1) representations.
Thus, we can enumerate five distinct products or
“interactions” between l = 0 and l = 1 filters and l = 0
and l = 1 features that correspond to simple operations
between scalars and vectors:

• 0⊗ 0→ 0 (product of two scalars)

• 0⊗ 1→ 1 (scalar multiplication of a vector)

• 1⊗ 0→ 1 (scalar multiplication of a vector)

• 1⊗ 1→ 0 (dot product of two vectors)

• 1⊗ 1→ 1 (cross product of two vectors)

It is trivial to include higher-order interactions, and
previous works have increased the rotation order beyond
l = 1 [20, 28]. However, it should be noted that
every interaction comes with additional trainable radial
functions and hence additional weights, which thus
adds to the model capacity, increasing the number of
model weights and the memory footprint of the model.
Omitting all higher-order interactions that go beyond
the 0 ⊗ 0 → 0 interaction will result in a conventional
GNN-IP with invariant convolutions over scalar features,
similar to e.g. SchNet [9]. Finally, as outlined in [21],
a full convolutional layer L implementing an interaction
with filter f acting on an input i producing output o:
lf ⊗ li → lo is given by:

L(lo)
acmo

(~ra, V
(li)
acmi

) =
∑
mf ,mi

C
(lo,mo)
(lf ,mf )(li,mi)

∑
b∈S

R
(lf ,li)
c (rab)Y

(lf )
mf (r̂ab)V

(li)
bcmi

(8)

where a and b index the central atom of the convolution
and the neighboring atom b ∈ S, respectively, and C
indicates the Clebsch-Gordan coefficients. To illustrate
that the interactions outlined above reduce to a set of
five simple operations, we write out a full 1 ⊗ 1 → 1

interaction, i.e. a convolution that uses a l = 1 filter
to operate on a l = 1 feature, yielding again a l = 1
output. Given the notation above, this corresponds to
li = lf = lo = 1, facilitating a cross-product interaction
between two l = 1 tensors. In this case, the Clebsch-
Gordan coefficients reduce to the Levi-Civita symbol [21]:
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C
(l0=1,mo)
(lf=1,mf ),(li=1,mi)

∝ εofi =


1 (o, f, i) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}
−1 (o, f, i) ∈ {(1, 3, 2), (2, 1, 3), (3, 2, 1)}
0 else

(9)

Evaluating εofi and using the relationship Y (1)(r̂) ∝
r̂, we recognize the output as the vector cross product,

taken here between the relative positions and the input

feature element V
(l=1)
bc :

L(lo=1)
ac (~ra, V

(li=1)
ac ) =

∑
b∈B Rc(rab)r̂2Vbc3 −

∑
b∈B Rc(rab)r̂3Vbc2∑

b∈B Rc(rab)r̂3Vbc1 −
∑
b∈B Rc(rab)r̂1Vbc3∑

b∈B Rc(rab)r̂1Vbc2 −
∑
b∈B Rc(rab)r̂2Vbc1

 (10)

After every convolution, output tensors of a rotation
order l stemming from different tensor products are
concatenated on a per-atom basis. To update atomic
features, the model also leverages self-interaction layers
similar to SchNet [9], corresponding to dense layers
that are applied in an atom-wise fashion with weights
shared across atoms. While different weights are used
for different rotation orders, the same set of weights
is applied for all representation indices m of a given
rotation order l. Shifted softplus nonlinearities [9] are
used as rotation-equivariant nonlinearities as introduced
in [21], which are applied to the Euclidean norm of
the input feature, the output of which is in turn
combined with the input tensor, thus preserving overall
equivariance.

The NequIP network architecture, shown in Figure 2,
is built on an atomic embedding, followed by a series of
interaction blocks, and finally an output block:

• Embedding: following SchNet, the initial
feature is generated using a trainable embedding,
that operates on the atomic number Zi alone,
implemented via a self-interaction layer.

• Interaction Block: interaction blocks encode
interactions between neighboring atoms: the core
of this block is the convolution function, outlined in
equation 8. For every output rotation order lo, the
features from different tensor product interactions
are concatenated to give a new feature, which is
in return refined with atom-wise self-interaction
layers and equivariant non-linearities. We equip
interactions blocks with a ResNet-style update [29]
where the input feature x is updated atom-wise via
the output of an interaction block f(x) that gives
the final feature r(x) = f(x)+x (features are added
element-wise in the m-dimension). Note that this
operation is equivariant since the addition of an
equivariant feature x and an equivariant function

f(x) preserves equivariance.

• Output Block: the l = 0 feature of the final
convolution is passed to an output block, which
consists of another atom-wise self-interaction layer,
an equivariant non-linearity, and a final atom-wise
self-interaction layer.

The scalar atomic outputs of the final layer can
be interpreted as atomic potential energies which are
summed to give the total predicted potential energy
of the system (Equation 4). Forces are subsequently
obtained as the negative gradient of the predicted
total potential energy, thereby ensuring both energy
conservation as well as rotation-equivariant forces (see
equation 3).

Experiments

We validate the proposed method on a series of diverse
and challenging data sets: first we demonstrate that we
improve upon state-of-the-art accuracy on MD-17, a data
set of small, organic molecules that is widely used for
benchmarking ML-IPs [9, 11, 17, 30, 31]. Next, we show
that NequIP can also accurately learn forces obtained on
small molecules at the quantum chemical CCSD(T) level
[31], opening the door to scalable and efficient molecular
dynamics simulations with beyond-DFT accuracy. To
broaden the applicability of the method beyond small
isolated molecules, we explore a series of extended
systems with periodic boundary conditions, consisting
of both surfaces and bulk materials: water in different
phases [15, 32], a chemical reaction at a solid/gas
interface, an amorphous Lithium Phosphate [12], and
a Li superionic conductor [13]. Details of the training
procedure are provided in the Methods section.
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FIG. 2: The NequIP network architecture. Left: atomic numbers are embedded into l = 0 features, which are
refined through a series of interaction blocks, creating l = 0 and l = 1 features. An output block generates atomic
energies, which are pooled to give the total predicted energy. Middle: the interaction block consists of a series of
convolutions, interweaved with self-interaction layers, equivariant nonlinearities and concatenation. Right: the
convolution combines the radial function R(r) which operates only on interatomic distances with the spherical

harmonics based on unit vector r̂ via a tensor product.

MD-17 small molecule dynamics

We first evaluate NequIP on MD-17 [17, 30, 31],
a data set of eight small organic molecules in which
reference values of energy and forces are generated by
ab-initio MD simulations with DFT. For training we
use N=1,000 structure configurations for each molecule,
sampled uniformly from the full data set, the same
number of configurations for validation, and evaluate
the test error on all remaining configurations in the
data set. The mean absolute error in the force
components is shown in Table I in units of [meV/Å].
We compare results using NequIP with those from
published leading ML-IP models that were also trained
on 1,000 structures: in particular SchNet [9], DimeNet
[11] (both graph neural networks), sGDML [31], and
FCHL19/GPR (kernel-based methods) [33]. We find
that NequIP outperforms SchNet and sGDML on all
molecules in the data set, DimeNet on 7 out of 8
molecules (on par on the remaining one), and performs on
par with FCHL/19GPR. The consistent improvement in
accuracy upon sGDML and the comparable performance
to FCHL19/GPR are particularly surprising, as these are
based on kernel methods, that typically tend to be more
sample efficient. It should be noted, however, that the
evaluation cost of kernel methods scales linearly with the

number of training configurations. Note also that on
some molecules, NequIP trained on 1,000 configurations
even performs as well as SchNet trained on 50,000
structures [9]: on aspirin and naphthalene, for example,
the NequIP network trained on 1,000 structures produces
mean absolute errors in the forces of 15.1 meV/Å and 4.2
meV/Å, respectively, compared to 14.3 meV/Åand 4.8
meV/Å of SchNet trained on 50x more molecules, hinting
that NequIP exhibits exceptional data efficiency. On
other molecules such as ethanol, however, SchNet trained
with 50,000 molecules still clearly outperforms NequIP
trained with 1,000 molecules (2.2 meV/Å for SchNet for
N=50,000 vs 9.0 meV/Å for NequIP for N=1,000).

Force training at quantum chemical accuracy

Ability to achieve high accuracy on a comparatively
small data set opens the door to training models
on expensive high-order ab-initio quantum chemical
methods. It has been shown that DFT can fail to
capture important subtleties in the potential energy
surface, potentially even identifying the wrong ground
states [31]. This problem can be remedied through
the use of more accurate reference calculations, such as
coupled cluster methods CCSD(T), typically regarded



7

Molecule NequIP SchNet sGDML DimeNet FCHL19/GPR
Aspirin 15.1 58.5 29.5 21.6 20.7

Benzene [17] 8.1 13.4 n/a 8.1 n/a
Benzene [31] 2.3 n/a 2.6 n/a n/a

Ethanol 9.0 16.9 14.3 10.0 5.9
Malonaldehyde 14.6 28.6 17.8 16.6 10.6
Naphthalene 4.2 25.2 4.8 9.3 6.5
Salicylic Acid 10.3 36.9 12.1 16.2 9.6

Toluene 4.4 24.7 6.1 9.4 8.8
Uracil 7.5 24.3 10.4 13.1 4.6

TABLE I: MAE of force components on the MD-17 data set, trained on 1,000 configurations, forces in units of
[meV/Å]. For the benzene molecule, two different data set exists from [17], [31] with different levels of accuracy in

the DFT reference data.

as the gold standard of quantum chemistry. However,
the high computational cost of CCSD(T) has thus far
hindered the use of reference data structures at this level
of theory, prohibited by the need for large data sets
that are required by available NN-IPs. Leveraging the
high data efficiency of NequIP, we evaluate it on a set
of molecules computed at quantum chemical accuracy
(aspirin at CCSD, all others at CCSD(T)) [31] and
compare the results to those reported for sGDML [31].
The training/validation set consists of a total of 1,000
molecular structures which we split into 950 for training
and 50 for validation (sampled uniformly), and we test
the accuracy on all remaining structures (we use the
train/test split provided with the data set, but further
split the training set into training and validation sets).
We find that NequIP achieves lower errors on four out
of five molecules, performing on par with sGDML on the
fifth molecule, as shown in Table II.

Molecule NequIP sGDML
Aspirin 14.7 33.0
Benzene 0.8 1.7
Ethanol 9.4 15.2

Malonaldehyde 16.0 16.0
Toluene 4.4 9.1

TABLE II: Force MAE for molecules at
CCSD/CCSD(T) accuracy, reported in units of
[meV/Å], with 1,000 reference configurations).

Liquid Water and Ice Dynamics

To demonstrate the applicability of NequIP beyond
small molecules, we evaluate the method on a series of
extended systems with periodic boundary conditions. As
a first example we use a joint data set consisting of liquid
water and three ice structures [15, 32], computed at the
PBE0-TS level of theory. This data set contains [15]:
a) liquid water, P=1bar, T=300K, computed via path-

integral AIMD, b) ice Ih, P=1bar, T=273K, computed
via path-integral AIMD c) ice Ih, P=1bar, T=330K,
computed via classical AIMD d) ice Ih, P=2.13 kbar,
T=238K, computed via classical AIMD. The liquid water
system consists of 64 H2O molecules (192 atoms), while
the ice structures consist of 96 H2O molecules (288
atoms). A DeepMD NN-IP model was previously trained
[15] for water and ice using a joint training set containing
133,500 reference calculations of these four systems. To
assess data efficiency of the NequIP architecture, we
similarly train a model jointly on all four parts of the data
set, but using only 133 structures for training, i.e. 1000x
fewer data. The 133 structures were sampled uniformly
from the full data set available online, consisting of
water and ice structures, made up of a total of 140,000
frames, coming from the same MD trajectories that were
used in the earlier work [15]. We also use a validation
set of 50 frames and report the test accuracy on all
remaining structures in the data set. Table III shows the
comparison of the predictive force accuracy of NequIP
trained on the 133 structures vs DeepMD trained on
133,500 structures. We find that with 1000x fewer
training data, NequIP significantly outperforms DeepMD
on all four parts of the data set.

Heterogeneous catalysis of formate dehydrogenation

Next, we demonstrate application of NequIP to a
catalytic surface reaction. In particular, we investigate
the dynamics of formate undergoing dehydrogenation
decomposition (HCOO∗ → H∗ + CO2) on a Cu
< 110 > surface (see Figure 3). This system is highly
heterogeneous, with both metallic and covalent types of
bonding as well as charge transfer occurring between
the metal and the molecule, making this a particularly
challenging test system. Different states of the molecule
also lead to dissimilar C-O bond lengths [34, 35].
Training structures consist of 48 Cu atoms and 4 atoms
of the molecule (HCOO* or CO2+H*). The MAE of
the predicted forces using a NequIP model trained on
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System NequIP, 133 data points DeepMD, 133,500 data points
Liquid Water 35.9 40.4

Ice Ih (b) 25.9 43.3
Ice Ih (c) 16.6 26.8
Ice Ih (d) 13.5 25.4

TABLE III: Root mean square error (RMSE) of force components on liquid water and the three ices in units of
[meV/A]. Note that the NequIP model was trained on < 0.1% of the training data of DeepMD.

Element MAE
C 55.8
O 86.7
H 42.0
Cu 54.5
Total structure 55.6

TABLE IV: MAE of force components for Formate on
Cu system, per-element basis. The training set consists

of 2,500 structures, force units are [meV/A]

2,500 structures is shown in Table IV, demonstrating
that NequIP is able to accurately model the interatomic
forces for this complex reactive system. A more detailed
analysis of the resulting dynamics will be subject of a
separate study.

FIG. 3: Perspective view of atomic configurations of (a)
bidentate HCOO (b) monodentate HCOO and (c) CO2

and a hydrogen adatom on a Cu(110) surface. The
blue, red, black, and white spheres represent Cu, O, C,
and H atoms, respectively. The subset shown in each

subplot is the corresponding top view along the
< 110 > orientation.

Lithium Phosphate Amorphous Glass Formation

To examine the ability of the model to capture
dynamical properties, we demonstrate that NequIP
can describe structural dynamics in amorphous lithium
phosphate with composition Li4P2O7. This material is
a member of the promising family of solid electrolytes
for Li-metal batteries [12, 36, 37], with non-trivial
Li-ion transport and phase transformation behaviors.
The training data set consists of two 50ps-long AIMD
simulations, one of the molten structure at T=3000

FIG. 4: Quenched glass structure of Li4P2O7. The
insets show the P-O-O tetrahedral bond angle (bottom

left) as well as the O-P-P bridging angle between
corner-sharing phosphate tetrahedra (top right).

K, followed by another of a quenched glass structure
at T=600 K. We train NequIP on a subset of 1,000
structures of the molten trajectory, each consisting of
208 atoms, and sampled uniformly from the full data
set of 25,000 AIMD frames. We use a validation set of
100 structures, and evaluate the model on all remaining
structures. Table V shows the test set error in the
force components on both the test set from the AIMD
molten trajectory and the full AIMD quenched glass
trajectory. To then evaluate the physical fidelity of the
trained model, we use it to run a 50 ps MD simulation
at T=600 K and compare the total radial distribution
function (RDF) without element distinction as well as
the angular distribution functions (ADF) of the P-O-O
(P central atom) and O-P-P (O central atom) angles to
the ab-inito trajectory at the same temperature. The
P-O-O angle corresponds to the tetrahedral bond angle,
while the O-P-P corresponds to a bridging angle between
corner-sharing phosphate tetrahedra (Figure 4). Figure
5 shows that NequIP can accurately reproduce the RDF
and the two ADFs, in comparison with AIMD, after
training on only 1,000 structures. This demonstrates
that the model generates the glass state and recovers
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its dynamics and structure almost perfectly, having seen
only the high-temperature molten training data.

Lithium Thiophosphate Superionic Transport

To show that NequIP can model kinetic transport
properties from small training sets at high accuracy, we
study Li-ion diffusivity in LiPS (Li6.75P3S11) a crystalline
superionic Li conductor, consisting of a simulation cell of
83 atoms [13]. MD is widely used to study diffusion;
however, training a ML-IP to the accuracy required
to accurately predict kinetic properties has in the past
required large training set sizes ([38] e.g. uses a
data set of 30,874 structures to study Li diffusion in
Li3PO4). Here we demonstrate that not only does
NequIP obtain small errors in the force components, but
it also accurately predicts the diffusivity after training on
a data set obtained from an AIMD simulation. Again,
we find that very small training sets lead to highly
accurate models, as shown in Table V for training set
sizes of 10, 100, 1,000 and 2,500 structures. We run
a series of MD simulations with the NequIP potential
trained on 2,500 structures in the NVT ensemble at the
same temperature as the AIMD simulation for a total
simulation time of 50 ps and a time step of 0.25 fs,
which we found advantageous for reliability and stability
of long simulations. We measure the Li diffusivity in ten
Nequip-driven MD simulations (computed via the slope
of the mean square displacement), all of length 50 ps and
started from different initial velocities, randomly sampled
from a Maxwell-Boltzmann distribution. We find a mean
diffusivity of 1.42 x 10−5 cm2/s, in excellent agreement
with the diffusivity of 1.38 x 10−5 cm2/s computed from
AIMD, thus achieving a relative error of as little as 3%.
Figure 6 shows the mean square displacements of Li for
an example run.

System Data Set Size MAE
LiPS 10 157.1
LiPS 100 50.0
LiPS 1,000 25.1
LiPS 2,500 24.1
Li4P2O7, melt 1,000 63.2
Li4P2O7, quench 1,000 36.9

TABLE V: Force MAE for LiPS and Li4P2O7 for
different data set sizes in units of [meV/A]. The model
for Li4P2O7 was trained exclusively on structures from
the melted trajectory, the reported test errors show the
MAE on both the test set of the melted trajectory as

well as the full quench trajectory.

Data Efficiency

In the above experiments, NequIP exhibits
exceptionally high data efficiency, i.e. it can be
trained successfully to state-of-the-art accuracy from
unexpectedly small training sets. It is interesting to
consider the reasons for such high performance and verify
that it is connected to the equivariant nature of the
model. First, it is important to note that each training
configuration contains multiple labels, thus increasing
the total number of labels available beyond just the
potential energy label associated with each structure.
In particular, for a training set of M first-principles
calculations with structures consisting of N atoms, the
total number of labels available is M(3N +1) since every
force component on every atom constitutes a label and
so does the total energy of the reference calculation (we
only train to atomic forces and not energies, thus using
3MN force components as labels).

In order to gain insight into the reasons behind
increased accuracy and data efficiency, we perform a
series of experiments with the goal of isolating the effect
of using equivariant convolutions of geometric tensors
compared to invariant convolutions over scalars. In
particular, we run a set of experiments for a system
with a fixed number of training configurations in which
we explicitly turn on or off interactions of higher order
than l = 0. This defines two settings: first, we train the
network with both l = 0 and l = 1 features and all five
interactions as previously outlined in this work. Second,
when all interactions involving l = 1 are turned off, this
turns the network into a conventional invariant GNN-IP,
involving only invariant convolutions over scalar features
in a SchNet-style fashion. As a test system we chose bulk
water: in particular we use the data set introduced in
[39], consisting of 1,593 bulk liquid water structures with
64 water molecules each. We train a series of networks
with identical hyperparameters, but vary the training set
sizes between 10 and 1,000 structures, sampled uniformly
from the full data set, as well as a validation set consisting
of 100 structures. We then evaluate the error on all
remaining structures for a given training set size. As
shown in Figure 7, we find that the equivariant setting
(using l = 0 and l = 1) significantly outperforms the
invariant setting (using only l = 0) for all data set sizes
as measured by the MAE of force components. This
suggests that it is indeed the use of tensor (in our specific
case vector) features and equivariant convolutions that
enables the high data efficiency of NequIP. We further
note, that in [39], a Behler-Parrinello Neural Network
(BPNN) was trained on 1303 structures, yielding a
RMSE of ≈ 120 meV/Å in forces when evaluated on
the remaining 290 structures. We find that NequIP
models trained with as little as 50 and 100 data points
obtain RMSEs of 122.9 meV/Å and 93.3 meV/Å on their
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FIG. 5: Left: Radial Distribution Function, middle: Angular Distribution Function, bridging oxygen, right: Angular
Distribution Function, tetrahedral bond angle. All are defined as probability density functions.

FIG. 6: Comparison of Lithium mean square
displacement of AIMD and NequIP trajectories.

respective test sets (note that Figure 7 shows the MAE).
This provides further evidence that NequIP exhibits
significantly improved data efficiency in comparison with
existing methods.

FIG. 7: Log-log plot of the predictive error in forces of
NequIP with l = 0 vs. l = 0/l = 1 interactions as a

function of data set size, measured via the force MAE.

Computational Efficiency

Finally, we report the computational efficiency of
NequIP and compare it to that of the ab-inito methods
on two examples shown in this work: for a molecular
system, we choose the Toluene molecule, computed at
the CCSD(T)-level of theory [31]; for a material with
periodic boundary conditions, we choose the Formate on
Cu system, in which reference data were obtained with
DFT. For both systems, we report the time required for
a single force call on a CPU node with 32 cores. The
results are shown in Table VI. In both cases, NequIP
gives a large speed-up over the ab-initio methods. In the
case of the Toluene system, this means that 58.4 minutes
of a NequIP simulation can obtain the simulation time
equaling one century of a CCSD(T) simulation.

DISCUSSION

We demonstrate that the Neural Equivariant
Interatomic Potential (NequIP), a new type of graph
neural network built on SE(3)-equivariant convolutions
exhibits state-of-the-art accuracy and exceptional
data efficiency on data sets of small molecules and
periodic materials. Furthermore, we find that we
can reproduce structural and kinetic properties from
molecular dynamics simulations with very high fidelity
in comparison to ab-initio simulations. The ability to
both learn from small numbers of reference samples,
while retaining high computational efficiency opens the
door to performing simulations of large systems over
long time-scales at quantum mechanical accuracy, using
DFT or higher order methods such as coupled-cluster or
quantum Monte Carlo data as reference. We expect the
new method will enable researchers in computational
chemistry, physics, biology, and materials science to
conduct molecular dynamics simulations of complex
reactions and phase transformations at increased
accuracy and efficiency.



11

System Number of atoms NequIP Ab-initio Speed-up
Toluene 15 16 ms 4 hours* 900,000

Formate on Cu 52 58 ms 1045.6 s 18,028

TABLE VI: Time required for a single force call for NequIP in comparison to CCSD(T) for Toluene and DFT for
Formate on Cu; * personal communication with Stefan Chmiela and Alexandre Tkatchenko.

METHODS

Reference Data Sets

MD-17 : MD-17 [17, 30, 31] is a data set of
eight small organic molecules, obtained from MD
simulations at T=500K and computed at the
PBE+vdW-TS level of electronic structure theory,
resulting in data set sizes between 133,770 and
993,237 structures. The data set was obtained from
http://quantum-machine.org/gdml/#datasets.

Molecules@CCSD/CCSD(T): The data set of
small molecules at CCSD and CCSD(T) accuracy
[31] contains positions, energies, and forces for five
different small molecules: Asprin (CCSD), Benzene,
Malondaldehyde, Toluene, Ethanol (all CCSD(T)).
Each data set consists of 1,500 structures with the
exception of Ethanol, for which 2,000 structure are
available. For more detailed information, we direct
the reader to [31]. The data set was obtained from
http://quantum-machine.org/gdml/#datasets.

Liquid Water and Ice: The data set of liquid waters
and ice structures [15, 32] was generated from classical
AIMD and path-integral AIMD simulations at different
temperatures and pressures, computed with a PBE0-TS
functional [15]. The data set, obtained from http:

//www.deepmd.org/database/deeppot-se-data/,
contains a total of 140,000 structures, of which 100,000
are liquid water and 20,000 are Ice Ih b),10,000 are Ice
Ih c), and another 10,000 are Ice Ih d).

Formate decomposition on Cu: The decomposition
process of formate on Cu involves configurations
corresponding to the cleavage of the C-H bond, initial
and intermediate states (monodentate, bidentate formate
on Cu < 110 >) and final states (H ad-atom with a
desorbed CO2 in the gas phase). Nudged elastic band
(NEB) method was first used to generate an initial
reaction path of the C-H bond breaking. 12 short
ab initio molecular dynamics, starting from different
NEB images, were run to collect a total of 6855 DFT
structures. The CP2K [40] code was employed for the
AIMD simulations. Each trajectory was generated with
a time step of 0.5 fs and 500 total steps. We train
NequIP on 2,500 reference structures sampled uniformly
from the full data set of 6,855 structures, use a validation

set of 250 structures and evaluate the mean absolute
error on all remaining structures. Due to the unbalanced
nature of the data set (more atoms of Cu than in the
molecule), we use a per-element weighed loss function in
which atoms C, O1, O2, and H and the sum of all Cu
atoms all receive equal weights.

Li4P2O7 glass: The Li4P2O7 ab-initio data were
generated using an ab-initio melt-quench MD simulation,
starting with a stoichiometric crystal of 208 atoms (space
group P21/c) in a periodic box of 10.4 × 14.0 × 16.0
Å. The dynamics used the Vienna Ab-Initio Simulation
Package (VASP) [41–43], with a generalized gradient
PBE functional [44], projector augmented wave (PAW)
pseudopotentials [45], a Nosé-Hoover thermostat, a
time step of 2 fs, a plane-wave cutoff of 400 eV, and a
Γ-point reciprocal-space mesh. The crystal was melted
at 3000 K for 50 ps, then immediately quenched to 600
K and run for another 50 ps. The resulting structure
was confirmed to be amorphous by plotting the radial
distribution function of P-P distances. The training
was performed only on the molten portion, and the MD
simulations for a quenched simulation.

LiPS: Lithium phosphorus sulfide (LiPS) based
materials are known to exhibit high lithium ion
conductivity, making them attractive as solid-state
electrolytes for lithium-ion batteries. Other examples of
known materials in this family of superionic conductors
are LiGePS and LiCuPS-based compounds. The training
data set is taken from a previous study on graph neural
network force field [13], where the LiPS training data
were generated using ab-initio MD of an LiPS structure
with Li-vacancy (Li6.75P3S11) consisting of 27 Li, 12 P,
and 44 S atoms respectively. The structure was first
equilibrated and then run at 520 K using the NVT
ensemble for 50 ps with a 2.0 fs time step. The full data
set contains 25,001 MD frames. We set aside 10,000
frames as a fixed test set. From the remaining frames,
we choose training set sizes of 10, 100, 1,000, and 2,500
frames with a fixed validation set size of 100. In order
to generate a diverse training set, we sample both the
training and validation sets in a way such that 30% of
both of them are comprised of the structures with the
shortest interatomic distances out of all frames not in
the test set and the remaining 70% of the training and
validation set are uniformly sampled.

http://quantum-machine.org/gdml/#datasets
http://quantum-machine.org/gdml/#datasets
http://www.deepmd.org/database/deeppot-se-data/
http://www.deepmd.org/database/deeppot-se-data/
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Liquid Water, Cheng et al.: The training set used
in the data efficiency experiments on water consists
of 1,593 reference calculations of bulk liquid water at
the revPBE0-D3 level of accuracy, with each structure
containing 192 atoms, as given in [39]. Further
information can be found in [39]. The data set was
obtained from https://github.com/BingqingCheng/

ab-initio-thermodynamics-of-water.

Molecular Dynamics Simulations. To run MD
simulations, NequIP force outputs were integrated with
the Atomic Simulation Environment (ASE) [27] in which
we implement a custom version of the Nosé-Hoover
thermostat. We use this in-house implementation for the
both the Li4P2O7 as well as the LiPS MD simulations.
The thermostat parameter was chosen to match the
temperature fluctuations observed in the AIMD run.

Training. Networks are trained using a loss function
based on atomic forces:

L =
1

3N

N∑
i=1

3∑
α=1

|| − ∂Ê

∂ri,α
− Fi,α||2 (11)

where N is the number of atoms in the system and
Ê is the predicted potential energy. Note that we do
not train on energies since atomic forces are the only
quantities required to integrate Newton’s equations of
motion. Since the predicted forces are computed as the
gradient of a scalar potential, they are still conservative.
If energies are of interest, however, one can add them to
the loss function and determine the relative weighting
via a trade-off parameter as done in previous works
[9, 11]. In a similar fashion, it is trivial to add other
quantities of interest to the loss function (e.g predicting
atomic charges or multipole tensors can be of interest
for modeling long-range interactions), where they may
be scalar fields, vector fields, or higher-order tensor fields.

Hyperparameters. Training of models was
performed on NVIDIA Tesla V100 GPUs. Throughout
all experiments shown in this work, we use a feature
dimension of h = 64, 6 interaction blocks, Nb = 8 Bessel
basis functions and radial neural networks with one
hidden layer, also of hidden dimension Nhidden = 8,
giving light-weight radial functions with a comparatively
small number of parameters. The final interaction block
is followed by the output block, which first reduces
the feature dimension to 16 through a self-interaction
layer. An equivariant non-linearity is applied and
finally through another self-interaction layer the feature
dimension is reduced to a single scalar output value
associated with each atom that is then summed over to
give the total potential energy. In all experiments, we
use the Adam optimizer [46] with the TensorFlow 1.14

default settings of β1 = 0.9, β2 = 0.999, and ε = 10−8.
We decrease the initial learning rate of 0.001 by a decay
factor of 0.8 whenever the validation RMSE in the forces
has not seen an improvement for a given number of
epochs: for the small molecule tasks, we set this learning
rate patience to 1,000, for all other tasks we use 100.
We continuously save the model with the best validation
RMSE and use the model with the overall best RMSE
for evaluation on the test set and MD simulations. We
stop the training if either a maximum number of 50,000
epochs (one epochs equals a full pass over the training
set) has been reached, or the validation force RMSE
has not improved for 2,500 epochs, or the maximum
training time has been exceeded, whichever occurs first.
All systems were trained for a maximum of 8 days
(consisting of four runs of 48-hour time-limited compute
jobs, which are restarted from the best saved model, i.e.
potentially including repeats in the training) with the
exception of the Li4P2O7, which was trained for 12 days
(six 48-hour compute jobs) and the LiPS systems, which
were trained for 4 days (two 48-hour compute jobs). We
use a batch size of 5 structures for all small molecule
tasks, and a batch size of 1 structure for all other tasks.
We found small batch sizes to be important for obtaining
high predictive accuracy. We also found it important to
choose the radial cutoff distance rc appropriately. A list
of the cutoff radii in units of [Å] that were used for the
different systems is given in Table VII.

Data Set Cutoff
MD-17 [17, 30, 31] 4.0
Molecules, CCSD/CCSD(T) [31] 4.0
Water+Ices, DeepMD [15, 32] 6.0
Formate on Cu 5.0
Li4P2O7 [12] 5.0
LiPS [13] 5.0
Water, data efficiency tests [39] 4.5

TABLE VII: Radial cutoff in units of [Å].
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